Probabilità e Processi Stocastici (455AA) Lezione 10

Dario Trevisan

24/10/2024

$$(\mathbb{E}[x^{\kappa}])_{\kappa} \longrightarrow \pi G F_{\kappa}(H) = \mathbb{E}[e^{t \kappa}]$$

$$\mathbb{E}[g(x)]$$
Section 1

Funzione caratteristica

Motivazione

• Per il calcolo di $\mathbb{E}[g(X)]$ possiamo approssimare g usando la trasformata di Fourier

$$g(x) = \int_{-\infty}^{\infty} \hat{g}(\xi) e^{2\pi i \xi x} d\xi,$$

dove $\hat{g}(\xi)$ è la trasformata (diretta) di Fourier,

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} g(x) e^{-2\pi i \xi x} dx.$$

Motivazione

• Per il calcolo di $\mathbb{E}[g(X)]$ possiamo approssimare g usando la trasformata di Fourier

$$g(x) = \int_{-\infty}^{\infty} \hat{g}(\xi) e^{2\pi i \xi x} d\xi,$$

dove $\hat{g}(\xi)$ è la trasformata (diretta) di Fourier,

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} g(x) e^{-2\pi i \xi x} dx.$$

Approssimiamo (passiamo alla frequenza angolare)

$$g(x) \sim \sum_{\omega} a_{\omega} e^{i\omega x}$$

Motivazione

• Per il calcolo di $\mathbb{E}[g(X)]$ possiamo approssimare g usando la trasformata di Fourier

$$g(x) = \int_{-\infty}^{\infty} \hat{g}(\xi) e^{2\pi i \xi x} d\xi,$$

dove $\hat{g}(\xi)$ è la trasformata (diretta) di Fourier,

$$\hat{g}(\xi) = \int_{-\infty}^{\infty} g(x) e^{-2\pi i \xi x} dx.$$

Approssimiamo (passiamo alla frequenza angolare)

$$g(x) \sim \sum_{\omega} a_{\omega} e^{i\omega x}$$

$$= \left[\mathbb{E} \left[\cos(\omega x) \right] + i \right] \mathbb{E} \left[\sin(\omega x) \right]$$

Passando al valor medio:

$$\mathbb{E}\left[g(X)\right] \sim \sum_{\omega} a_{\omega} \mathbb{E}\left[e^{i\omega X}\right].$$

Abbiamo ridotto il prolema al calcolo di

$$\mathbb{E}\left[e^{i\omega X}\right] = \mathbb{E}\left[\cos(\omega X)\right] + i\mathbb{E}\left[\sin(\omega X)\right].$$

• Data una variabile aleatoria $X \in \mathbb{R}$, si definisce la sua funzione caratteristica $\varphi_X : \mathbb{R} \to \mathbb{C}$,

$$\omega\mapsto \varphi_X(\omega)=\mathbb{E}\left[e^{i\omega X}\right].$$

Abbiamo ridotto il prolema al calcolo di

$$\mathbb{E}\left[e^{i\omega X}\right] = \mathbb{E}\left[\cos(\omega X)\right] + i\mathbb{E}\left[\sin(\omega X)\right].$$

• Data una variabile aleatoria $X \in \mathbb{R}$, si definisce la sua **funzione** caratteristica $\varphi_X : \mathbb{R} \to \mathbb{C}$,

$$\omega \mapsto \varphi_X(\omega) = \mathbb{E}\left[e^{i\omega X}\right].$$

• $\varphi_X(\omega)$ è sempre ben definita (ma complessa):

$$\varphi_X(\omega) = \mathbb{E}\left[e^{i\omega X}\right] = \begin{cases} \sum_{x \in \mathbb{R}} e^{i\omega x} P(X = x) & \text{se } X \text{ ha densità discreta,} \\ \int_{x \in \mathbb{R}} e^{i\omega x} p(X = x) dx & \text{se } X \text{ ha densità continua} \end{cases}$$

Siano X, $Y \in \mathbb{R}$ variabili aleatorie e a, $b \in \mathbb{R}$ costanti (rispetto all'informazione nota I). Allora

Siano X, $Y \in \mathbb{R}$ variabili aleatorie e a, $b \in \mathbb{R}$ costanti (rispetto all'informazione nota I). Allora

- ② Se X, Y sono indipendenti, allora $\varphi_{X+Y}(\omega) = \varphi_X(\omega)\varphi_Y(\omega)$.

Siano X, $Y \in \mathbb{R}$ variabili aleatorie e a, $b \in \mathbb{R}$ costanti (rispetto all'informazione nota I). Allora

- ② Se X, Y sono indipendenti, allora $\varphi_{X+Y}(\omega) = \varphi_X(\omega)\varphi_Y(\omega)$.
- \odot Se X ha momento k-esimo finito, allora

$$\frac{d^{k}}{d^{k}\omega}\varphi_{X}(0) = i^{k}\mathbb{E}\left[X^{k}\right].$$

$$\mathbb{E}\left(e^{i\omega X}\right)_{x} \stackrel{\text{for }}{\underset{K=\infty}{\sum}} \mathbb{E}\left(i\omega X\right)^{X} = \sum_{k=0}^{\infty} \frac{i^{k}\omega^{k}}{k!} \mathbb{E}\left(X^{k}\right)$$

Siano $X, Y \in \mathbb{R}$ variabili aleatorie e $a, b \in \mathbb{R}$ costanti (rispetto all'informazione nota I). Allora

- ② Se X, Y sono indipendenti, allora $\varphi_{X+Y}(\omega) = \varphi_X(\omega)\varphi_Y(\omega)$.
- 3 Se X ha momento k-esimo finito, allora

$$\frac{d^k}{d^k\omega}\varphi_X(0)=i^k\mathbb{E}\left[X^k\right].$$

 \bullet $\varphi_X(\omega) = \varphi_Y(\omega)$ per ogni $\omega \in \mathbb{R}$ se e solo se X e Y hanno la stessa legge (ossia la stessa densità discreta o continua, quando esistono).

Esempi

Binomiste
$$(u, p)$$
 $X = \sum_{i=1}^{n} X_i \leftarrow \text{Beaudi}(p)$

$$\begin{cases} (w) = (p) \\ (x_1 + \dots + x_n) \end{cases}$$

$$= \prod_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

$$= \lim_{i=1}^{n} (p_{X_i}(w)) = (1 + p(e^{iw} + 1))$$

Esempi Esponentiale <u> $\lambda e^{-\lambda x} \times 20$ </u>

$$(x, w) = \int_{0}^{+\infty} e^{i\omega x} \int_{0}^{+\infty} e^{-i\omega x} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{i(\omega - x)} dx$$

Il caso vettoriale

Se $X \in \mathbb{R}^d$, la funzione generatrice (come anche la trasformata di Fourier) è funzione di d variabili $(\omega_1, \omega_2, \dots, \omega_d) \in \mathbb{R}^d$,

$$\varphi_X(\omega) = \mathbb{E}\left[e^{iX\omega}\right] = \mathbb{E}\left[\exp\left(i\sum_{j=1}^d \omega_j X_j\right)\right] = \mathbb{E}\left[\exp\left(i \langle \omega_j X_j\rangle\right)\right]$$

Vale

$$\varphi_{AX+b}(\omega) = e^{ib\cdot\omega}\varphi_X(A^T\omega)$$

Il caso vettoriale

Se $X \in \mathbb{R}^d$, la funzione generatrice (come anche la trasformata di Fourier) è funzione di d variabili $(\omega_1, \omega_2, \dots, \omega_d) \in \mathbb{R}^d$,

$$\varphi_X(\omega) = \mathbb{E}\left[e^{it\cdot\omega}\right] = \mathbb{E}\left[\exp\left(\sum_{i=1}^d \omega_i X_i\right)\right].$$

Vale

$$\varphi_{AX+b}(\omega) = e^{ib\cdot\omega}\varphi_X(A^T\omega)$$

e come nel caso reale

$$\varphi_X(\omega) = \varphi_Y(\omega)$$
 per ogni $\omega \in \mathbb{R}$

se e solo se X e Y hanno la stessa legge (ossia la stessa densità discreta o continua, quando esistono).

Section 2

Entropia

Una misura dell'informazione (o della sua assenza)

 Vogliamo introdurre una misura del grado di "ignoranza" (o dell'assenza di informazione)

riguardo a quale alternativa sia vera in un dato sistema (associato ad una variabile X) e sulla base dell'informazione nota I.

Una misura dell'informazione (o della sua assenza)

 Vogliamo introdurre una misura del grado di "ignoranza" (o dell'assenza di informazione)

riguardo a quale alternativa sia vera in un dato sistema (associato ad una variabile X) e sulla base dell'informazione nota I.

• Tanto maggiore è l'ignoranza, maggiore sarà H(X).

Una misura dell'informazione (o della sua assenza)

 Vogliamo introdurre una misura del grado di "ignoranza" (o dell'assenza di informazione)

riguardo a quale alternativa sia vera in un dato sistema (associato ad una variabile X) e sulla base dell'informazione nota I.

- Tanto maggiore è l'ignoranza, maggiore sarà H(X).
- Più precisa invece è l'informazione, più piccola sarà H(X).

Definizione di entropia

La scelta più utile (ha migliori proprietà di calcolo) è l'entropia di Shannon

$$H(X) = \begin{cases} -\sum_{x \in E} P(X = x) \log(P(X = x)) & \text{se } X \in E \text{ ha densità discreta,} \\ -\int_{\mathbb{R}^d} p(X = x) \log(p(X = x)) dx & \text{se } X \in \mathbb{R}^d \text{ ha densità continuation} \end{cases}$$

• La scelta di base del logaritmo dipende dai vari ambiti (in alcuni casi è preferibile la base 2).

Definizione di entropia

La scelta più utile (ha migliori proprietà di calcolo) è l'entropia di Shannon

$$H(X) = \begin{cases} -\sum_{x \in E} P(X = x) \log(P(X = x)) & \text{se } X \in E \text{ ha densità discreta,} \\ -\int_{\mathbb{R}^d} p(X = x) \log(p(X = x)) dx & \text{se } X \in \mathbb{R}^d \text{ ha densità continua} \end{cases}$$

- La scelta di base del logaritmo dipende dai vari ambiti (in alcuni casi è preferibile la base 2).
- Nel caso discreto, $H(X) \ge 0$ ed è nulla solo se X è costante (rispetto all'informazione di cui si dispone)

Definizione di entropia

La scelta più utile (ha migliori proprietà di calcolo) è l'entropia di Shannon

$$H(X) = \begin{cases} -\sum_{x \in E} P(X = x) \log(P(X = x)) & \text{se } X \in E \text{ ha densità discreta,} \\ -\int_{\mathbb{R}^d} p(X = x) \log(p(X = x)) dx & \text{se } X \in \mathbb{R}^d \text{ ha densità continua} \end{cases}$$

- La scelta di base del logaritmo dipende dai vari ambiti (in alcuni casi è preferibile la base 2).
- Nel caso discreto, $H(X) \ge 0$ ed è nulla solo se X è costante (rispetto all'informazione di cui si dispone)
- Nel caso continuo invece l'entropia può anche essere negativa.

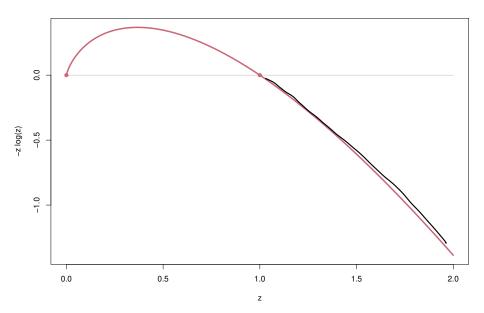


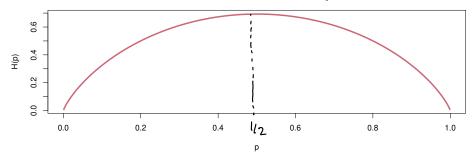
Figure 1: grafico della funzione $-z \log(z)$.

Esempi

Sia $X \in \{0,1\}$ con legge Bernoulli di parametro $p \in [0,1]$. L'entropia è

$$H(X) = -(1-p)\log(1-p) - p\log(p).$$

• Detta anche entropia binaria e indicata solo $H_2(p)$.



Entropia di una densità uniforme

caso discreto

$$H(X \text{ uniforme su } n \text{ valori}) = -\sum_{i=1}^{n} \log \left(\frac{1}{n}\right) \frac{1}{n} = \log(n),$$

$$\frac{P(op(iekz))}{Se} \quad X_i Y \quad V \cdot 2i > bill \quad |\underline{udipendedi}| \quad discrete$$

$$H((X_i Y)) = -\sum_{i=1}^{n} P(X_i = x_i, Y_i = y_i) \cdot \left(P(X_i = x_i, Y_i = y_i)\right)$$

$$= -\sum_{i=1}^{n} \log \left(\frac{1}{n}\right) \frac{1}{n} = \log(n),$$

$$P(X_i = x_i) \cdot \left(\frac{1}{n}\right) \cdot \left(\frac{1}{n$$

Entropia di una densità uniforme

caso discreto

$$H(X \text{ uniforme su } n \text{ valori}) = -\sum_{i=1}^{n} \log \left(\frac{1}{n}\right) \frac{1}{n} = \log(n),$$

caso continuo

$$H(X \text{ uniforme continua su } [a, b]) = -\int_a^b \log\left(\frac{1}{b-a}\right) \frac{1}{b-a} dx$$

= $\left|\log(b-a)\right|$.

Entropia di una densità uniforme

caso discreto

$$H(X \text{ uniforme su } n \text{ valori}) = -\sum_{i=1}^{n} \log \left(\frac{1}{n}\right) \frac{1}{n} = \log(n),$$

caso continuo

$$H(X \text{ uniforme continua su } [a, b]) = -\int_a^b \log\left(\frac{1}{b-a}\right) \frac{1}{b-a} dx$$

= $\log(b-a)$.

• In particolare, più grande è tale insieme, maggiore è l'entropia (c'è meno informazione).

Il principio di massima entropia

L'entropia ha un ruolo importante nel determinare densità (discrete o continue) per variabili aleatorie X.

 Si estende il principio di Laplace (per la probabilità uniforme) al principio di massima entropia.

Il principio di massima entropia

L'entropia ha un ruolo importante nel determinare densità (discrete o continue) per variabili aleatorie X.

- Si estende il principio di Laplace (per la probabilità uniforme) al principio di massima entropia.
- Qualora l'informazione disponibile permetta solo di indentificare una classe \mathcal{D} di densità ammissibili, allora si sceglierà la densità per cui H(X) sia massima tra quelle in \mathcal{D} .

Il principio di massima entropia

L'entropia ha un ruolo importante nel determinare densità (discrete o continue) per variabili aleatorie X.

- Si estende il principio di Laplace (per la probabilità uniforme) al principio di massima entropia.
- Qualora l'informazione disponibile permetta solo di indentificare una classe \mathcal{D} di densità ammissibili, allora si sceglierà la densità per cui H(X) sia massima tra quelle in \mathcal{D} .
- Molte densità notevoli sono di **massima entropia** in una opportuna classe, che ne giustifica l'uso nella pratica.

Esempi

• La densità uniforme (discreta) su un insieme *E* con *n* elementi massimizza l'entropia tra tutte le densità discrete su *E*.

Esempi

- La densità uniforme (discreta) su un insieme *E* con *n* elementi massimizza l'entropia tra tutte le densità discrete su *E*.
- La densità uniforme continua su E = [a, b] massimizza l'entropia tra le densità continue nulle fuori da [a, b].

• La densità esponenziale di parametro $\lambda = 1/m$ massimizza l'entropia tra le densità continue p(X = x) nulle fuori da $[0, \infty)$ e di valor medio fissato

$$\int_0^\infty xp(X=x)dx=m.$$

• La densità esponenziale di parametro $\lambda=1/m$ massimizza l'entropia tra le densità continue p(X=x) nulle fuori da $[0,\infty)$ e di valor medio fissato

$$\int_0^\infty x p(X=x) dx = m.$$

Tra le densità discrete a valori in N con valor medio m, l'entropia è massima per una variabile con densità geometrica, ossia

$$P(X = (k) \propto (1 - p)^{(k)}$$
 $V \in (N)$

Si calcola che

$$\mathbb{E}\left[X\right] = \frac{1-\rho}{\rho},$$

da cui p = 1/(m+1) e quindi si può anche scrivere

$$P(X=k) = \frac{1}{m+1} \left(\frac{m}{m+1} \right)^k.$$

$$P(X=K \mid Geom(p)) = P(1-p)^{K} \underbrace{K \in \mathbb{N}}_{W}$$

17 / 42

Entropia

$$\sum_{k=0}^{\infty} (1-p)^{k} \cdot p = p \sum_{k=0}^{\infty} (1-p)^{k}$$

$$= p \frac{1}{1-(1-p)} = \frac{p}{p} = 1 \quad \text{purche } p \neq 0$$

Persosso di Borel: la une sequente infinite de esp.

indipendenti ciascono (on penb. pro di successo), prima a poi si ossera cucesso,
$$X = X \times P(X = K) = X \times (1-p)^{K} \cdot P$$

$$MGF_{X}(f) = \sum_{k=0}^{+\infty} e^{tk} (1-p)^{k} \cdot p = \sum_{k=0}^{+\infty} (e^{t}(1-p))^{k} \cdot p$$

$$= p \cdot \frac{1}{1 - e^{t}(1-p)} \quad \text{se } e^{t}(1-p) < 1$$

$$\frac{d}{dt}\Big|_{t=0} TGF_X(t) = p \cdot \frac{+(1-p)e^t}{(1-e^t(1-p))^2}\Big|_{t=0} = \frac{p(1-p)}{p^2} = \frac{1-p}{p}$$

Section 3

Le densità gaussiane (o normali) sono delle densità continue rilevanti sia nella teoria che nelle applicazioni.

• la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)

- la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)
- come stimare i parametri sulla base di osservazioni indipendenti (un campione) tutte con gli stessi parametri

- la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)
- come stimare i parametri sulla base di osservazioni indipendenti (un campione) tutte con gli stessi parametri
- l'analisi delle componenti principali (PCA) e una giustificazione tramite opportune variabili gaussiane

- la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)
- come stimare i parametri sulla base di osservazioni indipendenti (un campione) tutte con gli stessi parametri
- l'analisi delle componenti principali (PCA) e una giustificazione tramite opportune variabili gaussiane
- qualche rudimento della regressione, in particolare il metodo dei minimi quadrati, giustificato tramite opportune ipotesi di gaussianità

- la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)
- come stimare i parametri sulla base di osservazioni indipendenti (un campione) tutte con gli stessi parametri
- l'analisi delle componenti principali (PCA) e una giustificazione tramite opportune variabili gaussiane
- qualche rudimento della regressione, in particolare il metodo dei minimi quadrati, giustificato tramite opportune ipotesi di gaussianità
- un cenno ai metodi principali per giustificare l'ipotesi di gaussianità

- la definizione e le principali proprietà (sia nel caso reale che nel caso vettoriale)
- come stimare i parametri sulla base di osservazioni indipendenti (un campione) tutte con gli stessi parametri
- l'analisi delle componenti principali (PCA) e una giustificazione tramite opportune variabili gaussiane
- qualche rudimento della regressione, in particolare il metodo dei minimi quadrati, giustificato tramite opportune ipotesi di gaussianità
- un cenno ai metodi principali per giustificare l'ipotesi di gaussianità
- un cenno al metodo di Laplace per approssimare densità generali con opportune gaussiane.

Il caso reale: definizione veloce

Si dice che una variabile aleatoria $X \in \mathbb{R}$ ha densità continua gaussiana se vale

$$p(X = x) \propto \exp(ax^2 + bx)$$
, per ogni $x \in \mathbb{R}$,

per degli opportuni parametri $a, b \in \mathbb{R}$.

• la densità è l'esponenziale di un polinomio di secondo grado dei possibili valori $x \in \mathbb{R}$.

Il caso reale: definizione veloge

Si dice che una variabile aleatoria $X \in \mathbb{R}$ ha densità continua gaussiana se vale

$$p(X = x) \propto \exp\left(ax^2 + bx\right)$$
, per ogni $x \in \mathbb{R}$,

per degli opportuni parametri $a, b \in \mathbb{R}$.

- la densità è l'esponenziale di un polinomio di secondo grado dei possibili valori $x \in \mathbb{R}$.
- dovendo essere $\int_{-\infty}^{\infty} p(X=x) dx < \infty$, allora $a \in \mathbb{R}$ necessariamente deve essere a < 0

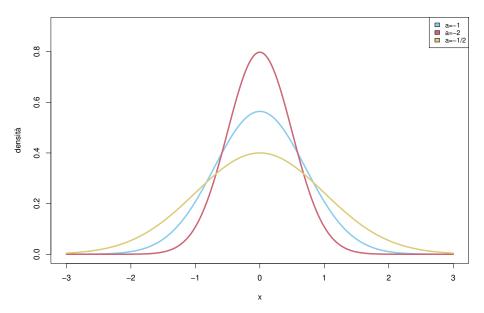


Figure 2: densità gaussiana al variare del parametro a < 0, b = 0

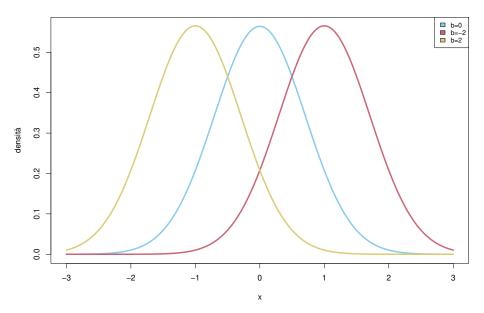


Figure 3: densità gaussiana al variare del parametro b, a=1

Intepretazione dei parametri

Sia X una variabile con densità gaussiana

$$p(X = x) \propto \exp\left(ax^2 + bx\right).$$

Allora vale

$$\label{eq:alpha} \left(\ a = -\frac{1}{2\sigma_X^2}, \quad b = \frac{\mathbb{E}\left[X\right]}{\sigma_X^2}, \right.$$

ossia

$$\sqrt{\operatorname{Var}(X) = \sigma_X^2 = -\frac{1}{2a}} \quad \mathbb{E}[X] = -\frac{b}{2a}.$$

Dimostrazione

Definizione usuale

Si dice che $X \in \mathbb{R}$ ha densità continua gaussiana di valor medio $m \in \mathbb{R}$ e varianza $\sigma^2 > 0$, e si scrive brevemente $\mathcal{N}(m, \sigma^2)$, se

$$p(X = x) \propto \exp\left(-\frac{1}{2}\frac{(x-m)^2}{\sigma^2}\right).$$

• Più esplicitamente, si può mostrare che vale l'identità

$$p(X = x) = \exp\left(-\frac{1}{2}\frac{(x-m)^2}{\sigma^2}\right)\frac{1}{\sqrt{2\pi\sigma^2}}.$$

$$\mathcal{N}(m_1\sigma^2)$$

Definizione usuale

Si dice che $X \in \mathbb{R}$ ha densità continua gaussiana di valor medio $m \in \mathbb{R}$ e varianza $\sigma^2 > 0$, e si scrive brevemente $\mathcal{N}(m, \sigma^2)$, se

$$p(X = x) \propto \exp\left(-\frac{1}{2}\frac{(x-m)^2}{\sigma^2}\right).$$

• Più esplicitamente, si può mostrare che vale l'identità

$$p(X = x) = \exp\left(-\frac{1}{2}\frac{(x - m)^2}{\sigma^2}\right)\frac{1}{\sqrt{2\pi\sigma^2}}.$$

• La costante $1/\sqrt{2\pi}$ è interessante da calcolare analiticamente, ma non troppo utile nelle applicazioni.

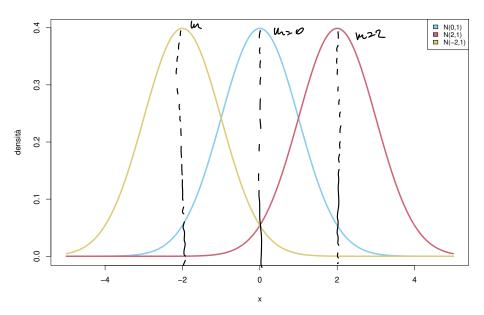


Figure 4: densità gaussiana al variare del parametro m (con $\sigma=1$ costante

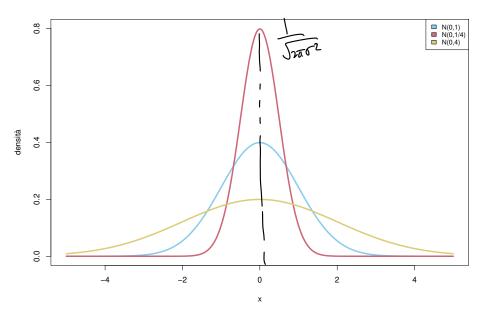


Figure 5: densità gaussiana al variare del parametro σ (con m=0 costante

Proprietà di massima entropia

Al variare di tutte le possibili densità continue per una variabile X, p(X = x), con $x \in \mathbb{R}$, tali che il valor medio e la varianza di X siano fissati

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x P(X = x) dx = \underbrace{m}, \quad \text{Var}(X) = \int_{-\infty}^{\infty} (x - m)^2 P(X = x) dx = \underbrace{\sigma^2}_{x = 0}$$

la densità gaussiana $\mathcal{N}(m, \sigma^2)$ è quella di massima entropia.

• Pertanto, seguento principio di massima entropia, avendo a disposizione come informazione su una variabile aleatoria (reale) solamente il suo valor medio m e la varianza σ^2 , sia imporrà che sia una densità gaussiana $\mathcal{N}(m, \sigma^2)$.

Trasformazione affine

Sia X una variabile con densità continua $\mathcal{N}(m,\sigma^2)$ e siano $\lambda \neq 0$, $c \in \mathbb{R}$. Allora la variabile $Y = \lambda X + c$ ha densità continua gaussiana, di parametri $\mathcal{N}(\lambda m + c, \lambda^2 \sigma^2)$.

ullet se X ha densità gaussiana $\mathcal{N}(m,\sigma^2)$, la sua standardizzata

$$\frac{X-m}{\sigma}$$
 ha densità continua $\mathcal{N}(0,1)$,

pertanto detta anche densità gaussiana standard, che ha densità

$$\exp\left(-\frac{1}{2}x^2\right)\frac{1}{\sqrt{2\pi}}\quad \text{per } x\in\mathbb{R}.$$

Trasformazione affine

Sia X una variabile con densità continua $\mathcal{N}(m,\sigma^2)$ e siano $\lambda \neq 0$, $c \in \mathbb{R}$. Allora la variabile $Y = \lambda X + c$ ha densità continua gaussiana, di parametri $\mathcal{N}(\lambda m + c, \lambda^2 \sigma^2)$.

ullet se X ha densità gaussiana $\mathcal{N}(m,\sigma^2)$, la sua standardizzata

$$\frac{X-m}{\sigma}$$
 ha densità continua $\mathcal{N}(0,1)$,

pertanto detta anche densità gaussiana standard, che ha densità

$$\exp\left(-\frac{1}{2}x^2\right)\frac{1}{\sqrt{2\pi}}\quad \text{per } x\in\mathbb{R}.$$

• Se $\lambda = 0$, la variabile $\lambda X + c = c$ è costante. Per uniformare le notazioni, si conviene di considerare anche le variabili costanti come caso *degenere* di una densità gaussiana.

Dimostrazione

CDF

La funzione di ripartizione gaussiana (anche nel caso standard) non è esprimibile in termini di funzioni elementari.

• Il comando R per ottenerne i valori è pnorm().

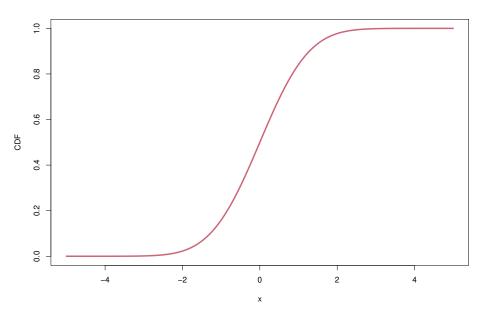


Figure 6: CDF di una variabile gaussiana standard

MGF e funzione caratteristica

Sia X una variabile con densità continua $\mathcal{N}(m, \sigma^2)$. Allora

$$\mathsf{MGF}_X(t) = \exp\left(mt + \frac{\sigma^2}{2}t^2\right),$$

е

$$\varphi_X(\xi) = \exp\left(im\xi - \frac{\sigma^2}{2}\xi^2\right).$$

Dimostrazione

Problemi

L'orario d'arrivo a lezione degli studenti di ingegneria robotica segue approssimativamente una distribuzione gaussiana di media 8:25 e deviazione standard 5 minuti. Preso uno studente a caso,

- calcolare la probabilità che arrivi dopo l'inizio delle lezioni (8:30);
- 2 calcolare il ritardo medio (in minuti).

Esprimere eventualmente i risultati come opportuni integrali o indicare un comando R per il calcolo numerico.

L'altezza degli studenti (maschi) del corso di ingegneria è rappresentata da una distribuzione gaussiana di media 175 cm e deviazione standard 10 cm. L'altezza delle studentesse (femmine) è pure una gaussiana di media 160 cm con deviazione standard 10 cm. Preso uno/a studente a caso, si osserva che è alto/a 165 cm. Dire se è più probabile che sia maschio o femmina,

- senza conoscere la percentuale di studenti maschi e femmina nel corso;
- 2 sapendo anche che i maschi rappresentano il 70% degli studenti di ingegneria e il 30% è femmina (solo per semplicità di calcolo escludiamo le persone non identificate in uno dei due generi).