Stochastic processes and stochastic calculus Exercises I

12.09.2016

1. Let X_{1} and X_{2} be discrete random variables with a Poisson distribution:

$$
X_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right) \quad \text { and } \quad X_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)
$$

Show that if X_{1} and X_{2} are independent, then $X_{1}+X_{2}$ is a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$.
2. Prove that, if X and Y are real-valued random variables with $\operatorname{Var}(X)=$ $\operatorname{Var}(Y)$, then $X+Y$ and $X-Y$ are uncorrelated.
3. Let X be an exponential random variable with parameter λ :

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

a) Calculate $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.
b) Show that the probability distribution of X is memoryless, i.e. if for any non-negative real numbers t and s, we have

$$
\operatorname{Pr}(X>t+s \mid X>t)=\operatorname{Pr}(X>s)
$$

c) Let Y be another exponential random variable with parameter μ, independent of X. Show that

$$
\mathbb{P}(X<Y)=\frac{\lambda}{\lambda+\mu}
$$

d) Let Y be another exponential random variable with parameter μ, independent of X. Let $Z=\min (X, Y)$. Show that Z is an exponential random variable with parameter $\lambda+\mu$.
4. An economics consulting firm has created a model to predict recessions. The model predicts a recession with probability 80% when a recession is indeed coming and with probability 10% when no recession is coming. The unconditional probability of falling into a recession is 20%. If the model predicts a recession, what is the probability that a recession will indeed come?
5. Let $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ be two independent random variables. Calculate

$$
\mathbb{E}\left[(X+Y+X Y)^{2} \mid X=2\right]
$$

6. Let X and Y be two random variables with joint density

$$
f(x, y)=2 \mathbb{1}_{\{0 \leq y \leq x \leq 1\}} .
$$

Calculate $\mathbb{E}[X \mid Y=1 / 2]$.

Stochastic processes and stochastic calculus Exercises II

13.09.2016

1. Let Y_{1}, Y_{2}, \ldots, be independent random variables uniformly distributed in $\{1,2,3,4,5\}$. Define

$$
X_{n}=\max \left(Y_{1}, \ldots, Y_{n}\right), \quad n \geq 1
$$

a) Show that X_{n} is a Markov chain.
b) Determine the transition probability matrix.
c) Find the probability distribution function for the random variable X_{3}.
2. A Markov chain has transition probability matrix

$$
P=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Determine all stationary distributions of the chain.
3. Strikes in a factory occur according to a Poisson process with rate 2 per year. Find the probability that there is exactly one strike in the first 3 months and exactly 3 strikes in the subsequent 9 months.
4. Let S_{1}, S_{2}, \ldots, be i.i.d. random variable exponentially distributed with parameter λ. Define $T_{n}=S_{1}+\cdots+S_{n}$ and $N_{t}=\sum_{n \geq 1} \mathbb{1}_{\left\{T_{n} \leq t\right\}}$. Show that N_{t} is a Poisson process.
5. Let $\left(X_{n}\right)_{n \geq 0}$ be i.i.d uniform on $[0,1]$ random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$. For $n \geq 0$, let $F_{n}=\sigma\left(X_{k}, k \leq n\right)$, and consider the random variable $T=\inf \left\{n \geq 1: X_{n}>X_{0}\right\}$. Show that T is a stopping time with respect to the filtration F_{n}.
6. Let $X_{i}, i \geq 0$ be integrable random variables, and $F_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)$. Assume that for $n \geq 1$,

$$
\mathbb{E}\left[X_{n+1} \mid F_{n}\right]=a X_{n}+b X_{n-1},
$$

where $a \in(0,1)$ and $a+b=1$. For what value(s) of $\alpha, S_{n}=\alpha X_{n}+X_{n-1}$ is a $\left(F_{n}\right)$-martingale?
7. Let ξ_{1}, ξ_{2}, \ldots be i.i.d random variables with $\mathbb{E}\left[\xi_{i}^{2}\right]=\sigma^{2}<\infty$ and $\mathbb{E}\left[\xi_{i}\right]=0$. Define $X_{n}=\sum_{i=1}^{n} \xi_{i}$. Find the increasing predictable process A_{n} such that $X_{n}^{2}-A_{n}$ is a martingale and $A_{0}=0$.
8. Let X_{1}, \ldots, X_{N} be independent random variables with $\mathbb{E}\left[X_{i}\right]=0, i=$ $1, \ldots, N$. For $n \in\{1, \ldots, N\}$, define $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $S_{n}=$ $X_{1}+\cdots+X_{n}$. For $m<n$, calculate $\mathbb{E}\left[S_{n} \mid \mathcal{F}_{m}\right]$ and $\mathbb{E}\left[S_{n} \mid S_{m}\right]$.

Stochastic processes and stochastic calculus Exercises III

14.09.2016

1. Prove that $B_{t}^{2}-t$ and $B_{t}^{3}-3 t B_{t}$ are martingales.
2. Let Y be a random variable such that $\mathbb{E}[|Y|]<\infty$. Define

$$
M_{t}=\mathbb{E}\left[Y \mid \mathcal{F}_{t}\right] .
$$

Show that M_{t} is an \mathcal{F}_{t}-martingale.
3. Prove that the following stochastic processes are martingales:
a) $e^{t / 2} \cos B_{t}$
b) $\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right)$.
4. Show that

$$
\int_{0}^{1} t \mathrm{~d} B_{t}
$$

is a Gaussian random variable. Calculate the expectation and the variance.
5. Compute the expectation and the variance of

$$
\frac{1}{T} \int_{0}^{T} B_{t} \mathrm{~d} t
$$

and

$$
\frac{1}{T} \int_{0}^{T} B_{t} \mathrm{~d} B_{t}
$$

Are these variables normally distributed?
6. Let $x>0$ be a constant and define

$$
X_{t}=\left(x^{1 / 3}+\frac{1}{3} B_{t}\right)^{3}, \quad t \geq 0
$$

Show that

$$
\mathrm{d} X_{t}=\frac{1}{3} X_{t}^{1 / 3} \mathrm{~d} t+X_{t}^{2 / 3} \mathrm{~d} B_{t}, \quad B_{0}=x
$$

7. a) For c, α constants, $B_{t} \in \mathbb{R}$ define

$$
X_{t}=\exp \left(c t+\alpha B_{t}\right)
$$

Prove that

$$
\mathrm{d} X_{t}=\left(c+\frac{1}{2} \alpha^{2}\right) X_{t} \mathrm{~d} t+\alpha X_{t} \mathrm{~d} B_{t}
$$

b) For $c, \alpha_{1} \ldots, \alpha_{n}$ constants, $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{s}\right) \in \mathbb{R}^{n}$ define

$$
X_{t}=\exp \left(c t+\sum_{j=1}^{n} \alpha_{j} B_{t}^{j}\right)
$$

Prove that

$$
\mathrm{d} X_{t}=\left(c+\frac{1}{2} \sum_{j=1}^{n} \alpha_{j}^{2}\right) X_{t} \mathrm{~d} t+X_{t}\left(\sum_{j=1}^{n} \alpha_{j} \mathrm{~d} B_{t}^{j}\right)
$$

Stochastic processes and stochastic calculus Exercises IV

15.09 .2016

1. Let W_{t}^{1}, W_{t}^{2} be two independent Wiener processes and let a, b be constants. Show that

$$
W_{t}:=\frac{a W_{t}^{1}+b W_{t}^{2}}{\sqrt{a^{2}+b^{2}}}
$$

is also a Wiener process.
2. In each of the cases below find the process H_{t} such that

$$
F=\mathbb{E}[F]+\int_{0}^{T} H_{t} \mathrm{~d} B_{t}
$$

a) $F=B_{T}^{2}$
b) $F=\exp \left(B_{T}\right)$
3. Let B_{t} be a Brownian motion and define $Y_{t}=B_{t}+t$. Find $\mathbb{Q}_{T} \sim \mathbb{P}$ such that $\left(Y_{t}\right)_{t \leq T}$ becomes a \mathbb{Q}_{T}-Brownian motion.
4. Let \mathbb{Q} and \mathbb{P} be two probability measures on (Ω, \mathcal{F}). Assume that Q is absolutely continuous with respect to \mathbb{P} such that

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=L .
$$

Let $\mathcal{G} \subset \mathcal{F}$ and show that for every random variable X

$$
\mathbb{E}_{\mathbb{Q}}[X \mid \mathcal{G}]=\frac{\mathbb{E}_{\mathbb{P}}[X L \mid \mathcal{G}]}{\mathbb{E}_{\mathbb{P}}[L \mid \mathcal{G}]}
$$

5. Let H_{t} be an adapted bounded process and let Z_{t} be the solution of $d Z_{t}=-H_{t} Z_{t} d B_{t}$ such that $Z_{0}=1$. Define the probability measure $d \mathbb{Q}=Z_{T} d \mathbb{P}$ and prove that

$$
\mathbb{E}_{\mathbb{P}}\left[Z_{T} \log Z_{T}\right]=\mathbb{E}_{\mathbb{Q}}\left[\frac{1}{2} \int_{0}^{T} H_{s}^{2} d s\right]
$$

