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Brownian motion – some history

∼ 1820 the botanist R. Brown reported for the first time the observation of the
alert highly irregular random motion of minute particles ejected from the
pollen grains suspendend in water.

He then observed similar motion in inorganic minute particles (no biological
phenomenon).

∼ 1900 L. Bachelier published his thesis “Théorie de la Spéculation”: first
attempt of mathematical formulation of Brownian motion and application to
economics and finance

∼ 1905 A. Einstein deduced from principles of statistical mechanics that
Brownian motion was a result of thermal molecular motion.

He also stated the mathematical properties of Brownian motion.



Simulation of physical Brownian motion

Authors of computer model: Francisco Esquembre, Fu-Kwun and Lookang CC BY-SA 3.0

 https://commons.wikimedia.org/w/index.php?curid=19140345


Mathematical definitions

Fix T > 0⇒ work with stochastic processes on “time” [0,T ].

Sometimes we may let T = +∞, but condition t ≤ T becomes t < T = +∞.

Definition
Given a stochastic process (Xt )0≤t≤T , the path at ω ∈ Ω is the function

t 7→ Xt (ω).



Definition
A Brownian motion is a stochastic process (Bt )0≤t≤T (possibly T = +∞)
such that

1 B0 = 0

2 for any times t1 < t2 < . . . < tn, the (increments) r.v.’s

Bt1 ,Bt2 − Bt1 ,Bt3 − Bt2 , . . . ,Btn − Btn−1

are independent

3 for every 0 ≤ s < t , Bt − Bs has Gaussian law N (0, t − s)

4 the paths of the process are continuous.

Such mathematical model of Brownian motion is also called Wiener process

∼ 1923 N. Wiener provided the first mathematical construction i.e., showed
that

mathematical Brownian motion (Wiener process) exists.



Wiener’s construction of BM - Fourier analysis

N. Wiener was actively working in signal analysis (harmonic analysis).

∼ 1800 Fourier⇒ every signal, i.e. a continuous function f on [0,T ] can be
written as sum of wave-like signals:

f (t) = a0

√
1
T

+
∞∑

n=1

an

√
2
T

cos
(

2πn
T

t
)

+ bn

√
2
T

sin
(

2πn
T

t
)
.

Moreover,

a0 =
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and the “Pythagorean” theorem holds:∫ T

0
f 2(t)dt = a0

2 +
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2 +
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We reconstruct the signal by the Fourier coefficients a0, a1, b1, . . . , an, bn, . . ..



An example

Approximating f (t) = 0.3t3 − t2 − t , truncating the Fourier series at term N.



Wiener’s idea: BM is an integrated version of pure (also called white) noise
→ the Fourier coefficients a0, a1, b1, . . . , an, bn, . . . must be very decorrelated.

Consider A0,A1,B1, . . . ,An,Bn, . . . independent Gaussian variables N (0, 1)
and formally define

d
dt
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BUT the series does not converge. Its integral from 0 to t , defined
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converges to a function which gives a construction of Brownian motion:

B(t) := A0
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Simulations of Wiener process - 1

Approximating Wiener process by truncating the Fourier series at term N = 1, . . . , 100.



Simulations of Wiener process - 2

Another realization of WBM by truncating the series at term N = 1, 10, 20, . . . , 500.



Simulations of Wiener process - 3

We plot in orange the rescaled “velocity” dBt
dt ·
√

dt ⇒ dBt ∼
√

dt



Continuity of paths

Wiener’s construction⇒ properties 1 2 and 3 of BM are true.
What about continuity? paths of BM are irregular but continuous (no jumps).

Definition
Let λ ∈ (0, 1). A function t 7→ f (t) ∈ R is called λ-Hölder continuous if there is
some constant C > 0 such that

|f (t)− f (s)| ≤ C|t − s|λ, for s, t ∈ [0,T ].

Since Bt − Bs is N (0, t − s), i.e. Bt − Bs =
√

t − sZ where Z is N (0, 1),

E [|Bt − Bs|] = E [|Z |]
√

t − s =

√
2
π

√
t − s,

we could say that BM is “approximatively” 1
2 -Hölder continuous.

Theorem
There is a modification B̃ of BM whose paths are λ-Hölder, for every λ < 1

2 .

Modification means B̃ satisfies B̃s = Bs with probability 1, for all s ∈ [0,T ].



Continuity of BM follows from the following general result.

Theorem (Kolmogorov criterion)

Let (Xt )t∈[0,T ] be a process such that for some α, β > 0,

E [|Xt − Xs|α] ≤ Cα,β |t − s|1+β , for every s, t ∈ [0,T ].

Then there is a modification X̃ of X whose paths are

λ-Hölder, for any λ < β
α

.

For BM, we choose 1 ≤ α <∞ and obtain

E [|Bt − Bs|α] = E [|Z |α] |t − s|
α
2 = Cα |t − s|
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.



Brownian motion in the plane, in space . . .

We can obtain Brownian motion in the plane (a model of one observed by
Brown) by taking

t 7→ (B1
t ,B

2
t )

where the two one-dimensional BM’s B1, B2 are independent
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Similarly, we obtain BM in space (B1
t ,B

2
t ,B

3
t ) and so on. . .



Brownian motion and martingales

Brownian paths are very irregular and oscillating, e.g. they are nowhere
differentiable.

Oscillating nature of BM is also related to the following results.

Theorem
Let F = (Ft )t∈[0,T ] be the natural filtration of the Wiener process (Bt )t∈[0,T ].
Then

1 t 7→ Bt is a martingale w.r.t. F
2 t 7→ (Bt )

2 − t is a martingale w.r.t. F

These properties will be fundamental in the construction of the Itô’s
stochastic integral with respect to BM.



Quadratic variation of BM

We have seen that t 7→ Bt is “approximatively” 1
2 -Hölder continuous.

A similar but important way of measuring regularity of paths of BM is via their
quadratic variation.

Precisely: with probability 1,

lim
n→∞

2n∑
i=1

(
Bt i

2n
− Bt i−1

2n

)2
= t .

Notation/Definition
For process (Xt )t∈[0,T ] we let ([X ]t )t∈[0,T ] be its quadratic variation process (if
it exists)

[X ]t := lim
n→∞

2n∑
i=1

(
Xt i

2n
− Xt i−1

2n

)2
.

In case of BM, we have [B]t = t . The property can be expressed by the
mnemonic rule of “differentials”

(dBt )
2 = d [B]t = dt , in general (dXt )

2 = d [X ]t .



Wiener-Itô stochastic integrals

N. Wiener already noticed that it is not possible to define integrals w.r.t. BM,∫ t

0
hs

dBs

ds
ds

because dBs
ds does not exist (here hs is a deterministic function).

Wiener’s solution: define directly a new mathematical quantity∫ t

0
hsdBs

K. Itô extended Wiener’s approach to define an integral∫ t

0
HsdBs

where Hs is another stochastic process (belonging to some suitable class)
which is in some sense limit of “Riemann sums”

lim
n→∞

n−1∑
i=0

Hsi

(
Bsi+1 − Bsi

)
.



Let us consider first the case of a deterministic function h = h(s) which is
constant on some intervals

h(s) =
n−1∑
i=0

ai I]si ,si+1](s)

It is natural to define∫ T

0
h(s)dBs =

n−1∑
i=0

ai

∫ si+1

si

dBs =
n−1∑
i=0

ai
(
Bsi+1 − Bsi

)

Since the increments
(
Bsi+1 − Bsi

)
are Gaussian and independent, the

random variable

ω 7→
(∫ T

0
h(s)dBs

)
(ω)

is Gaussian centred with variance

Var
(∫ T

0
h(s)dBs

)
= Var

(
n−1∑
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ai
(
Bsi+1 − Bsi

))
=

n−1∑
i=0

a2
i (si+1−si ) =

∫ T

0
h2(s)ds.



Wiener integral

By continuity, this definition extends to all functions h ∈ L2(0,T ), i.e. with∫ T

0
h2(s)ds <∞.

Theorem
Let h ∈ L2(0,T ). The Wiener integral∫ T

0
h(s)dBs

is well-defined and is a Gaussian random variable:∫ T

0
h(s)dBs ∼ N

(
0,
∫ T

0
h2(s)ds

)
.



Towards Itô integral

In the next lecture, we show how to extend this definition to stochastic
integrands Hs.

The Itô integral
∫ T

0 HsdBs is defined provided that

1 the process Hs is adapted or non-anticipative, i.e. Hs uses only
information from the past history of B up to time s;

2 the square-integrability condition holds

E
[∫ T

0
H2

s ds
]

=

∫
Ω

∫
[0,T ]

H2
s (ω)dsdP(ω) <∞.
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