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The Assignment Problem

The assignment (or matching) problem is a combinatorial optimization
problem arising in many applications:

▶ workers to be assigned to jobs, producers that want to meet sellers, . . .

The task is to optimally match two sets (xi) and (yi) via a permutation σ
in order to minimize (optimize) the total cost∑

i

c(xi , yσ(i))

When c(x , y) = c(|x − y |) depends on distance (e.g. x , y ∈ Rd ):
▶ Convex c favors monotone assignments
▶ Concave c yields richer structure and hierarchies with economic

interpretation ([McC99])

Let us look at some simulations.
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n = 20 + 20, c(x , y) = |x − y |p, p = 1
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n = 20 + 20, c(x , y) = |x − y |p, p = 2
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Additive Euclidean Functional Theory

Random instances of combinatorial optimization problems in Euclidean
spaces are well-studied [BHH59]

Focus on convergence results and typical behavior for large instances.

Limitations arise for bipartite problems e.g. assignment problem.

Local fluctuations in number of samples give rise to unexpected cost
asymptotics

▶ On the square [AKT84; Car+14; AST19]. . .
▶ but also on the line (folklore?)
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Asymptotic Behavior of Assignment Costs

We study the cost of the assignment problem over random i.i.d. points
(Xi) and (Yi) on R with cost |x − y |α:

Mα((Xi)
n
i=1, (Yi)

n
i=1) = min

σ∈Sn

n∑
i=1

|Xi − Yσ(i)|α

Heuristics:
▶ 0 < α < 1/2 → the cost scales as n1−α

▶ 1/2 < α < 1 → local fluctuations dominate and cost scales as
√

n

We prove:
▶ convergence a.s. for 0 < α < 1/2
▶ convergence in law for 1/2 < α < 1.

A (new?) idea: the problem converges to an optimal transport problem
with a Brownian bridge “measure” ⇒ we propose a generalized optimal
transport problem using Young integration.
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Main result

Theorem (Goldman, T., 2023)
Let (Xi)

∞
i=1, (Yi)

∞
i=1 ⊆ R be i.i.d. random variables with law µ.

Denote with f the absolutely continuous part of µ and F (t) = µ((−∞, t ]).
1 If 1/2 < α < 1 and µ has bounded support, then

lim
n→∞

n−1/2Mα((Xi)
n
i=1, (Yi)

n
i=1)

law→→ ∥
√

2B ◦ F∥Wα
,

where (B(t))t∈[0,1] is a standard Brownian bridge and ∥ · ∥Wα
is the

Kantorovich-Young norm (defined below).
2 If 0 < α < 1/2 and

∫
R |t |βdµ(t) < ∞ for some β > 4α/(1 − 2α), then

lim
n→∞

nα−1Mα((Xi)
n
i=1, (Yi)

n
i=1)

a.s.→ c(α)
∫
R

f 1−α(t)dt ,

where c(α) ∈ (0,∞).
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n
i=1, (Yi)

n
i=1)

a.s.→ c(α)
∫
R

f 1−α(t)dt ,
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Strategy for 1/2 < α < 1: Kantorovich-Young Problem

We define a variational problem for functions g with finite q-variation:

∥g∥Wα
= sup

{∫
I
fdg : [f ]Cα ≤ 1

}
,

where α+ 1/q > 1.
It recovers usual optimal transport if g has bounded variation.
We investigate some basic properties of this problem.

In the Brownian bridge (random) case g(t) = B(t) :
▶ B has finite q-variation only if q > 2
▶ ⇒ the problem is only meaningful if α > 1/2

It explains the “phase transition” at α = 1/2 (the same that leads leads to
Rough Paths theory [FV10]).
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Strategy for 0 < α < 1/2: Boundary Functional

We modify the assignment allowing for a reservoir of points in {0,1} of
[0,1] (export/import OT).
⇒ boundary functional in random combinatorial optimization theory
[Ste97; Yuk06].
A widely open question is whether the asymptotic cost of the boundary
functional equals that of the assignment problem.

In our case d = 1, α ∈ (0,1):
Due to the concave cost, optimal assignments have the no-crossing
property
⇒ the boundary functional cost indeed is close ≲ n1/2 the original
assignment problem cost
By known results in [BB13] it follows convergence for α < 1/2.
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Hölder and Variation Norms

Hölder seminorm of exponent α ∈ (0,1):

[f ]Cα = sup
s ̸=t

|f (t)− f (s)|
|t − s|α

p-variation seminorm (for p ≥ 1):

[f ]p−var = sup
{ti}

{(∑
|f (ti)− f (ti−1)|p

)1/p
}

For any α ∈ (0,1),
[f ]1/α−var ≤ |I|α[f ]Cα .

Total variation is 1-variation. Functions of bounded variation can be
represented by measures.
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Young Integration
The Riemann-Stieltjes integral

∫
fdg exists if

both [f ]C0 and [g]1−var are finite.

Theorem (L.-C. Young, 1936)
If p,q ≥ 1 such that 1/p + 1/q > 1, then:∫ b

a fdg exists for f and g with no common discontinuity points and

both [f ]p−var and [g]q−var are finite.

The following bound holds:∣∣∣∣∣
∫ b

a
fdg − f (a)(g(b)− g(a))

∣∣∣∣∣ ≤ C(p,q)[f ]p−var[g]q−var

⇒ If f ∈ Cα with α+ 1/q > 1 and g(b) = g(a) = 0, then∣∣∣∣∫
I
fdg
∣∣∣∣ ≤ C(1/α,q)|I|α[f ]Cα [g]q−var.
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Wasserstein Distance

Given positive Borel measures µ and ν on (X ,d) with finite q-th moments:
Optimal transport cost of order q:

inf
π∈Γ(µ,λ)

∫
X×X

d(x , y)qπ(dx ,dy), (1)

For q ∈ (0,1], it induces a distance. Otherwise take its q-th root.
This yields Wasserstein distance Wq(µ, ν).
The Wasserstein distance enjoys the Kantorovich dual formulation, for
q ∈ (0,1]:

Wq(µ, ν) = sup
f

{∫
X

fd (µ− ν) : |f (x)− f (y)| ≤ d(x , y)q ∀x , y ∈ X
}
.

(2)
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A Kantorovich-Young Problem

Given g : I = [a,b] → R with g(b) = g(a) = 0 and [g]q−var finite:
Define the Kantorovich-Young norm:

∥g∥Wα
= sup

[f ]Cα≤1

∫
I
fdg

with α+ 1/q > 1
This norm is finite since:

∥g∥Wα
≤ C(α,q)|I|α[g]q−var

Moreover, we have stability w.r.t. q-variation:

∥g∥Wα
− ∥g̃∥Wα

| ≤ ∥g − g̃∥Wα
≤ C(α,q)|I|α[g − g̃]q−var.

It extends the Kantorovich norm from functions of bounded variation to
functions of finite q-variation.
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A Primal Problem

Coupling with finite energy
A positive measure π on I × I is a coupling for g with finite α-energy if:∫

|t − s|απ(ds,dt) < ∞
For all f ∈ Cα(I),

∫
(f (t)− f (s))π(ds,dt) =

∫
fdg

Notation: π ∈ Γα(g).

We seek a coupling π ∈ Γα(g) minimizing:∫
|t − s|απ(ds,dt)

⇒ primal characterization of ∥g∥Wα
.
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For all f ∈ Cα(I),

∫
(f (t)− f (s))π(ds,dt) =

∫
fdg

Notation: π ∈ Γα(g).

We seek a coupling π ∈ Γα(g) minimizing:∫
|t − s|απ(ds,dt)

⇒ primal characterization of ∥g∥Wα
.
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Duality

As expected we have agreement between the two problems.

Proposition (Kantorovich-Young duality)
Let I = [a,b] ⊆ R, q > 1 and g : I → R with finite q-variation and g(a) = g(b).
For every α ∈ (1 − 1/q,1] the supremum

∥g∥Wα
= sup

f :[f ]Cα≤1

{∫
I
fdg
}

is attained by some f with [f ]Cα = 1 and

∥g∥Wα
= min

π∈Γα(g)

∫
I×I

|t − s|απ(ds,dt) < ∞.

In particular, the set Γα(g) is not empty.
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Rethinking Young’s integral as a coupling

Assume I = [0,1], g ∈ Cβ(I), g(0) = g(1), f ∈ Cα(I).
If α+ β > 1, a dyadic summation (sewing lemma) gives

∫ 1

0
fdg =

∞∑
n=1

2n−1−1∑
k=0

(f
(
(2k)2−n)− f

(
(2k + 1)2−n))·

· (g
(
(2k + 2)2−n)− g

(
(2k + 1)2−n)),

Define

π :=
∞∑

n=1

2n−1−1∑
k=0

(g
(
(2k + 2)2−n)− g

(
(2k + 1)2−n))+δ((2k)2−n,(2k+1)2−n)

+ (g
(
(2k + 2)2−n)− g

(
(2k + 1)2−n))−δ((2k+1)2−n,(2k)2−n).

Then π is a coupling with finite α-energy.
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Sketch of proof, case 1/2 < α < 1

Given i.i.d. (Xi)
n
i=1, (Yi)

n
i=1, for t ∈ R, define

Fn(t) =
1
n

n∑
i=1

1{Xi≤t}, F̃n(t) =
1
n

n∑
i=1

1{Yi≤t}.

By Birkhoff’s theorem

Mα((Xi)
n
i=1, (Yi)

n
i=1) = Wα

(
n∑

i=1

δXi ,

n∑
i=1

δYi

)
= n||Fn − F̃n∥Wα

.
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empirical CDF n = 100 (rescaled)
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empirical CDF n = 200 (rescaled)
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empirical CDF n = 1000 (rescaled)
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empirical CDF n = 1000 exponential density
(rescaled)
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empirical CDF n = 1000 Gaussian density (rescaled)

3 2 1 0 1 2 3 4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Dario Trevisan (UNIPI) arXiv:2305.09234 2023-11-24 44 / 51



By a result [HD01], there exists a Brownian bridge Bn such that for every
p ≥ 1,

E
[
[
√

n(Fn − F̃n)−
√

2Bn ◦ F ]pq−var

]1/p
≤ Cn−(q−2)/2q .

Since Bn is Hölder continuous with exponent less than 1/2, we have:

E
[
[Bn ◦ F ]pq−var

]
< ∞

By Kantorovich-Young stability with respect to convergence in q-variation:

E[||
√

n(Fn − F̃n)∥Wα
− ∥

√
2Bn ◦ F∥Wα

|p]1/p ≤ Cn−(q−2)/2q .
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Further Questions

1 For 1/2 < α < 1, we assume bounded support. Extending to unbounded
intervals likely requires:

▶ A theory of the Kantorovich-Young problem with growth conditions
▶ Verifying them in the convergence towards the Brownian bridge

2 The α = 1/2 case remains open. It is known [BL20] that:

lim sup
n→∞

E
[
M1/2((Xi)

n
i=1, (Yi)

n
i=1)

]
/
√

n log n < ∞,

We prove a lower bound when µ is uniform:

lim inf
n→∞

E
[
M1/2((Xi)

n
i=1, (Yi)

n
i=1)

]
/
√

n log n > 0.

3 Our method extends to the bipartite Traveling Salesperson Problem. We
conjecture it also applies to the bipartite κ−factor problem [BB13; GT22].
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Lower Bound for α = 1/2

The Peano curve γ is 1/2-Hölder continuous and pushes Lebesgue
measure on [0,1] to area measure on [0,1]2

It satisfies:

M1((γ(Xi))
n
i=1, (γ(Yi))

n
i=1) ≤ [γ]C1/2M1/2((Xi)

n
i=1, (Yi)

n
i=1),

It is known (AKT) that for i.i.d. uniform points on the square, we have:

lim inf
n→∞

E
[
M1((X̃i))

n
i=1, (Ỹi))

n
i=1)

]
/
√

n log n > 0,

Combining the above, we conclude:

lim inf
n→∞

E[M1/2((Xi)
n
i=1, (Yi)

n
i=1)]√

n log n
> 0.
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