# Stochastic Processes and Stochastic Calculus - 10 (Short) Introduction to Interest Rate Models 

Prof. Maurizio Pratelli<br>Università degli Studi di Pisa

San Miniato-16 September 2016

## Overview

1 Interest rates

- Definitions
- Basic assumptions - naive approach
- Derivatives on interest rates
- Short-rate models
- Istantaneous forward-rate models
- Other approaches

2 Bibliography

## Remark on notation

Throughout all this lecture, Brownian motion will be indicated with $W_{t}$ for "Wiener process" instead of $B_{t}$.

## Zero-coupon bonds

## Primary object

A zero-coupon bond $B(t, T)$ is (the price of a) contract (stipulated at time $t \leq T$ ) which guarantees the () $1 €$ to be paid at time $T$.

Facts:

- $T \mapsto B(t, T)$ is regular and $B(T, T)=1$.
- $t \mapsto B(t, T)$ is highly irregular $\Rightarrow$ stochastic process

Principle: the amount $1 €$ at time $t$ is worth

$$
\frac{1}{B(t, T)} \quad \text { at time } T \geq t
$$

Starting from the principle: the amount $1 €$ at time $t$ is worth

$$
\frac{1}{B(t, T)} \quad \text { at time } T \geq t
$$

we can introduce interests in linear terms

$$
1+L(t, T)(T-t)=\frac{1}{B(t, T)}
$$

$\Rightarrow$ LIBOR interest rate $L(t, T)$

$$
L(t, T)=\frac{1}{(T-t)} \frac{1-B(t, T)}{B(t, T)}=\frac{\frac{1}{B(t, T)}-1}{T-t}
$$

or interests in continuously compounded terms

$$
\exp (Y(t, T)(T-t))=\frac{1}{B(t, T)}
$$

$\Rightarrow$ Yield $Y(t, T)$

$$
Y(t, T)=\frac{-\log B(t, T)}{(T-t)}
$$

What happens in $L(t, T)$ if we let $T \rightarrow t$ (recall that $T \mapsto B(t, T)$ is "regular"):

## Definition (instantaneous short rate)

$$
r(t):=\lim _{h \rightarrow 0^{+}} L(t, t+h)
$$

We obtain the usual numéraire: money market account:

$$
B_{t}:=\exp \left(\int_{0}^{t} r(s) d s\right)
$$

(recall our change of notation for BM...)

Let us introduce the "usual" model hypothesis:

## Hypothesis

1 (completeness) the filtration $\mathcal{F}_{t}$ is the natural filtration generated by a $d$-dimensional Wiener process (BM)

$$
\left(W_{t}^{1}, W_{t}^{2}, \ldots, W_{t}^{d}\right) \quad t \in[0, T]
$$

but we will write $W_{t}$ as if $d=1$.
2 (no-arbitrage) there exists an equivalent probability measure $P^{*}$ such that, under $P^{*}$, every "discounted" process

$$
t \mapsto \frac{B(t, T)}{B_{t}}=B(t, T) \exp \left(-\int_{0}^{t} r(s) d s\right)
$$

is a martingale.

## A naive approach

Let us directly model $t \mapsto B(t, T)$ via an SDE:

$$
d_{t} B(t, T)=B(t, T)\left(\alpha(t, T) d t+\sigma(t, T) d W_{t}\right)
$$

Bad idea! How can we guarantee that $B(T, T)=1$ ?

## Why should we model interest rates?

Since it is not straightforward to model $B(t, T)$, let us see first motivations.
These come from derivatives whose underlying are interest rates:
caps, floors, swaps, ...

## Caps

Cap $\Leftrightarrow$ sum of caplets. Caplet on $[S, T]$
$(T-S)(L(S, T)-K)^{+}=($some computations... $)=K^{*}\left(\frac{1}{K^{*}}-B(S, T)\right)^{+}$
where $K^{*}=1+(T-S) K$.
Hence a caplet is equivalent to a put option at time $S$ on a bond of maturity $T$.
Similarly, a floorlet is equivalent to an option on a bond of future maturity.

## Swaps

For the swaps there is a theoretical formula (outside any model)

## Swap rate

$$
R=\frac{B\left(0, T_{0}\right)-B\left(0, T_{n}\right)}{\delta \sum_{i=1}^{n} B\left(0, T_{i}\right)}
$$

where $0<T_{0}<T_{1}<\ldots<T_{n}$ and $\delta=T_{i}-T_{i-1}$ (intervals of equal length).

## The importance of a model

Problem: LIBOR rates are known only up to 1 year but swaps could be e.g. over 15 years!
$\Rightarrow$ some model becomes necessary.

## Models based on the short rate

11 we introduce a stochastic model for for the short rate $r(t)$

$$
d r(t)=\alpha(t, r(t)) d t+\beta(t, r(t)) d W_{t}
$$

where $W_{t}$ is a one-dimensional Brownian motion.
Problem we only know $B_{t}=\exp \left(\int_{0}^{t} r(s) d s\right)$
$\boxed{2}$ model the equivalent martingale probability (actually, its density)

$$
\frac{d P^{*}}{d P}
$$

Problem who chooses the martingale probability? Answer: the market!

## First models

Vasicek

$$
d r(t)=(b-\operatorname{ar}(t)) d t+\sigma d W_{t}
$$

Cox-Ingersoll-Ross $\quad d r(t)=a(b-r(t)) d t+\sigma \sqrt{r(t)} d W_{t}$
Where does the term $(b-\operatorname{ar}(t))$ come from?
It is called mean reversion.
Consider the ordinary differential equation

$$
d f(t)=a(m-f) d t \quad \Rightarrow \quad f(t)=m+(c-m) e^{-a t}
$$

We have ( $a>0$ )

$$
\lim _{t \rightarrow+\infty} f(t)=m
$$

Interpretation: "mean reversion" $\Rightarrow$ convergence to equilibrium
but we add some uncertainty (noise)

## Explicit solution to Vasicek model

It is not difficult to prove that

$$
d r(t)=(b-\operatorname{ar}(t)) d t+\sigma d W_{t}
$$

has the solution

$$
r(t)=\frac{b}{a}+\frac{b}{a}\left(r^{*}(0)-\frac{b}{a}\right) e^{-a t}+\sigma e^{-a t} \int_{0}^{t} e^{a s} d W_{s}
$$

Stochastic integral is a Wiener integral (deterministic integrand) $\Rightarrow r(t)$ is a Gaussian random variable.

For the Cox-Ingersoll-Ross (C.I.R.) model

$$
d r(t)=a(b-r(t)) d t+\sigma \sqrt{r(t)} d W_{t}
$$

we must provide conditions so that

$$
r(t) \geq 0,
$$

otherwise $\sqrt{r(t)}$ has no meaning...

## Theorem

If $a b>\frac{\sigma^{2}}{2}$, then $r(t, \omega)>0$ a.e.
A new (real) phenomenon: short interest rates can become negative!

## Model based on short interest rates - conclusion

We saw just two simple models - Vasicek and CIR.
General fact: in short rate models, it can be proved that

$$
B(t, T)=F^{T}(t, r(t))
$$

where $F^{\top}$ is built as a solution to some partial differential equation.

## Instantaneous forward rate

Recall the definition of Yield

$$
Y(t, T)=\frac{-\log B(t, T)}{(T-t)}
$$

We introduce a new quantity:

$$
f(t, T)=-\frac{\partial}{\partial T} \frac{\log B(t, T)}{(T-t)}=\frac{\partial Y}{\partial T}(t, T)
$$

Principle: model

$$
d f(t, T)=\alpha(t, T) d t+\sigma(t, T) d W_{t}
$$

in such a way that there exists $P^{*}$ equivalent (to $P$ ) martingale probability.
Theorem (Heat-Jarrow-Morton)
$\left(\frac{B(t, T)}{B_{t}}\right)_{t \in[0, T]}$ is a martingale if and only if

$$
\alpha(t, T)=\sigma(t, T) \int_{0}^{t} \sigma(t, s) d s, \quad \text { for every } t \in[0, T]
$$

Heat-Jarrow-Morton is very interesting from a mathematical viewpoint but less tractable numerically.

Moreover, where does the definition

$$
f(t, T)=-\frac{\partial \log B(t, T)}{\partial T}
$$

come from?
Consider forward interest rates in $[S, T]$ implicit at time $t<S<T$.
The amount 1 at time $t$ is worth

$$
\frac{1}{B(t, S)} \quad \text { at time } S
$$

and

$$
\frac{1}{B(t, T)} \quad \text { at time } T
$$

If we assume linear interests:

$$
\begin{gathered}
\frac{1}{B(t, S)}(1+L(t, S, T)(T-S))=\frac{1}{B(t, T)} \\
\Rightarrow L(t, S, T)=\left(\frac{B(t, S)}{B(t, T)}-1\right) /(T-S)
\end{gathered}
$$

If we assume continuously compounded interests:

$$
\begin{array}{r}
\frac{1}{B(t, S)} \exp F(t, S, T)(T-S)=\frac{1}{B(t, T)} \\
\Rightarrow F(t, S, T)=\log \left(\frac{B(t, S)}{B(t, T)}\right) /(T-S)=\frac{\log B(t, S)-\log B(t, T)}{T-S}
\end{array}
$$

We obtain

$$
f(t, T)=\lim _{h \downarrow 0} F(t, T, T+h) .
$$

## Change of numéraire

An important tool in interest rate modes is the
principle of change of numéraire

Take as numeraire $B(t, T)$ and consider

$$
\frac{d P^{T}}{d P^{*}}=\frac{B(t, T)}{B_{t} B(0, T)} \quad \Leftarrow \text { T-forward measure. }
$$

An example (at the blackboard)

## "Modern" point of view (market models)

A more recent approach is the following (market models):
Fix a finite number of maturities

$$
0<T_{0}<T_{1}<\ldots<T_{n}
$$

and directly model $n$ processes, for $i=0,1, \ldots, n-1$

$$
L_{i}(t):=L\left(t, T_{i}, T_{i+1}\right)
$$

i.e. the LIBOR interest on the interval $\left[T_{i}, T_{i+1}\right]$.

## References - suggested readings

■ T. Björk, Arbitrage Theory in Continuous Time, OUP Oxford, 2009.

■ T. Mikosch, Elementary Stochastic Calculus, with Finance in View, Advanced Series on Statistical Science \& Applied Probabilit. World Scientific, 1998.

■ D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Second Edition. CRC Press, 2011.

■ M. Avellaneda and P. Laurence, Quantitative Modeling of Derivative Securities: From Theory To Practice. CRC Press, 1999.

■ B. Øksendal, Stochastic Differential Equations. Springer Berlin Heidelberg, 2003.

