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The Assignment Problem

@ The assignment (or matching) problem is a combinatorial optimization
problem arising in many applications:

» workers to be assigned to jobs, producers that want to meet sellers, ...

@ The task is to optimally match two sets (x;) and (y;) via a permutation o
in order to minimize (optimize) the total cost

> (X Vo)

i

@ When c¢(x, y) = c(|x — y|) depends on distance (e.g. x, y € RY):

» Convex c favors monotone assignments
» Concave c yields richer structure and hierarchies with economic
interpretation ([McC99])

@ Let us look at some simulations.
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Additive Euclidean Functional Theory

@ Random instances of combinatorial optimization problems in Euclidean
spaces are well-studied [BHH59]
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Additive Euclidean Functional Theory

@ Random instances of combinatorial optimization problems in Euclidean
spaces are well-studied [BHH59]

@ Focus on convergence results and typical behavior for large instances.
@ Limitations arise for bipartite problems e.g. assignment problem.

@ Local fluctuations in number of samples give rise to unexpected cost
asymptotics

» On the square [AKT84; Car+14; AST19]...
» but also on the line (folklore?)
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Asymptotic Behavior of Assignment Costs

@ We study the cost of the assignment problem over random i.i.d. points
(Xi) and (Y;) on R with cost |x — y|*:

n
Mo ((X0)ie, (Y)Le) = min D IXi = Yol®
" i=1
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Asymptotic Behavior of Assignment Costs

@ We study the cost of the assignment problem over random i.i.d. points
(Xi) and (Y;) on R with cost |x — y|*:

n
Mo ((X0)ie, (Y)Le) = min D IXi = Yol®
" i=1

@ Heuristics:

» 0 < a < 1/2 — the cost scales as n'
» 1/2 < a < 1 — local fluctuations dominate and cost scales as v/n

@ We prove:

» convergence a.s.for0 < a < 1/2
» convergence inlaw for 1/2 < o < 1.

@ A (new?) idea: the problem converges to an optimal transport problem
with a Brownian bridge “measure” = we propose a generalized optimal
transport problem using Young integration.
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Main result

Theorem (Goldman, T., 2023)

Let (Xi)24, (Vi) € R be i.i.d. random variables with law .
Denote with f the absolutely continuous part of x and F(t) = p((—o0, f]).
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Main result

Theorem (Goldman, T., 2023)

Let (Xi)24, (Vi) € R be i.i.d. random variables with law .
Denote with f the absolutely continuous part of x and F(t) = p((—o0, f]).

@ If1/2 < a < 1 and u has bounded support, then

Jim 1= 2Ma (G)g, (Y1) = V2B Flw,.

where (B(t))c[o,1] is a standard Brownian bridge and || - [jw, is the
Kantorovich-Young norm (defined below).

Q If0<a<1/2and [ [t|?du(t) < oo for some 5 > 4a/(1 — 2a), then

Jim oM (X)L, (Y1) 25 efa) [ F=2(0et

where ¢(a) € (0, c0).
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Strategy for 1/2 < a < 1: Kantorovich-Young Problem

@ We define a variational problem for functions g with finite g-variation:

Iglw, = SUP{/Ifdg Mfee < 1},

where a +1/g > 1.
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Strategy for 1/2 < a < 1: Kantorovich-Young Problem

@ We define a variational problem for functions g with finite g-variation:

Iglw, = SUP{/Ifdg Mfee < 1}7

where a4 1/ > 1.
@ It recovers usual optimal transport if g has bounded variation.
@ We investigate some basic properties of this problem.

@ In the Brownian bridge (random) case g(t) = B(t) :
» B has finite g-variation only if g > 2
» = the problem is only meaningful if o« > 1/2

@ It explains the “phase transition” at « = 1/2 (the same that leads leads to
Rough Paths theory [FV10]).
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Strategy for 0 < o < 1/2: Boundary Functional

@ We modify the assignment allowing for a reservoir of points in {0, 1} of
[0, 1] (export/import OT).
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Strategy for 0 < o < 1/2: Boundary Functional

@ We modify the assignment allowing for a reservoir of points in {0, 1} of
[0, 1] (export/import OT).

@ =- boundary functional in random combinatorial optimization theory
[Ste97; Yuk06].

@ A widely open question is whether the asymptotic cost of the boundary
functional equals that of the assignment problem.

Inourcased =1, a € (0,1):

@ Due to the concave cost, optimal assignments have the no-crossing
property

@ = the boundary functional cost indeed is close < n'/? the original
assignment problem cost

@ By known results in [BB13] it follows convergence for o < 1/2.
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Hoélder and Variation Norms

@ Hélder seminorm of exponent a € (0,1):

N OER(O]
o =38 =i

@ p-variation seminorm (for p > 1):

[flo—var = s{?’}p { (Z () — f(ti1)|P)1/p}

@ Forany a € (0,1),
[f]1/a—var < |I|a[f]0‘1-
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Hoélder and Variation Norms

@ Holder seminorm of exponent o € (0,1):

N OER(O]
o =38 =i

@ p-variation seminorm (for p > 1):

[flo—var = S{?IF}){(Z () — f(h1)|P)1/p}

@ Forany a € (0,1),
[f]1/a—var < |I|a[f]0a-

@ Total variation is 1-variation. Functions of bounded variation can be
represented by measures.
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Young Integration
The Riemann-Stieltjes integral [ fdg exists if

both [f]co and [g]1_var are finite.

Theorem (L.-C. Young, 1936)
Ifp,q > 1 suchthat1/p+1/q > 1, then:

=Iffe C*witha+1/g>1and g(b) =g(a) =0, then

\ / fdg\ < C(1/a.q)|11*[Mc[glgvar

Dario Trevisan (UNIPI) arXiv:2305.09234 2023-11-24 32/51




Young Integration
The Riemann-Stieltjes integral [ fdg exists if

both [f]co and [g]1—var are finite.

Theorem (L.-C. Young, 1936)
Ifp,q > 1 suchthat1/p+1/q > 1, then:

° ; fdg exists for f and g with no common discontinuity points and

both [flp—var and [g]q—var are finite.

= Iffe C*witha+1/qg > 1and g(b) = g(a) =0, then
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Young Integration
The Riemann-Stieltjes integral [ fdg exists if

both [f]ce and [g]1—var are finite.

Theorem (L.-C. Young, 1936)
Ifp,q > 1 suchthat1/p+1/q > 1, then:

° ab fdg exists for f and g with no common discontinuity points and

both [flp—var and [g]q—var are finite.

@ The following bound holds:

b
/a fdg — f(a)(9(b) — g(a))| < C(p, q)[flp-varl9lg—var

= Iffe C*witha+1/qg > 1and g(b) = g(a) =0, then

‘/, fdg‘ < C(1/a, Q" [flca[9lg—var-
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Wasserstein Distance

Given positive Borel measures 1 and v on (X, d) with finite g-th moments:
@ Optimal transport cost of order g:

inf d(x, y)9=(dx, dy), 1
nf [ docy)n(andy) (1)
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Wasserstein Distance

Given positive Borel measures 1 and v on (X, d) with finite g-th moments:
@ Optimal transport cost of order g:

inf /X Xd(x,y)qw(dx,dy), (1)

mel(u,\)

@ For g € (0, 1], itinduces a distance. Otherwise take its g-th root.
@ This yields Wasserstein distance Wq (1, /).

@ The Wasserstein distance enjoys the Kantorovich dual formulation, for
g€ (0,1]:

Wau,) =sup { [ 10Gu=0) : 1100~ FD)] <dixy)® vy €
@
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A Kantorovich-Young Problem

Given g : | = [a, b] — R with g(b) = g(a) = 0 and [g]g—var finite:
@ Define the Kantorovich-Young norm:

g, = sw [

[floa <1

witha +1/g > 1
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A Kantorovich-Young Problem

Given g : | = [a, b] — R with g(b) = g(a) = 0 and [g]g—var finite:
@ Define the Kantorovich-Young norm:

Igl, = s 100

[floa <1

witha +1/g > 1
@ This norm is finite since:

191w, < C(e, @) [9lg—var
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A Kantorovich-Young Problem

Given g : | = [a, b] — R with g(b) = g(a) = 0 and [g]g—var finite:
@ Define the Kantorovich-Young norm:

gl = sup / fdg

[floa <1

witha +1/g > 1
@ This norm is finite since:

191w, < C(e, @) [9lg—var

@ Moreover, we have stability w.r.t. g-variation:

I9llw, = I9llw. | < llg = 9llw, < Cle, @)|/|%[g — Glg—var-
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A Kantorovich-Young Problem

Given g : | = [a, b] — R with g(b) = g(a) = 0 and [g]g—var finite:

@ Define the Kantorovich-Young norm:

lgllw, = sup / fdg

[floa <1

witha +1/g > 1
@ This norm is finite since:

191w, < C(e, @) [9lg—var

@ Moreover, we have stability w.r.t. g-variation:

I9llw, = 19llw.| < g = gllw. < C(e, q)/|*[g — Glg—var-

@ It extends the Kantorovich norm from functions of bounded variation to

functions of finite g-variation.

2023-11-24

34/51



A Primal Problem

Coupling with finite energy

A positive measure w on / x l'is a coupling for g with finite a-energy if:

Notation: 7 € [',(9).
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A Primal Problem

Coupling with finite energy
A positive measure w on / x l'is a coupling for g with finite a-energy if:
o [|t— s|*r(ds,dt) < oo

@ Forall fe C*(l), [(f(t)— f(s))n(ds,dt)= [fdg
Notation: 7 € I',(9).
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A Primal Problem

Coupling with finite energy
A positive measure w on / x l'is a coupling for g with finite a-energy if:
o [|t— s|*r(ds,dt) < oo

@ Forall fe C*(l), [(f(t)— f(s))n(ds,dt)= [fdg
Notation: 7 € I',(9).

@ We seek a coupling = € I',(g) minimizing:

/ It — s|*n(ds, dt)

= primal characterization of ||g||w.,, -
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Duality

As expected we have agreement between the two problems.

Proposition (Kantorovich-Young duality)

Let/=[a,b] CR, g > 1and g: I — R with finite g-variation and g(a) = g(b).
For every a € (1 — 1/g, 1] the supremum

lalw, = suw_{ [ 1o
fca <1
is attained by some f with [f]c« = 1 and

9llw, = min / |t — s|*n(ds, dt) < oo
wera(g) Ix|
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Duality

As expected we have agreement between the two problems.

Proposition (Kantorovich-Young duality)

Let/=[a,b] CR, g > 1and g: I — R with finite g-variation and g(a) = g(b).
For every a € (1 — 1/g, 1] the supremum

lalw, = suw_{ [ 1o
fca <1
is attained by some f with [f]c« = 1 and

l9llw, = min / |t — s|*m(ds, dt) < oo
wera(g) Ix|

@ In particular, the set I',(g) is not empty.
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Rethinking Young'’s integral as a coupling

@ Assume I = [0,1], g € C?(I), g(0) = g(1), f € C()).
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Rethinking Young'’s integral as a coupling

@ Assume / = [0,1], g € C(I), g(0) = g(1), f € C()).
@ If o+ 8 > 1, a dyadic summation (sewing lemma) gives

co 211

1
/0 fdg=>" > (f((2k)2™") — f((2k +1)27"))-

n=1 k=0
(g((2k+2)27") — g ((2k + 1)27 ")),
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Rethinking Young'’s integral as a coupling

@ Assume / = [0,1], g € C(I), g(0) = g(1), f € C()).
@ If o+ 8 > 1, a dyadic summation (sewing lemma) gives

oo 211

/fdg SO (F((2K)27") — £ ((2k + 1)277)).

n=1 k=0
(g((2k+2)27") — g ((2k + 1)27 ")),

= Z Z 2k =+ 2 ) g ((2k + 1)2’”))+§((2k)2_n’(2k+1)2_n)

+(9((2k +2)27") — g (2K +1)27")) ™ §((ak-+1)2-,(26)2-1)-
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Rethinking Young'’s integral as a coupling

@ Assume / = [0,1], g € C(I), g(0) = g(1), f € C()).
@ If o+ 8 > 1, a dyadic summation (sewing lemma) gives

/ fdg = i Z:_ (2k —f((2k+1)2‘”))-
n=1 k=0
(9 ((2k+2) - ) —g((2k+ 1)2_”)),
@ Define
oo 2" 1

=Y Z ((k+2)27") — g ((2k +1)27")) " d((2ky2-n,(2k+1)2-7)
il

( (2k +2)27") — g ((2k +1)27")) (@K1 1)2-,(2K)2-1)-

@ Then 7 is a coupling with finite «-energy.
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° Application to the assignment problem

Dario Trevisan (UNIPI) arXiv:2305.09234



Sketch of proof, case 1/2 < a < 1

@ Giveni.i.d. (Xi),, (Yi)iy, for t € R, define

21{X<t}7 Fa(t) 21{Y<t}
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Sketch of proof, case 1/2 < a < 1

@ Given i.i.d. (X))_q, (Yi)iLy, for t € R, define

21{X<t}7 Fa(t) 21{Y<t}

@ By Birkhoff’s theorem

Ma ((XD)i1, (Yi)7s) <Z5x, 25\/,) = n||Fn — Fallw...
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empirical CDF n = 100 (rescaled)
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empirical CDF n = 200 (rescaled)

0.8 1

0.6

0.4 1

0.2 1

0.0 1

—0.2 1

0.0 0.2 0.4 0.6 0.8 1.0

Dario Trevisan (UNIPI) arXiv:2305.09234 2023-11-24 41/51



empirical CDF n = 1000 (rescaled)
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empirical CDF n = 1000 exponential density
(rescaled)
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empirical CDF n = 1000 Gaussian density (rescaled)
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@ By a result [HDO1], there exists a Brownian bridge B, such that for every
p=>1,

~ 1/p
E|[VA(Fy— Fa) = V2Byo Flg_y| - < Cn~(@-2/2a,
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@ By aresult [HDO1], there exists a Brownian bridge B, such that for every
p=>1,

~ 1/p
E|[VA(Fy— Fa) = V2Byo Flg_y| - < Cn~(@-2/2a,

@ Since B, is Holder continuous with exponent less than 1/2, we have:

E [[Bn o F]g_var] < 00
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@ By aresult [HDO1], there exists a Brownian bridge B, such that for every
p=>1,

= 1/p
E|[VA(Fy— Fa) = V2Byo Flg_y| - < Cn~(@-2/2a,
@ Since B, is Holder continuous with exponent less than 1/2, we have:
E [[Bn o F]gfva,] < 00
@ By Kantorovich-Young stability with respect to convergence in g-variation:

E[||vVn(Fn — Fn)llw., — [|[V2Ba o Fllw, |P]'/P < Cn—(a-2)/29,
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Further Questions

@ For1/2 < a < 1, we assume bounded support. Extending to unbounded
intervals likely requires:
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Further Questions

@ For1/2 < a < 1, we assume bounded support. Extending to unbounded
intervals likely requires:

» A theory of the Kantorovich-Young problem with growth conditions
» Verifying them in the convergence towards the Brownian bridge

@ The o = 1/2 case remains open. It is known [BL20] that:

limsupE [My2((X)1, (Yi)L1)] /v/nlogn < oo,

n—oo

We prove a lower bound when g is uniform:

'L”_‘jong [Mi/2((Xi)i-1, (Yi)i1)] //nlogn > 0.
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Further Questions

@ For1/2 < a < 1, we assume bounded support. Extending to unbounded
intervals likely requires:

» A theory of the Kantorovich-Young problem with growth conditions
» Verifying them in the convergence towards the Brownian bridge

@ The o = 1/2 case remains open. It is known [BL20] that:

limsupE [My2((X)1, (Yi)L1)] /v/nlogn < oo,

n—oo

We prove a lower bound when g is uniform:
liminf & [My/2((X))Ls, (Yi)7)] /v/nlogn > 0.

@ Our method extends to the bipartite Traveling Salesperson Problem. We
conjecture it also applies to the bipartite k—factor problem [BB13; GT22].
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Lower Bound for o = 1/2

@ The Peano curve v is 1/2-Hélder continuous and pushes Lebesgue
measure on [0, 1] to area measure on [0, 1]?
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Lower Bound for o = 1/2
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@ It satisfies:
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Lower Bound for o = 1/2

@ The Peano curve v is 1/2-Hbélder continuous and pushes Lebesgue
measure on [0, 1] to area measure on [0, 1]?

@ It satisfies:

Mi((v(X))ir, (V(Yi)i) < Der2Mij2((X)is, (Y1),

@ It is known (AKT) that for i.i.d. uniform points on the square, we have:

liminf E My ((X))™y, (Vi))r ]/\/nlogn>0

n—oo
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Lower Bound for o = 1/2

@ The Peano curve v is 1/2-Hbélder continuous and pushes Lebesgue
measure on [0, 1] to area measure on [0, 1]?

@ It satisfies:

Mi((v(X))ir, (V(Yi)i) < Der2Mij2((X)is, (Y1),

@ ltis known (AKT) that for i.i.d. uniform points on the square, we have:

liminf E My ((X))™y, (Vi))r ]/\/nlogn>0

n—oo
@ Combining the above, we conclude:

i ing EM1/2((X)iLq, (Yi)iy)]

> 0.
n—00 Vnlogn
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