Stochastic Processes and Stochastic Calculus - 3 Markov Chains

Dario Trevisan
Università degli Studi di Pisa

San Miniato - 13 September 2016

Overview

1 Discrete time processes

- An example
- The Markov property
- Discrete Markov chains

■ Invariant distributions
■ Irreducible and regular chains

- Ergodic theorems

2 Continuous time jump processes

- Continuous time Markov chains

■ Poisson process

A "lake model" of employment flows

We propose a simple model for
■ flows between unemployment and employment
■ employment and unemployment rates at "equilibrium"

A "lake model" of employment flows

We propose a simple model for
■ flows between unemployment and employment
■ employment and unemployment rates at "equilibrium"
People can be
1 Employed, working and not looking for alternatives

A "lake model" of employment flows

We propose a simple model for
■ flows between unemployment and employment
■ employment and unemployment rates at "equilibrium"
People can be
1 Employed, working and not looking for alternatives
2 Unemployed and looking for a job

A "lake model" of employment flows

We propose a simple model for
■ flows between unemployment and employment
■ employment and unemployment rates at "equilibrium"
People can be
1 Employed, working and not looking for alternatives
2 Unemployed and looking for a job

A "lake model" of employment flows

We propose a simple model for
■ flows between unemployment and employment
■ employment and unemployment rates at "equilibrium"
People can be
1 Employed, working and not looking for alternatives
2 Unemployed and looking for a job

Fix a unit of time (e.g. one month) and introduce two parameters
$\lambda:=$ probability that a worker loses his/her job in a month
$\phi:=$ probability that an unemployed one finds a job in a month
We call $\lambda, \phi \in[0,1]$ transition probabilities.

A more precise description of the model

We assume that λ and ϕ do not depend

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person
■ nor on time \rightarrow time-homogeneous

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person
■ nor on time \rightarrow time-homogeneous
For $n=0,1,2, \ldots$, let X_{n} denote the (random) state of employment of such "typical" person.

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person
■ nor on time \rightarrow time-homogeneous
For $n=0,1,2, \ldots$, let X_{n} denote the (random) state of employment of such "typical" person.

We have

$$
\begin{array}{ll}
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=E\right)=1-\lambda & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right)=\lambda \\
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)=\phi & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=U\right)=1-\phi .
\end{array}
$$

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person
■ nor on time \rightarrow time-homogeneous
For $n=0,1,2, \ldots$, let X_{n} denote the (random) state of employment of such "typical" person.

We have

$$
\begin{array}{ll}
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=E\right)=1-\lambda & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right)=\lambda \\
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)=\phi & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=U\right)=1-\phi .
\end{array}
$$

Problem

Are these assumptions sufficient to specify uniquely our model?

A more precise description of the model

We assume that λ and ϕ do not depend
■ on the person \rightarrow "typical" person
■ nor on time \rightarrow time-homogeneous
For $n=0,1,2, \ldots$, let X_{n} denote the (random) state of employment of such "typical" person.

We have

$$
\begin{array}{ll}
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=E\right)=1-\lambda & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right)=\lambda \\
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)=\phi & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=U\right)=1-\phi
\end{array}
$$

Problem

Are these assumptions sufficient to specify uniquely our model?
NO. For example, we do not know the initial state X_{0}.

The Markov assumption

The Markov assumption

Problem

What about the probability of finding a new job, knowing that he/she has been unemployed for the last two months?

The Markov assumption

Problem

What about the probability of finding a new job, knowing that he/she has been unemployed for the last two months? How to compute

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right) ?
$$

The Markov assumption

Problem

What about the probability of finding a new job, knowing that he/she has been unemployed for the last two months? How to compute

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right) ?
$$

We may say that two months without work are not a big deal, so we could assume

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right)=\phi
$$

The Markov assumption

Problem

What about the probability of finding a new job, knowing that he/she has been unemployed for the last two months? How to compute

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right) ?
$$

We may say that two months without work are not a big deal, so we could assume

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right)=\phi
$$

But what about three or more? One year?

The Markov assumption

Problem

What about the probability of finding a new job, knowing that he/she has been unemployed for the last two months? How to compute

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right) ?
$$

We may say that two months without work are not a big deal, so we could assume

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U\right)=\phi
$$

But what about three or more? One year? At this stage we introduce the following assumption:

Markov property

At any time, regardless of the information about the past months, the next-month state of employment depends uniquely on the present one, i.e.

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=\cdot, X_{n-2}=\cdot, \ldots, X_{n-k}=\cdot\right)=\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right) \\
& \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E, X_{n-1}=\cdot, X_{n-2}=\cdot, \ldots, X_{n-k}=\cdot\right)=\mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right) .
\end{aligned}
$$

The Markov assumption

How can we justify the Markov property assumption?

The Markov assumption

How can we justify the Markov property assumption?

- The model becomes very tractable analytically

■ It fits real data (?) - we can make predictions
■ Given only the data λ and ϕ (from real world), this is the "fairest" model that one can think.

The Markov assumption

How can we justify the Markov property assumption?

- The model becomes very tractable analytically

■ It fits real data (?) - we can make predictions
■ Given only the data λ and ϕ (from real world), this is the "fairest" model that one can think.
A more realistic assumption would be e.g.

$$
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U, X_{n-1}=U, X_{n-2}=U, \ldots, X_{n-k}=U\right) \leq \mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)
$$

but how to make it quantitative?

Examples

Examples

$$
\begin{aligned}
\mathbb{P}\left(X_{2}=E, X_{1}=U \mid X_{0}=E\right) & =\mathbb{P}\left(X_{2}=E \mid X_{1}=U, X_{0}=E\right) \mathbb{P}\left(X_{1}=U \mid X_{0}=E\right) \\
& =\mathbb{P}\left(X_{2}=E \mid X_{1}=U\right) \mathbb{P}\left(X_{1}=U \mid X_{0}=E\right) \\
& =\phi \lambda
\end{aligned}
$$

$$
\mathbb{P}\left(X_{3}=E, X_{2}=U, X_{1}=U \mid X_{0}=E\right)=\phi(1-\phi) \lambda
$$

$$
\mathbb{P}\left(X_{3}=E \mid X_{0}=E\right)=?
$$

The Markov property

Let us provide a general definition.

The Markov property

Let us provide a general definition.
Definition (Markov process)
Given a filtration $\left(\mathcal{F}_{t}\right)_{t \in T}$, a process $X_{t}: \Omega \rightarrow E$ is Markov if

$$
\text { for all } s \leq t \in T, A \subseteq E \quad \mathbb{P}\left(X_{t} \in A \mid \mathcal{F}_{s}\right)=\mathbb{P}\left(X_{t} \in A \mid X_{s}\right)
$$

The Markov property

Let us provide a general definition.

Definition (Markov process)

Given a filtration $\left(\mathcal{F}_{t}\right)_{t \in T}$, a process $X_{t}: \Omega \rightarrow E$ is Markov if

$$
\text { for all } s \leq t \in T, A \subseteq E \quad \mathbb{P}\left(X_{t} \in A \mid \mathcal{F}_{s}\right)=\mathbb{P}\left(X_{t} \in A \mid X_{s}\right)
$$

■ Usually one has $\mathcal{F}_{t}=\sigma\left(X_{r}: r \leq t\right)$, the natural filtration of X_{t}.

Markov Chains - 1

Markov Chains - 1

To generalize the example above:
$\{E, U\} \quad$ states of employment $\Rightarrow \mathcal{S}$ set of states (finite or countable)

Markov Chains - 1

To generalize the example above:
$\{E, U\}$ states of employment $\Rightarrow \mathcal{S}$ set of states (finite or countable)
Recall

$$
\begin{array}{ll}
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=E\right)=1-\lambda & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right)=\lambda \\
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)=\phi & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=U\right)=1-\phi
\end{array}
$$

The transition probabilities are $|\mathcal{S}|^{2}$ numbers that we write matrix notation:

$$
\left(\begin{array}{ll}
1-\lambda & \lambda \\
\phi & 1-\phi
\end{array}\right) \Rightarrow Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}} \quad p_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right) \quad \text { for } i, j \in \mathcal{S}
$$

Markov Chains - 1

To generalize the example above:
$\{E, U\}$ states of employment $\Rightarrow \mathcal{S}$ set of states (finite or countable)
Recall

$$
\begin{array}{ll}
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=E\right)=1-\lambda & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=E\right)=\lambda \\
\mathbb{P}\left(X_{n+1}=E \mid X_{n}=U\right)=\phi & \mathbb{P}\left(X_{n+1}=U \mid X_{n}=U\right)=1-\phi
\end{array}
$$

The transition probabilities are $|\mathcal{S}|^{2}$ numbers that we write matrix notation:

$$
\left(\begin{array}{ll}
1-\lambda & \lambda \\
\phi & 1-\phi
\end{array}\right) \Rightarrow Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}} \quad p_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right) \quad \text { for } i, j \in \mathcal{S}
$$

Remark (Q is a stochastic matrix)

We must have $p_{i j} \in[0,1]$ for $i, j \in \mathcal{S}$ and

$$
\sum_{j \in \mathcal{S}} p_{i j}=\sum_{j \in \mathcal{S}} \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{n+1} \in \mathcal{S} \mid X_{n}=i\right)=1
$$

Markov Chains - 2

Definiton (Markov chain)

Given

Markov Chains - 2

Definiton (Markov chain)

Given

- a finite or countable \mathcal{S} (set of states)

Markov Chains - 2

Definiton (Markov chain)

Given

- a finite or countable \mathcal{S} (set of states)
- a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ (transition probabilities)

Markov Chains - 2

Definiton (Markov chain)

Given
■ a finite or countable \mathcal{S} (set of states)
■ a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ (transition probabilities)

- a filtration $(\mathcal{F})_{n \in \mathbb{N}}$

Markov Chains - 2

Definiton (Markov chain)

Given

- a finite or countable \mathcal{S} (set of states)

■ a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ (transition probabilities)

- a filtration $(\mathcal{F})_{n \in \mathbb{N}}$
we say that a process $X_{n}: \Omega \rightarrow \mathcal{S}(n \in \mathbb{N})$ is a markov chain if for all $n \in \mathbb{N}$,

$$
\begin{gathered}
\mathbb{P}\left(X_{n+1}=j \mid \mathcal{F}_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}\right) \quad \forall j \in \mathcal{S} \quad \text { (Markov property) } \\
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j} \quad \forall i, j \in \mathcal{S} \quad \text { (transition probability) }
\end{gathered}
$$

Markov Chains - 2

Definiton (Markov chain)

Given

- a finite or countable \mathcal{S} (set of states)

■ a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ (transition probabilities)

- a filtration $(\mathcal{F})_{n \in \mathbb{N}}$
we say that a process $X_{n}: \Omega \rightarrow \mathcal{S}(n \in \mathbb{N})$ is a markov chain if for all $n \in \mathbb{N}$,

$$
\begin{gathered}
\mathbb{P}\left(X_{n+1}=j \mid \mathcal{F}_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}\right) \quad \forall j \in \mathcal{S} \quad \text { (Markov property) } \\
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j} \quad \forall i, j \in \mathcal{S} \quad \text { (transition probability) }
\end{gathered}
$$

The two conditions above yield

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=\cdot, X_{n-2}=\cdot, \ldots, X_{n-k}=\cdot\right)=p_{i j}
$$

Graphical representation

We associate
■ a node to each state $i \in \mathcal{S}$
■ a weighted arrow to each transition probability $p_{i j}$ (no arrow if $p_{i j}=0$).

Graphical representation

We associate

- a node to each state $i \in \mathcal{S}$
- a weighted arrow to each transition probability $p_{i j}$ (no arrow if $p_{i j}=0$).

$$
\begin{gathered}
\mathcal{S}=(I, U, E, O) \\
Q=\left(\begin{array}{lll}
1-\eta & \eta & 0 \\
0 & \phi & 1-\phi \\
0 & \lambda & 1-\lambda-\epsilon \\
0 & 0 & 0
\end{array}\right.
\end{gathered}
$$

The Kolmogorov theorem

The following theorem ensures that Markov chains exist.

The Kolmogorov theorem

The following theorem ensures that Markov chains exist.

Theorem

Given a finite or countable \mathcal{S}, a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ and a probability measure μ_{0} on \mathcal{S}.
$\exists)$ there exists a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ (with respect to the natural filtration) with transition probability Q and law of X_{0} equal to μ_{0}.
!) Such a chain X is unique in law, i.e. given any Markov chain Y with transition probability Q and law of X_{0} equal to μ_{0}, one has

$$
X=Y \quad \text { in law }
$$

The Kolmogorov theorem

The following theorem ensures that Markov chains exist.

Theorem

Given a finite or countable \mathcal{S}, a stochastic matrix $Q=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ and a probability measure μ_{0} on \mathcal{S}.
ヨ) there exists a Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ (with respect to the natural filtration) with transition probability Q and law of X_{0} equal to μ_{0}.
!) Such a chain X is unique in law, i.e. given any Markov chain Y with transition probability Q and law of X_{0} equal to μ_{0}, one has

$$
X=Y \text { in law. }
$$

The condition $X=Y$ in law means that for every $n \geq 1, A_{0}, \ldots, A_{n} \subseteq \mathcal{S}$

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=\mathbb{P}\left(Y_{0} \in A_{0}, Y_{1} \in A_{1}, \ldots, Y_{n} \in A_{n}\right)
$$

Marginal laws

Marginal laws

How to compute the quantity

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) ?
$$

Marginal laws

How to compute the quantity

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) ?
$$

The simplest case is that of 1-marginals, i.e. the law of X_{n}. For example

$$
P\left(X_{1}=j\right)=\sum_{i \in \mathcal{S}} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i \in \mathcal{S}} p_{i j} \mu_{i}^{0}
$$

Marginal laws

How to compute the quantity

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) ?
$$

The simplest case is that of 1 -marginals, i.e. the law of X_{n}. For example

$$
P\left(X_{1}=j\right)=\sum_{i \in \mathcal{S}} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i \in \mathcal{S}} p_{i j} \mu_{i}^{0}
$$

Recall the matrix-vector products for column vectors v or row vectors r

$$
(Q v)_{i}=\sum_{j} p_{i j} v_{j}, \quad(r Q)_{i}=\sum_{i} p_{i j} r_{i}
$$

Marginal laws

How to compute the quantity

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) ?
$$

The simplest case is that of 1 -marginals, i.e. the law of X_{n}. For example

$$
P\left(X_{1}=j\right)=\sum_{i \in \mathcal{S}} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i \in \mathcal{S}} p_{i j} \mu_{i}^{0}
$$

Recall the matrix-vector products for column vectors v or row vectors r

$$
(Q v)_{i}=\sum_{j} p_{i j} v_{j}, \quad(r Q)_{i}=\sum_{i} p_{i j} r_{i}
$$

If we identify μ^{0} and $P\left(X_{1}=\cdot\right)$ with row vectors, we have

$$
P\left(X_{1}=\cdot\right)=\mu^{0} Q
$$

Marginal laws

How to compute the quantity

$$
\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) ?
$$

The simplest case is that of 1 -marginals, i.e. the law of X_{n}. For example

$$
P\left(X_{1}=j\right)=\sum_{i \in \mathcal{S}} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i \in \mathcal{S}} p_{i j} \mu_{i}^{0}
$$

Recall the matrix-vector products for column vectors v or row vectors r

$$
(Q v)_{i}=\sum_{j} p_{i j} v_{j}, \quad(r Q)_{i}=\sum_{i} p_{i j} r_{i}
$$

If we identify μ^{0} and $P\left(X_{1}=\cdot\right)$ with row vectors, we have

$$
P\left(X_{1}=\cdot\right)=\mu^{0} Q
$$

Proposition (marginal laws)

$$
P\left(X_{n}=\cdot\right)=\mu^{0}\left(Q^{n}\right), \quad \text { for any } n \geq 0 .
$$

A geometric interpretation of Q^{n}

A geometric interpretation of Q^{n}

By definition of power of a matrix

$$
\left(Q^{n}\right)_{i j}=\sum_{k} p_{i k}\left(Q^{n-1}\right)_{k j}=\sum_{k_{1}, k_{2}, \ldots k_{(n-1)}} p_{i k_{1}} p_{k_{1} k_{2}} \cdot p_{k_{(n-1)} j}
$$

A geometric interpretation of Q^{n}

By definition of power of a matrix

$$
\left(Q^{n}\right)_{i j}=\sum_{k} p_{i k}\left(Q^{n-1}\right)_{k j}=\sum_{k_{1}, k_{2}, \ldots k_{(n-1)}} p_{i k_{1}} p_{k_{1} k_{2}} \cdot p_{k_{(n-1)} j}
$$

1 Each choice of $k_{1}, \ldots, k_{(n-1)}$ defines the path of "length" n

$$
i \rightarrow k_{1} \rightarrow k_{2} \rightarrow \ldots \rightarrow k_{(n-1)} \rightarrow j .
$$

2. Each path has total weight given by the product of the weights.

B We sum the weights over all the paths of length n joining i to j.

$$
\begin{gathered}
\mathcal{S}=(U, E, O) \\
Q=\left(\begin{array}{lll}
1-\phi & \phi & 0 \\
\lambda & 1-\lambda-\epsilon & \epsilon \\
0 & 0 & 1
\end{array}\right) \\
Q^{2}=\left(\begin{array}{l}
\lambda \phi \\
\lambda(1-\phi)+\lambda(1-\lambda-\epsilon) \\
0
\end{array}\right.
\end{gathered}
$$

Long time behavior

Long time behavior

Consider the 2 -states model, with $\lambda=0.1$ and $\phi=0.3$.

Long time behavior

Consider the 2 -states model, with $\lambda=0.1$ and $\phi=0.3$.

Problem

What can we say about X_{n}, for large n ?

Long time behavior

Consider the 2-states model, with $\lambda=0.1$ and $\phi=0.3$.

Problem

What can we say about X_{n}, for large n ?
$\mathbb{P}\left(X_{n}=E\right)$ will be close to 1 . How to compute it?

$$
Q=\left(\begin{array}{cc}
0.9 & 0.1 \\
0.7 & 0.3
\end{array}\right) \quad Q^{2}=\left(\begin{array}{ll}
0.88 & 0.12 \\
0.84 & 0.16
\end{array}\right) \quad Q^{4} \sim\left(\begin{array}{cc}
0.87 & 0.13 \\
0.87 & 0.13
\end{array}\right)
$$

Invariant distributions

Do the laws of $\left(X_{n}\right)_{n \geq 1}$ converges as $n \rightarrow \infty$ towards some limit law $\bar{\mu}$ on \mathcal{S} ?

Problem

What are relevant properties of $\bar{\mu}$?

Invariant distributions

Do the laws of $\left(X_{n}\right)_{n \geq 1}$ converges as $n \rightarrow \infty$ towards some limit law $\bar{\mu}$ on \mathcal{S} ?

Problem

What are relevant properties of $\bar{\mu}$?
Since the law of X_{n} is $\mu^{0}\left(Q^{n}\right)$, we should find

$$
\bar{\mu}=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right)
$$

but also

$$
\bar{\mu} Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right) Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n+1}\right)=\bar{\mu}
$$

Invariant distributions

Do the laws of $\left(X_{n}\right)_{n \geq 1}$ converges as $n \rightarrow \infty$ towards some limit law $\bar{\mu}$ on \mathcal{S} ?

Problem

What are relevant properties of $\bar{\mu}$?
Since the law of X_{n} is $\mu^{0}\left(Q^{n}\right)$, we should find

$$
\bar{\mu}=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right)
$$

but also

$$
\bar{\mu} Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right) Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n+1}\right)=\bar{\mu}
$$

We obtain that $\bar{\mu}$ is invariant (also called stationary), i.e.

$$
\bar{\mu} Q=\bar{\mu}
$$

Invariant distributions

Do the laws of $\left(X_{n}\right)_{n \geq 1}$ converges as $n \rightarrow \infty$ towards some limit law $\bar{\mu}$ on \mathcal{S} ?

Problem

What are relevant properties of $\bar{\mu}$?
Since the law of X_{n} is $\mu^{0}\left(Q^{n}\right)$, we should find

$$
\bar{\mu}=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right)
$$

but also

$$
\bar{\mu} Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n}\right) Q=\lim _{n \rightarrow \infty} \mu^{0}\left(Q^{n+1}\right)=\bar{\mu}
$$

We obtain that $\bar{\mu}$ is invariant (also called stationary), i.e.

$$
\bar{\mu} Q=\bar{\mu}
$$

In linear algebra notation, $\bar{\mu}$ is a row eigenvector of Q with eigenvalue 1.

Existence of Invariant distributions

Existence of Invariant distributions

Theorem (Perron-Frobenius)
If the number of states \mathcal{S} is finite, there exists at least one invariant distribution:

$$
\bar{\mu} Q=\bar{\mu} .
$$

Existence of Invariant distributions

Theorem (Perron-Frobenius)

If the number of states \mathcal{S} is finite, there exists at least one invariant distribution:

$$
\bar{\mu} Q=\bar{\mu} .
$$

Proof.

Choose any μ^{0} and consider the averages

$$
\bar{\mu}^{n}:=\frac{1}{n}\left(\mu^{0}+\mu^{0} Q+\mu^{0} Q^{2}+\ldots,+\mu^{0} Q^{n-1}\right) .
$$

Existence of Invariant distributions

Theorem (Perron-Frobenius)

If the number of states \mathcal{S} is finite, there exists at least one invariant distribution:

$$
\bar{\mu} Q=\bar{\mu} .
$$

Proof.

Choose any μ^{0} and consider the averages

$$
\bar{\mu}^{n}:=\frac{1}{n}\left(\mu^{0}+\mu^{0} Q+\mu^{0} Q^{2}+\ldots,+\mu^{0} Q^{n-1}\right) .
$$

These are "almost invariant":

$$
\bar{\mu}^{n}-\bar{\mu}^{n} Q=\frac{1}{n}\left(\mu^{0}-Q^{n} \mu^{0}\right) \rightarrow 0
$$

Existence of Invariant distributions

Theorem (Perron-Frobenius)

If the number of states \mathcal{S} is finite, there exists at least one invariant distribution:

$$
\bar{\mu} Q=\bar{\mu} .
$$

Proof.

Choose any μ^{0} and consider the averages

$$
\bar{\mu}^{n}:=\frac{1}{n}\left(\mu^{0}+\mu^{0} Q+\mu^{0} Q^{2}+\ldots,+\mu^{0} Q^{n-1}\right) .
$$

These are "almost invariant":

$$
\bar{\mu}^{n}-\bar{\mu}^{n} Q=\frac{1}{n}\left(\mu^{0}-Q^{n} \mu^{0}\right) \rightarrow 0
$$

One can prove that some limit point exists and it is invariant.

Existence of Invariant distributions

Theorem (Perron-Frobenius)

If the number of states \mathcal{S} is finite, there exists at least one invariant distribution:

$$
\bar{\mu} Q=\bar{\mu} .
$$

Proof.

Choose any μ^{0} and consider the averages

$$
\bar{\mu}^{n}:=\frac{1}{n}\left(\mu^{0}+\mu^{0} Q+\mu^{0} Q^{2}+\ldots,+\mu^{0} Q^{n-1}\right) .
$$

These are "almost invariant":

$$
\bar{\mu}^{n}-\bar{\mu}^{n} Q=\frac{1}{n}\left(\mu^{0}-Q^{n} \mu^{0}\right) \rightarrow 0
$$

One can prove that some limit point exists and it is invariant.
Notice that the proof gives a "way" to find $\bar{\mu}$, essentially by taking powers Q^{n} and averaging.

Beware: the existence result could be false if the number of states is infinite!

Beware: the existence result could be false if the number of states is infinite! Let $\mathcal{S}=\mathbb{N}$

Beware: the existence result could be false if the number of states is infinite! Let $\mathcal{S}=\mathbb{N}$

$$
P\left(X_{n+1}=i+1 \mid X_{n}=i\right)=1
$$

Beware: the existence result could be false if the number of states is infinite! Let $\mathcal{S}=\mathbb{N}$

$$
P\left(X_{n+1}=i+1 \mid X_{n}=i\right)=1
$$

■ We have $P\left(X_{n+1}=i\right)=0$, for every $i \leq n$

- Any invariant probability satisifes $\bar{\mu}_{i}=0$ for every i

Convergence of the laws

If the number of states is finite, we know that some $\bar{\mu}$ exists.

Convergence of the laws

If the number of states is finite, we know that some $\bar{\mu}$ exists.

Problem

Is it true that, for $j \in \mathcal{S}$,

$$
P\left(X_{n}=j\right) \rightarrow \bar{\mu}(j), \quad \text { as } n \rightarrow \infty ?
$$

Convergence of the laws

If the number of states is finite, we know that some $\bar{\mu}$ exists.

Problem

Is it true that, for $j \in \mathcal{S}$,

$$
P\left(X_{n}=j\right) \rightarrow \bar{\mu}(j), \quad \text { as } n \rightarrow \infty ?
$$

In general the answer is NO. Let us consider one example.

Why? If $P\left(X_{0}=E\right)=1$, we have $P\left(X_{n}=E\right)=1$ or 0 alternatively \ldots

Why? If $P\left(X_{0}=E\right)=1$, we have $P\left(X_{n}=E\right)=1$ or 0 alternatively... If we write the transition matrix

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Q^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad Q^{3}=Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We see there is no limit as $n \rightarrow \infty$.

Why? If $P\left(X_{0}=E\right)=1$, we have $P\left(X_{n}=E\right)=1$ or 0 alternatively... If we write the transition matrix

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Q^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad Q^{3}=Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We see there is no limit as $n \rightarrow \infty$.

Question: what are the invariant distributions for Q ?

Communicating states

Communicating states

Definition (Communicating states)

Given states $i, j \in \mathcal{S}$, we say that $i \rightsquigarrow j$ if there is $n \in \mathbb{N}$ such that

$$
\left(Q^{n}\right)_{i j}=P\left(X_{n}=j \mid X_{0}=i\right)>0 .
$$

Communicating states

Definition (Communicating states)

Given states $i, j \in \mathcal{S}$, we say that $i \rightsquigarrow j$ if there is $n \in \mathbb{N}$ such that

$$
\left(Q^{n}\right)_{i j}=P\left(X_{n}=j \mid X_{0}=i\right)>0 .
$$

How to see if $i \rightsquigarrow j$?

Communicating states

Definition (Communicating states)

Given states $i, j \in \mathcal{S}$, we say that $i \rightsquigarrow j$ if there is $n \in \mathbb{N}$ such that

$$
\left(Q^{n}\right)_{i j}=P\left(X_{n}=j \mid X_{0}=i\right)>0 .
$$

How to see if $i \rightsquigarrow j$? just follow the arrows.

Communicating states

Definition (Communicating states)

Given states $i, j \in \mathcal{S}$, we say that $i \rightsquigarrow j$ if there is $n \in \mathbb{N}$ such that

$$
\left(Q^{n}\right)_{i j}=P\left(X_{n}=j \mid X_{0}=i\right)>0 .
$$

How to see if $i \rightsquigarrow j$? just follow the arrows.

Notice that $1 \rightsquigarrow 2$ but not $2 \rightsquigarrow 1$.

Irreducible chains

Irreducible chains

Irreducible transition probability
We say that the transition matrix Q is irreducible if

$$
\text { for every } i, j \in \mathcal{S}, i \rightsquigarrow j \text {. }
$$

Irreducible chains

Irreducible transition probability

We say that the transition matrix Q is irreducible if

$$
\text { for every } i, j \in \mathcal{S}, i \rightsquigarrow j \text {. }
$$

- The example

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible.

Irreducible chains

Irreducible transition probability

We say that the transition matrix Q is irreducible if

$$
\text { for every } i, j \in \mathcal{S}, i \rightsquigarrow j \text {. }
$$

- The example

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible.

- in terms of the transition matrix, this means that for every i, j there exists $m \in \mathbb{N}$ such that $\left(Q^{m}\right)_{i j}>0$.

Irreducible chains

Irreducible transition probability

We say that the transition matrix Q is irreducible if

$$
\text { for every } i, j \in \mathcal{S}, i \rightsquigarrow j \text {. }
$$

- The example

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible.

- in terms of the transition matrix, this means that for every i, j there exists $m \in \mathbb{N}$ such that $\left(Q^{m}\right)_{i j}>0$.
- The name "irreducible" comes from the fact that any Markov chain can be decomposed into smaller chains which are irreducible, plus some "remainder" (called transitory states).

Regularity

Regularity

For our problem of convergence towards invariant distributions, we need something more than irreducible chains.
The problem with

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible but not "random" (it is deterministic).

Regularity

For our problem of convergence towards invariant distributions, we need something more than irreducible chains.
The problem with

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible but not "random" (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists $m \in \mathbb{N}$ such that Q^{m} has strictly positive entries, i.e.

$$
\left(Q^{m}\right)_{i j}>0 \quad \text { for every } i, j \in \mathcal{S} .
$$

Regularity

For our problem of convergence towards invariant distributions, we need something more than irreducible chains.
The problem with

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible but not "random" (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists $m \in \mathbb{N}$ such that Q^{m} has strictly positive entries, i.e.

$$
\left(Q^{m}\right)_{i j}>0 \quad \text { for every } i, j \in \mathcal{S} .
$$

■ Notice regular \rightarrow irreducible, but m does not depend upon $i, j \in \mathcal{S}$.

Regularity

For our problem of convergence towards invariant distributions, we need something more than irreducible chains.
The problem with

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is irreducible but not "random" (it is deterministic).

Regular transition probability

We say that the transition matrix Q is regular if there exists $m \in \mathbb{N}$ such that Q^{m} has strictly positive entries, i.e.

$$
\left(Q^{m}\right)_{i j}>0 \quad \text { for every } i, j \in \mathcal{S} .
$$

■ Notice regular \rightarrow irreducible, but m does not depend upon $i, j \in \mathcal{S}$.

- The example

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is not regular.

In terms of the Markov chain, regularity means that there exists $m \in \mathbb{N}$ such that

$$
P\left(X_{m}=j \mid X_{0}=i\right)>0 \quad \text { for every } i, j \in \mathcal{S},
$$

In terms of the Markov chain, regularity means that there exists $m \in \mathbb{N}$ such that

$$
P\left(X_{m}=j \mid X_{0}=i\right)>0 \quad \text { for every } i, j \in \mathcal{S},
$$

This means that after some time m we are "very uncertain" about the actual position, we cannot exclude of being at any state.

In terms of the Markov chain, regularity means that there exists $m \in \mathbb{N}$ such that

$$
P\left(X_{m}=j \mid X_{0}=i\right)>0 \quad \text { for every } i, j \in \mathcal{S},
$$

This means that after some time m we are "very uncertain" about the actual position, we cannot exclude of being at any state.

Notice that if Q^{m} has strictly positive entries, then Q^{m+1} also is strictly positive.

$$
\begin{aligned}
P\left(X_{m+1}=j \mid X_{0}=i\right) & =\sum_{k} P\left(X_{m+1}=j \mid X_{1}=k, X_{0}=i\right) P\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k} P\left(X_{m+1}=j \mid X_{1}=k\right) P\left(X_{1}=k \mid X_{0}=i\right)>0
\end{aligned}
$$

In terms of the Markov chain, regularity means that there exists $m \in \mathbb{N}$ such that

$$
P\left(X_{m}=j \mid X_{0}=i\right)>0 \quad \text { for every } i, j \in \mathcal{S},
$$

This means that after some time m we are "very uncertain" about the actual position, we cannot exclude of being at any state.

Notice that if Q^{m} has strictly positive entries, then Q^{m+1} also is strictly positive.

$$
\begin{aligned}
P\left(X_{m+1}=j \mid X_{0}=i\right) & =\sum_{k} P\left(X_{m+1}=j \mid X_{1}=k, X_{0}=i\right) P\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k} P\left(X_{m+1}=j \mid X_{1}=k\right) P\left(X_{1}=k \mid X_{0}=i\right)>0
\end{aligned}
$$

because

$$
\sum_{k} P\left(X_{1}=k \mid X_{0}=i\right)=1 .
$$

The importance of being regular

The importance of being regular

Theorem (Markov)

If Q is a regular transition probability (on a finite state space \mathcal{S}) then there is a unique invariant distribution $\bar{\mu}$ and

$$
\lim _{n \rightarrow \infty}\left(Q^{n}\right)_{i j}=\bar{\mu}(j), \quad \text { for every } i, j \in \mathcal{S}
$$

The importance of being regular

Theorem (Markov)

If Q is a regular transition probability (on a finite state space \mathcal{S}) then there is a unique invariant distribution $\bar{\mu}$ and

$$
\lim _{n \rightarrow \infty}\left(Q^{n}\right)_{i j}=\bar{\mu}(j), \quad \text { for every } i, j \in \mathcal{S} .
$$

In terms of Markov chain, this answer positively to the problem

$$
P\left(X_{n}=j\right) \rightarrow \bar{\mu}(j), \quad \text { as } n \rightarrow \infty,
$$

for every $j \in \mathcal{S}$, whatever the initial law of X_{0} was.

Ergodicity

Ergodicity

Going back to our model of employment flows,

Ergodicity

Going back to our model of employment flows,

Problem

What is the "typical" time spent looking for a new job (over a long period)?

Ergodicity

Going back to our model of employment flows,

Problem

What is the "typical" time spent looking for a new job (over a long period)?
Answer to this question uses the "ergodicity" principle from physics:
time averages on long period = space averages for large numbers of indivituals

Ergodicity

Going back to our model of employment flows,

Problem

What is the "typical" time spent looking for a new job (over a long period)?
Answer to this question uses the "ergodicity" principle from physics:
time averages on long period = space averages for large numbers of indivituals
Beware: this holds for systems at equilibrium!

Ergodicity

Ergodicity

In our model, the large number of individuals is encoded in the law of X_{n}, hence the space average at equilibrium is just

$$
\bar{\mu}(E),
$$

with respect to the invariant distribution $\bar{\mu}$.

Ergodicity

In our model, the large number of individuals is encoded in the law of X_{n}, hence the space average at equilibrium is just

$$
\bar{\mu}(E),
$$

with respect to the invariant distribution $\bar{\mu}$.
We compute the time average of being unemployed:

$$
\frac{\sharp\left\{k \in\{0,1, \ldots, n-1\} \mid X_{k}=E\right\}}{n} .
$$

Ergodicity

In our model, the large number of individuals is encoded in the law of X_{n}, hence the space average at equilibrium is just

$$
\bar{\mu}(E),
$$

with respect to the invariant distribution $\bar{\mu}$.
We compute the time average of being unemployed:

$$
\frac{\sharp\left\{k \in\{0,1, \ldots, n-1\} \mid X_{k}=E\right\}}{n} .
$$

Then the ergodic principle reads

$$
\lim _{n \rightarrow \infty} \frac{\sharp\left\{k \in\{0,1, \ldots, n-1\} \mid X_{k}=E\right\}}{n}=\bar{\mu}(E) .
$$

The ergodic principle is actually a theorem in the setting of Markov chains.

The ergodic principle is actually a theorem in the setting of Markov chains.

Ergodic theorem

Let $\left(X_{n}\right)_{n \geq 1}$, be a irreducible Markov chain on a finite state space \mathcal{S}. Then

$$
\lim _{n \rightarrow \infty} \frac{\sharp\left\{k \in\{0,1, \ldots, n-1\} \mid X_{k}=j\right\}}{n}=\bar{\mu}(j), \quad \text { for every } j \in \mathcal{S} .
$$

The ergodic principle is actually a theorem in the setting of Markov chains.

Ergodic theorem

Let $\left(X_{n}\right)_{n \geq 1}$, be a irreducible Markov chain on a finite state space \mathcal{S}. Then

$$
\lim _{n \rightarrow \infty} \frac{\sharp\left\{k \in\{0,1, \ldots, n-1\} \mid X_{k}=j\right\}}{n}=\bar{\mu}(j), \quad \text { for every } j \in \mathcal{S} \text {. }
$$

Of course, this theorem applies also to regular Markov chains.

Continuous time Markov chains

Continuous time Markov chains

Problem

How to modify our model if, instead of measuring time intervals in months we have better precision, e.g. weeks (1 month ~ 4 weeks).

Continuous time Markov chains

Problem

How to modify our model if, instead of measuring time intervals in months we have better precision, e.g. weeks (1 month ~ 4 weeks).

We can split the time $\{0,1,2, \ldots\}$ into

$$
\{0,1 / 4,2 / 4,3 / 4,1,5 / 4,6 / 4,7 / 4, \ldots\}
$$

and build a process $Y_{0}, Y_{1 / 4}, Y_{2 / 4}, Y_{3 / 4}, \ldots$.
If we want to have a Markov chain "close" to the original one, we should have $Q_{X} \sim Q_{Y}^{4}$, i.e. $Q_{Y}=Q_{X}^{1 / 4}$.

Continuous time Markov chains

Problem

How to modify our model if, instead of measuring time intervals in months we have better precision, e.g. weeks (1 month ~ 4 weeks).

We can split the time $\{0,1,2, \ldots\}$ into

$$
\{0,1 / 4,2 / 4,3 / 4,1,5 / 4,6 / 4,7 / 4, \ldots\}
$$

and build a process $Y_{0}, Y_{1 / 4}, Y_{2 / 4}, Y_{3 / 4}, \ldots$.
If we want to have a Markov chain "close" to the original one, we should have $Q_{X} \sim Q_{Y}^{4}$, i.e. $Q_{Y}=Q_{X}^{1 / 4}$.
If instead of 4 weeks we split into days, we should have the transition probability $Q_{X}^{1 / 30}$.

Continuous time Markov chains

Problem

How to modify our model if, instead of measuring time intervals in months we have better precision, e.g. weeks (1 month ~ 4 weeks).

We can split the time $\{0,1,2, \ldots\}$ into

$$
\{0,1 / 4,2 / 4,3 / 4,1,5 / 4,6 / 4,7 / 4, \ldots\}
$$

and build a process $Y_{0}, Y_{1 / 4}, Y_{2 / 4}, Y_{3 / 4}, \ldots$.
If we want to have a Markov chain "close" to the original one, we should have $Q_{X} \sim Q_{Y}^{4}$, i.e. $Q_{Y}=Q_{X}^{1 / 4}$.
If instead of 4 weeks we split into days, we should have the transition probability $Q_{X}^{1 / 30}$.
What happens if we split times into infinitely many small intervals, i.e. continous times?

Continuous time Markov chains

Problem

How to modify our model if, instead of measuring time intervals in months we have better precision, e.g. weeks (1 month ~ 4 weeks).

We can split the time $\{0,1,2, \ldots\}$ into

$$
\{0,1 / 4,2 / 4,3 / 4,1,5 / 4,6 / 4,7 / 4, \ldots\}
$$

and build a process $Y_{0}, Y_{1 / 4}, Y_{2 / 4}, Y_{3 / 4}, \ldots$.
If we want to have a Markov chain "close" to the original one, we should have $Q_{X} \sim Q_{Y}^{4}$, i.e. $Q_{Y}=Q_{X}^{1 / 4}$.
If instead of 4 weeks we split into days, we should have the transition probability $Q_{X}^{1 / 30}$.
What happens if we split times into infinitely many small intervals, i.e. continous times?
We have $Q^{1 / \infty}=Q^{0}=I d$, but imagine, for large n,

$$
Q^{1 / n} \sim I d+\frac{1}{n} R+\text { smaller terms }
$$

We describe the chain by means of the matrix R (called transition rate matrix).

Recalling the formal expansion

$$
Q^{1 / n} \sim I d+\frac{1}{n} R+\text { smaller terms }
$$

Assuming $Q^{1 / n}$ to be a stochastic matrix, then we must have

$$
R_{i j} \geq 0, \text { for } i \neq j, \quad R_{i j} \leq 0
$$

and

$$
\sum_{j} R_{i j}=0 .
$$

Recalling the formal expansion

$$
Q^{1 / n} \sim I d+\frac{1}{n} R+\text { smaller terms }
$$

Assuming $Q^{1 / n}$ to be a stochastic matrix, then we must have

$$
R_{i j} \geq 0, \text { for } i \neq j, \quad R_{i i} \leq 0
$$

and

$$
\sum_{j} R_{i j}=0 .
$$

We interpret $R_{i j}$ as the rate at which we jump from i to j.

Actually, we can describe the continuous Markov chain as follows:
1 When the particle is on the state $i \in \mathcal{S}$, take independent "alarm clocks" A_{j}, one for every $j \in \mathcal{S}$ with exponential laws

$$
A_{j} \sim \mathcal{E}\left(r_{i j}\right)
$$

Actually, we can describe the continuous Markov chain as follows:
1 When the particle is on the state $i \in \mathcal{S}$, take independent "alarm clocks" A_{j}, one for every $j \in \mathcal{S}$ with exponential laws

$$
A_{j} \sim \mathcal{E}\left(r_{i j}\right)
$$

2 When the first clock rings, say A_{j} jump to state j and repeat the previous point.

Actually, we can describe the continuous Markov chain as follows:
1 When the particle is on the state $i \in \mathcal{S}$, take independent "alarm clocks" A_{j}, one for every $j \in \mathcal{S}$ with exponential laws

$$
A_{j} \sim \mathcal{E}\left(r_{i j}\right)
$$

2 When the first clock rings, say A_{j} jump to state j and repeat the previous point.

Poisson process

Poisson process

An important example of such continuous time jump process has state space

$$
\mathcal{S}=\mathbb{N}=\{0,1, \ldots\}
$$

and transition rates

$$
R_{i j}= \begin{cases}1 & \text { if } j=i+1 \\ -1 & \text { if } j=i \\ 0 & \text { otherwise. }\end{cases}
$$

Poisson process

An important example of such continuous time jump process has state space

$$
\mathcal{S}=\mathbb{N}=\{0,1, \ldots\}
$$

and transition rates

$$
R_{i j}= \begin{cases}1 & \text { if } j=i+1 \\ -1 & \text { if } j=i \\ 0 & \text { otherwise. }\end{cases}
$$

Two realizations of a Poisson process:

We denote $\left(N_{t}\right)_{t \in[0, \infty)}$ the Poisson process ($N=$ number of jumps).

We denote $\left(N_{t}\right)_{t \in[0, \infty)}$ the Poisson process ($N=$ number of jumps).
It is possible to prove that
■ N is a Markov process (obvious)
■ For every $t \in[0, \infty), N_{t}$ has Poisson law

$$
P\left(N_{t}=k\right)=\frac{e^{-k}}{k!}, \quad k \in \mathbb{N}
$$

In particular,

$$
\mathbb{E}\left[N_{t}\right]=t
$$

■ the increments are independent, e.g. for $s<t<u<v$,
$N_{t}-N_{s}$ and $N_{v}-N_{u}$ are independent random variables.

One can also change the intensity of jumps (not the size), by changing the transition rates: for $\lambda>0$,

$$
R_{i j}^{\lambda}=\lambda R_{i j}
$$

