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Motivation

Contemporary machine learning has seen a surge in applications of deep
neural networks in

▶ speech and visual recognition (classification)
▶ feature extraction
▶ sample generation

The effort of understanding why deep learning methods work leads to
new mathematical results in the areas of

▶ probability
▶ statistics
▶ statistical physics
▶ but also functional analysis, geometry, optimal control . . .
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Neural networks

Artificial neural networks (NN’s) are biologically-inspired parametrized
functions

f : Rn0 → RnL

as stacked compositions of
linear (or affine) maps
non-linear functions (usually acting componentwise).

Much terminology is borrowed from neuroscience, e.g.

neurons, activation functions, connections, training etc.,

as well as some fundamental structures (e.g. convolutional architectures are
inspired by the retina).
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Graphical representation of a fully connected feed-forward neural network with
input size n0 = 3, output size n3 = 2 and layer sizes n1 = 4, n2 = 3:

x [1]

x [2]

x [3]

Input layer
f (1)(x)[1]

f (1)(x)[2]

f (1)(x)[3]

f (1)(x)[4]

f (2)(x)[1]

f (2)(x)[2]

f (2)(x)[3]

f (3)(x)[1]

f (3)(x)[2]

Output layer
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Random neural networks

A successful approach focuses on the scaling limit of large neural networks
that are randomly sampled.

Several reasons:

Bayesian approach: prior distribution over weights and biases

Training algorithms (SGD) use random initialization.

Training only a fraction of the parameters (e.g.the last layer) (random
features, reservoir computing).

Literature: Rosenblatt (1958), Neal (1996), Matthews (2018), Lee (2019)...
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Our main result in brief

1 We provide quantitative bounds for the Gaussian approximation of deep
fully connected NN’s with random parameters (at initialization).

2 We provide for the first time explicit rates for the convergence of deep
networks in the wide limit.

3 The key tool we employ is the Wasserstein distance (of order 2).
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Notation: neural networks

We consider a (fully connected) neural network f : Rn0 → RnL , with
total number of layers (including input and output): L + 1
layer sizes n0 (input), n1, . . ., nL−1 (hidden), nL output
parameters: weights W = (W (ℓ))L−1

ℓ=0 and biases b = (b(ℓ))L−1
ℓ=0 ,

W (ℓ) ∈ Rnℓ+1×nℓ , b(ℓ) ∈ Rnℓ+1 ,

(Lipschitz) activation function σ : R → R, e.g. ReLU σ(z) = max {0, z}.
Recursive definition:

f (1) : Rn0 → Rn1 , f (1)(x) = W (0)x + b(0),

and, for ℓ = 2, . . . ,L,

f (ℓ) : Rn0 → Rnℓ , f (ℓ)(x) = W (ℓ−1)σ(f (ℓ−1)(x)) + b(ℓ−1),

where the activation function σ is understood componentwise.
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Graphical representation of a fully connected feed-forward neural network with
input size n0 = 3, output size n3 = 2 and layer sizes n1 = 4, n2 = 3:
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Notation: Wasserstein distance of order 2
Given probabilities µ, ν on Rd , define

W2(µ, ν) = inf

{√
E
[
∥X − Y∥2

]
: X , Y r.v.’s with p(X = ·) = µ, p(Y = ·) = ν

}
.

Slight abuse of notation:

W2(X ,Y ) = W2(p(X = ·),p(Y = ·))

A sequence (Xn)n converges to X , i.e.,

lim
n→∞

W2(Xn,X ) = 0

if and only if

lim
n→∞

Xn = X in law and lim
n→∞

E
[
∥Xn∥2] = E

[
∥X∥2].
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Theorem (Basteri and T.)

Consider weights W and biases b that are independent Gaussian random
variables, centred with

E
[
(W (ℓ)

i,j )
2
]
=

1
nℓ

, E
[
(b(ℓ)

i )2
]
= 1, for every ℓ, i and j .

Then, for every set of k inputs X = {xi}k
i=1 ⊆ Rn0 , the law of the output

f (L)[X ] = (f (L)(xi))
k
i=1 ∈ RnL×k

is close to a centred Gaussian random variable G(L)[X ]:

W2

(
f (L)[X ],G(L)[X ]

)
≤ C

√
nL

L−1∑
ℓ=1

1√
nℓ

.

The constant C ∈ (0,∞) depends on σ, X and the number of layers L, but not
on the hidden or output layer sizes (nℓ)

L
ℓ=1.
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Remarks

The inequality

W2

(
f (L)[X ],G(L)[X ]

)
≤ C

√
nL

L−1∑
ℓ=1

1√
nℓ

entails convergence towards the Gaussian law in the wide limit nℓ → ∞
for ℓ = 1, . . . ,L − 1.

The covariance of G(L)[X ] ∈ RnL×|X| (aka NNGP) is explicit and depends
on σ, the input X and the output dimension nL (not on the hidden layer
sizes).

The rows of G(L)[X ] are i.i.d.

In the deep limit L → ∞ each contribution
√

nL/
√

nℓ naturally associated
to the ℓ-th hidden layer is weighted by an exponential factor.
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Idea of proof

The Gaussian limit is due to a combination, in each layer, of:
Central Limit Theorem scaling for the weights
almost independence of the neurons.

We argue by induction over the layers:

For one hidden layer exact independence → straightforward CLT.

Triangle inequality for W2 and the inductive assumption → the Gaussian
approximation yields exact independence.

Bound error terms using convexity of the squared W2 and the explicit
optimal transport between Gaussians.
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Numerical simulations

To validate our result, fix the parameters (nℓ)
L−1
ℓ=1 , sample N ≫ 1

1 Gaussian randomly initialized NN’s (f (L)[X ]i)
N
i=1,

2 Gaussian variables (G(L)[X ]i)
N
i=1

and compute the Wasserstein distance between the empirical measures.

It is known that

W2

(
1
N

N∑
i=1

δf (L)[X ]i ,
1
N

N∑
i=1

δG(L)[X ]i

)
≈ W2

(
f (L)[X ],G(L)[X ]

)
+ N−α.

with α ≥ 1/(nL|X |).

⇒ less precise if nL|X | is large (curse of dimensionality).
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One input, nL = 1
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Enlarging the input set
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Deeper networks
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Distances of different order p
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Supervised learning

In supervised learning (regression/classification) one has a training dataset

{(xi , yi)}i∈D ⊆ Rn0 × RnL

and a parametrized family of functions (h(·; θ))θ∈Θ,

h(·; θ) : Rn0 → RnL x 7→ h(·; θ).

Aim: find θ∗ “fitting” the data

h(xi ; θ
∗) ≈ yi ∀i ∈ D

(hopefully) generalizing well to unseen data x 7→ h(x ; θ∗).
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and a parametrized family of functions (h(·; θ))θ∈Θ,

h(·; θ) : Rn0 → RnL x 7→ h(·; θ).

Aim: find θ∗ “fitting” the data

h(xi ; θ
∗) ≈ yi ∀i ∈ D

(hopefully) generalizing well to unseen data x 7→ h(x ; θ∗).
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Two approaches
Variational/frequentist. Fix

a loss function e.g. mean squared error ∥h(x ; θ)− y∥2

a regularization function R(θ)

minimize the empirical risk:

θ∗V ∈ argminθ
∑
i∈D

∥h(xi ; θ)− yi∥2 + R(θ).

Bayesian. Fix
a likelihood L(θ;D) = p(D | θ)
a prior distribution p(θ)
compute the posterior

p(θ | D) ∝ L(θ ; D)p(θ)

maximum a posteriori estimate

θ∗B ∈ argmaxθ p(θ |D)
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Correspondence is up to taking a log and changing sign:

Likelihood L(θ;D) ↔
∑
i∈D

∥h(xi ; θ)− yi∥2 Empirical Loss

Prior p(θ) ↔ R(θ) Regularization
Posterior p(θ | D) ↔

∑
i∈D

∥h(xi ; θ)− yi∥2 + R(θ) Empirical Risk

MAP θ∗B ↔ θ∗V Minimizer

Remark: the mean squared error

L(θ;D) ∝ exp

(
−
∑
i∈D

∥h(xi ; θ)− yi∥2

)
=
∏
i∈D

exp
(
−∥h(xi ; θ)− yi∥2)

yields i.i.d. Gaussian residuals h(xi ; θ)− yi (if conditioned upon θ)
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Random NN’s and Gaussian processes as priors

Deep networks f (L) are a parametrized family θ = (W,b).

Random Gaussian weights and biases give a prior distribution.

Gaussian processes G(L) are also a “parametrized” family ( θ = G(L)).

Our inequality shows that the “priors” are close:

W2

(
f (L)[X ],G(L)[X ]

)
≤ C

√
nL

L−1∑
ℓ=1

1√
nℓ

.

What about the “posteriors”?
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Lemma
Let

µ, ν be probabilities on Rn

with finite second moments m2(µ) =
∫
∥x∥2dµ, m2(ν) =

∫
∥x∥2dν

g : Rn → [0,1] be Lipschitz continuous
with µ(g) :=

∫
gdµ > 0, ν(g) :=

∫
gdν > 0,

and define
µg =

g
µ(g)

µ νg =
g

ν(g)
ν.

Then,

W1(µg , νg) ≤
1

µ(g)

(
1 + Lip(g)

√
m2(ν)

(
1 +

1
ν(g)

))
W2(µ, ν).

It holds

|µ(g)− ν(g)| ≤ E [|g(X )− g(Y )|] ≤ Lip(g)W2(µ, ν).

Question: replace W1 with W2?

Dario Trevisan (UNIPI) GP approx NN arXiv:2203.07379 34 / 40



Proof
We use Kantorovich duality

W1(µg , νg) = sup
Lip(f )≤1

∫
fdµg −

∫
fdνg .

Assume without loss of generality that f (0) = 0, hence |f (x)| ≤ ∥x∥. Then∫
fdµg −

∫
fdνg =

1
µ(g)

∫
fgd(µ− ν) +

(
1

µ(g)
− 1

ν(g)

)∫
fgdν

≤ 1
µ(g)

∫
fgd(µ− ν) +

Lip(g)W2(µ, ν)

µ(g)ν(g)

∫
∥x∥dν

Given a W2-optimal coupling (X ,Y ) for µ, ν,∫
fgd(µ− ν) = E [|f (X )g(X )− f (Y )g(Y )|]

≤ E [|f (X )− f (Y )|] + E [|f (Y )||g(X )− g(Y )|]

≤ E [∥X − Y∥] + Lip(g)E
[
∥Y∥2]1/2 E

[
∥X − Y∥2]1/2

≤ (1 + Lip(g)
√

m2(ν))W2(µ, ν).
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Application to NN’s posterior. Consider
a likelihood of the form

L(θ;D) = g((h(xi ; θ))i∈D)

with g : RnL×|D| → [0,1] Lipschitz, e.g.

L(θ;D) = exp

(
−
∑
i∈D

∥h(xi ; θ)− yi∥2

)

i.e., g((zi)i∈D) = exp
(
−
∑

i∈D ∥zi − yi∥2
)
.

a (finite) test set (xj)j∈T and define X := (xi)i∈D ∪ (xj)j∈T .

Then,
for a NN h(x ; θ) = f (L)(x) (with Gaussian weights and biases) the
posterior of f (L)[X ] is

p(f (L)[X ] = z|D) ∝ g((zi)i∈D)p(f (L)[X ] = z).

for a Gaussian process prior h(x ; θ) = G(L)(x), the posterior is

p(G(L)[X ] = z|D) ∝ g((zi)i∈D)p(G(L)[X ] = z).
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Corollary (Bayesian posterior bounds)
If E

[
g(G(L)((xi)i∈D)

]
> 0, then for n := min {n1, . . . ,nL−1} large enough,

W1

(
p(f (L)[X ] = ·|D),p(G(L)[X ] = ·|D)

)
≤ C√

n
.

where C ∈ (0,∞) does not depend on n.

Example: in the mean squared error case

L(θ;D) = exp

(
−
∑
i∈D

∥h(xi ; θ)− yi∥2

)
,

the posterior

p(G(L)[X ] = ·|D) = g((zi)i∈D)p(G(L)[X ] = z)

is also Gaussian (actually explicitly computable)

⇒ p(f (L)[X ] = ·|D) is quantitatively close to a Gaussian.
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Summary
For a deep NN with hidden layer sizes min {n1, . . . ,nL−1} =: n → ∞

Gaussian initialization: W2

(
f (L)[X ],G(L)[X ]

)
≤

Cprior√
n

,

Bayesian posterior: W1

(
p(f (L)[X ] = ·|D),p(G(L)[X ] = ·|D)

)
≤

Cposterior√
n

.

We kept technicalities at a minimum:
in the initialization bound W2 can be replaced with Wp or other distances
other network architecture (convolutional, graph NN’s)
non-Gaussian the parameters, e.g. discrete or stable laws

Open questions:
Sharpness of the bounds
Properties of the optimal transport map (e.g. w.r.t. hidden layer sizes)
What happens during/after training (e.g. via SGD)?
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