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A “lake model” of employment flows

We propose a simple model for

flows between unemployment and employment

employment and unemployment rates at “equilibrium”

People can be

1 Employed, working and not looking for alternatives

2 Unemployed and looking for a job

Em Un

1 − λ

λ

1 − φ

φ

Fix a unit of time (e.g. one month) and introduce two parameters

λ := probability that a worker loses his/her job in a month

φ := probability that an unemployed one finds a job in a month

We call λ, φ ∈ [0, 1] transition probabilities.
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A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



A more precise description of the model

We assume that λ and φ do not depend

on the person→ “typical” person

nor on time→ time-homogeneous

For n = 0, 1, 2, . . ., let Xn denote the (random) state of employment of such
“typical” person.

We have

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ.

Problem
Are these assumptions sufficient to specify uniquely our model?

NO. For example, we do not know the initial state X0.



The Markov assumption

Problem
What about the probability of finding a new job, knowing that he/she has been
unemployed for the last two months? How to compute

P(Xn+1 = E |Xn = U,Xn−1 = U)?

We may say that two months without work are not a big deal, so we could
assume

P(Xn+1 = E |Xn = U,Xn−1 = U) = φ

But what about three or more? One year? At this stage we introduce the
following assumption:

Markov property

At any time, regardless of the information about the past months, the
next-month state of employment depends uniquely on the present one, i.e.

P(Xn+1 = E |Xn = U,Xn−1 = ·,Xn−2 = ·, . . . ,Xn−k = ·) = P(Xn+1 = E |Xn = U)

P(Xn+1 = U|Xn = E ,Xn−1 = ·,Xn−2 = ·, . . . ,Xn−k = ·) = P(Xn+1 = U|Xn = E).
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The Markov assumption

How can we justify the Markov property assumption?

The model becomes very tractable analytically

It fits real data (?) – we can make predictions

Given only the data λ and φ (from real world), this is the “fairest” model
that one can think.

A more realistic assumption would be e.g.

P(Xn+1 = E |Xn = U,Xn−1 = U,Xn−2 = U, . . . ,Xn−k = U) ≤ P(Xn+1 = E |Xn = U)

but how to make it quantitative?
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Examples

Em Un

1 − λ

λ

1 − φ

φ

P(X2 = E ,X1 = U|X0 = E) = P(X2 = E |X1 = U,X0 = E)P(X1 = U|X0 = E)

= P(X2 = E |X1 = U)P(X1 = U|X0 = E)

= φλ

P(X3 = E ,X2 = U,X1 = U|X0 = E) = φ(1− φ)λ

P(X3 = E |X0 = E) =?
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The Markov property

Let us provide a general definition.

Definition (Markov process)

Given a filtration (Ft )t∈T , a process Xt : Ω→ E is Markov if

for all s ≤ t ∈ T , A ⊆ E P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs)

Usually one has Ft = σ(Xr : r ≤ t), the natural filtration of Xt .
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Markov Chains - 1

To generalize the example above:

{E ,U} states of employment ⇒ S set of states (finite or countable)

Recall

P(Xn+1 = E |Xn = E) = 1− λ P(Xn+1 = U|Xn = E) = λ
P(Xn+1 = E |Xn = U) = φ P(Xn+1 = U|Xn = U) = 1− φ

The transition probabilities are |S|2 numbers that we write matrix notation:(
1− λ λ
φ 1− φ

)
⇒ Q = (pij )i,j∈S pij = P(Xn+1 = j|Xn = i) for i , j ∈ S

Remark (Q is a stochastic matrix)

We must have pij ∈ [0, 1] for i , j ∈ S and∑
j∈S

pij =
∑
j∈S

P(Xn+1 = j|Xn = i) = P(Xn+1 ∈ S|Xn = i) = 1
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Markov Chains - 2

Definiton (Markov chain)

Given

a finite or countable S (set of states)

a stochastic matrix Q = (pij )i,j∈S (transition probabilities)

a filtration (F)n∈N

we say that a process Xn : Ω→ S (n ∈ N) is a markov chain if for all n ∈ N,

P(Xn+1 = j|Fn) = P(Xn+1 = j|Xn) ∀j ∈ S (Markov property)

P(Xn+1 = j|Xn = i) = pij ∀i, j ∈ S (transition probability)

The two conditions above yield

P(Xn+1 = j|Xn = i,Xn−1 = ·,Xn−2 = ·, . . . ,Xn−k = ·) = pij
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Graphical representation

We associate

a node to each state i ∈ S
a weighted arrow to each transition probability pij (no arrow if pij = 0).

S = (I, U, E , O)

Q =


1− η η 0 0
0 φ 1− φ 0
0 λ 1− λ− ε ε
0 0 0 1



Em Un

Out In

1 − λ− ε

λ

ε

1 − φ

φ

1 1 − η

η
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The Kolmogorov theorem

The following theorem ensures that Markov chains exist.

Theorem
Given a finite or countable S, a stochastic matrix Q = (pij )i,j∈S and a
probability measure µ0 on S.

∃) there exists a Markov chain (Xn)n∈N (with respect to the natural filtration)
with transition probability Q and law of X0 equal to µ0.

!) Such a chain X is unique in law, i.e. given any Markov chain Y with
transition probability Q and law of X0 equal to µ0, one has

X = Y in law.

The condition X = Y in law means that for every n ≥ 1, A0, . . . ,An ⊆ S

P(X0 ∈ A0,X1 ∈ A1, . . . ,Xn ∈ An) = P(Y0 ∈ A0,Y1 ∈ A1, . . . ,Yn ∈ An)
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∃) there exists a Markov chain (Xn)n∈N (with respect to the natural filtration)
with transition probability Q and law of X0 equal to µ0.

!) Such a chain X is unique in law, i.e. given any Markov chain Y with
transition probability Q and law of X0 equal to µ0, one has

X = Y in law.

The condition X = Y in law means that for every n ≥ 1, A0, . . . ,An ⊆ S

P(X0 ∈ A0,X1 ∈ A1, . . . ,Xn ∈ An) = P(Y0 ∈ A0,Y1 ∈ A1, . . . ,Yn ∈ An)



Marginal laws

How to compute the quantity

P(X0 ∈ A0,X1 ∈ A1, . . . ,Xn ∈ An)?

The simplest case is that of 1-marginals, i.e. the law of Xn. For example

P(X1 = j) =
∑
i∈S

P(X1 = j|X0 = i)P(X0 = i) =
∑
i∈S

pijµ
0
i

Recall the matrix-vector products for column vectors v or row vectors r

(Qv)i =
∑

j

pijvj , (rQ)i =
∑

i

pij ri

If we identify µ0 and P(X1 = ·) with row vectors, we have

P(X1 = ·) = µ0Q

Proposition (marginal laws)

P(Xn = ·) = µ0(Qn), for any n ≥ 0.
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A geometric interpretation of Qn

By definition of power of a matrix

(Qn)ij =
∑

k

pik (Qn−1)kj =
∑

k1,k2,...k(n−1)

pik1 pk1k2 · pk(n−1) j

1 Each choice of k1, . . . , k(n−1) defines the path of ‘length” n

i → k1 → k2 → . . .→ k(n−1) → j.

2 Each path has total weight given by the product of the weights.
3 We sum the weights over all the paths of length n joining i to j .

S = (U, E , O)

Q =

 1− φ φ 0
λ 1− λ− ε ε
0 0 1



Q2 =

 λφ . . . . . .
λ(1− φ) + λ(1− λ− ε) . . . . . .
0 0 1



Em Un

Out

1 − λ− ε

λ

ε

1 − φ

φ

1
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Long time behavior

Consider the 2-states model, with λ = 0.1 and φ = 0.3.

Em Un

0.9

0.1

0.3
0.7

Problem
What can we say about Xn, for large n?

P(Xn = E) will be close to 1. How to compute it?

Q =

(
0.9 0.1
0.7 0.3

)
Q2 =

(
0.88 0.12
0.84 0.16

)
Q4 ∼

(
0.87 0.13
0.87 0.13

)
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Invariant distributions

Do the laws of (Xn)n≥1 converges as n→∞ towards some limit law µ̄ on S?

Problem
What are relevant properties of µ̄?

Since the law of Xn is µ0(Qn), we should find

µ̄ = lim
n→∞

µ0(Qn)

but also
µ̄Q = lim

n→∞
µ0(Qn)Q = lim

n→∞
µ0(Qn+1) = µ̄

We obtain that µ̄ is invariant (also called stationary), i.e.

µ̄Q = µ̄.

In linear algebra notation, µ̄ is a row eigenvector of Q with eigenvalue 1.
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Existence of Invariant distributions

Theorem (Perron-Frobenius)

If the number of states S is finite, there exists at least one invariant
distribution:

µ̄Q = µ̄.

Proof.
Choose any µ0 and consider the averages

µ̄n :=
1
n

(
µ0 + µ0Q + µ0Q2 + . . . ,+µ0Qn−1

)
.

These are “almost invariant”:

µ̄n − µ̄nQ =
1
n

(
µ0 −Qnµ0

)
→ 0

One can prove that some limit point exists and it is invariant.

Notice that the proof gives a “way” to find µ̄, essentially by taking powers Qn

and averaging.
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Beware: the existence result could be false if the number of states is infinite!

Let S = N

1 2 3 4 5 6 71 1 1 1 1 1

P(Xn+1 = i + 1|Xn = i) = 1

We have P(Xn+1 = i) = 0, for every i ≤ n

Any invariant probability satisifes µ̄i = 0 for every i
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Convergence of the laws

If the number of states is finite, we know that some µ̄ exists.

Problem
Is it true that, for j ∈ S,

P(Xn = j)→ µ̄(j), as n→∞?

In general the answer is NO. Let us consider one example.
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1

Why? If P(X0 = E) = 1, we have P(Xn = E) = 1 or 0 alternatively. . .

If we
write the transition matrix

Q =

(
0 1
1 0

)
Q2 =

(
1 0
0 1

)
Q3 = Q =

(
0 1
1 0

)
We see there is no limit as n→∞.

Question: what are the invariant distributions for Q?
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Communicating states

Definition (Communicating states)

Given states i , j ∈ S, we say that i  j if there is n ∈ N such that

(Qn)ij = P(Xn = j |X0 = i) > 0.

How to see if i  j? just follow the arrows.

1 2 3 4 5 6

7 8 9

Notice that 1 2 but not 2 1.
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Irreducible chains

Irreducible transition probability

We say that the transition matrix Q is irreducible if

for every i , j ∈ S, i  j .

The example

Q =

(
0 1
1 0

)
is irreducible.

in terms of the transition matrix, this means that for every i , j there exists
m ∈ N such that (Qm)ij > 0.

The name “irreducible” comes from the fact that any Markov chain can
be decomposed into smaller chains which are irreducible, plus some
“remainder” (called transitory states).
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Regularity

For our problem of convergence towards invariant distributions, we need
something more than irreducible chains.
The problem with

Q =

(
0 1
1 0

)
is irreducible but not “random” (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists m ∈ N such that
Qm has strictly positive entries, i.e.

(Qm)ij > 0 for every i , j ∈ S.

Notice regular→ irreducible, but m does not depend upon i , j ∈ S.

The example

Q =

(
0 1
1 0

)
is not regular.



Regularity

For our problem of convergence towards invariant distributions, we need
something more than irreducible chains.
The problem with

Q =

(
0 1
1 0

)
is irreducible but not “random” (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists m ∈ N such that
Qm has strictly positive entries, i.e.

(Qm)ij > 0 for every i , j ∈ S.

Notice regular→ irreducible, but m does not depend upon i , j ∈ S.

The example

Q =

(
0 1
1 0

)
is not regular.



Regularity

For our problem of convergence towards invariant distributions, we need
something more than irreducible chains.
The problem with

Q =

(
0 1
1 0

)
is irreducible but not “random” (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists m ∈ N such that
Qm has strictly positive entries, i.e.

(Qm)ij > 0 for every i , j ∈ S.

Notice regular→ irreducible, but m does not depend upon i , j ∈ S.

The example

Q =

(
0 1
1 0

)
is not regular.



Regularity

For our problem of convergence towards invariant distributions, we need
something more than irreducible chains.
The problem with

Q =

(
0 1
1 0

)
is irreducible but not “random” (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists m ∈ N such that
Qm has strictly positive entries, i.e.

(Qm)ij > 0 for every i , j ∈ S.

Notice regular→ irreducible, but m does not depend upon i , j ∈ S.

The example

Q =

(
0 1
1 0

)
is not regular.



Regularity

For our problem of convergence towards invariant distributions, we need
something more than irreducible chains.
The problem with

Q =

(
0 1
1 0

)
is irreducible but not “random” (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists m ∈ N such that
Qm has strictly positive entries, i.e.

(Qm)ij > 0 for every i , j ∈ S.

Notice regular→ irreducible, but m does not depend upon i , j ∈ S.

The example

Q =

(
0 1
1 0

)
is not regular.



In terms of the Markov chain, regularity means that there exists m ∈ N such
that

P(Xm = j|X0 = i) > 0 for every i , j ∈ S,

This means that after some time m we are “very uncertain” about the actual
position, we cannot exclude of being at any state.

Notice that if Qm has strictly positive entries, then Qm+1 also is strictly
positive.

P(Xm+1 = j|X0 = i) =
∑

k

P(Xm+1 = j|X1 = k ,X0 = i)P(X1 = k |X0 = i)

=
∑

k

P(Xm+1 = j|X1 = k)P(X1 = k |X0 = i) > 0

because ∑
k

P(X1 = k |X0 = i) = 1.
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The importance of being regular

Theorem (Markov)

If Q is a regular transition probability (on a finite state space S) then there is a
unique invariant distribution µ̄ and

lim
n→∞

(Qn)ij = µ̄(j), for every i , j ∈ S.

In terms of Markov chain, this answer positively to the problem

P(Xn = j)→ µ̄(j), as n→∞,

for every j ∈ S, whatever the initial law of X0 was.



The importance of being regular

Theorem (Markov)

If Q is a regular transition probability (on a finite state space S) then there is a
unique invariant distribution µ̄ and

lim
n→∞

(Qn)ij = µ̄(j), for every i , j ∈ S.

In terms of Markov chain, this answer positively to the problem

P(Xn = j)→ µ̄(j), as n→∞,

for every j ∈ S, whatever the initial law of X0 was.



The importance of being regular

Theorem (Markov)

If Q is a regular transition probability (on a finite state space S) then there is a
unique invariant distribution µ̄ and

lim
n→∞

(Qn)ij = µ̄(j), for every i , j ∈ S.

In terms of Markov chain, this answer positively to the problem

P(Xn = j)→ µ̄(j), as n→∞,

for every j ∈ S, whatever the initial law of X0 was.



Ergodicity

Going back to our model of employment flows,

Em Un

1 − λ

λ

1 − φ

φ

Problem
What is the “typical” time spent looking for a new job (over a long period)?

Answer to this question uses the “ergodicity” principle from physics:

time averages on long period = space averages for large numbers of indivituals

Beware: this holds for systems at equilibrium!
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Ergodicity
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In our model, the large number of individuals is encoded in the law of Xn,
hence the space average at equilibrium is just

µ̄(E),

with respect to the invariant distribution µ̄.
We compute the time average of being unemployed:

] {k ∈ {0, 1, . . . , n − 1} |Xk = E}
n

.

Then the ergodic principle reads

lim
n→∞

] {k ∈ {0, 1, . . . , n − 1} |Xk = E}
n

= µ̄(E).
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The ergodic principle is actually a theorem in the setting of Markov chains.

Ergodic theorem

Let (Xn)n≥1, be a irreducible Markov chain on a finite state space S. Then

lim
n→∞

] {k ∈ {0, 1, . . . , n − 1} |Xk = j}
n

= µ̄(j), for every j ∈ S.

Of course, this theorem applies also to regular Markov chains.
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Continuous time Markov chains

Problem
How to modify our model if, instead of measuring time intervals in months we
have better precision, e.g. weeks (1 month ∼ 4 weeks).

We can split the time {0, 1, 2, . . .} into

{0, 1/4, 2/4, 3/4, 1, 5/4, 6/4, 7/4, . . .}

and build a process Y0,Y1/4,Y2/4,Y3/4, . . ..
If we want to have a Markov chain “close” to the original one, we should have
QX ∼ Q4

Y , i.e. QY = Q1/4
X .

If instead of 4 weeks we split into days, we should have the transition
probability Q1/30

X .
What happens if we split times into infinitely many small intervals, i.e.
continous times?
We have Q1/∞ = Q0 = Id , but imagine, for large n,

Q1/n ∼ Id +
1
n

R + smaller terms.

We describe the chain by means of the matrix R (called transition rate
matrix).
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Recalling the formal expansion

Q1/n ∼ Id +
1
n

R + smaller terms.

Assuming Q1/n to be a stochastic matrix, then we must have

Rij ≥ 0, for i 6= j, Rii ≤ 0

and ∑
j

Rij = 0.

We interpret Rij as the rate at which we jump from i to j .
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Actually, we can describe the continuous Markov chain as follows:
1 When the particle is on the state i ∈ S, take independent “alarm clocks”

Aj , one for every j ∈ S with exponential laws

Aj ∼ E(rij )

2 When the first clock rings, say Aj jump to state j and repeat the previous
point.
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E(1)(x)= exp(−x)

E(0.5)=0.5exp(−0.5 x)
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Poisson process

An important example of such continuous time jump process has state space

S = N = {0, 1, . . .}
and transition rates

Rij =


1 if j = i + 1
−1 if j = i
0 otherwise.

Two realizations of a Poisson process:
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We denote (Nt )t∈[0,∞) the Poisson process (N = number of jumps).
It is possible to prove that

N is a Markov process (obvious)

For every t ∈ [0,∞), Nt has Poisson law

P(Nt = k) =
e−k

k !
, k ∈ N.

In particular,
E [Nt ] = t .

the increments are independent, e.g. for s < t < u < v ,

Nt − Ns and Nv − Nu are independent random variables.



We denote (Nt )t∈[0,∞) the Poisson process (N = number of jumps).

It is possible to prove that

N is a Markov process (obvious)

For every t ∈ [0,∞), Nt has Poisson law

P(Nt = k) =
e−k

k !
, k ∈ N.

In particular,
E [Nt ] = t .

the increments are independent, e.g. for s < t < u < v ,

Nt − Ns and Nv − Nu are independent random variables.



We denote (Nt )t∈[0,∞) the Poisson process (N = number of jumps).
It is possible to prove that

N is a Markov process (obvious)

For every t ∈ [0,∞), Nt has Poisson law

P(Nt = k) =
e−k

k !
, k ∈ N.

In particular,
E [Nt ] = t .

the increments are independent, e.g. for s < t < u < v ,

Nt − Ns and Nv − Nu are independent random variables.



One can also change the intensity of jumps (not the size), by changing the
transition rates: for λ > 0,

Rλ
ij = λRij
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