Stochastic Processes and Stochastic Calculus - 2 Conditional Expectation

Prof. Maurizio Pratelli

Università degli Studi di Pisa

San Miniato - 12 September 2016

Overview

- 1 Conditional expectation
 - Review of conditional probability
 - Countable case
 - General case
 - How to compute conditional expectations
 - Conditional expectations and information

2 Filtrations

Back to conditional probability

Recall the definition of conditional probability

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$
 if $P(B) > 0$.

Meaning: NEW (updated) probability of A, if the event B occurred.

We can also rewrite independence between A and B as

$$P(A|B) = P(A)$$
, if $P(B) > 0$.

Knowledge the occurrence of B does not affect the degree of plausibility of A.

Back to conditional probability

If we assume to known that B, with P(B) > 0, occurred, $P(\cdot|B)$ is a probability measure.

Given a random variable $X : \Omega \to \mathbb{R}$, we have

■ the conditional cumulative distribution function of *X* given *B*

$$F_X(x \mid B) = P(X \le x \mid B) = \frac{P(\{X \le x\} \cap B)}{P(B)}, \quad x \in \mathbb{R}$$

■ the conditional probability distribution of X given B

$$P_{X|B}(A) = P(X \in A \mid B), \qquad A \subseteq \mathbb{R}$$

■ the conditional expectation of *X* given *B* (if it exists)

$$E[X \mid B] = \frac{1}{P(B)} \int_{B} X dP = \frac{E[XI_{B}]}{P(B)}$$

where $I_B: \Omega \to \{0,1\}$ is the indicator function of B,

$$I_B(\omega) = \begin{cases} 1 & \text{if } \omega \in B \\ 0 & \text{if } \omega \notin B \end{cases}$$

Conditional expectation w.r.t. a σ -field – countable case

We generalize $P(\cdot|B)$ from a single event B to a family of events B.

Assume that $\mathcal B$ is a σ -field on Ω generated by a countable partition $B_1, B_2, \ldots, B_n, \ldots$

$$\bigcup_{i=1}^{\infty} B_i = \Omega, \quad B_i \cap B_j = \emptyset \quad \text{if } i \neq j.$$

We define, for any (integrable) r.v. $X : \Omega \to \mathbb{R}$, a random variable $E[X | \mathcal{B}]$

$$E[X | \mathcal{B}](\omega) := E[X | \mathcal{B}_i] = \frac{1}{P(\mathcal{B}_i)} \int_{\mathcal{B}_i} X dP, \quad \text{if } \omega \in \mathcal{B}_i.$$

Conditional expectation given a σ -field

$$E[X | \mathcal{B}](\omega) := E[X | \mathcal{B}_i] = \frac{1}{P(\mathcal{B}_i)} \int_{\mathcal{B}_i} X dP, \quad \text{if } \omega \in \mathcal{B}_i.$$

Some properties

$$E[E[X | B]] = E[X]$$

2
$$E[X_1 + X_2 | B] = E[X_1 | B] + E[X_2 | B]$$

3
$$E[cX | B] = cE[X | B]$$
 if c is a constant.

$$E[X | \mathcal{B}] = E[X]$$
 if X and \mathcal{B} are independent.

Conditional expectation w.r.t. a discrete random variable

Suppose now that $Y: \Omega \to E$ is a discrete random variable, i.e. it can take at most a countable number of values $y_1, \ldots, y_n, \ldots \in E$.

We can let $\mathcal{B} = \sigma(Y)$, which is generated by the countable partition

$$B_1 = \{ Y = y_1 \} = \{ \omega \in \Omega : Y(\omega) = y_1 \}$$

$$B_2 = \{Y = y_2\}, \quad B_3 = \{Y = y_3\}, \ldots, \quad B_n = \{Y = y_n\}, \ldots$$

Given (another) random variable $X : \Omega \to \mathbb{R}$, we define

$$E[X|Y] := E[X|B]$$

which is a random variable (i.e. defined on Ω).

Notice that on the event $\{Y = y_i\}$, we have

$$E[X|Y](\omega) := E[X|Y = y_i].$$

Therefore we can write

$$E[X|Y] = g(Y),$$

for some $g: E \to \mathbb{R}$.

How to compute g? In the discrete case it is simple:

$$g(y_i) = \frac{1}{P(Y = y_i)} \int_{Y = y_i} X dP.$$

Properties of E[X|Y]

- E[E[X|Y]] = E[X]
- $E[X_1 + X_2 | Y] = E[X_1 | Y] + E[X_2 | Y]$
- E[cX | Y] = cE[X | Y] if c is a constant.
- E[X | Y] = E[X] if X and Y are independent.

We can improve the last two properties.

In addition to E[cX | Y] = cE[X | Y], if c is a constant, we have

Proposition

$$E[h(Y)X \mid Y] = h(Y)E[X \mid Y]$$

for any bounded function $h: E \to \mathbb{R}$.

Indeed, for any $\omega \in \Omega$, if $Y(\omega) = y \in E$, we have

$$E[h(Y)X | Y](\omega) = E[h(Y)X | Y = y]$$

$$= E[h(y)X | Y = y]$$

$$= h(y)E[X | Y = y]$$

$$= h(Y(\omega))E[X | Y](\omega).$$

In addition to E[X | Y] = E[X] if X and Y are independent, we have

Proposition

If X and Y are independent, then

$$E[h(X, Y) | Y](\omega) = H(Y(\omega)).$$

for any bounded function $h : \mathbb{R} \times E \to \mathbb{R}$, where

$$H(y) = E[h(X, y)]$$

The formula means that we fix $y \in Y$, compute

$$H(y) = E[h(X, y)]$$

and then evaluate taking $y = Y(\omega)$.

To prove it notice that, for any $\omega \in \Omega$, if $Y(\omega) = y \in E$, we have

$$E[h(X, Y) | Y](\omega) = E[h(X, Y) | Y = y]$$

= $E[h(X, y) | Y = y]$
= $E[h(X, y)]$
= $H(Y) = H(Y(\omega))$.

Conditional expectation w.r.t. a σ -field

Problem

How to define E[X|Y] when the random variable Y is not discrete, or when \mathcal{B} is not generated by a countable partition.

The starting point is that the property

$$E[h(Y)X \mid Y] = h(Y)E[X \mid Y]$$

for any bounded function $h: E \to \mathbb{R}$ characterizes the conditional expectation $E[X \mid Y]$.

Indeed if g(Y) is another function such that

$$E[h(Y)X \mid Y] = h(Y)g(Y),$$

for any bounded function $h: E \to \mathbb{R}$, we can take $h(Y) = I_{\{Y=y\}}$ to obtain

$$E[X \mid Y = y] = g(y)$$

Conditional expectation w.r.t. a σ -field

Let \mathcal{B} be a σ -field, $X : \Omega \to \mathbb{R}$ be an integrable random variable.

Definition/Theorem

It is defined the random variable E[X|B] such that

- **1** it is \mathcal{B} measurable, i.e. $\{\omega \in \Omega : E[X|\mathcal{B}] \leq x\} \in \mathcal{B}$ for $x \in \mathbb{R}$,
- **2** it satisfies, for every $B \in \mathcal{B}$,

$$\int_{B} E[X|\mathcal{B}] dP = \int_{B} X dP.$$

When $\mathcal{B} = \sigma(Y)$, we obtain that E[X|Y]

- is a function of Y, i.e. E[X|Y] = g(Y) (\rightarrow how to compute g?)
- 2 it satisfies, for $B = \{Y \in A\}$ with $P(Y \in A) > 0$,

$$\frac{1}{P(Y \in A)} \int_{\{Y \in A\}} E[X|Y] dP = E[X|Y \in A].$$

Properties of the conditional expectation with respect to σ -algebras

- **1** E[E[X | B]] = E[X]
- 2 $E[X_1 + X_2 | B] = E[X_1 | B] + E[X_2 | B]$
- $\mathbf{S} = [cX \mid \mathcal{B}] = cE[X \mid \mathcal{B}]$ if c is a constant.
- 4 E[X | B] = E[X] if X and B are independent.
- **5** E[YX | B] = YE[X | B] if Y is bounded and B-measurable
- **5** $E[h(X, Y) | \mathcal{B}] = H(Y)$ if X and \mathcal{B} are independent, Y is \mathcal{B} -measurable, where

$$H(y)=E\left[h(X,y)\right].$$

Finally, we have

Proposition

If $\mathcal{B} \subseteq \mathcal{H} \subseteq \mathcal{F}$ are σ -algebras

$$E[E[X|\mathcal{H}]|\mathcal{B}] = E[X|\mathcal{B}].$$

How to compute conditional expectations

We know that E[X|Y] = g(Y). A useful notation for g(y) is E[X|Y = y]. Beware that P(Y = y) could be zero, so it is NOT

$$E[X|Y=y] = \frac{1}{P(Y=y)} \int_{Y=y} XdP.$$

A formula holds in case (X, Y) have joint density.

Conditional expectation in case of densities

Assume that (X, Y) have joint density f(x, y). Then, for $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ bounded

$$E[h(X,Y)|Y=y] = \frac{1}{f_Y(y)} \int_{\mathbb{R}} h(x,y) f(x,y) dx,$$

where

$$f_Y(y) = \int_{\mathbb{R}} f(x,y) dx.$$

The rule above, together with

$$E[h(X, Y)|Y = y] = E[h(X, y)]$$

when X and Y are independent are enough to compute many cases.

Conditional expectations and information

Recall that, for a set B

is the new probability if we know that B occurs.

What is the meaning of $E[X|\mathcal{B}]$?

We think of the σ -algebra $\mathcal B$ as information that we might obtain. Then

is the best approximation of X given the information \mathcal{B} . Best in the sense of the quadratic error:

$$\min_{Y} E\left[\left(X - Y\right)^{2}\right] = E\left[\left(X - E\left[X|\mathcal{B}\right]\right)^{2}\right],$$

where the minimum runs among all \mathcal{B} -measurables Y. For example, the property

$$\mathcal{B} \subseteq \mathcal{H} \quad \Rightarrow \quad E[E[X | \mathcal{H}] | \mathcal{B}] = E[X | \mathcal{B}]$$

follows from the fact that more information gives better approximations.

Two words on filtrations

We want to introduce a formalization of the natural idea that

a time goes on, the amout of information increases.

We encode information into σ -algebras.

Definition

Given a "time" set

$$\mathcal{T} = [0, T]$$
 (continuous time), $\mathcal{T} = \{0, 1, \dots, N\}$ (discrete time),

a filtration is a family of σ -fields $(\mathcal{F}_t)_{t\in\mathcal{T}}$ such that

$$s < t \Rightarrow \mathcal{F}_s \subseteq \mathcal{F}_t$$
.

An important case is the natural filtration of a process $(X_t)_{t \in \mathcal{T}}$, i.e. we let \mathcal{F}_t be all the information about the history of the process up to time t:

$$\mathcal{F}_t = \sigma(X_s : s \leq t)$$
 (natural filtration).

An example from the C.R.R. model

Fix 0 < d < 1 < u.

Price at t = 0 is S

Price at t = 1 is $S_1 \in \{Su, Sd\}$

Price at t = 2 is $S_2 \in \{Su^2, Sdu, Sd^2\}$.

$$\Omega = \{u, d\}^N, \mathcal{F} = \mathcal{P}(\Omega)$$

Filtration: $\mathcal{F}_0 = \{\emptyset, \Omega\}$

$$\mathcal{F}_1 = \{\emptyset, \Omega, (u, \cdot), (d, \cdot), \}$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, (u, u, \cdot), (u, d, \cdot), (d, u, \cdot), (d, d, \cdot)\}$$