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Problem 1

Recall that any single qubit mixed state ρ ∈ D(C2) can be represented as

ρ =
1

2
(1 + bxσx + byσy + bzσz)

for a Bloch vector b = (bx, by, bz) with b ∈ R3 and |b|2 = b2x + b2y + b2z ≤ 1 and Pauli

matrices σx, σy, σz ∈ C2×2.

1. prove that ρ is pure if and only if b belongs to the Bloch sphere, i.e. |b| = 1,

2. compute the Bloch vectors b for the states(
1 0
0 0

)
,

(
1/2 1/2
1/2 1/2

)
and

(
1/2 −1/2
−1/2 1/2

)
.

Are these states pure?

A solution:

1. This was proved in the lectures. 2. For the first state, we have b = (0, 0, 1),

for the second state b = (1, 0, 0), for the third one b = (−1, 0, 0). In all the cases

the states are pure (using the first question).

Problem 2

Consider a pure state |ψ⟩ ∈ C2 for a single qubit system and write explicitly (e.g. in

terms of the Bloch sphere parametrization as in the previous problem) Heisenberg’s

uncertainty inequality for the pair of observables σx, σz. Investigate whether equality

may occur.

A solution:

Write ρ = |ψ⟩⟨ψ| = 1
2
(1 + bxσx + byσy + bzσz) for some b in the Bloch sphere.

We compute

⟨σx⟩ρ = Tr(σxρ) =
1

2
Tr(σx (1 + bxσx + byσy + bzσz)) = bx,

and similarly

⟨σz⟩ρ = Tr(σzρ) =
1

2
Tr(σz (1 + bxσx + byσy + bzσz)) = bz.
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To compute the uncertainty, notice that, by developing the square:

∆(A)2ρ = ⟨(A− ⟨A⟩ρ1)2⟩ρ = Tr(A2ρ)− Tr(Aρ)2.

Therefore,

∆(σx)
2 = Tr(σ2

xρ)− b2x = Tr(ρ)− b2x = 1− b2x,

∆(σz)
2 = Tr(σ2

zρ)− b2z = Tr(ρ)− b2z = 1− b2z,

Finally, we have by the commutation relations that

[σx, σz] = −2iσy,

so that ⟨i[σx, σz]⟩ρ = −2by and Heisenberg uncertainty inequality reads

|by| ≤
√

1− b2x
√

1− b2z.

Since b belongs to the Bloch sphere, we have |by| =
√

1− b2x − b2z, so that the

inequality becomes √
1− b2x − b2z ≤

√
1− b2x

√
1− b2z.

To check for equality, we square both sides and simplify some terms, so that the

inequality is seen to be equivalent to

0 ≤ b2xb
2
z,

and we see that equality occurs if and only if bx = 0 or bz = 0.

Problem 3

Suppose that two pure state vectors |ϕ⟩, |ψ⟩ ∈ C2 are orthogonal ⟨ϕ|ψ⟩ = 0. Show

that there exists a unitary U : C2 ⊗ C2 that “clones” both |ϕ⟩ and |ψ⟩, i.e.,

U |ϕ⟩ ⊗ |0⟩ = |ϕ⟩ ⊗ |ϕ⟩, U |ψ⟩ ⊗ |0⟩ = |ψ⟩ ⊗ |ψ⟩.

Why this does not contradict the no-cloning theorem?

A solution:

The vectors {|ϕ⟩ ⊗ |0⟩, |ψ⟩ ⊗ |0⟩} are orthonormal. Similarly, the vectors {|ϕ⟩ ⊗ |ϕ⟩, |ψ⟩ ⊗ |ψ⟩}
are orthonormal. Therefore, to define U as required it is sufficient to complete

both sets of vectors to orthonormal basis of C2 ⊗ C2 and impose that the added

(two) vectors are mapped to the added vectors. This does not contradict the

no-cloning theorem because anyway U does not “clone” all the states, e.g. we

have

U
1√
2
(|ϕ⟩+ |ψ⟩)⊗ |0⟩ = 1√

2
(|ϕ⟩ ⊗ |ϕ⟩+ |ψ⟩ ⊗ |ψ⟩) ,
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which does not coincide with the state

1

2
(|ϕ⟩+ |ψ⟩)⊗ (|ϕ⟩+ |ψ⟩) ,

as seen by computing the scalar product between the two, that yields 1√
2
.

Problem 4

On H = C2 define the states |+⟩ = (|0⟩ + |1⟩)/
√
2 and |−⟩ = (|0⟩ − |1⟩)/

√
2. Write

|+−⟩ = |+⟩ ⊗ |−⟩, | −+⟩ = |−⟩ ⊗ |+⟩, and express the state

|+−⟩ − | −+⟩√
2

in the computational basis on H⊗2.

A solution:

We have

| −+⟩ = 1

2
(|0⟩ − |1⟩)⊗ (|0⟩+ |1⟩) = 1

2
(|00⟩+ |01⟩ − |10⟩ − |11⟩)

and similarly

|+−⟩ = 1

2
(|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩) = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩) .

Summation yields

|+−⟩ − | −+⟩√
2

=
1√
2
(|10⟩ − |01⟩) .

Problem 5

Given self-adjoint operators MA, MB respectively on Hilbert spaces HA, HB, prove

that MA ⊗MB is self-adjoint on HA ⊗ HB. Can you describe its spectrum in terms

of the spectra of MA and MB?

A solution:

We already proved during the lectures. The spectrum is given by the products

σ(MA ⊗MB) = {λAλB : λA ∈ σ(MA), λB ∈ σ(MB)} ,

since one can diagonalize MA ⊗MB using the orthonormal basis of eigenvectors

(ei⊗fj)i,j where (ei)i, respectively (fj), are the orthonormal basis of eigenvectors

of MA, respectively MB.
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Problem 6

Consider on a joint system HA ⊗ HB an operator M = MA ⊗ MB. Prove that

TrB(MA ⊗MB) =MATr(MB) and TrA(MA ⊗MB) = Tr(MA)MB. In particular, if

ρ = ρA ⊗ ρB for state operators ρA, ρB, then the reduced state from ρ on the system

HA is TrB(ρ) = ρA and similarly ρB = TrA(ρ).

A solution:

Consider orthonormal basis (ei)i ⊆ HA, (fj)j ⊆ HB so that

M =
∑
i,j,k,ℓ

Mij,kl|ei, fj⟩⟨ekfℓ|,

with Mij,kℓ = ⟨ei ⊗ fj|Mekfℓ⟩, which in this case yields

Mij,kℓ =MA
ikM

B
jℓ .

The partial trace TrB(M) is given by

TrB(M) =
∑
i,k

|ei⟩⟨ek|

(∑
j

Mij,kj

)
=
∑
i,k

MA
ij |ei⟩⟨ek|

(∑
j

MB
jj

)
= Tr(MB)

∑
i,k

MA
ij |ei⟩⟨ek| = Tr(MB)MA.

The argument for TrA(M) = Tr(MA)MB is similar.

Problem 7

Write the matrix corresponding to the operator H ⊗H, in the computational basis,

where H is the Hadamard operator.

A solution:

Recall that in the computational basis we represent H as

1

2

(
1 1
1 −1

)
.

Since the matrix representing MA ⊗MB in the computational basis is the Kro-

necker product of the two matrices representing MA, MB, we have in this case

that H ⊗H is represented by

1

4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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Problem 8

Consider the Pauli operators X = σx = |1⟩⟨0|+ |0⟩⟨1|, Y = σy = i|1⟩⟨0| − i|0⟩⟨1|.

1. Find the matrix representation (with respect to the computational basis in H⊗2)

of

A = σx ⊗ σy, and B = σy ⊗ σx.

2. Prove that A, B are self-adjoint operators and compute their spectra.

3. Compute [A,B].

4. Assume that the system is prepared in the Bell state (|00⟩+ |11⟩) /
√
2. What

is the probability of observing 1 if we measure A?

A solution:

1. Since

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

we obtain the Kronecker product representations

A =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


and

B =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 .

We see that both A, B are self-adjoint. To compute their spectra, we may notice

that
1√
2
(|00⟩+ i|11⟩) , to be added...

provide an orthonormal basis of eigenvectors, or use the fact that the spectra of

σx, σy are {−1, 1}, hence the spectrum of A and B is also {−1, 1}.

2. We see that [A,B] = 0, since

AB = (σx ⊗ σy)(σy ⊗ σx) = (σxσy)⊗ (σyσx) = −i2σz ⊗ σz

and

BA = (σy ⊗ σx)(σx ⊗ σy) = (σyσx)⊗ (σxσy) = −i2σz ⊗ σz.

3. to be added

Problem 9

Let Z = σz be the Pauli operator and consider the two controlled Z gates denoted
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respectively as Λ1(Z) and Λ1(Z) in Scherer’s book on a 2-qubit system (represented

below). Write explicitly their matrix representations and argue that Λ1(Z) = Λ1(Z).

Λ1(Z):

q0 : •
q1 : Z

Λ1(Z):

q0 : Z
q1 : •

In view of this identity, it is usually simply represented as follows:

q0 : •
q1 : •

A solution:

Recall that Z = |0⟩⟨0| − |1⟩⟨1|. We have the identity

Λ1(Z) = Z ⊗ |1⟩ (1) + 1⊗ |0⟩⟨0|
= |01⟩⟨01| − |11⟩⟨11|+ |00⟩⟨00|+ |10⟩⟨10|.

We obtain

Λ1(Z) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

On the other side,

Λ0(Z) = |1⟩ (1)⊗ Z + |0⟩⟨0| ⊗ 1

= |10⟩⟨10| − |11⟩⟨11|+ |00⟩⟨00|+ |01⟩⟨01|,

so that the matrix coincides with the one above and we obtain that Λ1(Z) =

Λ1(Z).

Problem 10

Show that the following quantum circuit on a register of 2 qubits

q0 : H • H
q1 : H H

is equivalent (i.e., describes the same unitary transformation) to the controlled X

operation Λ1(X), represented as
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q0 :

q1 : •

A solution:

We recall the matrix representations for the Hadamard operator

H =
1√
2

(
1 1
1 −1

)
the CNOT Λ1(X) operator (the control qubit is the right one )

Λ1(X) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


and the Λ1(X) operator (the control qubit is the left one)

Λ1(X) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
1 0
0 X

)
,

written in block notation. The operator H ⊗H is represented in block form as

H ⊗H =
1√
2

(
H H
H −H

)
,

We multiply the block matrices

H ⊗HΛ1(X) =
1√
2

(
H HX
H −HX

)
and then

(H ⊗HΛ1(X))H ⊗H =
1

2

(
H2 +HXH H2 −HXH
H2 −HXH H2 +HXH

)
.

We have H2 = 1, and

HXH = Z =

(
1 0
0 −1

)
.

so that

H2 +HXH = 2

(
1 0
0 0

)
, H2 −HXH = 2

(
0 0
0 1

)
,

and we recognize the matrix representing Λ1(X).
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Problem 11

Given a state vector on n qubits, |ψ⟩ ∈ H⊗n, represent it in terms of the computational

basis as

|ψ⟩ =
∑

s∈{0,1}n
αs|s⟩.

Consider the observable σz ⊗ 1⊗n−1
C2 .

1. What is the probability that the measurement outcome is 1, in terms of the α

coefficients?

2. Assume that the outcome of the measurement is 1. What is the state of the

system after such a measurement?

A solution:

1. The eigenspace V associated to the eigenvalue 1 for σz ⊗ 1⊗n−1
C2 consists of

the span of vectors in the computational basis |s⟩ with s = (s0, s1, . . . , sn−1) such

that s0 = 0. Therefore, the orthogonal projection onto this space is

P =
∑

s∈{0,1}n−1

|0s⟩⟨0s|.

We obtain

P |ψ⟩ =
∑

s∈{0,1}n−1

α0s|0s⟩,

hence the probability of measuring 1 is

∥P |ψ⟩∥2 =
∑

s∈{0,1}n−1

|α0s|2

and after observing one the state vector |ψ⟩ collapses into

P |ψ⟩/∥P |ψ⟩∥ =

∑
s∈{0,1}n−1 α0s|0s⟩√∑
s∈{0,1}n−1 |α0s|2

.

Problem 12

Write the Toffoli gate using kets, bras and tensor products, and in matrix form

with respect to the canonical basis on three qubits. Recall that Toffoli gate is a

doubly-controlled not operation, represented as follows:
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q0 : •
q1 : •
q2 :

A solution:

Writing 1 = |0⟩⟨0|+ |1⟩⟨1| for the identity operator and X = |1⟩⟨0|+ |0⟩⟨1|,e we

have

T = |11⟩⟨11| ⊗X + (1⊗3 − |11⟩⟨11|)⊗ 1 = |11⟩⟨11| ⊗ (X − 1) + 1⊗3.

In matrix notation

T =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0



Problem 13

Consider the following quantum circuit U :

q0 : H Z •
q1 : • H

1. Compute the matrix representing the circuit transformation U in the computa-

tional basis.

2. Write a circuit representing the inverse transformation U−1

3. If the initial state of the system is |00⟩, what is the probability distribution of

the readout in the computational basis?

A solution:

1.

Problem 14

The SWAP gate for 2 qubits is defined as S|x⟩⊗ |y⟩ = |y⟩⊗ |x⟩ for x, y ∈ {0, 1}, and
in circuit notation denoted as
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q0 : ×

q1 : ×

1. Write the matrix representation of S in the computational basis.

2. Is S self-adjoint? Compute its spectrum.

3. Express S as a composition of controlled not gates.

A solution:

1. We have S|00⟩ = |00⟩, S|11⟩ = |11⟩, S|01⟩ = |10⟩ and S|10⟩ = |01⟩, so that

the matrix reads

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

2. S is self-adjoint (it is real and symmetric). To compute its spectrum, notice

that S2 = 1, so σ(S) ⊆ {−1, 1}, but S ̸= 1, so necessarily σ(S) = {−1, 1}.

3. It is straightforward to check that S = Λ1(X)Λ1(X)Λ1(X) (also represented

as a circuit below):

q0 : • •
q1 : •

Indeed, if the input state is |00⟩, also the output will be |00⟩ (all the controls are
not activated). If the input is |11⟩, only the first and third controls are activated,

hence we apply twice an X on the target bit, hence the output is |11⟩. If the

input is |01⟩, only the first and the second gates are activated and the output is

|10⟩, while if |10⟩ only the second and third and the output is |01⟩.

Problem 15

Given a permutation over n-elements σ : {1, . . . , n} → {1, . . . , n}, its (column)

permutation matrix Uσ ∈ Cn×n is given by

(Uσ)ij =

{
1 if j = σ(i)

0 otherwise.

1. Prove that, for every permutation σ, the matrix Uσ is unitary with inverse Uσ−1 .

2. Show that every permutation matrix over 4 elements can be obtained as a

suitable composition of the gates X ⊗ 1, 1⊗X and SWAP.
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3. Is every permutation matrix over 8 elements obtainable as a suitable composition

of the gates X ⊗ 1⊗2, 1⊗X ⊗ 1, 1⊗2 ⊗X and Toffoli gates as in Problem 12?

Problem 16

Show that the following circuit implements the SWAP gate using only Hadamard

and CZ gates

q0 : H • H • H • H
q1 : • H • H •

Problem 17

Consider a system with two qubits (C2)⊗2 initialized on the state

|ψ⟩ = |+⟩ ⊗ |+⟩ ,

where |+⟩ = (|0⟩+ |1⟩)/
√
2. Consider the following observables

P0 =
1

2
(1⊗ 1 + σz ⊗ σz) ,

P1 =
1

2
(1⊗ 1− σz ⊗ σz) .

1. Show that P0, P1 are actually orthogonal projections.

2. Compute the expectations ⟨P0⟩|ψ⟩, ⟨P1⟩|ψ⟩.
3. Assume that we measure P0 on the system and obtain the result 0. Describe

the state after the measurement in the computational basis.

Problem 18

Consider a system with two qubits (C2)⊗2 initialized on the Bell state∣∣ψ+
〉
= (|00⟩+ |11⟩) /

√
2.

Using only suitable gates of the form U ⊗ 1, with U ∈ C2×2 unitary, is it possible to

obtain all the other states in the Bell basis?

Problem 19

The classical Monty Hall problem consists of determining what is the best strategy

in the following game. We are given three identical closed boxes, exactly one of them

containing a valuable item, the other two being empty. We are asked to choose a

box among the three and a game host (who knowns the boxes’ contents) then reveals

an empty box, among one that we did not choose. The host then asks if we wish to

change our mind and swap our initial box with the other closed one. What is the

choice that maximizes the probability of finding the item?

Following https://youtu.be/Hd9KhRts1uw, let us solve the same problem using a

quantum circuit on three qubits (C2)⊗3 and an extra qubit representing the number

of the box revealed by the host. Assume that the initial state is |ψ0⟩ = |000⟩ ⊗ |0⟩.
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1. We prepare the system into a uniform superposition of three states (representing

the fact that the item may be in each of the three boxes with uniform probability)

|ψ1⟩ =
1√
3
(|100⟩+ |010⟩+ |001⟩)⊗ |0⟩

Show that this can be done using the following circuit:

q0 : RY (θ) • • X

q1 : H •
q2 :

where

Ry(θ) = e−iθσy/2 =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,

for a suitable θ to be determined.

2. Is the state |Ψ1⟩ separable or entangled?

3. Assume for simplicity that we choose the box 3 (the bottom one). Since the

host shows either box 0 or box 1, we use the following circuit to store on the

fourth qubit the number of the box revealed:

q0 : •
q1 :

q2 : •
q3 : H

Write the statevector of the system after applying these gates (assuming that

the state before is |ψ1⟩ ⊗ |0⟩).

4. If we measure only the fourth qubit, what is the probability of measuring 0?

and of measuring 1? What is the state of the system after the measurement?

5. If we measure instead all the four qubits, compute the probabilities of all the

possible outcomes.

6. Does this circuit confirms that it is more convenient to swap?

Problem 20

The classical coin flipping game is described as follows. A box contains a fair coin

which can display either head or tail, and initially displays head. There are two

players (Alice and Bob), which alternatively can flip the coin or do nothing. It is

not allowed at any time to see the state of the coin neither see the other player’s

moves. First Alice plays a move, then Bob and then again Alice. Finally, Alice wins

if the coin displays head, otherwise Bob wins. As usual in game theory, we let a
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mixed strategy consist of a classical random variable (X1, X2) ∈ {Flip,¬Flip}2 for

the strategy of Alice, and similarly Y1 ∈ {Flip,¬Flip} for Bob. The two variables

are independent. What is the best strategy for Alice? can she win with probability

larger than 1/2?

The quantum coin flipping game2 is a variant where Alice can perform also quantum

operations, while Bob can only perform the classical coin flip. Let us encode head as

|0⟩ and tail as |1⟩ on a single qubit system. Initially the system is on head |0⟩. Alice
can choose any unitary gate U1 and U2 on her moves, while Bob can only apply the X

gate (corresponding to the classical coin flip) according to some classical probability.

1. Show that Alice has a strategy which allows her to win with probability 1.

2. What if we reverse the roles and now Alice can only play classical moves (i.e.

X gates) and Bob has also quantum ones? Has Bob a winning strategy with

probability 1?

3. What if both Alice and Bob can play quantum moves?

4. What if Alice can play only X or Z gates and Bob only X gates?

Problem 21

Hello Quantum (or Hello Qiskit https://qiskit.org/textbook/ch-ex/hello-qiskit.

html) is a game developed by IBM and also freely available on Google Play and Apple

App Store. It consists of several puzzles where one has to move a 2-qubit state to a

target state using only Z, H, X and CZ gates. An additional challenge is to solve

the puzzle using a minimum amount of elementary gates. Play throughout the game

and write your solutions in circuit notations.

2https://qiskit.org/textbook/ch-demos/coin-game.html
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