On the Concave One-Dimensional Random Assignment Problem: Kantorovich Meets Young

Dario Trevisan ${ }^{1}$

Università di Pisa
dario.trevisan@unipi.it

Seminars in Probability and Finance
Padova, Nov 242023

[^0]
Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)

Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)
- Application deadline: Dec 17, 2023
- topics: theory of machine learning and quantum information theory

Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)
- Application deadline: Dec 17, 2023
- https://bandi.unibo.it/ricerca/assegni-ricerca?id_ bando=67126
- topics: theory of machine learning and quantum information theory
- backgrounds in probability (e.g. random matrices) or optimization are welcome!

Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)
- Application deadline: Dec 17, 2023
- https://bandi.unibo.it/ricerca/assegni-ricerca?id_ bando=67126
- topics: theory of machine learning and quantum information theory
- backgrounds in probability (e.g. random matrices) or optimization are welcome!

Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)
- Application deadline: Dec 17, 2023
- https://bandi.unibo.it/ricerca/assegni-ricerca?id_ bando=67126
- topics: theory of machine learning and quantum information theory
- backgrounds in probability (e.g. random matrices) or optimization are welcome!

Advertisement

- one two-year post-doc position open at University of Bologna (PRIN project LeQuN)
- Application deadline: Dec 17, 2023
- https://bandi.unibo.it/ricerca/assegni-ricerca?id_ bando=67126
- topics: theory of machine learning and quantum information theory
- backgrounds in probability (e.g. random matrices) or optimization are welcome!
- Main contact: giacomo.depalma@unibo.it

Plan

(1) Introduction

(2) Main result
(3) Kantorovich-Young problem

4 Application to the assignment problem
(5) Further problems
(6) References

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:

The task is to optimally match two sets $\left(x_{i}\right)$ and
in order to minimize (optimize) the total cost

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- When $c(x, y)=c(|x-y|)$ depends on distance (e.g. $\left.x, y \in \mathbb{R}^{d}\right)$:

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- The task is to optimally match two sets $\left(x_{i}\right)$ and $\left(y_{i}\right)$ via a permutation σ in order to minimize (optimize) the total cost

$$
\sum_{i} c\left(x_{i}, y_{\sigma(i)}\right)
$$

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- The task is to optimally match two sets $\left(x_{i}\right)$ and $\left(y_{i}\right)$ via a permutation σ in order to minimize (optimize) the total cost

$$
\sum_{i} c\left(x_{i}, y_{\sigma(i)}\right)
$$

- When $c(x, y)=c(|x-y|)$ depends on distance (e.g. $\left.x, y \in \mathbb{R}^{d}\right)$:

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- The task is to optimally match two sets $\left(x_{i}\right)$ and $\left(y_{i}\right)$ via a permutation σ in order to minimize (optimize) the total cost

$$
\sum_{i} c\left(x_{i}, y_{\sigma(i)}\right)
$$

- When $c(x, y)=c(|x-y|)$ depends on distance (e.g. $x, y \in \mathbb{R}^{d}$):
- Convex c favors monotone assignments

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- The task is to optimally match two sets $\left(x_{i}\right)$ and $\left(y_{i}\right)$ via a permutation σ in order to minimize (optimize) the total cost

$$
\sum_{i} c\left(x_{i}, y_{\sigma(i)}\right)
$$

- When $c(x, y)=c(|x-y|)$ depends on distance (e.g. $x, y \in \mathbb{R}^{d}$):
- Convex c favors monotone assignments
- Concave c yields richer structure and hierarchies with economic interpretation ([McC99])

The Assignment Problem

- The assignment (or matching) problem is a combinatorial optimization problem arising in many applications:
- workers to be assigned to jobs, producers that want to meet sellers, ...
- The task is to optimally match two sets $\left(x_{i}\right)$ and $\left(y_{i}\right)$ via a permutation σ in order to minimize (optimize) the total cost

$$
\sum_{i} c\left(x_{i}, y_{\sigma(i)}\right)
$$

- When $c(x, y)=c(|x-y|)$ depends on distance (e.g. $x, y \in \mathbb{R}^{d}$):
- Convex c favors monotone assignments
- Concave c yields richer structure and hierarchies with economic interpretation ([McC99])
- Let us look at some simulations.
$n=20+20, c(x, y)=|x-y|^{p}, p=1$

$n=20+20, c(x, y)=|x-y|^{p}, p=0.1$

$n=20+20, c(x, y)=|x-y|^{p}, p=1$

$n=20+20, c(x, y)=|x-y|^{p}, p=2$

$n=200+200, c(x, y)=|x-y|^{p}, p=1$

$n=200+200, c(x, y)=|x-y|^{p}, p=0.1$

$n=200+200, c(x, y)=|x-y|^{p}, p=1$

$n=200+200, c(x, y)=|x-y|^{p}, p=2$

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.
- Limitations arise for bipartite problems e.g. assignment problem.

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.
- Limitations arise for bipartite problems e.g. assignment problem.

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.
- Limitations arise for bipartite problems e.g. assignment problem.
- Local fluctuations in number of samples give rise to unexpected cost asymptotics

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.
- Limitations arise for bipartite problems e.g. assignment problem.
- Local fluctuations in number of samples give rise to unexpected cost asymptotics
- On the square [AKT84; Car+14; AST19]...

Additive Euclidean Functional Theory

- Random instances of combinatorial optimization problems in Euclidean spaces are well-studied [BHH59]
- Focus on convergence results and typical behavior for large instances.
- Limitations arise for bipartite problems e.g. assignment problem.
- Local fluctuations in number of samples give rise to unexpected cost asymptotics
- On the square [AKT84; Car+14; AST19]...
- but also on the line (folklore?)

$$
n=25+25, c(x, y)=|x-y|^{p}, p=1
$$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=0.1
$$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=0.4
$$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=0.6
$$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=0.9
$$

$n=25+25, c(x, y)=|x-y|^{p}, p=0.99$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=1
$$

$n=25+25, c(x, y)=|x-y|^{p}, p=1.01$

$n=25+25, c(x, y)=|x-y|^{p}, p=1.1$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=2
$$

$$
n=25+25, c(x, y)=|x-y|^{p}, p=3
$$

Plan

(1) Introduction

(2) Main result

(3) Kantorovich-Young problem

4 Application to the assignment problem
(5) Further problems
(6) References

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$
- $1 / 2<\alpha<1 \rightarrow$ local fluctuations dominate and cost scales as \sqrt{n}

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$
- $1 / 2<\alpha<1 \rightarrow$ local fluctuations dominate and cost scales as \sqrt{n}
- We prove:

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$
- $1 / 2<\alpha<1 \rightarrow$ local fluctuations dominate and cost scales as \sqrt{n}
- We prove:
- convergence a.s. for $0<\alpha<1 / 2$

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$
- $1 / 2<\alpha<1 \rightarrow$ local fluctuations dominate and cost scales as \sqrt{n}
- We prove:
- convergence a.s. for $0<\alpha<1 / 2$
- convergence in law for $1 / 2<\alpha<1$.

Asymptotic Behavior of Assignment Costs

- We study the cost of the assignment problem over random i.i.d. points $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ on \mathbb{R} with cost $|x-y|^{\alpha}$:

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\min _{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\alpha}
$$

- Heuristics:
- $0<\alpha<1 / 2 \rightarrow$ the cost scales as $n^{1-\alpha}$
- $1 / 2<\alpha<1 \rightarrow$ local fluctuations dominate and cost scales as \sqrt{n}
- We prove:
- convergence a.s. for $0<\alpha<1 / 2$
- convergence in law for $1 / 2<\alpha<1$.
- A (new?) idea: the problem converges to an optimal transport problem with a Brownian bridge "measure" \Rightarrow we propose a generalized optimal transport problem using Young integration.

Main result

Theorem (Goldman, T., 2023)
Let $\left(X_{i}\right)_{i=1}^{\infty},\left(Y_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}$ be i.i.d. random variables with law μ. Denote with f the absolutely continuous part of μ and $F(t)=\mu((-\infty, t])$.
where $(B(t))_{t \in[0,1]}$ is a standard Brownian bridge and $\|\cdot\| \mathrm{w}_{\alpha}$ is the
Kantorovich-Young norm (defined below).

Main result

Theorem (Goldman, T., 2023)

Let $\left(X_{i}\right)_{i=1}^{\infty},\left(Y_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}$ be i.i.d. random variables with law μ. Denote with f the absolutely continuous part of μ and $F(t)=\mu((-\infty, t])$.
(1) If $1 / 2<\alpha<1$ and μ has bounded support, then

$$
\lim _{n \rightarrow \infty} n^{-1 / 2} \mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right) \xrightarrow{\operatorname{law}} \rightarrow\|\sqrt{2} B \circ F\| \mathrm{w}_{\alpha},
$$

where $(B(t))_{t \in[0,1]}$ is a standard Brownian bridge and $\|\cdot\| \mathrm{w}_{\alpha}$ is the Kantorovich-Young norm (defined below).

Main result

Theorem (Goldman, T., 2023)

Let $\left(X_{i}\right)_{i=1}^{\infty},\left(Y_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}$ be i.i.d. random variables with law μ. Denote with f the absolutely continuous part of μ and $F(t)=\mu((-\infty, t])$.
(1) If $1 / 2<\alpha<1$ and μ has bounded support, then

$$
\lim _{n \rightarrow \infty} n^{-1 / 2} \mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right) \xrightarrow{\operatorname{law}} \rightarrow\|\sqrt{2} B \circ F\| \mathrm{w}_{\alpha},
$$

where $(B(t))_{t \in[0,1]}$ is a standard Brownian bridge and $\|\cdot\| \mathrm{w}_{\alpha}$ is the Kantorovich-Young norm (defined below).

Main result

Theorem (Goldman, T., 2023)

Let $\left(X_{i}\right)_{i=1}^{\infty},\left(Y_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}$ be i.i.d. random variables with law μ. Denote with f the absolutely continuous part of μ and $F(t)=\mu((-\infty, t])$.
(1) If $1 / 2<\alpha<1$ and μ has bounded support, then

$$
\lim _{n \rightarrow \infty} n^{-1 / 2} \mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right) \xrightarrow{\operatorname{law}}\|\sqrt{2} B \circ F\| \mathrm{w}_{\alpha}
$$

where $(B(t))_{t \in[0,1]}$ is a standard Brownian bridge and $\|\cdot\| \mathrm{w}_{\alpha}$ is the Kantorovich-Young norm (defined below).
(2) If $0<\alpha<1 / 2$ and $\int_{\mathbb{R}}|t|^{\beta} d \mu(t)<\infty$ for some $\beta>4 \alpha /(1-2 \alpha)$, then

$$
\lim _{n \rightarrow \infty} n^{\alpha-1} \mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right) \xrightarrow{\text { a.s. }} c(\alpha) \int_{\mathbb{R}} f^{1-\alpha}(t) d t,
$$

where $c(\alpha) \in(0, \infty)$.

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- We investigate some basic properties of this problem.

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- In the Brownian bridge (random) case $g(t)=B(t)$

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- We investigate some basic properties of this problem.
- In the Brownian bridge (random) case $g(t)=B(t)$

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{w_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- We investigate some basic properties of this problem.
- In the Brownian bridge (random) case $g(t)=B(t)$:

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- We investigate some basic properties of this problem.
- In the Brownian bridge (random) case $g(t)=B(t)$:
- B has finite q-variation only if $q>2$

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- We investigate some basic properties of this problem.
- In the Brownian bridge (random) case $g(t)=B(t)$:
- B has finite q-variation only if $q>2$
- \Rightarrow the problem is only meaningful if $\alpha>1 / 2$

Strategy for $1 / 2<\alpha<1$: Kantorovich-Young Problem

- We define a variational problem for functions g with finite q-variation:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup \left\{\int_{l} f d g:[f]_{C^{\alpha}} \leq 1\right\}
$$

where $\alpha+1 / q>1$.

- It recovers usual optimal transport if g has bounded variation.
- We investigate some basic properties of this problem.
- In the Brownian bridge (random) case $g(t)=B(t)$:
- B has finite q-variation only if $q>2$
- \Rightarrow the problem is only meaningful if $\alpha>1 / 2$
- It explains the "phase transition" at $\alpha=1 / 2$ (the same that leads leads to Rough Paths theory [FV10]).

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of $[0,1]$ (export/import OT).

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].
- A widely open question is whether the asymptotic cost of the boundary functional equals that of the assignment problem.

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].
- A widely open question is whether the asymptotic cost of the boundary functional equals that of the assignment problem.

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].
- A widely open question is whether the asymptotic cost of the boundary functional equals that of the assignment problem.
In our case $d=1, \alpha \in(0,1)$:
- Due to the concave cost, optimal assignments have the no-crossing property

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].
- A widely open question is whether the asymptotic cost of the boundary functional equals that of the assignment problem.
In our case $d=1, \alpha \in(0,1)$:
- Due to the concave cost, optimal assignments have the no-crossing property
- \Rightarrow the boundary functional cost indeed is close $\lesssim n^{1 / 2}$ the original assignment problem cost

Strategy for $0<\alpha<1 / 2$: Boundary Functional

- We modify the assignment allowing for a reservoir of points in $\{0,1\}$ of [0, 1] (export/import OT).
- \Rightarrow boundary functional in random combinatorial optimization theory [Ste97; Yuk06].
- A widely open question is whether the asymptotic cost of the boundary functional equals that of the assignment problem.
In our case $d=1, \alpha \in(0,1)$:
- Due to the concave cost, optimal assignments have the no-crossing property
- \Rightarrow the boundary functional cost indeed is close $\lesssim n^{1 / 2}$ the original assignment problem cost
- By known results in [BB13] it follows convergence for $\alpha<1 / 2$.

Plan

(1) Introduction

(2) Main result
(3) Kantorovich-Young problem
4. Application to the assignment problem
(5) Further problems
(6) References

Hölder and Variation Norms

- Hölder seminorm of exponent $\alpha \in(0,1)$:

$$
[f]_{C^{\alpha}}=\sup _{s \neq t} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}
$$

Hölder and Variation Norms

- Hölder seminorm of exponent $\alpha \in(0,1)$:

$$
[f]_{C^{\alpha}}=\sup _{s \neq t} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}
$$

- p-variation seminorm (for $p \geq 1$):

$$
[f]_{p-\mathrm{var}}=\sup _{\left\{t_{i}\right\}}\left\{\left(\sum\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}\right)^{1 / p}\right\}
$$

- Total variation is 1-variation. Functions of bounded variation can be represented by measures.

Hölder and Variation Norms

- Hölder seminorm of exponent $\alpha \in(0,1)$:

$$
[f]_{C^{\alpha}}=\sup _{s \neq t} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}
$$

- p-variation seminorm (for $p \geq 1$):

$$
[f]_{p-\mathrm{var}}=\sup _{\left\{t_{i}\right\}}\left\{\left(\sum\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}\right)^{1 / p}\right\}
$$

- For any $\alpha \in(0,1)$,

$$
[f]_{1 / \alpha-\mathrm{var}} \leq|I|^{\alpha}[f]_{C^{\alpha}}
$$

- Total variation is 1 -variation. Functions of bounded variation can be represented by measures.

Hölder and Variation Norms

- Hölder seminorm of exponent $\alpha \in(0,1)$:

$$
[f]_{C^{\alpha}}=\sup _{s \neq t} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}
$$

- p-variation seminorm (for $p \geq 1$):

$$
[f]_{p-\mathrm{var}}=\sup _{\left\{t_{i}\right\}}\left\{\left(\sum\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}\right)^{1 / p}\right\}
$$

- For any $\alpha \in(0,1)$,

$$
[f]_{1 / \alpha-\mathrm{var}} \leq|I|^{\alpha}[f]_{C^{\alpha}} .
$$

- Total variation is 1 -variation. Functions of bounded variation can be represented by measures.

Young Integration

The Riemann-Stieltjes integral $\int f d g$ exists if
both $[f]_{c \circ}$ and $[g]_{1-\text { var }}$ are finite.

Theorem (L.-C. Young, 1936)

If $p, q \geq 1$ such that $1 / p+1 / q>1$, then:
both $[f]_{p-v a r}$ and $[g]_{q-v a r}$ are finite.
\Rightarrow If $f \in C^{\alpha}$ with $\alpha+1 / q>1$ and $g(b)=g(a)=0$, then

$$
\left|\int_{I} f d g\right| \leq C(1 / \alpha, q)|I|^{\alpha}[f]_{C^{\alpha}}[g]_{q-\mathrm{var}} .
$$

Young Integration

The Riemann-Stieltjes integral $\int f d g$ exists if
both $[f]_{c^{\circ}}$ and $[g]_{1-\text { var }}$ are finite.

Theorem (L.-C. Young, 1936)

If $p, q \geq 1$ such that $1 / p+1 / q>1$, then:

- $\int_{a}^{b} f d g$ exists for f and g with no common discontinuity points and

$$
\text { both }[f]_{p-v a r} \text { and }[g]_{q-\text { var }} \text { are finite. }
$$

\Rightarrow If $f \in C^{\alpha}$ with $\alpha+1 / q>1$ and $g(b)=g(a)=0$, then

$$
\left|\int_{I} f d g\right| \leq C(1 / \alpha, q)|I|^{\alpha}[f]_{C^{\alpha}}[g]_{q-\mathrm{var}} .
$$

Young Integration

The Riemann-Stieltjes integral $\int f d g$ exists if

both $[f]_{c o}$ and $[g]_{1-\text { var }}$ are finite.

Theorem (L.-C. Young, 1936)

If $p, q \geq 1$ such that $1 / p+1 / q>1$, then:

- $\int_{a}^{b} f d g$ exists for f and g with no common discontinuity points and

$$
\text { both }[f]_{p-v a r} \text { and }[g]_{q-v a r} \text { are finite. }
$$

- The following bound holds:

$$
\left|\int_{a}^{b} f d g-f(a)(g(b)-g(a))\right| \leq C(p, q)[f]_{p-v a r}[g]_{q-v a r}
$$

\Rightarrow If $f \in C^{\alpha}$ with $\alpha+1 / q>1$ and $g(b)=g(a)=0$, then

$$
\left|\int_{I} f d g\right| \leq C(1 / \alpha, q)|I|^{\alpha}[f]_{C^{\alpha}}[g]_{q-\mathrm{var}} .
$$

Wasserstein Distance

Given positive Borel measures μ and ν on $(\mathcal{X}, \mathrm{d})$ with finite q-th moments:

- Optimal transport cost of order q :

$$
\begin{equation*}
\inf _{\pi \in \Gamma(\mu, \lambda)} \int_{\mathcal{X} \times \mathcal{X}} \mathrm{d}(x, y)^{q} \pi(d x, d y) \tag{1}
\end{equation*}
$$

Wasserstein Distance

Given positive Borel measures μ and ν on $(\mathcal{X}, \mathrm{d})$ with finite q-th moments:

- Optimal transport cost of order q :

$$
\begin{equation*}
\inf _{\pi \in \Gamma(\mu, \lambda)} \int_{\mathcal{X} \times \mathcal{X}} \mathrm{d}(x, y)^{q} \pi(d x, d y) \tag{1}
\end{equation*}
$$

- For $q \in(0,1]$, it induces a distance. Otherwise take its q-th root.

Wasserstein Distance

Given positive Borel measures μ and ν on $(\mathcal{X}, \mathrm{d})$ with finite q-th moments:

- Optimal transport cost of order q :

$$
\begin{equation*}
\inf _{\pi \in \Gamma(\mu, \lambda)} \int_{\mathcal{X} \times \mathcal{X}} \mathrm{d}(x, y)^{q} \pi(d x, d y) \tag{1}
\end{equation*}
$$

- For $q \in(0,1]$, it induces a distance. Otherwise take its q-th root.
- This yields Wasserstein distance $\mathrm{W}_{q}(\mu, \nu)$.

Wasserstein Distance

Given positive Borel measures μ and ν on $(\mathcal{X}, \mathrm{d})$ with finite q-th moments:

- Optimal transport cost of order q :

$$
\begin{equation*}
\inf _{\pi \in \Gamma(\mu, \lambda)} \int_{\mathcal{X} \times \mathcal{X}} \mathrm{d}(x, y)^{q} \pi(d x, d y) \tag{1}
\end{equation*}
$$

- For $q \in(0,1]$, it induces a distance. Otherwise take its q-th root.
- This yields Wasserstein distance $\mathrm{W}_{q}(\mu, \nu)$.
- The Wasserstein distance enjoys the Kantorovich dual formulation, for $q \in(0,1]$:

$$
\begin{equation*}
\mathrm{W}_{q}(\mu, \nu)=\sup _{f}\left\{\int_{\mathcal{X}} f d(\mu-\nu):|f(x)-f(y)| \leq \mathrm{d}(x, y)^{q} \quad \forall x, y \in \mathcal{X}\right\} . \tag{2}
\end{equation*}
$$

A Kantorovich-Young Problem

Given $g: I=[a, b] \rightarrow \mathbb{R}$ with $g(b)=g(a)=0$ and $[g]_{q-v a r}$ finite:

- Define the Kantorovich-Young norm:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup _{[f]_{c^{\alpha}} \leq 1} \int_{I} f d g
$$

with $\alpha+1 / q>1$

- Moreover, we have stability w.r.t. q-variation:

A Kantorovich-Young Problem

Given $g: I=[a, b] \rightarrow \mathbb{R}$ with $g(b)=g(a)=0$ and $[g]_{q-v a r}$ finite:

- Define the Kantorovich-Young norm:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup _{[f]_{c^{\alpha} \leq 1} \leq 1} \int_{I} f d g
$$

with $\alpha+1 / q>1$

- This norm is finite since:

$$
\|g\|_{\mathrm{w}_{\alpha}} \leq C(\alpha, q)|I|^{\alpha}[g]_{q-\mathrm{var}}
$$

- It extends the Kantorovich norm from functions of bounded variation to functions of finite q-variation.

A Kantorovich-Young Problem

Given $g: I=[a, b] \rightarrow \mathbb{R}$ with $g(b)=g(a)=0$ and $[g]_{q-v a r}$ finite:

- Define the Kantorovich-Young norm:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup _{[f]_{c^{\alpha} \leq 1} \leq 1} \int_{I} f d g
$$

with $\alpha+1 / q>1$

- This norm is finite since:

$$
\|g\|_{\mathrm{w}_{\alpha}} \leq C(\alpha, q)|I|^{\alpha}[g]_{q-\mathrm{var}}
$$

- Moreover, we have stability w.r.t. q-variation:

$$
\|g\| \mathrm{w}_{\alpha}-\|\tilde{g}\|_{\mathrm{w}_{\alpha}}\left|\leq\|g-\tilde{g}\| \mathrm{w}_{\alpha} \leq C(\alpha, q)\right| \mid \|^{\alpha}[g-\tilde{g}]_{q-\mathrm{var}}
$$

- It extends the Kantorovich norm from functions of bounded variation to functions of finite q-variation.

A Kantorovich-Young Problem

Given $g: I=[a, b] \rightarrow \mathbb{R}$ with $g(b)=g(a)=0$ and $[g]_{q-v a r}$ finite:

- Define the Kantorovich-Young norm:

$$
\|g\|_{\mathrm{w}_{\alpha}}=\sup _{[f]_{c^{\alpha} \leq 1} \leq 1} \int_{I} f d g
$$

with $\alpha+1 / q>1$

- This norm is finite since:

$$
\|g\|_{\mathrm{w}_{\alpha}} \leq C(\alpha, q) \mid \|^{\alpha}[g]_{q-\mathrm{var}}
$$

- Moreover, we have stability w.r.t. q-variation:

$$
\|g\| \mathrm{w}_{\alpha}-\|\tilde{g}\| \mathrm{w}_{\alpha}\left|\leq\|g-\tilde{g}\| \mathrm{w}_{\alpha} \leq C(\alpha, q)\right| \mid \|^{\alpha}[g-\tilde{g}]_{q-\mathrm{var}} .
$$

- It extends the Kantorovich norm from functions of bounded variation to functions of finite q-variation.

A Primal Problem

Coupling with finite energy
A positive measure π on $I \times I$ is a coupling for g with finite α-energy if:

Notation: $\pi \in \Gamma_{\alpha}(g)$.

A Primal Problem

Coupling with finite energy

A positive measure π on $I \times I$ is a coupling for g with finite α-energy if:

- $\int|t-s|^{\alpha} \pi(d s, d t)<\infty$

Notation: $\pi \in \Gamma_{\alpha}(g)$.

$$
\text { - We seek a coupling } \pi \in \Gamma_{\alpha}(g) \text { minimizing: }
$$

A Primal Problem

Coupling with finite energy

A positive measure π on $I \times I$ is a coupling for g with finite α-energy if:

- $\int|t-s|^{\alpha} \pi(d s, d t)<\infty$
- For all $f \in C^{\alpha}(I), \quad \int(f(t)-f(s)) \pi(d s, d t)=\int f d g$

Notation: $\pi \in \Gamma_{\alpha}(g)$.

- We seek a coupling $\pi \in \Gamma_{\alpha}(g)$ minimizing

A Primal Problem

Coupling with finite energy

A positive measure π on $I \times I$ is a coupling for g with finite α-energy if:

- $\int|t-s|^{\alpha} \pi(d s, d t)<\infty$
- For all $f \in C^{\alpha}(I), \quad \int(f(t)-f(s)) \pi(d s, d t)=\int f d g$

Notation: $\pi \in \Gamma_{\alpha}(g)$.

- We seek a coupling $\pi \in \Gamma_{\alpha}(g)$ minimizing:

$$
\int|t-s|^{\alpha} \pi(d s, d t)
$$

\Rightarrow primal characterization of $\|g\|_{\mathrm{w}_{\alpha}}$.

Duality

As expected we have agreement between the two problems.

Proposition (Kantorovich-Young duality)

Let $I=[a, b] \subseteq \mathbb{R}, q>1$ and $g: I \rightarrow \mathbb{R}$ with finite q-variation and $g(a)=g(b)$. For every $\alpha \in(1-1 / q, 1]$ the supremum

$$
\|g\| \mathrm{w}_{\alpha}=\sup _{f:[f]_{c^{\alpha}} \leq 1}\left\{\int_{I} f d g\right\}
$$

is attained by some f with $[f]_{C^{\alpha}}=1$ and

$$
\|g\| \mathrm{w}_{\alpha}=\min _{\pi \in \Gamma_{\alpha}(g)} \int_{\mid \times 1}|t-s|^{\alpha} \pi(d s, d t)<\infty .
$$

Duality

As expected we have agreement between the two problems.

Proposition (Kantorovich-Young duality)

Let $I=[a, b] \subseteq \mathbb{R}, q>1$ and $g: I \rightarrow \mathbb{R}$ with finite q-variation and $g(a)=g(b)$. For every $\alpha \in(1-1 / q, 1]$ the supremum

$$
\|g\| \mathrm{w}_{\alpha}=\sup _{f:[f]_{c^{\alpha}} \leq 1}\left\{\int_{I} f d g\right\}
$$

is attained by some f with $[f]_{C^{\alpha}}=1$ and

$$
\|g\| \mathrm{w}_{\alpha}=\min _{\pi \in \Gamma_{\alpha}(g)} \int_{\mid \times 1}|t-s|^{\alpha} \pi(d s, d t)<\infty .
$$

- In particular, the set $\Gamma_{\alpha}(g)$ is not empty.

Rethinking Young's integral as a coupling

- Assume $I=[0,1], g \in C^{\beta}(I), g(0)=g(1), f \in C^{\alpha}(I)$.

Rethinking Young's integral as a coupling

- Assume $I=[0,1], g \in C^{\beta}(I), g(0)=g(1), f \in C^{\alpha}(I)$.
- If $\alpha+\beta>1$, a dyadic summation (sewing lemma) gives

$$
\begin{aligned}
\int_{0}^{1} f d g=\sum_{n=1}^{\infty} & \sum_{k=0}^{2^{n-1}-1}\left(f\left((2 k) 2^{-n}\right)-f\left((2 k+1) 2^{-n}\right)\right) \\
& \cdot\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)
\end{aligned}
$$

- Then π is a coupling with finite α-energy.

Rethinking Young's integral as a coupling

- Assume $I=[0,1], g \in C^{\beta}(I), g(0)=g(1), f \in C^{\alpha}(I)$.
- If $\alpha+\beta>1$, a dyadic summation (sewing lemma) gives

$$
\begin{aligned}
\int_{0}^{1} f d g=\sum_{n=1}^{\infty} & \sum_{k=0}^{2^{n-1}-1}\left(f\left((2 k) 2^{-n}\right)-f\left((2 k+1) 2^{-n}\right)\right) \\
& \cdot\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)
\end{aligned}
$$

- Define

$$
\begin{aligned}
\pi:= & \sum_{n=1}^{\infty} \sum_{k=0}^{2^{n-1}-1}\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)^{+} \delta_{\left((2 k) 2^{-n},(2 k+1) 2^{-n}\right)} \\
& +\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)^{-} \delta_{\left((2 k+1) 2^{-n},(2 k) 2^{-n}\right)}
\end{aligned}
$$

Rethinking Young's integral as a coupling

- Assume $I=[0,1], g \in C^{\beta}(I), g(0)=g(1), f \in C^{\alpha}(I)$.
- If $\alpha+\beta>1$, a dyadic summation (sewing lemma) gives

$$
\begin{aligned}
\int_{0}^{1} f d g=\sum_{n=1}^{\infty} & \sum_{k=0}^{2^{n-1}-1}\left(f\left((2 k) 2^{-n}\right)-f\left((2 k+1) 2^{-n}\right)\right) \\
& \cdot\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)
\end{aligned}
$$

- Define

$$
\begin{aligned}
\pi:= & \sum_{n=1}^{\infty} \sum_{k=0}^{2^{n-1}-1}\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)^{+} \delta_{\left((2 k) 2^{-n},(2 k+1) 2^{-n}\right)} \\
& +\left(g\left((2 k+2) 2^{-n}\right)-g\left((2 k+1) 2^{-n}\right)\right)^{-} \delta_{\left((2 k+1) 2^{-n},(2 k) 2^{-n}\right)}
\end{aligned}
$$

- Then π is a coupling with finite α-energy.

Plan

(9) Introduction

(2) Main result
(3) Kantorovich-Young problem
4. Application to the assignment problem
(5) Further problems
(6) References

Sketch of proof, case $1 / 2<\alpha<1$

- Given i.i.d. $\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}$, for $t \in \mathbb{R}$, define

$$
F_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq t\right\}}, \quad \tilde{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{Y_{i} \leq t\right\}} .
$$

Sketch of proof, case $1 / 2<\alpha<1$

- Given i.i.d. $\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}$, for $t \in \mathbb{R}$, define

$$
F_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq t\right\}}, \quad \tilde{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{Y_{i} \leq t\right\}} .
$$

- By Birkhoff's theorem

$$
\mathrm{M}_{\alpha}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)=\mathrm{W}_{\alpha}\left(\sum_{i=1}^{n} \delta_{X_{i}}, \sum_{i=1}^{n} \delta Y_{i}\right)=n\left\|F_{n}-\tilde{F}_{n}\right\| \mathrm{w}_{\alpha} .
$$

empirical CDF $n=100$ (rescaled)

empirical CDF $n=200$ (rescaled)

empirical CDF $n=1000$ (rescaled)

empirical CDF $n=1000$ exponential density (rescaled)

empirical CDF $n=1000$ Gaussian density (rescaled)

- By a result [HD01], there exists a Brownian bridge B_{n} such that for every $p \geq 1$,

$$
\mathbb{E}\left[\left[\sqrt{n}\left(F_{n}-\tilde{F}_{n}\right)-\sqrt{2} B_{n} \circ F\right]_{q-\mathrm{var}}^{p}\right]^{1 / p} \leq C n^{-(q-2) / 2 q} .
$$

- By Kantorovich-Young stability with respect to convergence in q-variation:
- By a result [HD01], there exists a Brownian bridge B_{n} such that for every $p \geq 1$,

$$
\mathbb{E}\left[\left[\sqrt{n}\left(F_{n}-\tilde{F}_{n}\right)-\sqrt{2} B_{n} \circ F\right]_{q-\mathrm{var}}^{p}\right]^{1 / p} \leq \mathrm{Cn}^{-(q-2) / 2 q} .
$$

- Since B_{n} is Hölder continuous with exponent less than $1 / 2$, we have:

$$
\mathbb{E}\left[\left[B_{n} \circ F\right]_{q-\mathrm{var}}^{p}\right]<\infty
$$

- By a result [HD01], there exists a Brownian bridge B_{n} such that for every $p \geq 1$,

$$
\mathbb{E}\left[\left[\sqrt{n}\left(F_{n}-\tilde{F}_{n}\right)-\sqrt{2} B_{n} \circ F\right]_{q-\mathrm{var}}^{p}\right]^{1 / p} \leq C n^{-(q-2) / 2 q} .
$$

- Since B_{n} is Hölder continuous with exponent less than $1 / 2$, we have:

$$
\mathbb{E}\left[\left[B_{n} \circ F\right]_{q-\text { var }}^{p}\right]<\infty
$$

- By Kantorovich-Young stability with respect to convergence in q-variation:

$$
\mathbb{E}\left[\left\|\sqrt{n}\left(F_{n}-\tilde{F}_{n}\right)\right\|_{\mathrm{w}_{\alpha}}-\left.\left\|\sqrt{2} B_{n} \circ F\right\|_{\mathrm{w}_{\alpha}}\right|^{p}\right]^{1 / p} \leq C n^{-(q-2) / 2 q} .
$$

Plan

(9) Introduction

(2) Main result
(3) Kantorovich-Young problem

4 Application to the assignment problem
(5) Further problems
(6) References

Further Questions

(1) For $1 / 2<\alpha<1$, we assume bounded support. Extending to unbounded intervals likely requires:

Further Questions

(1) For $1 / 2<\alpha<1$, we assume bounded support. Extending to unbounded intervals likely requires:

- A theory of the Kantorovich-Young problem with growth conditions

We prove a lower bound when μ is uniform:

Further Questions

(1) For $1 / 2<\alpha<1$, we assume bounded support. Extending to unbounded intervals likely requires:

- A theory of the Kantorovich-Young problem with growth conditions
- Verifying them in the convergence towards the Brownian bridge

We prove a lower bound when μ is uniform:

(3) Our method extends to the bipartite Traveling Salesperson Problem. We

 conjecture it also applies to the bipartite κ-factor problem [BB13; GT22]
Further Questions

(1) For $1 / 2<\alpha<1$, we assume bounded support. Extending to unbounded intervals likely requires:

- A theory of the Kantorovich-Young problem with growth conditions
- Verifying them in the convergence towards the Brownian bridge
(2) The $\alpha=1 / 2$ case remains open. It is known [BL20] that:

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}<\infty
$$

We prove a lower bound when μ is uniform:

$$
\liminf _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}>0
$$

Further Questions

(1) For $1 / 2<\alpha<1$, we assume bounded support. Extending to unbounded intervals likely requires:

- A theory of the Kantorovich-Young problem with growth conditions
- Verifying them in the convergence towards the Brownian bridge
(2) The $\alpha=1 / 2$ case remains open. It is known [BL20] that:

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}<\infty
$$

We prove a lower bound when μ is uniform:

$$
\liminf _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}>0 .
$$

(3) Our method extends to the bipartite Traveling Salesperson Problem. We conjecture it also applies to the bipartite κ-factor problem [BB13; GT22].

THANK YOU!!!

Lower Bound for $\alpha=1 / 2$

- The Peano curve γ is $1 / 2$-Hölder continuous and pushes Lebesgue measure on $[0,1]$ to area measure on $[0,1]^{2}$
- It satisfies:

Lower Bound for $\alpha=1 / 2$

- The Peano curve γ is $1 / 2$-Hölder continuous and pushes Lebesgue measure on $[0,1]$ to area measure on $[0,1]^{2}$
- It satisfies:

$$
\mathrm{M}_{1}\left(\left(\gamma\left(X_{i}\right)\right)_{i=1}^{n},\left(\gamma\left(Y_{i}\right)\right)_{i=1}^{n}\right) \leq[\gamma]_{C^{1 / 2}} \mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)
$$

- Combining the above, we conclude:

Lower Bound for $\alpha=1 / 2$

- The Peano curve γ is $1 / 2$-Hölder continuous and pushes Lebesgue measure on $[0,1]$ to area measure on $[0,1]^{2}$
- It satisfies:

$$
\mathrm{M}_{1}\left(\left(\gamma\left(X_{i}\right)\right)_{i=1}^{n},\left(\gamma\left(Y_{i}\right)\right)_{i=1}^{n}\right) \leq[\gamma]_{C^{1 / 2}} \mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right),
$$

- It is known (AKT) that for i.i.d. uniform points on the square, we have:

$$
\left.\left.\liminf _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1}\left(\left(\tilde{X}_{i}\right)\right)_{i=1}^{n},\left(\tilde{Y}_{i}\right)\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}>0
$$

Lower Bound for $\alpha=1 / 2$

- The Peano curve γ is $1 / 2$-Hölder continuous and pushes Lebesgue measure on $[0,1]$ to area measure on $[0,1]^{2}$
- It satisfies:

$$
\mathrm{M}_{1}\left(\left(\gamma\left(X_{i}\right)\right)_{i=1}^{n},\left(\gamma\left(Y_{i}\right)\right)_{i=1}^{n}\right) \leq[\gamma]_{C^{1 / 2}} \mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right),
$$

- It is known (AKT) that for i.i.d. uniform points on the square, we have:

$$
\left.\left.\liminf _{n \rightarrow \infty} \mathbb{E}\left[\mathrm{M}_{1}\left(\left(\tilde{X}_{i}\right)\right)_{i=1}^{n},\left(\tilde{Y}_{i}\right)\right)_{i=1}^{n}\right)\right] / \sqrt{n \log n}>0
$$

- Combining the above, we conclude:

$$
\liminf _{n \rightarrow \infty} \frac{\mathbb{E}\left[\mathrm{M}_{1 / 2}\left(\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}\right)\right]}{\sqrt{n \log n}}>0
$$

Plan

(9) Introduction

(2) Main result
(3) Kantorovich-Young problem

4 Application to the assignment problem
(5) Further problems
(6) References

Plan

(1) Introduction

(2) Main result

3 Kantorovich-Young problem
4. Application to the assignment problem
(5) Further problems

6 References
[AKT84] M. Ajtai, J. Komlós, and G. Tusnády. "On optimal matchings.". In: Combinatorica 4 (1984), pp. 259-264. ISSN: 0209-9683; 1439-6912/e. DOI: $10.1007 /$ BF 02579135.
[AST19] L. Ambrosio, F. Stra, and D. Trevisan. "A PDE approach to a 2-dimensional matching problem". In: Probab. Theory Relat. Fields 173.1-2 (2019), pp. 433-477.
[BB13] F. Barthe and C. Bordenave. "Combinatorial optimization over two random point sets.". In: Séminaire de probabilités XLV. Cham:
Springer, 2013, pp. 483-535. ISBN: 978-3-319-00320-7/pbk; 978-3-319-00321-4/ebook. DOI:
10.1007/978-3-319-00321-4_19.
[BHH59] Jillian Beardwood, John H Halton, and John Michael Hammersley. "The shortest path through many points". In: Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 55. 4. Cambridge University Press. 1959, pp. 299-327.
[BL20] Sergey G Bobkov and Michel Ledoux. "Transport inequalities on Euclidean spaces for non-Euclidean metrics". In: Journal of Fourier Analysis and Applications 26.4 (2020), p. 60.
[Car+14] S. Caracciolo et al. "Scaling hypothesis for the Euclidean bipartite matching problem". In: Physical Review E 90.1 (2014).

Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths: theory and applications. Vol. 120. Cambridge University Press, 2010.
[GT22] Michael Goldman and Dario Trevisan. "Optimal transport methods for combinatorial optimization over two random point sets". In: arXiv preprint arXiv:2209. 14615 (2022).
[HD01] Yen-Chin Huang and RM Dudley. "Speed of convergence of classical empirical processes in p-variation norm". In: Annals of probability (2001), pp. 1625-1636.
[McC99] Robert J McCann. "Exact solutions to the transportation problem on the line". In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455.1984 (1999), pp. 1341-1380.
[Ste97] J Michael Steele. Probability theory and combinatorial optimization. SIAM, 1997.
[Yuk06] Joseph E Yukich. Probability theory of classical Euclidean optimization problems. Springer, 2006.

[^0]: ${ }^{1}$ joint with M. Goldman (CNRS), arXiv:2305.09234

