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Remark on notation

Throughout all this lecture, Brownian motion will be indicated with

Wt for “Wiener process”

instead of Bt .



Zero-coupon bonds

Primary object

A zero-coupon bond B(t ,T ) is (the price of a) contract (stipulated at time
t ≤ T ) which guarantees the () 1 e to be paid at time T .

Facts:

T 7→ B(t ,T ) is regular and B(T ,T ) = 1.

t 7→ B(t ,T ) is highly irregular⇒ stochastic process

Principle: the amount 1 e at time t is worth

1
B(t ,T )

at time T ≥ t .



Starting from the principle: the amount 1 e at time t is worth

1
B(t ,T )

at time T ≥ t ,

we can introduce interests in linear terms

1 + L(t ,T )(T − t) =
1

B(t ,T )

⇒ LIBOR interest rate L(t ,T )

L(t ,T ) =
1

(T − t)
1− B(t ,T )

B(t ,T )
=

1
B(t,T )

− 1

T − t

or interests in continuously compounded terms

exp (Y (t ,T )(T − t)) =
1

B(t ,T )

⇒ Yield Y (t ,T )

Y (t ,T ) =
− log B(t ,T )

(T − t)



What happens in L(t ,T ) if we let T → t (recall that T 7→ B(t ,T ) is “regular”):

Definition (instantaneous short rate)

r(t) := lim
h→0+

L(t , t + h)

We obtain the usual numéraire: money market account:

Bt := exp
(∫ t

0
r(s)ds

)
(recall our change of notation for BM. . . )



Let us introduce the “usual” model hypothesis:

Hypothesis

1 (completeness) the filtration Ft is the natural filtration generated by a
d-dimensional Wiener process (BM)

(W 1
t ,W

2
t , . . . ,W

d
t ) t ∈ [0,T ],

but we will write Wt as if d = 1.

2 (no-arbitrage) there exists an equivalent probability measure P∗ such
that, under P∗, every “discounted” process

t 7→ B(t ,T )

Bt
= B(t ,T ) exp

(
−
∫ t

0
r(s)ds

)
is a martingale.



A naive approach

Let us directly model t 7→ B(t ,T ) via an SDE:

dtB(t ,T ) = B(t ,T ) (α(t ,T )dt + σ(t ,T )dWt)

Bad idea! How can we guarantee that B(T ,T ) = 1?



Why should we model interest rates?

Since it is not straightforward to model B(t ,T ), let us see first motivations.

These come from derivatives whose underlying are interest rates:

caps, floors, swaps, . . .

Caps

Cap⇔ sum of caplets. Caplet on [S,T ]

(T − S) (L(S,T )− K )+ = (some computations. . . ) = K ∗
(

1
K ∗
− B(S,T )

)+

where K ∗ = 1 + (T − S)K .

Hence a caplet is equivalent to a put option at time S on a bond of maturity T .

Similarly, a floorlet is equivalent to an option on a bond of future maturity.



Swaps

For the swaps there is a theoretical formula (outside any model)

Swap rate

R =
B(0,T0)− B(0,Tn)

δ
∑n

i=1 B(0,Ti)

where 0 < T0 < T1 < . . . < Tn and δ = Ti − Ti−1 (intervals of equal length).



The importance of a model

Problem: LIBOR rates are known only up to 1 year but swaps could be e.g.
over 15 years!

⇒ some model becomes necessary.



Models based on the short rate

1 we introduce a stochastic model for for the short rate r(t)

dr(t) = α (t , r(t)) dt + β (t , r(t)) dWt

where Wt is a one-dimensional Brownian motion.

Problem we only know Bt = exp
(∫ t

0 r(s)ds
)

2 model the equivalent martingale probability (actually, its density)

dP∗

dP

Problem who chooses the martingale probability? Answer: the market!



First models

Vasicek dr(t) = (b − ar(t)) dt + σdWt

Cox-Ingersoll-Ross dr(t) = a (b − r(t)) dt + σ
√

r(t)dWt

Where does the term (b − ar(t)) come from?

It is called mean reversion.

Consider the ordinary differential equation

df (t) = a(m − f )dt ⇒ f (t) = m + (c −m)e−at

We have (a > 0)
lim

t→+∞
f (t) = m

Interpretation: “mean reversion”⇒ convergence to equilibrium

but we add some uncertainty (noise)



Explicit solution to Vasicek model

It is not difficult to prove that

dr(t) = (b − ar(t)) dt + σdWt

has the solution

r(t) =
b
a
+

b
a

(
r∗(0)− b

a

)
e−at + σe−at

∫ t

0
easdWs

Stochastic integral is a Wiener integral (deterministic integrand)⇒ r(t) is a
Gaussian random variable.



For the Cox-Ingersoll-Ross (C.I.R.) model

dr(t) = a (b − r(t)) dt + σ
√

r(t)dWt

we must provide conditions so that

r(t) ≥ 0,

otherwise
√

r(t) has no meaning. . .

Theorem
If ab > σ2

2 , then r(t , ω) > 0 a.e.

A new (real) phenomenon: short interest rates can become negative!



Model based on short interest rates – conclusion

We saw just two simple models – Vasicek and CIR.

General fact: in short rate models, it can be proved that

B(t ,T ) = F T (t , r(t))

where F T is built as a solution to some partial differential equation.



Instantaneous forward rate

Recall the definition of Yield

Y (t ,T ) =
− log B(t ,T )

(T − t)

We introduce a new quantity:

f (t ,T ) = − ∂

∂T
log B(t ,T )

(T − t)
=
∂Y
∂T

(t ,T )

Principle: model
df (t ,T ) = α(t ,T )dt + σ(t ,T )dWt

in such a way that there exists P∗ equivalent (to P) martingale probability.

Theorem (Heat-Jarrow-Morton)(
B(t,T )

Bt

)
t∈[0,T ]

is a martingale if and only if

α(t ,T ) = σ(t ,T )

∫ t

0
σ(t , s)ds, for every t ∈ [0,T ].



Heat-Jarrow-Morton is very interesting from a mathematical viewpoint but
less tractable numerically.

Moreover, where does the definition

f (t ,T ) = −∂ log B(t ,T )

∂T

come from?

Consider forward interest rates in [S,T ] implicit at time t < S < T .

The amount 1 at time t is worth

1
B(t ,S)

at time S

and
1

B(t ,T )
at time T .



If we assume linear interests:

1
B(t ,S)

(1 + L(t ,S,T )(T − S)) =
1

B(t ,T )

⇒ L(t ,S,T ) =
(

B(t,S)
B(t,T )

− 1
)
/(T − S)

If we assume continuously compounded interests:

1
B(t ,S)

exp F (t ,S,T )(T − S) =
1

B(t ,T )

⇒ F (t ,S,T ) = log
(

B(t,S)
B(t,T )

)
/(T − S) = log B(t,S)−log B(t,T )

T−S

We obtain

f (t ,T ) = lim
h↓0

F (t ,T ,T + h).



Change of numéraire

An important tool in interest rate modes is the

principle of change of numéraire

Take as numeraire B(t ,T ) and consider

dPT

dP∗
=

B(t ,T )

Bt B(0,T )
⇐ T-forward measure.

An example (at the blackboard)



“Modern” point of view (market models)

A more recent approach is the following (market models):

Fix a finite number of maturities

0 < T0 < T1 < . . . < Tn

and directly model n processes, for i = 0, 1, . . . , n − 1

Li(t) := L(t ,Ti ,Ti+1)

i.e. the LIBOR interest on the interval [Ti ,Ti+1].
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