Stochastic Processes and Stochastic Calculus - 5 Brownian Motion

Prof. Maurizio Pratelli
Università degli Studi di Pisa

San Miniato - 14 September 2016

Overview

1 Brownian motion

- Mathematical definition
- Wiener's construction of Brownian motion
- Continuity of Brownian paths
- Multi-dimensional Brownian motion
- Quadratic variation of BM

2 Integration w.r.t. Brownian motion

- Wiener integral

Brownian motion - some history

~ 1820 the botanist R. Brown reported for the first time the observation of the alert highly irregular random motion of minute particles ejected from the pollen grains suspendend in water.

He then observed similar motion in inorganic minute particles (no biological phenomenon).
~ 1900 L. Bachelier published his thesis "Théorie de la Spéculation": first attempt of mathematical formulation of Brownian motion and application to economics and finance
~ 1905 A. Einstein deduced from principles of statistical mechanics that Brownian motion was a result of thermal molecular motion.

He also stated the mathematical properties of Brownian motion.

Simulation of physical Brownian motion

Authors of computer model: Francisco Esquembre, Fu-Kwun and Lookang CC BY-SA 3.0

Mathematical definitions

Fix $T>0 \Rightarrow$ work with stochastic processes on "time" $[0, T]$.
Sometimes we may let $T=+\infty$, but condition $t \leq T$ becomes $t<T=+\infty$.

Definition

Given a stochastic process $\left(X_{t}\right)_{0 \leq t \leq T}$, the path at $\omega \in \Omega$ is the function

$$
t \mapsto X_{t}(\omega) .
$$

Definition

A Brownian motion is a stochastic process $\left(B_{t}\right)_{0 \leq t \leq T}$ (possibly $T=+\infty$) such that
(1) $B_{0}=0$
$\boxed{2}$ for any times $t_{1}<t_{2}<\ldots<t_{n}$, the (increments) r.v.'s

$$
B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, B_{t_{3}}-B_{t_{2}}, \ldots, B_{t_{n}}-B_{t_{n-1}}
$$

are independent
3 for every $0 \leq s<t, B_{t}-B_{s}$ has Gaussian law $\mathcal{N}(0, t-s)$
4 the paths of the process are continuous.
Such mathematical model of Brownian motion is also called Wiener process
~ 1923 N. Wiener provided the first mathematical construction i.e., showed that mathematical Brownian motion (Wiener process) exists.

Wiener's construction of BM - Fourier analysis

N . Wiener was actively working in signal analysis (harmonic analysis).
~ 1800 Fourier \Rightarrow every signal, i.e. a continuous function f on $[0, T]$ can be written as sum of wave-like signals:

$$
f(t)=a_{0} \sqrt{\frac{1}{T}}+\sum_{n=1}^{\infty} a_{n} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} t\right)+b_{n} \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{T} t\right)
$$

Moreover,

$$
\begin{gathered}
a_{0}=\int_{0}^{T} f(t) \sqrt{\frac{1}{T}} d t, \quad a_{n}=\int_{0}^{T} f(t) \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} t\right) d t, \quad n \geq 1 \\
b_{n}=\int_{0}^{T} f(t) \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{T} t\right) d t, \quad n \geq 1
\end{gathered}
$$

and the "Pythagorean" theorem holds:

$$
\int_{0}^{T} f^{2}(t) d t=a_{0}^{2}+\sum_{n=1}^{\infty} a_{n}^{2}+\sum_{n=1}^{\infty}{b_{n}}^{2}<\infty
$$

We reconstruct the signal by the Fourier coefficients $a_{0}, a_{1}, b_{1}, \ldots, a_{n}, b_{n}, \ldots$.

An example

Approximating $f(t)=0.3 t^{3}-t^{2}-t$, truncating the Fourier series at term N.

Wiener's idea: BM is an integrated version of pure (also called white) noise \rightarrow the Fourier coefficients $a_{0}, a_{1}, b_{1}, \ldots, a_{n}, b_{n}, \ldots$ must be very decorrelated.

Consider $A_{0}, A_{1}, B_{1}, \ldots, A_{n}, B_{n}, \ldots$ independent Gaussian variables $\mathcal{N}(0,1)$ and formally define
$\frac{d}{d t} B(t, \omega):=A_{0}(\omega) \sqrt{\frac{1}{T}}+\sum_{n=1}^{\infty} A_{n}(\omega) \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} t\right)+B_{n}(\omega) \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{T} t\right)$.
BUT the series does not converge. Its integral from 0 to t, defined
$A_{0}(\omega) \int_{0}^{t} \sqrt{\frac{1}{T}} d t+\sum_{n=1}^{\infty} A_{n}(\omega) \int_{0}^{t} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} s\right) d s+B_{n}(\omega) \int_{0}^{t} \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{T} s\right) d s$.
converges to a function which gives a construction of Brownian motion:
$B(t):=A_{0} \int_{0}^{t} \sqrt{\frac{1}{T}} d t+\sum_{n=1}^{\infty} A_{n} \int_{0}^{t} \sqrt{\frac{2}{T}} \cos \left(\frac{2 \pi n}{T} s\right) d s+B_{n} \int_{0}^{t} \sqrt{\frac{2}{T}} \sin \left(\frac{2 \pi n}{T} s\right) d s$.

Simulations of Wiener process - 1

Approximating Wiener process by truncating the Fourier series at term $N=1, \ldots, 100$.

Simulations of Wiener process - 2

Another realization of WBM by truncating the series at term $N=1,10,20, \ldots, 500$.

Simulations of Wiener process - 3

We plot in orange the rescaled "velocity" $\frac{d B_{t}}{d t} \cdot \sqrt{d t} \Rightarrow d B_{t} \sim \sqrt{d t}$

Continuity of paths

Wiener's construction \Rightarrow properties 12 and 3 of BM are true.
What about continuity? paths of BM are irregular but continuous (no jumps).

Definition

Let $\lambda \in(0,1)$. A function $t \mapsto f(t) \in \mathbb{R}$ is called λ-Hölder continuous if there is some constant $C>0$ such that

$$
|f(t)-f(s)| \leq C|t-s|^{\lambda}, \quad \text { for } s, t \in[0, T] .
$$

Since $B_{t}-B_{s}$ is $\mathcal{N}(0, t-s)$, i.e. $B_{t}-B_{s}=\sqrt{t-s} Z$ where Z is $\mathcal{N}(0,1)$,

$$
E\left[\left|B_{t}-B_{s}\right|\right]=E[|Z|] \sqrt{t-s}=\sqrt{\frac{2}{\pi}} \sqrt{t-s},
$$

we could say that $B M$ is "approximatively" $\frac{1}{2}$-Hölder continuous.

Theorem

There is a modification \tilde{B} of BM whose paths are λ-Hölder, for every $\lambda<\frac{1}{2}$.
Modification means \tilde{B} satisfies $\tilde{B}_{s}=B_{s}$ with probability 1 , for all $s \in[0, T]$.

Continuity of BM follows from the following general result.

Theorem (Kolmogorov criterion)

Let $\left(X_{t}\right)_{t \in[0, T]}$ be a process such that for some $\alpha, \beta>0$,

$$
E\left[\left|X_{t}-X_{s}\right|^{\alpha}\right] \leq C_{\alpha, \beta}|t-s|^{1+\beta}, \quad \text { for every } s, t \in[0, T] .
$$

Then there is a modification \tilde{X} of X whose paths are

$$
\lambda \text {-Hölder, for any } \lambda<\frac{\beta}{\alpha} \text {. }
$$

For BM, we choose $1 \leq \alpha<\infty$ and obtain

$$
E\left[\left|B_{t}-B_{s}\right|^{\alpha}\right]=E\left[|Z|^{\alpha}\right]|t-s|^{\frac{\alpha}{2}}=C_{\alpha}|t-s|^{\frac{\alpha}{2}}
$$

hence

$$
\beta=\frac{\alpha}{2}-1=\frac{\alpha-2}{2} \quad \Rightarrow \lambda<\frac{1}{2} \frac{\alpha-2}{\alpha}
$$

letting $\alpha \rightarrow \infty$,

$$
\lim _{\alpha \rightarrow \infty} \frac{1}{2} \frac{\alpha-2}{\alpha}=\frac{1}{2}
$$

Brownian motion in the plane, in space . . .

We can obtain Brownian motion in the plane (a model of one observed by Brown) by taking

$$
t \mapsto\left(B_{t}^{1}, B_{t}^{2}\right)
$$

where the two one-dimensional BM 's B^{1}, B^{2} are independent

Similarly, we obtain BM in space ($B_{t}^{1}, B_{t}^{2}, B_{t}^{3}$) and so on...

Brownian motion and martingales

Brownian paths are very irregular and oscillating, e.g. they are nowhere differentiable.

Oscillating nature of BM is also related to the following results.

Theorem

Let $\mathcal{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ be the natural filtration of the Wiener process $\left(B_{t}\right)_{t \in[0, T]}$. Then
$1 t \mapsto B_{t}$ is a martingale w.r.t. \mathcal{F}
$2 t \mapsto\left(B_{t}\right)^{2}-t$ is a martingale w.r.t. \mathcal{F}

These properties will be fundamental in the construction of the Itô's stochastic integral with respect to BM.

Quadratic variation of BM

We have seen that $t \mapsto B_{t}$ is "approximatively" $\frac{1}{2}$-Hölder continuous.
A similar but important way of measuring regularity of paths of $B M$ is via their quadratic variation.

Precisely: with probability 1 ,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left(B_{t \frac{i}{2^{n}}}-B_{t \frac{i-1}{2^{n}}}\right)^{2}=t
$$

Notation/Definition

For process $\left(X_{t}\right)_{t \in[0, T]}$ we let $\left([X]_{t}\right)_{t \in[0, T]}$ be its quadratic variation process (if it exists)

$$
[X]_{t}:=\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left(X_{t \frac{i}{2^{n}}}-X_{t \frac{i-1}{2^{n}}}\right)^{2}
$$

In case of BM , we have $[B]_{t}=t$. The property can be expressed by the mnemonic rule of "differentials"

$$
\left(d B_{t}\right)^{2}=d[B]_{t}=d t, \quad \text { in general } \quad\left(d X_{t}\right)^{2}=d[X]_{t}
$$

Wiener-ltô stochastic integrals

N. Wiener already noticed that it is not possible to define integrals w.r.t. BM,

$$
\int_{0}^{t} h_{s} \frac{d B_{s}}{d s} d s
$$

because $\frac{d B_{s}}{d s}$ does not exist (here h_{s} is a deterministic function).
Wiener's solution: define directly a new mathematical quantity

$$
\int_{0}^{t} h_{s} d B_{s}
$$

K. Itô extended Wiener's approach to define an integral

$$
\int_{0}^{t} H_{s} d B_{s}
$$

where H_{s} is another stochastic process (belonging to some suitable class) which is in some sense limit of "Riemann sums"

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} H_{s_{i}}\left(B_{s_{i+1}}-B_{s_{i}}\right)
$$

Let us consider first the case of a deterministic function $h=h(s)$ which is constant on some intervals

$$
h(s)=\sum_{i=0}^{n-1} a_{i} l_{\left.s_{i}, s_{i+1}\right]}(s)
$$

It is natural to define

$$
\int_{0}^{T} h(s) d B_{s}=\sum_{i=0}^{n-1} a_{i} \int_{s_{i}}^{s_{i+1}} d B_{s}=\sum_{i=0}^{n-1} a_{i}\left(B_{s_{i+1}}-B_{s_{i}}\right)
$$

Since the increments $\left(B_{s_{i+1}}-B_{s_{i}}\right)$ are Gaussian and independent, the random variable

$$
\omega \mapsto\left(\int_{0}^{T} h(s) d B_{s}\right)(\omega)
$$

is Gaussian centred with variance
$\operatorname{Var}\left(\int_{0}^{T} h(s) d B_{s}\right)=\operatorname{Var}\left(\sum_{i=0}^{n-1} a_{i}\left(B_{s_{i+1}}-B_{s_{i}}\right)\right)=\sum_{i=0}^{n-1} a_{i}^{2}\left(s_{i+1}-s_{i}\right)=\int_{0}^{T} h^{2}(s) d s$.

Wiener integral

By continuity, this definition extends to all functions $h \in L^{2}(0, T)$, i.e. with

$$
\int_{0}^{T} h^{2}(s) d s<\infty
$$

Theorem
Let $h \in L^{2}(0, T)$. The Wiener integral

$$
\int_{0}^{T} h(s) d B_{s}
$$

is well-defined and is a Gaussian random variable:

$$
\int_{0}^{T} h(s) d B_{s} \sim \mathcal{N}\left(0, \int_{0}^{T} h^{2}(s) d s\right) .
$$

Towards Itô integral

In the next lecture, we show how to extend this definition to stochastic integrands H_{s}.

The Itô integral $\int_{0}^{T} H_{s} d B_{s}$ is defined provided that
1 the process H_{s} is adapted or non-anticipative, i.e. H_{s} uses only information from the past history of B up to time s;
\square the square-integrability condition holds

$$
E\left[\int_{0}^{T} H_{s}^{2} d s\right]=\int_{\Omega} \int_{[0, T]} H_{s}^{2}(\omega) d s d P(\omega)<\infty .
$$

