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Back to conditional probability

Recall the definition of conditional probability

P(A|B) :=
P(A ∩ B)

P(B)
if P(B) > 0.

Meaning: NEW (updated) probability of A, if the event B occurred.

We can also rewrite independence between A and B as

P(A|B) = P(A), if P(B) > 0.

Knowledge the occurrence of B does not affect the degree of plausibility of A.



Back to conditional probability

If we assume to known that B, with P(B) > 0, occurred, P(·|B) is a
probability measure.

Given a random variable X : Ω→ R, we have

the conditional cumulative distribution function of X given B

FX (x |B) = P(X ≤ x |B) =
P({X ≤ x} ∩ B)

P(B)
, x ∈ R

the conditional probability distribution of X given B

PX |B(A) = P(X ∈ A |B), A ⊆ R

the conditional expectation of X given B (if it exists)

E [X |B] =
1

P(B)

∫
B

XdP =
E [XIB]

P(B)

where IB : Ω→ {0, 1} is the indicator function of B,

IB(ω) =

{
1 if ω ∈ B
0 if ω /∈ B



Conditional expectation w.r.t. a σ-field – countable case

We generalize P(·|B) from a single event B to a family of events B.

Assume that B is a σ-field on Ω generated by a countable partition
B1,B2, . . . ,Bn, . . .

∞⋃
i=1

Bi = Ω, Bi ∩ Bj = ∅ if i 6= j .

We define, for any (integrable) r.v. X : Ω→ R, a random variable E [X | B]

E [X | B] (ω) := E [X |Bi ] =
1

P(Bi )

∫
Bi

XdP, if ω ∈ Bi .



Conditional expectation given a σ-field

E [X | B] (ω) := E [X |Bi ] =
1

P(Bi )

∫
Bi

XdP, if ω ∈ Bi .

Some properties

1 E [E [X | B]] = E [X ]

2 E [X1 + X2 | B] = E [X1 | B] + E [X2 | B]

3 E [cX | B] = cE [X | B] if c is a constant.

4 E [X | B] = E [X ] if X and B are independent.



Conditional expectation w.r.t. a discrete random variable

Suppose now that Y : Ω→ E is a discrete random variable, i.e. it can take at
most a countable number of values y1, . . . , yn, . . . ∈ E .
We can let B = σ(Y ), which is generated by the countable partition

B1 = {Y = y1} = {ω ∈ Ω : Y (ω) = y1}

B2 = {Y = y2} , B3 = {Y = y3} , . . . , Bn = {Y = yn} , . . .
Given (another) random variable X : Ω→ R, we define

E [X |Y ] := E [X |B]

which is a random variable (i.e. defined on Ω).
Notice that on the event {Y = yi}, we have

E [X |Y ] (ω) := E [X |Y = yi ] .

Therefore we can write
E [X |Y ] = g(Y ),

for some g : E → R.
How to compute g? In the discrete case it is simple:

g(yi ) =
1

P(Y = yi )

∫
Y=yi

XdP.



Properties of E [X |Y ]

1 E [E [X |Y ]] = E [X ]

2 E [X1 + X2 |Y ] = E [X1 |Y ] + E [X2 |Y ]

3 E [cX |Y ] = cE [X |Y ] if c is a constant.

4 E [X |Y ] = E [X ] if X and Y are independent.

We can improve the last two properties.



In addition to E [cX |Y ] = cE [X |Y ], if c is a constant, we have

Proposition

E [h(Y )X |Y ] = h(Y )E [X |Y ]

for any bounded function h : E → R.

Indeed, for any ω ∈ Ω, if Y (ω) = y ∈ E , we have

E [h(Y )X |Y ] (ω) = E [h(Y )X |Y = y ]

= E [h(y)X |Y = y ]

= h(y)E [X |Y = y ]

= h(Y (ω))E [X |Y ] (ω).



In addition to E [X |Y ] = E [X ] if X and Y are independent, we have

Proposition

If X and Y are independent, then

E [h(X ,Y ) |Y ] (ω) = H(Y (ω)).

for any bounded function h : R× E → R, where

H(y) = E [h(X , y)]

The formula means that we fix y ∈ Y , compute

H(y) = E [h(X , y)]

and then evaluate taking y = Y (ω).
To prove it notice that, for any ω ∈ Ω, if Y (ω) = y ∈ E , we have

E [h(X ,Y ) |Y ] (ω) = E [h(X ,Y ) |Y = y ]

= E [h(X , y) |Y = y ]

= E [h(X , y)]

= H(y) = H(Y (ω)).



Conditional expectation w.r.t. a σ-field

Problem
How to define E [X |Y ] when the random variable Y is not discrete, or when B
is not generated by a countable partition.

The starting point is that the property

E [h(Y )X |Y ] = h(Y )E [X |Y ]

for any bounded function h : E → R characterizes the conditional expectation
E [X |Y ].

Indeed if g(Y ) is another function such that

E [h(Y )X |Y ] = h(Y )g(Y ),

for any bounded function h : E → R, we can take h(Y ) = I{Y=y} to obtain

E [X |Y = y ] = g(y)



Conditional expectation w.r.t. a σ-field

Let B be a σ-field, X : Ω→ R be an integrable random variable.

Definition/Theorem
It is defined the random variable E [X |B] such that

1 it is B measurable, i.e. {ω ∈ Ω : E [X |B] ≤ x} ∈ B for x ∈ R,

2 it satisfies, for every B ∈ B,∫
B

E [X |B] dP =

∫
B

XdP.

When B = σ(Y ), we obtain that E [X |Y ]

1 is a function of Y , i.e. E [X |Y ] = g(Y ) (→ how to compute g?)

2 it satisfies, for B = {Y ∈ A} with P(Y ∈ A) > 0,

1
P(Y ∈ A)

∫
{Y∈A}

E [X |Y ] dP = E [X |Y ∈ A] .



Properties of the conditional expectation with respect to σ-algebras

1 E [E [X | B]] = E [X ]

2 E [X1 + X2 | B] = E [X1 | B] + E [X2 | B]

3 E [cX | B] = cE [X | B] if c is a constant.

4 E [X | B] = E [X ] if X and B are independent.

5 E [YX | B] = YE [X | B] if Y is bounded and B-measurable

6 E [h(X ,Y ) | B] = H(Y ) if X and B are independent, Y is B-measurable,
where

H(y) = E [h(X , y)] .

Finally, we have

Proposition

If B ⊆ H ⊆ F are σ-algebras

E [E [X |H] | B] = E [X | B] .



How to compute conditional expectations

We know that E [X |Y ] = g(Y ). A useful notation for g(y) is E [X |Y = y ].
Beware that P(Y = y) could be zero, so it is NOT

E [X |Y = y ] =
1

P(Y = y)

∫
Y=y

XdP.

A formula holds in case (X ,Y ) have joint density.

Conditional expectation in case of densities

Assume that (X ,Y ) have joint density f (x , y). Then, for h : R× R→ R
bounded

E [h(X ,Y )|Y = y ] =
1

fY (y)

∫
R

h(x , y)f (x , y)dx ,

where
fY (y) =

∫
R

f (x , y)dx .

The rule above, together with

E [h(X ,Y )|Y = y ] = E [h(X , y)]

when X and Y are independent are enough to compute many cases.



Conditional expectations and information

Recall that, for a set B
P(A|B)

is the new probability if we know that B occurs.

What is the meaning of E [X |B]?
We think of the σ-algebra B as information that we might obtain. Then

E [X |B]

is the best approximation of X given the information B.
Best in the sense of the quadratic error:

min
Y

E
[
(X − Y )2

]
= E

[
(X − E [X |B])2

]
,

where the minimum runs among all B-measurables Y .
For example, the property

B ⊆ H ⇒ E [E [X |H] | B] = E [X | B]

follows from the fact that more information gives better approximations.



Two words on filtrations

We want to introduce a formalization of the natural idea that

a time goes on, the amout of information increases.

We encode information into σ-algebras.

Definition
Given a “time” set

T = [0,T ] (continuous time), T = {0, 1, . . . ,N} (discrete time),

a filtration is a family of σ-fields (Ft )t∈T such that

s < t ⇒ Fs ⊆ Ft .

An important case is the natural filtration of a process (Xt )t∈T , i.e. we let Ft

be all the information about the history of the process up to time t :

Ft = σ(Xs : s ≤ t) (natural filtration).



An example from the C.R.R. model

S

Su

Sd

Su2

Sdu

Sd2

u

d

u

d

u

d

d

u

d

u

u

d

Fix 0 < d < 1 < u.

Price at t = 0 is S

Price at t = 1 is S1 ∈ {Su,Sd}

Price at t = 2 is S2 ∈
{

Su2,Sdu,Sd2}.

Ω = {u, d}N , F = P(Ω)

Filtration: F0 = {∅,Ω}

F1 = {∅,Ω, (u, ·), (d , ·), }

F2 =
{∅,Ω, (u, u, ·), (u, d , ·), (d , u, ·), (d , d , ·)}
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