UNIVERSITA DI PI1SA

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Dipartimento di Matematica

DEFORMATION THEORY

Tesi di Laurea Specialistica

Candidato:
Mattia Talpo
Relatore: Controrelatore:
Prof. Angelo Vistoli Dott. Michele Grassi
Scuola Normale Superiore Universita di Pisa

Anno Accademico 2008-2009






Contents

Introduction

1

Deformation categories

1.1
1.2
1.3
1.4

Deformationfunctors . . . . . ... ... ... ... ... ...
Categories fibered in groupoids . . . . .. ... ... ... ..
Fibered categories as deformation problems . . . . . . .. ..
Examples . . . .. ... ... ... ...
141 Schemes . .. ... .. ... .. ... ..
142 Closedsubschemes . . ... ... ............
1.4.3 Quasi-coherentsheaves . . ... ... .........

Tangent space

2.1
2.2
2.3
24

Definition . . . . . . .. . ... ... e
Extensions of algebras and liftings . . .. ...........
Actionsonliftings . . . . ... ... o oo oL
Examples . . . ... ... .. ... . oo
241 Schemes ... ... ... .. ... .. ... . ...
242 Smoothvarieties . . ... .. ... ... ........
243 Closedsubschemes . . ... ...............
244 Hypersurfacesin A} . .. ................
2.45 Smooth hypersurfacesin Py . . . ... ... ......
2.4.6 Quasi-coherentsheaves . ... .............

Infinitesimal automorphisms

3.1
3.2

The group of infinitesimal automorphisms . . . . ... ...
Examples . . . .. ... ... . oo
321 Schemes ... ..... .. .. ... ... ... ...
322 Closedsubschemes . . ... ...............
3.2.3 Quasi-coherentsheaves . .. ... ... ........



B

C

Obstructions 67
4.1 Obstruction theories . . .. .. .. .. .. ... .. ...... 67
41.1 Minimal obstructionspaces . . . .. ... .. ... .. 68
412 Aresult of unobstructedness . . .. ... ... .... 73
42 Examples . . ... ... ... ... ..o 75
421 Schemes .. ... ... ... . ... ... 75
422 Smoothvarieties . ... ... ... ... ........ 76
423 Anobstructed variety . ... ... ... ... .. 79
424 Closedsubschemes . . . ... .............. 84
42,5 Quasi-coherentsheaves . . ... ... ......... 87
Formal deformations 91
51 Formalobjects . . . .. ... ... . ... ... . L. 91
5.1.1 Formal objects as morphisms . . . . ... ... .... 98
51.2 The Kodaira-Spencermap . . . . .. ... ....... 102
5.2 Universal and versal formal deformations . . . . .. ... .. 104
521 Versalobjects . .. ... ... ... .. .. .. ... .. 105
52.2 Miniversalobjects . .. ... ..... .. .. ... .. 110
5.3 Existence of miniversal deformations . . . . . ... ... ... 112
5.3.1 Applications to obstruction theories . . . .. .. ... 118
532 Hypersurfacesin A} . . ... .............. 124
54 Algebraization . . . . ... ... ... .. 0 oL 125
Deformations of nodal curves 132
6.1 Nodalcurves. . . .. ... .. . .. . . . e 132
6.2 Affine curveswithonenode . . . . .. ... ... ....... 133
6.2.1 Pullback functor induced by an étale morphism . . . 134
6.2.2 Quasi-equivalences . . . ... ... ... ... .. ... 137
6.2.3 Deformations of affine curves with onenode . . . . . 140
6.3 Affine curves with a finite number of nodes . . . . . . .. .. 143
6.3.1 Products of deformation categories. . . . . . ... .. 144

6.3.2 Deformations of affine curves with a finite number of
nodes . . . . . . ... e 145
6.4 Projective curves with a finite number of nodes . . . . . . .. 146
Linear functors 151
Noetherian complete local rings 156
Some other facts and constructions 166

Bibliography 174

ii



Introduction

Deformation theory is a branch of algebraic geometry whose central prob-
lem is the local study of algebraic families of objects. More specifically, it is
the study of families of objects X (which can be simply schemes, or more
complicated structures, like sheaves, maps, closed subschemes, bundles,
and so on) over a scheme S, restricting to a given object X over some point
50 € S; in this sense these are deformations of X,. This study of families is
useful for example in moduli space theory, where it can give informations
about the local structure of a moduli space at a fixed point.

The modern study of deformations is usually carried out in several
steps. First of all one considers infinitesimal deformations, which are roughly
obtained by adjoining to the object X, we are deforming some nilpotent
parameters, in a way such that when these parameters vanish, we get our
Xo. More formally, if X is defined over a field %, an infinitesimal deforma-
tion will be a family over some local artinian k-algebra A, restricting to X
over Spec(k) C Spec(A). A natural tool for this infinitesimal study is given
by the so-called functors of Artin rings (or deformation functors).

A central question regarding infinitesimal deformations is that of exis-
tence and behaviour of liftings: that is, given a surjection A" — A of local
artinian k-algebras and a family over A, does there exist a family over A’ re-
stricting to the given one over A? Moreover, how are these liftings related?
The answers to these questions are given by obstruction theories and by
an action of the tangent space on the set of isomorphism classes of liftings:
usually one can find a vector space V' and for particular kind of surjections
A" — A as above with a family over A, an element v € V such thatv = 0
if and only if there exists a lifting. If this happens, there is another vec-
tor space W acting in a free and transitive way on the set of isomorphisms
classes of liftings.

The next step is to consider formal deformations, which are sequences of
compatible infinitesimal deformations over the quotients R/m’; of a noethe-
rian local complete k-algebra R. There is a natural concept of universality
for such formal deformations, and a little less natural notion, called versal-
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ity, which are related to the prorepresentability of the deformation problem.
One of the main results of this part of the theory is a theorem (due to Sch-
lessinger) that gives necessary and sufficient conditions for the existence of
such a (uni)versal deformation.

The last step, called the problem of algebraization, is to pass from formal
deformations to actual ones, and is the analogue of a convergence step in
the case of deformations of complex analytic manifolds, which amounts to
passing from formal solutions to analytic ones. Whereas in the complex an-
alytic case this problem is usually solvable, in the algebro-geomtric context
it is not in general (for example it cannot be solved for surfaces in general).
The main tools for this step are an existence theorem of Grothendieck (The-
orem 5.4.4), and an approximation theorem of Artin, which allows one to
pass to families of finite type.

Historically, the origin of the subject goes back to the work of K. Kodaira
and D. C. Spencer on deformations of complex analytic manifolds, in the
late 50’s. Their methods were actually based more on complex analysis
than on algebraic geometry, but some key ideas related to the infinitesimal
study and formal deformations were already present.

In the 60’s Grothendieck and his school revolutioned the subject (along
with the rest of algebraic geometry) by using the language of schemes to
translate it in the algebro-geometric context. This language is particularly
suited to formalize the study of infinitesimal deformations because of the
possibility of having nilpotent elements in the structural sheaf.

Many other people contributed to further developing. Remarkable con-
tributions came in particular from the work of Schlessinger, who in the late
60’s shifted the attention on functors of Artin rings, which are a natural
way to formalize deformation problems, and the one of Illusie about the
so-called cotangent complex. Later, D. S. Rim used (co)fibered categories
instead of functors as basic tool to study deformation problems, and M.
Artin used this point of view to study openness properties of versal defor-
mations, and to define what today we call an “Artin stack”.

The purpose of the present work was to rewrite a part of the classi-
cal theory of deformation functors of Schlessinger by using fibered cate-
gories instead of functors, following the approach of Rim. This basically
amounts to keeping track of automorphisms instead of neglecting them
by taking isomorphism classes. This approach seems both more natural
(Schlessinger’s conditions become more transparent) and can be more use-
ful when one has to study moduli problems that are not represented by
schemes.

The treatment is heavily based on a course taught by professor Vistoli
in Bologna in 2002-2003 and on his expository paper [Vis]. In the rest of
this introduction we summarize the contents of each chapter, and then set
up some notations and conventions.

Chapter 1 introduces the subject by analyzing the example of deforma-
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tions of schemes, and showing how this deformation problem gives rise
to a functor of Artin rings. After stating the classical conditions of Sch-
lessinger for a deformation functor and the related theorem of prorepre-
sentability, we shift to fibered categories, and recall definitions and some
facts that will be used throughout the rest of the thesis. Then we translate
Schlessinger’s condition in this alternative language, and end up with the
concept of deformation category. Finally we introduce and analyze briefly
three important examples, that will give a concrete counterpart to all the
abstract constructions we will consider.

In Chapter 2 we start our study of infinitesimal deformations by in-
troducing the concept of tangent space of a deformation category, which
basically classifies first order-deformations. After analyzing a canonical ac-
tion of this space on the set of isomorphism classes of liftings, we calculate
it in the three examples introduced in the preceding chapter, and give an
application to deformations of smooth hypersurfaces in P}.

Chapter 3 is devoted to the definition of the group of infinitesimal au-
tomorphisms, and the analysis of some properties.

Chapter 4 is about obstructions to the existence of liftings. We define
obstruction theories, discuss minimal obstruction spaces, and give an use-
ful criterion to recognize unobstructed deformation problems. We describe
then an obstruction theory for each one of our guide examples, and give
a classical example of a smooth projective variety with nontrivial obstruc-
tions.

In Chapter 5 we turn to the study of formal deformations. In partic-
ular we see how, thanks to a Yoneda-like result, they lead naturally to a
concept of prorepresentability for deformation categories. We study then
universal and (mini)versal formal deformations, and give a proof of ex-
istence of versal deformation, which will allow us to prove an analogue
of Schlessinger’s Theorem. After giving some applications to obstruction
theories, we briefly examine the problem of algebraization of formal defor-
mations, giving some results.

Finally Chapter 6 applies the results obtained in the preceding ones to
the case of deformations of nodal curves. We show how one can get a
miniversal deformation of a nodal affine curve from a miniversal deforma-
tion of a standard local model of the singularity, and get from this a formal
description of any global deformation around a singular point. Finally, we
give an algebraization result for projective nodal curves, using the general
results of the previous Chapter.

The three appendices gather some results that are used throughout this
work, and are more or less standard facts.



Notations and conventions

All rings will be commutative with identity, and noetherian. If A is a local
ring, m 4 will always denote its maximal ideal.

The symbol A will always denote a notherian local ring, which is com-
plete with respect to the mj-adic topology, meaning that the natural homo-
morphism A — lim A/m} is an isomorphism. By & we denote a field (not
necessarily algebraically closed), and it will usually be the residue field
A/mp of A.

We denote by (Art /A) the category of local artinian A-algebras with
residue field k. The order of an object A € (Art /A) will be the least n such
that m’;™ = 0. Similarly (Comp /A) will be the category of noetherian local
complete A-algebras with residue field k.

Notice that all homomorphisms in (Art /A) and (Comp /A) are auto-
matically local. In general, if A is a local ring with residue field k, we will
denote by (Art /A) the category of local artinian A-algebras with residue
field k.

When dealing with categories, as customary we will not worry about
set-theoretic problems, so in particular the collections of objects and arrows
will always treated as sets. A functor F' : A — B will always denote a
covariant functor from A to B; a contravariant functor from A to B will
be considered as a covariant functor from the opposite category, written
F: A®? — B.If Ais a category, A € A will mean that A is an object of A.

We denote by (Set) the category of sets, by (Mod /A) (resp. (FMod /A))
the category of (finitely generated) modules over the ring A, and by (Vect /k)
(resp. (FVect /k)) the category of (finite-dimensional) k-vector spaces. By
groupoid we mean a category in which all arrows are invertible. A trivial
groupoid will be a groupoid in which for any pair of objects there is exactly
one arrow from this first to the second.

All schemes we will consider will be noetherian, and if f : X — Y
is a morphism of schemes, ft: Oy — f.Ox will denote the correspond-
ing morphism of sheaves. If X is a scheme, we write | X| for the underly-
ing topological space, and quasi-coherent O x-module as well as quasi-coherent
sheaf will always mean quasi-coherent sheaf of Ox-modules. Usually, we
specify the structure sheaf only when there are different schemes with the
same underlying topological space. If + € X is a point of the scheme X, we
will denote by k(z) its residue field Ox ;. /m,.

If X is a scheme over k, the sheaf of Kéhler differentials Qx/, on X
coming from the morphism X — Spec(k) will be denoted simply by Qx,
and we use the same convention with the tangent sheaf; in the same fash-
ion, the sheaf of continuous differentials Q5 /i, of an object R € (Comp /k)

will be denoted by Qr (see appendix B). Moreover by rational point of X we
always mean a k-rational point.
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If X C Y is a closed immersion of schemes over a ring A, with sheaf
of ideals I, by conormal sequence associated with this immersion we will
always mean the exact sequence of O x-modules

I/1? —Qyalx Qx/a 0.

If X is a scheme over a ring A and A — B is a ring homomorphism,
we denote by X the base change X xgpe.(4) Spec(B), and we will use the
same notation for pullbacks of (quasi-) coherent sheaves.

If U = {U;}nen is an open cover of a topological space X, we will denote
by U;; the double intersection U; N Uy, by Uy, the triple intersection U; N
U; N Uy, and so on.

By variety we will always mean an integral separated scheme of finite
type over the field k. A curve will be a variety of dimension 1.

The symbol 0 will sometimes denote the trivial group, A-module, k-
vector space.
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Chapter

Deformation categories

In this introductory chapter we will define the basic setting for the study of
inifinitesimal deformations, which will be employed throughout the rest of
this thesis.

Starting from the example of deformations of schemes, we mention
briefly Schlessinger’s classical theory of deformation functors, and state
Schlessinger’s Theorem. After this, we gather some definitions and facts
about fibered categories, which are the objects we will use to formalize de-
formation problems instead of functors. We will then state and examine
a basic condition our fibered categories will satisfy, and relate our theory
with Schlessinger’s one. Finally we will introduce three examples of defor-
mation problems that will be analyzed in detail throughout this work.

1.1 Deformation functors

We start by describing the most basic example of a deformation problem,
that considers deformations of schemes.

Let X be a proper scheme over k; we are interested in families having
a fiber over a rational point isomorphic to Xj.

Definition 1.1.1. A deformation of X is a cartesian diagram of schemes over k

Xo—X

|k

Spec(k) —— S
where f : X — S'is a flat and proper morphism.

Sometimes X is called the total scheme of the deformation, S the base
scheme.
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Notice that to give a deformation we can equivalently give a flat and
proper morphism f : X — S and an isomorphism of the fiber of f over
a rational point sp € S with X,. We will usually refer to a deformation
simply as the morphism of schemes, leaving the rational point of S and the
isomorphism with the fiber understood.

Remark 1.1.2. The properness condition on the morphism f is often as-
sumed when dealing with global deformations, to avoid situations one typ-
ically does not want to consider. We will drop this hypothesis as soon as we
focus on infinitesimal deformations, which do not have this kind of prob-
lems.

Definition 1.1.3. An isomorphism between two deformations f : X — S and
g:Y — Sof Xgisan isomorphism F : X — Y inducing the identity on (the
fiber isomorphic to) X.

Example 1.1.4. Every X, has a trivial deformation over any scheme S over
k, given by the projection X Xgpec(r) S — S, and we can take as distin-
guished fiber any fiber over a rational point of .S, since they are all isomor-
phic to Xp.

A deformation of X over S is called trivial if it is isomorphic to this
trivial deformation.

Deformations over a fixed S with isomorphisms form a category, which
is a groupoid by definition. We call this category De fx, (S).

Remark 1.1.5. This construction is functorial in the base space: given a
morphism ¢ : R — S and a deformation f : X — S of X, we can form the
fibered product and consider the projection R x g X — R, which is a defor-
mation of Xy over R. Moreover, if we have two isomorphic deformations
over S,say f: X — Sand g : Y — S with an isomorphism F : X — Y, F
induces an isomorphism id xgF' : R xg X — R xgY, and this association
gives a pullback functor ¢* : Defx,(S) — Defx,(R).

As we have already mentioned, the fist step in studying deformations
is considering infinitesimal ones.

Definition 1.1.6. A deformation is called infinitesimal if S = Spec(A), where
A € (Art /k), and first-order if S = Spec(kle]).

Here and from now on, k[¢] denotes the k-algebra k[t] /(%) = k @ kt (the
ring of dual numbers of k), so that ¢ is an “indeterminate” with €2 = 0.

In the case of infinitesimal deformations X and X have the same un-
derlying topological space, and what changes is only the structure sheaf.
This is because the sheaf of ideals of X in X is nilpotent, being the pull-
back of the sheaf of ideals on Spec(A) corresponding to the maximal ideal
of A.

A scheme whose first-order deformations are all trivial is said to be
rigid.
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Definition 1.1.7. The deformation functor defined by X, is the functor Def x,, :
(Art /k) — (Set) defined on objects as

Def x,(A) = {isomorphism classes of deformations of X, over Spec(A)}

and sending a homomorphism ¢ : A — B to the pullback ¢, : Defx,(A) —
Def x,(B).

Remark 1.1.8. Notice that we introduced a covariant construction ¢ — @,
and still called it pullback, and not pushforward. This is because we al-
ways want to consider (Art /k)° as a subcategory of (Sch/k), and from
this point of view the function ¢, is the pullback (¢)* induced by the map
¢ : Spec(B) — Spec(A) corresponding to .

To avoid this confusion, every time we will have a homomorphism ¢ :
A — B that induces a pullback function in some way, we will still denote
it by ., keeping in mind that it is the pullback induced by the associated
map on the spectra.

We stress the fact that Def x, (A) is the set of isomorphism classes of the
category Defx,(Spec(A)), and the function ¢, is just the one induced by
the pullback functor we defined before, along the morphism of schemes
1 : Spec(B) — Spec(A).

So the study of infinitesimal deformations of a fixed scheme X is basi-
cally the study of a functor (Art /k) — (Set).

Definition 1.1.9. A predeformation functor is a functor F : (Art /k) — (Set),
such that F (k) is a set with one element.

The idea is of course that the element of F'(k) is the object that is getting
deformed, and the elements of F'(A) are its deformations on Spec(A). All
the cases mentioned in the introduction can be formalized in this setting,
and we will see some examples later on.

The theory of these functors has been developed first by Schlessinger, in
[Schl] (another exposition can be found in Chapter 2 of [Ser]). Since we will
review most of it using fibered categories, there is no point in describing it
in detail here. An exception is the so-called Schlessinger’s Theorem (which
is the central result of Schlessinger’s paper), which will provide a basic
condition for the fibered categories we will consider. To state the theorem
we need a couple of definitions.

Definition 1.1.10. A predeformation functor is prorepresentable if it is isomor-
phic to a functor of the form Homy (R, —) for some R € (Comp /k).

Prorepresentability corresponds to the existence of what is called a uni-
versal formal deformation, and is clearly a good thing to have, but it is also
quite restrictive. A substitute when prorepresentability fails is the existence
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of a hull, which is a formal deformation having a weaker universality prop-
erty. Again, we will not go into details here, because we will discuss all of
this later in a more general context.

Definition 1.1.11. A small extension is a surjective homomorphism ¢ : A" —
A in (Art /k), such that ker(yp) in annihilated by m 4/, so that it is naturally a
k-vector space. A small extension is called tiny if ker(y) is also principal and
nonzero, or equivalently if ker(y) = k as a k-vector space.

Definition 1.1.12. The tangent space of a predeformation functor F is TF =
F(k[e]).

Remark 1.1.13. This is of course only a set in general, but it has a canonical
structure of k-vector space if F satisfies condition (H2) below (see [Schl]).

Let F' be a predeformation functor, and suppose we are given two ho-
momorphisms A” — A and A” — Ain (Art /k). Then we can consider the
fibered product A’ x4 A” (notice that this is still an object of (Art /k), see
Lemma 1.3.5), and we have a natural map f : F(A" x4 A") — F(A") Xp(a)
F(A") given by the universal property of the target. Schlessinger’s condi-
tion are as follows:

(H1) f is surjective when A’ — A is a tiny extension.

(H2) f is bijective when A’ = k[e] and A = k.

(H3) The tangent space T'F  is finite-dimensional.

(H4) f is bijective when A’ = A” and A’ — A is a tiny extension.

Theorem 1.1.14 (Schlessinger). A predeformation functor F has a hull if and
only if it satisfies (H1),(H2),(H3) above, and it is prorepresentable if and only if it
satisfies also (H4).

Remark 1.1.15. Conditions (H1) and (H2) are usually satisfied when deal-
ing with functors coming from geometric deformation problems. Because
of this, a predeformation functor satisfying (H1)+(H2) is called by some au-
thors a deformation functor. Schlessinger’s terminology is a bit different,
since with “deformation functor” he means our predeformation ones.

1.2 Categories fibered in groupoids

As we have seen, the deformation functor of a scheme Xy is formed taking
isomorphism classes in a certain groupoid. This actually happens system-
atically when a geometric deformation problem is translated into a functor,
and sometimes, for example when using deformation theory to study mod-
uli spaces, it is useful to keep track of isomorphisms and automorphisms.

This leads us to using categories fibered in groupoids instead of func-
tors while developing our theory. For this purpose we recall here the def-
initions and some basic facts about fibered categories. All the proofs and
more about the subject can be found in Chapter 3 of [FGA].
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First definitions

In what follows we consider two categories F and C with a functor pr :
F — C. In this context, the notation £ — T where £ € F and T € C will
mean pr(§) = T (and we will sometimes say that £ is over T'). Moreover
we will call a diagram like this

f

§—— i
T—>5
commutative if pr(f) = ¢ (and we will sometimes say that f is over o).

Definition 1.2.1. Anarrow f : £ — nof F is cartesian if the following universal
property holds: every commutative diagram

can always be filled with a dotted arrow, in a unique way.

In other words, given any two arrows g : v — nin F and ¢ : pr(v) — pr(§)
in C such that pr(f) o ¢ = pr(g), there exists exactly one arrow h : v — & over
@ such that foh = g.

Remark 1.2.2. It is very easy to see that if we have two cartesian arrows
¢ — nand v — nin F over the same arrow of C, then there is a canoni-
cally defined isomorphism £ = v, coming from the universal property, and
compatible with the two arrows.

Definition 1.2.3. 7 — C is a fibered category if for every object n of F and
every arrow ¢ : T — pr(n) there exists a cartesian arrow f : & — n of F over .

Sometimes we will also say that F is a fibered category over C.

In the situation above we say that £ is a pullback of 1 to 7" along the
arrow . So fibered categories are basically categories in which we can
always find pullbacks along arrows of C. The existence of some sort of
pullback is a very common feature when dealing with geometric problems,
so it seems convenient to use the formalism of fibered categories in this
context.

By the preceding remark, pullbacks are unique, up to a unique isomor-
phism.
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Definition 1.2.4. If T' is an object of C, we can define a fiber category that we
denote by F(T'): its objects are objects & of F such that pr (&) = T, and its arrows
are arrows f : & — nof F such that pr(f) = idr.

A fibered category F — C is a category fibered in groupoids if for every
object T of C the category F(T') is a groupoid, i.e. every arrow of F(T) is an
isomorphism.

In the following we will always use categories fibered in groupoids
(mostly because we will be interested in classifying things, and so the only
morphisms we want to have between objects are isomorphisms).

We have the following criterion to decide when a functor 7 — C gives
a category fibered in groupoids.

Proposition 1.2.5. Let F — C be a functor. F is a category fibered in groupoids
over C if and only if the following conditions hold:

(i) Every arrow of F is cartesian.

(ii) Given an arrow T' — S of C and an object £ € F(S), there exists an arrow of
F over T' — S and with target &.

So a fibered category is fibered in groupoids if and only if every arrow
gives a pullback.

The ambiguity in the choice of a pullback is sometimes annoying when
defining things that seem to depend on it. However, in these cases the con-
structions one ends up with are independent of the choice in some way (the
construction of the pullback functors we will see shortly is an example). To
avoid this annoyance, we make the choice of a pullback of any object along
any arrow once and for all.

Definition 1.2.6. A cleavage for a fibered category F — C is a collection of
cartesian arrows of F, such that for every object £ of F and every arrow T' — S in
C, such that £ € F(S), there is exactly one arrow in the cleavage with target & and
over T — S.

We can use some appropriate version of the axiom of choice to see that
every fibered category has a cleavage. Fixing a cleavage in a fibered cate-
gory is somewhat like choosing a basis for a vector space: sometimes it is
useful because it makes things clearer and more concrete, but usually one
would like to have constructions that are independent of it.

Remark 1.2.7. In what follows we will always assume that we have a fixed
cleavage when we are dealing with fibered categories. If we have an arrow
¢ : T — S of C and an object £ € F(S), we will denote the pullback given
by the cleavage by ¢* (&), or £|7 when no confusion is possible.
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Suppose now we have ¢ : T' — S an arrow of C. We can define a
pullback functor ¢* : F(S) — F(T') in the following way: an object £ goes
to ¢*(€), the pullback along ¢, and an arrow f : £ — nin F(S) goes to the
unique arrow that fills the commutative diagram

@T)\T)—TX
*(n) ———F—="n
T

|
O\

T

S.

As with objects, when no confusion is possible we write f| instead of
©*(f)-

It is very easy to see that a choice of a different cleavage will give an-
other pullback functor, but the two will be naturally isomorphic. From now
on we will leave this type of comment understood when doing construc-
tions that use a cleavage.

Remark 1.2.8. The association that sends on object 7" of C to the category
F(T), and an arrow ¢ : T — S to the pullback functor ¢* : F(S) — F(T)
seems to give a contravariant functor from C to the category of categories.
This is not quite correct, because it could well happen that, if ¢ : § — U is
another arrow in C, we do not have ¢* o ¢¥* = (¢ o ¢)*. It is possible that
we only have a natural isomorphism between these two functors, and the
association above will then be what is called a pseudo-functor.

Taking isomorphism classes in the fiber categories clearly fixes this prob-
lem: given a category fibered in groupoids 7 — C we have a functor
F : C? — (Set) that sends an object T' of C to the set of isomorphism
classes in the category F(7'), and an arrow ¢ : T" — S to the obvious pull-
back function ¢* : F'(S) — F(T).

Definition 1.2.9. We will call F the associated functor of F.

In general we cannot recover a category fibered in groupoids from its
associated functor. This will be true, at least up to equivalence, only for
categories fibered in equivalence relations (see later in this section).

Example 1.2.10. One can show that the categories De fx, (S) introduced in
Section 1.1 can be put together as fiber categories of a category fibered in
groupoids Defx, — (Sch /k) (we will do this in detail later, but only for
infinitesimal deformations). The deformation functor Defx, : (Art /k) —
(Set) is then precisely the associated functor of the restriction of Defx, —
(Sch /k) to the full subcategory (Art /k)°? C (Sch /k).



CHAPTER 1. DEFORMATION CATEGORIES

Morphisms and equivalence

Suppose pr : F — C and pg : ¢ — C are two categories fibered in
groupoids.

Definition 1.2.11. A morphism of categories fibered in groupoids from F to G is
a functor F' : F — G which is base-preserving, i.e. such that pg o F' = pr.

Remark 1.2.12. If T'is an object of C, F' will clearly induce a functor 7 (7') —
G(T) which we denote by Fr. In particular F' will induce a natural trans-
formation between the associated functors of 7 and G.

With this notion of morphism comes a notion of isomorphism between
fibered categories, but as it often happens when dealing with categories,
this notion is too strict.

Definition 1.2.13. Given two morphisms F,G : F — G, a natural transforma-
tion a : ' — G is said to be base-preserving if for every object & of F the arrow
ag: F(§) — G(§) isin G(T), where T = pr(§).

An isomorphism between F and G is a base-preserving natural equivalence.

Definition 1.2.14. Two categories fibered in groupoids F — C and G — C are
said to be equivalent if there exist two morphisms F : F — Gand G : G — F,
with an isomorphism of F' o G with the identity functor of G and of G o F with the
one of F.

In this case we will say that I is an equivalence between F and G, and
that F' and G are quasi-inverse to each other.

We have a handy criterion to decide whether a morphism of fibered
categories is an equivalence.

Proposition 1.2.15. A morphism of categories fibered in groupoids F' : F — G is
an equivalence if and only if Fr : F(T') — G(T') is an equivalence for every object
T of C.

Categories fibered in sets

A particularly simple type of fibered categories is that of categories fibered
in sets.

Definition 1.2.16. A categories fibered in sets is a fibered category F — C
such that F(T') is a set for any object T of C.

Here we see a set as a category whose only arrows are the identities.
In a category fibered in sets pullbacks are strictly unique, and this feature
characterizes them.
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Proposition 1.2.17. Let F — C be a functor. F is a category fibered in sets over
C if and only if for every arrow T' — S of C and every object & of F(.S) there exists
a unique arrow in F over T — C and with target .

Because of this uniqueness, when F — C is fibered in sets the asso-
ciated pseudo-functor is actually already a functor, which we denote by
Or : C? — (Set). Moreover any morphism F' : F — G of categories fibered
in sets over C will give a natural transformation ¢ : &7 — ®g, as in Re-
mark 1.2.12. This association gives a functor from the category of categories
fibered in sets over C and the category of functors C? — (Set).

Proposition 1.2.18. The functor defined above is an equivalence of categories.

We sketch briefly the inverse construction. Suppose we have a functor
F : C? — (Set), and consider the following category, which we call Fr:
as objects take pairs (7', &), where T is an object of C and ¢ € F(T'), and an
arrow f : (T,€&) — (S,n) will be an arrow f : ' — S such that F'(f)(n) = &.
Then Fr is a category fibered in sets.

Given a natural transformation o : I — G between two functors C? —
(Set), we construct a functor H, : Fr — Fg, as follows: an object (T',¢) of
Fr goes to the object (T, a(T)(&)) of Fi, and an arrow f : (T,£) — (S5,n)
simply goes to itself (as an arrow f : T'— S of C). It can be shown that this
gives a functor, which is a quasi-inverse to the one considered above.

Another class of simple fibered categories are the ones fibered in equiv-
alence relations. We say that a groupoid is an equivalence relation if for
any pair of objects there is at most one arrow from the first one to the sec-
ond. Another way to say this is that the only arrow from any object to itself
is the identity.

Definition 1.2.19. A fibered category F — C is said to be fibered in equiva-
lence relations if for every object T of C the fiber category F(T') is an equivalence
relation.

Remark 1.2.20. The name “equivalence relation” comes from the fact that
if a groupoid F is an equivalence relation, and we call A and O its sets of
arrows and objects respectively, the map A — O x O that sends an arrow
to the pair (source, target) is injective, and gives an equivalence relation on
the set O.

We have the following proposition, which characterizes categories fibered
in equivalence relations.

Proposition 1.2.21. A fibered category F — C is fibered in equivalence relations
if and only if it is equivalent to a category fibered in sets.

Because of this, sometimes categories fibered in equivalence relations
are called quasi-functors.
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Suppose now that 7" in an object of C, and consider the comma category
(C/T), defined as follows: its objects are arrows S — T of C with target T,
and an arrow from f : S — Ttog: U — Tisanarrow h : S — U of C, such
that go h = f. We have a functor (C/T) — C thatsends S — T to S, and an
arrow as above to the arrow h : S — U of C.

(C/T) — C is a category fibered in sets: given an arrow S — U of C and
an object over U, that is, an arrow U — T, the only possible pullback to S
is the composite S — U — T It is also easy to see that this category fibered
in sets is the one associated with the functor hy : C°? — (Set) represented
by T' (up to equivalence of course).

Definition 1.2.22. A category fibered in groupoids F — C is called representable
if it is equivalent to a category fibered in groupoids of the form (C/T).

Clearly if 7 — C is representable, then it is fibered in equivalence rela-
tions.

We have a version of Yoneda’s Lemma for categories fibered in groupoids.
We will not need it, but we state it for completeness’ sake. Let 7 — C
be a category fibered in groupoids and 7" an object of C, and consider the
category Hom((C/T'), F) of morphisms of categories fibered in groupoids
C/T — F, with base-preserving natural transformations as arrows. We
have a functor

Hom((C/T),F) — F(T)

that associates to a morphism @ : (C/T") — F the object ®(idr) € F(T), and
to a base-preserving natural transformation o : & — W the arrow a(idr) :
®(idy) — Y(idy).

Proposition 1.2.23. The functor defined above is an equivalence of categories.

Example 1.2.24. In particular if X is a scheme over S, we can see it as a
functor hx : (Sch/S)? — (Set) (by the classical Yoneda’s Lemma), and
also as a category fibered in groupoids ((Sch /S)/X) — (Sch/S) (by the
preceding proposition). To avoid this cumbersome notation we will write
X for hx and also for ((Sch /S)/X).

1.3 Fibered categories as deformation problems

Now suppose F — (Sch /S) is a category fibered in groupoids coming from
a geometric deformation problem, where S = Spec(k) or some other base
scheme (we will see how this happens in practice in some examples below),
and that we want to study it.

The idea is of course that objects of F(Spec(k(sp))) where so € S are
things we are deforming, and an object £ € F(X) that restricts to {, €
F(Spec(k(sp))) is a deformation of £, over X.

10
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As with functors, the first step will be to restrict F to the full subcat-
egory of (Sch /S) consisting of spectra of artinian local k(s¢)-algebras, for
some fixed (possibly closed) point sy € S. Actually it is sometimes useful
to study F over (Art /A)°?, where A is a complete noetherian local ring and
we denote by £ its residue field. Here are some motivations.

Example 1.3.1. Suppose we want to study the infinitesimal deformations
of a given {, € F(Spec(k(so))), that is, we are interested in deformations
of £ over artinian algebras over S (with image of Spec(A4) — S the fixed
point sg). We notice that any such morphism factors through Spec(@g}SO),
where @5730 is the usual completion of the local ring of S at sy with respect
to the maximal ideal m,.

This is simply because every homomorphism Og ,, — A factors through
Os,s,/m5, for some n (because m’j = 0 for some n, and the homomorphism
is local), and consequently factors through 65750' So the algebras we are
interested in are actually A-algebras, where A = @S,SO in this case.

Example 1.3.2. Suppose we have a moduli space M over k parametrizing
objects of some kind, and that we want to study its structure at a point mg €
M. Some properties of M at mg (smoothness, for example) can be inferred
by studying morphisms Spec(A) — M with image mg, where A € (Art /k).

Exactly as before, any such A is actually an object of (Art /A) where A =
9) M,mo, and from the properties of the moduli space morphisms Spec(A4) —
M correspond to families over Spec(A), so for the purpose of understand-
ing M we are led to study F — (Art /A)?, where F is the category fibered
in groupoids that comes from the deformation problem associated with M.

Example 1.3.3. When working with varieties on a perfect field & of positive
characteristic p, it is sometimes useful to consider deformations over the
ring of Witt vectors W (k) of k (this is related to the problem of liftings from
characteristic p to characteristic zero). In these cases our formalism can be
applied, with A = W (k).

From now on we will then study categories fibered in groupoids 7 —
(Art /A)°P, where A is a complete noetherian local ring with residue field k.
We will turn back to “global” deformations only occasionally.

Remark 1.3.4. We stress once again that we will always identify (Art /A)%P
with the corresponding full subcategory of (Sch/A), and in this fashion if
F — (Art /A)°? is a category fibered in groupoids, ¢ : A’ — A a homo-
morphism in (Art /A), and f : £ — 7 an arrow of F with £ € F(A) and
n € F(A’), we will say that f is over ¢ if its image in (Art /A)° is the
morphism ¢ : Spec(A) — Spec(A’) corresponding to .

11
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We will also draw some unpleasant commutative diagrams like this
§ n
A A

which should of course be read as

.

©

< !

§ n

Do,

Spec(A) —2> Spec(A’).

The Rim-Schlessinger condition

We now state a basic condition we will impose on our F: suppose we have
a category fibered in groupoids F — (Art /A)°?, and two homomorphisms
n' A — A 7" A” — Ain (Art /A), the second one being surjective. We
consider then the fibered product A" x 4 A”.

Lemma 1.3.5. A’ x 4 A” is still an object of (Art /A).

Proof. We have to check that B = A’ x 4 A” is alocal artinian A-algebra with
residue field k. Call p; : B — A’ and py : B — A” the two projections, and
notice that p; is surjective.

First, B is a A algebra via the homomorphism A — B induced by the
two structure homomorphisms of A’ and A”, and it is artinian because it is
of finite length as a A-module, being a submodule of the product A" x A”,
which is of finite length because the two factors are.

Next, consider the (proper) ideal

I=my Xmy Mar = {(1‘1,1‘2) c A X A A" r1 €Emy and xo € mAu}

of B. We show that every element of B \ [ is a unit, so that [ is the only
maximal ideal of B. Take (z1,22) € B\ I, and suppose that z; ¢ my (the
other case is carried out the same way). Then since 7" (z2) = 7'(z1) ¢ my
and 7" is local, we have also x5 ¢ m4~. Then we have two elements y; € A’
and y, € A”, inverses to z; and x9 respectively. Since 7'(z1)7'(y1) = 1 =
" (x2)m" (y2) = 7' (x1)7" (y2) we get then 7' (y1) = 7" (y2), so that (y1,y2) is
an element of B, and it is an inverse to (x1, z2).

Finally, the composite B LNy Ny /mar = k is surjective, and its
kernel can only be the maximal ideal 7, so we have

A/XAA”/(mA/ Xm, Mar) = k. ]

12
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We have then two pullback functors F(A' x 4 A”) — F(A") and F(A' x 4
A"y — F(A"), such that the composites

F(A x4 A") F(A") F(A)

and
F(A x4 A —— F(A") ——=F(A)

with the pullback functors to A are isomorphic. We get then an induced
functor
P . .7:(A/ X A A”) — f(A,) X F(A) .7'—(A”)

(see appendix C for the definition of fibered products of categories).

More explicitly, ® sends an object £ to (§| a7, &| a7, 0) where 0 : (§]ar)|a —
(€| a)|a is the canonical isomorphism identifying the pullbacks of &| 4 and
€| to A as pullbacks of &, and an arrow f : £ — 7 is mapped to the pair
(flas, flar) of induced arrows on the pullbacks.

Definition 1.3.6. A category fibered in groupoids F — (Art /A)°P satisfies the
Rim-Schlessinger condition ([RS] from now on) if ® is an equivalence of cate-
gories for every A, A’, A" € (Art /A) and maps as above.

This condition, which was first formulated by D. S. Rim in [Rim], resem-
bles very much Schlessinger’s ones, and actually implies (H1) and (H2) for
the associated functor, as is very easy to see ((H4) is a little more subtle, see
Proposition 2.1.12 of [Oss], which is essentially Proposition 1.3.13 below).

Despite the fact that [RS] is somewhat stronger than (H1)+(H2), when
one proves that a given category fibered in groupoids (or rather its asso-
ciated functor) satisfies the latter ones, he usually proves that the category
satisfies [RS] (or could do so with little extra effort). Moreover all categories
fibered in groupoids coming from reasonable geometric deformation prob-
lems seem to have the stated property, so we will take it as starting point.

Definition 1.3.7. A deformation category is a category fibered in groupoids
F — (Art /A)°P that satisfies [RS].

Deformation categories are called “homogeneous groupoids” by Rim in
[Rim], and “deformation stacks” by Osserman in [Oss].

Remark 1.3.8. From now on when we have a deformation category F —
(Art /A)°P with A, A’, A” artinian algebras as above, and objects ¢’ € F(A’)
and " € F(A”) with a fixed isomorphism of the pullbacks to A, we denote
by {¢,¢"} an induced object over the fibered product A" x 4 A”. When the
isomorphism over A or the choice of such an object is relevant, we will be
more specific.

13
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Example 1.3.9. As a very simple example, we consider the category fibered
in groupoids X — (Art /A)° given by a scheme X over Spec(A).

If X = Spec(R) is affine, for every B € (Art /A) we have a natural bijec-
tion X (B) = Homy (R, B), and if we take A, A, A” € (Art /A) and maps as
above, the map X (A" x4 A”) — X(A’) x x4y X(A") is a bijection because
of the properties of the fibered product. When X is not affine one reduces
to the affine case by noticing that the image of the morphisms involved is a
point of X, and taking an affine neighborhood.

Given a deformation category F — (Art/A)°? and an object £, over
Spec(k), we can construct another deformation category F¢, that contains
only objects of F that restrict to §y over Spec(k) (and in this sense are de-
formations of ), taking the (dual) comma category:

Objects: arrows f : §y — & of F, or equivalently pairs (£, ¢) where ¢ is an
object of F and ¢ is an arrow in F (k) between £, and the pullback of
¢ to Spec(k).

Arrows: from f : §§ — £tog : § — n are arrows h : & — n of F such
that h o f = g, or equivalently the arrow & — &y induced by h is the
identity.

We have also an obvious functor F¢, — (Art /A)°, induced by F —
(Art /A)°P. The following proposition will be useful when we have to con-
sider deformations of a fixed object over k.

We recall here that a functor is an equivalence of categories if and only
if it is fully faithful and essentially surjective.

Proposition 1.3.10. If 7 — (Art /A)°P is a deformation category and &y € F(k),
then F¢, — (Art /A)°P is also a deformation category.

Proof. 1t is clear that F¢, is fibered in groupoids: given a homomorphism
¢ : A — Bin (Art /A) and an object §y — £ of F¢,(A), we take the pullback
¢|p — &, which is an arrow over ¢, and by the fact that this is cartesian in
F we have an induced arrow &y — £|, which is then an element of F¢,(B).
It is easy to check that this gives a cartesian arrow of F¢, over ¢ with target
&. Moreover for every object A of (Art /A), every arrow of F¢,(A) will be
invertible as an arrow of F(A), and it is easy to check that the inverse arrow
will also be in F¢, (A), so that F¢,(A) is a groupoid.

We turn then to [RS]. Let A, A", A” € (Art /A),and 7' : A" — A, «" :
A" — A be two homorphisms, with 7" surjective, and call

P f(A/ XA A”) — f(A,) X]-'(A) ]:(A”)

and
q)fo : féo (A/ XA A”) - ‘7:50 (A/) ><.7-'§0(A) ‘7:50 (A//)

14
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the natural functors. We show that ®¢, is fully faithful and essentially sur-
jective, knowing that @ is.

First, consider any two objects {, — £ and &y — 7 of F¢,, and take the
induced function

F: Hom((§o — &), (§o — 1)) — Hom(®P¢, (S0 — &), P, (S0 — m))-

From the fact that arrows of F¢, are just arrows of F with a compatibility
condition, faithfulness (that is, injectivity of F’) is immediate. Next take an
element of the right-hand side, which will be a pair (f, g), where f : {|4» —
n|ar and g : {|a» — n|ar are two arrows commuting with the arrows from
&, and such that the following diagram

(where 0 and v are the canonical isomorphisms) is commutative.
Because of the bijectivity of

G : Hom(¢,n) — Hom(® (&), ®(n))

we have an arrow h : £ — 7 such that G(h) = (f, g). We have to check that
h commutes with the arrows from &y, i.e. if wecalla : g — and b: &y — 7,
then hoa =b.

Taking the pullbacks of { and 7 to k in F, we get a diagram

Elk —=¢

-

™~ Nl —=1
where the right square commutes, and the composites {, — | — £ and

& — n|r — n are just a and b. So it suffices to show that the left triangle
commutes. But now we know that the diagram

flar —=¢
f h

\
nar —=1

15
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commutes, and then by pullback to k we get that

(€la) e —&lk
/

50\ ‘/fk lmk

()l —nlk

commutes too, and we are done.

Finally, we show that ®¢, is essentially surjective. Take an object of
Feo(AN) X Fe, (A) Feo(A”), that is, a triplet (§o — &',&0 — £”,0) where ¢’ €
F(A), " e F(A")and 0 : £'|4 — £"|4 is an isomorphism compatible with
the arrows from &.

Since @ is essentially surjective we have an object { € F(A’ x4 A”) such
that ®(¢) is isomorphic to (£',£”,0): this means in particular that we have
two arrows ¢’ — £ and ¢’ — ¢ in F (identifying ¢’ and £” with the pullbacks
of £ to A’ and A”).

It is easy to see that the two composites {§y — ¢ — and § — " — ¢
are the same arrow, and that the image of the resulting object £, — & of
Feo(A" x4 A”) in Fe (A') X Fe, (A) Feo(A”) is isomorphic to (& — &',& —
¢",0), so that @, is essentially surjective. O

A morphism of deformation categories will simply be a morphism of
categories fibered in groupoids.

Remark 1.3.11. Using Yoneda’s Lemma 1.2.23, and considering Spec(A)
(where A € (Art /A)) as a category fibered in groupoids over (Art /A)° as
explained in Section 1.2, we have that an object of F(A) corresponds to a
morphism Spec(A) — F. In this fashion, the objects of F¢,(A) are exactly
the morphisms Spec(A4) — F such that the composite

Spec(k) — Spec(A) — F

(where Spec(k) — Spec(A) is induced by the quotient map) corresponds to
the object &y € F (k).

Of course if F is the category fibered in groupoids coming from the
functor of points of a scheme X, then § € X (k) is simply a rational point,
and X¢,(A) are the morphism of schemes Spec(A) — X with image the

point &.

Remark 1.3.12. If ¥ — (Art /A)°? and G — (Art /A)°P are two deformation
categories, a morphism F' : 7 — G will give an induced one F¢, : F¢, —
Gr(¢), in the obvious way: an object §, — & goes to F'(§p) — F'(£), and an
arrow £ — nto F(§) — F(n).

16
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Relation with the classical theory

Now we spend some words about the relation between the point of view of
deformation categories and that of deformation functors. If 7 — (Art /A)%P
is a deformation category coming from a geometric deformation problem,
we can consider its associated functor, which we recall to be the functor
F : (Art /A) — (Set) defined on objects by

F(A) = {isomorphism classes of objects in F'(A)}

and sending a homomorphism A — B in (Art /A) to the pullback function
F(A) — F(B). Suppose also that (k) is a trivial groupoid, so that F'(k)
will be a singleton, and F' a deformation functor.

We can see F' as a category fibered in sets over (Art /A)°P (as explained
in Section 1.2), and we have an obvious “quotient morphism” 7 — F' of
categories fibered in groupoids, sending an object of F to its isomorphism
class. To carry out the study of F' — (Art/A)? (and ultimately of the
deformation functor F') using the theory we will develop, we need to know
that F* — (Art /A)° satisfies [RS]. Unfortunately, this is not always true.

The reason is the following: suppose we have A4, A", A” € (Art /A), and
two homomorphisms 7’ : A” — Aand 7" : A” — A, the second one being
surjective, and consider the induced function

[ F(A xq A") — F(A") xpay F(A").
We want to know if this is a bijection, knowing that the functor
D . f(A/ X A A//) — f(A/) X]:(A) f(A”)

is an equivalence.

Surjectivity is not a problem: if we have an element (a,b) € F'(A’) X p4)
F(A"), where a and b are isomorphism classes of objects in F(A’) and
F(A") whose pullbacks to A are isomorphic, we choose representatives
¢ e F(A) for aand ¢ € F(A”) for b, and an isomorphism 6 : &[4 = £"|4
in F(A), obtaining thus an object (¢,£",0) € F(A") x x4y F(A"). Since
® is an equivalence we have an object { € F(A" x4 A”) such that ®(¢) is
isomorphic to (¢/,£”,0), and then its isomorphism class ¢ € F(A' x4 A”) is
such that f(c) = (a,b).

On the other hand injectivity is not always assured, basically because
the datum of the isomorphism between the pullbacks on A in an object of
F(A") x(a) F(A") is lost when we consider the corresponding element of
F(A") x pay F(A"). Precisely, we have the following proposition.

Proposition 1.3.13. F' — (Art /A)P satisfies [RS] if and only if for every sur-
jection A" — Ain (Art /A) and £ € F(A’), the homomorphism Aut 4/ (§') —
Aut 4 ('] 4) is surjective.

17
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Here if A € (Art /A) and £ € F(A), we denote by Aut (&) the group of
automorphisms of the object £ in the category F(A). The homomorphism
Auta/(£') — Aut4(€'] 4) is defined then by pullback of arrows, as in Section
1.2 (it will be studied further in Chapter 3).

Proof. Suppose first that the second condition of the statement holds. By
the discussion above (and with the same notation), we only need to show
that f is injective. Take a,b € F(A’ x4 A”) such that f(a) = f(b), represen-
tatives £,n € F(A’ x4 A”) for a and b, and write ®(¢) = (¢/,£",6),®(n) =
(n'sn",v).

Since f(a) = f(b) we have two isomorphisms f': ¢’ — 7' and f” : &’ —
n" in F(A") and F(A”) respectively. Consider then the diagram

&la—2=¢"a (1.1)

f/|A\L J/f//lA

n'la—=n"|a

This need not be commutative, but if it is, then (f’, /") will be an isomor-
phism between ®(&) and ®(n) in F(A’) xr4) F(A"), and from this will
follow that £ 2 7, and a = b.

Notice now that we can modify the isomorphism f’, by composing it
with an automorphism of ¢’ on the right. Let us consider then the compos-
ite

G(a) =07 o (f"|a) " ovo(ffoa)la € Auta(€|a)
where o € Auty/(¢') is an automorphism of £'.

Diagram 1.1 with f” o ain place of f’ will be commutative if and only if
G(a) = id. This can be rewritten as

ala=(fa) T ov o flacl € Auta(f]a)

and since Aut 4/(¢') — Auta(&'|4) is surjective, we can find an « that satis-
fies the last equality, and we can conclude by the argument above.

Conversely, suppose that we have a surjection A’ — Aand a ¢’ € F(4’)
such that Aut 4/(§’) — Auta(&’|4) is not surjective, and take f € Aut4(&'|4)
that is not in the image.

Then the two objects (¢',¢',id) and (¢', ¢, f) of F(A") x z(a) F(A') corre-
spond to the same element of F'(A’) x p(4) F((A’), but they are not isomor-
phic in F(A’) x 74y F(A’), because if (¢', g") was an isomorphism between
them, we would have a commutative diagram

o 9la
f'la—=¢a
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from which it would follow that f = (¢”0g'~!)| 4 is in the image of Aut 4/ (¢') —
Auta(€']a)-

In conclusion if we take ', " € F(A’ x 4 A") corresponding to (¢',¢’,id)
and (¢,¢, f), and we denote by a,b € F(A' x4 A’) their isomorphism
classes, we have a # bbut f(a) = f(b), and f is not injective. O

1.4 Examples

We introduce here three examples of deformation problems that will show
up systematically in the following, providing concrete examples to our ab-
stract constructions. In each of these example some additional hypotheses
may be required (on the ambient scheme over A, for example) to make
things work out sometimes. We will specify these hypotheses case by case.

Each of these examples has also a classical associated deformation func-
tor, which can be simply obtained by taking the associated functor of the
deformation category we will introduce for the problem. Moreover, each
of the deformation categories we will consider comes actually from a (and
possibly more than one) category fibered in groupoids over (Sch /A), which
is defined in a similar way. We will not consider these “global” deforma-
tions until Section 5.4, where we will briefly discuss the problem of alge-
braization of formal deformations.

1.4.1 Schemes

The simplest example is the one already introduced, which considers de-
formations of schemes, without additional structure.

Let us consider the following category fibered in groupoids, which we
will denote by De f:

Objects: flat morphisms of schemes X — Spec(A), where A € (Art /A).

Arrows: from X — Spec(A) to Y — Spec(B) are pairs (¢, f) where ¢ :
B — Ais a homomorphism and f : X = Yy is an isomorphism of
schemes (recall that Y4 denotes the base change Y Xg,cc(5) Spec(4)).

Given two arrows (¢, f) from X — Spec(A) to Y — Spec(B) and (¢, g)
from Y — Spec(B) to Z — Spec(C) the composite (¢, g) o (v, f) is (p, h)
where p : C — Ais simply ¢ 01, and if we call g4 : Y4 = (Zp)a the
isomorphism induced by g : Y = Zp by base change, h : X = Z, is given

by the composite
XLYAQ—A> (ZB)A%ZA

where the last isomorphism is the canonical one.
We have a natural forgetful functor Def — (Art /A)°P, and by the prop-
erties of the fibered product and the way we defined arrows we see that
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the conditions of Proposition 1.2.5 are satisfied, so that Def — (Art /A)%P
is a category fibered in groupoids. Notice that if Xy € Def(k) and A €
(Art /A), the category Defx,(A) is (apart from the properness hypothesis)
the one we defined before, of flat schemes over Spec(A4) with an isomor-
phism of the closed fiber with X,.

We have also a full subcategory Def of Def, whose objects are flat
schemes of finite type, and the restriction Def — (Art /A)P still gives a
category fibered in groupoids. Sometimes we will need this additional hy-
pothesis, and will have to restrict our attention to this subcategory.

Proposition 1.4.1. The categories fibered in groupoids Def — (Art /A)°P and
Def — (Art /A)°P are deformation categories.

For the proof of this and of the other similar propositions below, we
state a result (which is basically the affine case) whose proof can be found
in Section 8 of [Vis], with a minor modification.

Consider the category fibered in groupoids Mod — (Art /A)°P defined
as follows:

Objects: pairs (A, M) where A € (Art /A) and M is a flat A-module.

Arrows: from (A, M) to (B, N) are pairs (¢, f) where ¢ : B — Ais a ho-
momorphism and f : M =2 N ®p A is an isomorphism of A-modules.

The composite of (¢, f) : (A, M) — (B,N)and (¢,9) : (B,N) — (C,P)
is (p, h), where p is simply the composite potp : C' — A,and h : M — PRcA
is defined as the composite

M=N®pAX (P®cB)®p A= P®c A.

We have a natural forgetful functor Mod — (Art /A)°P, and by Propo-
sition 1.2.5 again we see that Mod — (Art /A)°P is a category fibered in
groupoids.

Proposition 1.4.2. The category fibered in groupoids Mod — (Art /A)°P is a
deformation category.

In particular, if A, A’, A” € (Art /A)and 7’ : A" — A,n" : A" — Aare
two homomorphisms, an object

(M, M",0) € Mod(A’) X ygea(a) Mod(A”)

can also be seen as a quintuple (M, M’ M" o/, o), where M is a flat A-
module, o : M’ — M is a homomorphism of A’-modules inducing an iso-
morphism M’ ® 4 A = M, and similarity for o”. Then a module over A’ x 4
A" whose image in Mod(A’) Xyoq(4) Mod(A”) is isomorphic to (M, M", 0)
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is given simply by the fibered product M’ x,; M"”. Most of the proof is
devoted to showing that this is a flat module over A" x 4 A”.

From the proof of this proposition it is also easy to deduce (as it is done
in [Vis] as well) that

D :Def(A' xa A”) — Def(A) X Def(A) Def(A”)

is an equivalence if restricted to affine schemes, and the same holds also for
Def.

Proof of 1.4.1. Let us extend the definition of the quasi-inverse
U : Def(A") Xpepay Def(A”) — Def(A x4 A”)

of ® that we described above to non-necessarily affine schemes. Take then
an object
(X', X",0) € Def(A") Xpepa) Def(A”")

that is, a pair of flat schemes X’ — Spec(A’) and X” — Spec(A”) with an
isomorphism 6 : X" |gpe0a) = X'|gpec(a) of the pullbacks to A. We can see
this object as the following diagram

X/ X//
\ /
X = XI’Spec(A)

A/ A//

—

A

where the morphism X'[g,cc(4) — X" is the composite of the inverse of 0
and of the closed immersion X"|g,ec(4) — X"

We consider then the sheaf of A’ x 4 A”-algebras Ox: xp, Ox» on the
topological space X. The locally ringed space X = (X,0xr xpy Oxn) is
a scheme by the affine case, and moreover it is flat over A’ x4 A”, since
flatness is a local property. We set then ¥(X’, X", ) = X.

By the universal property of fibered products one can easily see that
an arrow (X', X",0) — (Y',Y",v) gives a morphism X — Y, and routine
verifications show that ® and W are quasi-inverse to each other.

This shows that Def — (Art /A)°P is a deformation category. The same
construction also works for Def — (Art /)P, because of X’ and X" are of
finite type over A’ and A”, then X is of finite type over A’ x 4 A", O
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1.4.2 Closed subschemes

For our second example we want to consider, given a closed immersion of
schemes Yy C X over k, families of subschemes of X including the given
Y} as a fiber over a rational point.

In our setting, given a scheme X over Spec(A), we consider the follow-
ing category, which we will denote by Hilb*:

Objects: pairs (A4,Y) where A € (Art /A) and Y is a closed subscheme of
X4, flat over A.

Arrows: from (A,Y) to (B, Z) are homomorphisms B — A, such that the
induced closed subscheme Z4 C (Xp)4 corresponds to Y C X4 un-
der the canonical isomorphism (Xp)4 = X 4.

Composition is given by the usual composition of ring homomorphisms,
and it is easily checked that this is well defined: that is, if we have ¢ :
(AY) - (B,Z)and ¢ : (B,Z) — (C,W) arrows as above, then the com-
posite p 0 ¢p : C — A is still an arrow in our category, i.e. the induced
closed subscheme W, C (X¢)4 corresponds to Y C X 4 with respect to the
canonical isomorphism (X¢)a = X 4.

We have a natural forgetful functor Hilb®X — (Art /A)°?, and again by
the properties of fibered products and definition of the arrows we easily
see that we can apply Proposition 1.2.5, so that HilbX — (Art /A)?P is a
category fibered in groupoids.

Remark 1.4.3. There is an important difference between this example and
the previous one, namely the fact that in HilbX arrows are uniquely deter-
mined by their image in (Art /A). This “rigidity” phenomenon is strictly
related to the associated pseudo-functor of HilbX — (Art /A)° being actu-
ally a functor, and our fibered category being fibered in sets.

We will see later on that this is equivalent to saying that our deforma-
tion problem has no infinitesimal automorphisms (see Proposition 3.1.8).

Proposition 1.4.4. The category fibered in groupoids HilbX — (Art /A)°P isa
deformation category.

Proof. Let A, A", A” € (Art /A), n' : A" — A, 7" : A” — Abe two homomor-
phisms, and

@ : Hilb™ (A x4 A”) — Hilb™ (A') x4y Hilb™ (A”)

be the natural functor.
We sketch the definition of a quasi-inverse ¥ of ®. Take on object

(Y, Y") € Hilb™ (A) Xy (a) Hilb™ (A”)
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(notice that in this case the isomorphism between the pullbacks to A is irrel-
evant, because it can only be the identity); in other words Y is a closed sub-
scheme of X 4/, and Y of X4, such that Y'|gpec(a) = Y [spec(a) as closed
subschemes of X 4. We call this last closed subscheme Y C X 4.

We define Y as the locally ringed space (Y, Oy’ X, Oy~ ) over A’ x 4 A”.
From the proof of 1.4.1, we know that Y is actually a flat scheme over A’ x 4
A", inducing Y" and Y” on A’ and A”. Moreover we have a commutative
diagram

Y Y’

-

Y”*)XA/XAA”

(where Y’ — X 45 , 4 is the composite Y C X 4+ — X 415 , 4» and similarly
for Y"), which by the properties of the fibered product induces a morphism
Y — Xars an.

Since the pullback of this morphism to A’ is a closed immersion, and the
projection A’ x 4 A” — A’ is surjective (for 7" : A” — Ais) and has nilpotent
kernel, one can easily verify that Y — X, , v is a closed immersion as
well. We set then ¥(Y’,Y") = Y. Completing the definition on arrows
(which is trivial, since Hilb¥ is fibered in sets), one can readily check that
V is a quasi-inverse to ®. ]

The name Hilb comes from the fact that the deformation category is
related to the Hilbert functor, if the ambient scheme X is projective and of
finite type over A.

1.4.3 Quasi-coherent sheaves

For our last example, suppose we are given a quasi-coherent sheaf &, on
a scheme X over k, and we want to consider families of quasi-coherent
sheaves on X having a fiber over a rational point isomorphic to &.

Once again, we formulate the problem in terms of fibered categories.
Given a scheme X over A, we construct the category QCoh™ as follows:

Objects: pairs (A4, &), where A € (Art /A) and € is a quasi-coherent sheaf
on X 4, flat over A.

Arrows: from (A,€) to (B, F) are pairs (¢, f), with ¢ : B — A a homo-
morphism and f : £ = F4 an isomorphism of quasi-coherent sheaves
on X4, where F4 is the pullback of F along the natural morphism
X4 — Xp.

Composition is defined as in the first example: given (¢, f) : (4,€) —
(B,F)and (¢, 9) : (B,F) — (C,G), their composite (1, g) o (¢, f) is (p, h),
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where p : C' — A is the usual composite ¢ o 9, and if we denote by g4 :
Fa = (Gp)a the isomorphism induced by g : F = Gp by base change,
h: &= Gyis given by

e Fat (Gp)a=Ga

where the last isomorphism is the canonical one.

As before we have a forgetful functor QCohX — (Art /A)°P, and by
our definition of arrows and properties of the pullback of quasi-coherent
sheaves, we can use Proposition 1.2.5, and so QCoh* — (Art /A)P is a
category fibered in groupoids.

Proposition 1.4.5. The category fibered in groupoids QCoh™ — (Art /A)°P isa
deformation category.

Proof. Let A, A", A” € (Art/A) and ' : A" — A,n" : A” — A be two
homomorphisms; as usual, let

® : QCoh™ (A" x 4 A”") — QCoh™ (A") X geopx (4) QCoh™ (A)

be the natural functor. We extend the definition of the quasi-inverse ¥ of ®
that we already have in the local case, from the proof of Proposition 1.4.2.
Suppose we have an object

(E',",0) € QCoh™ (A') X geppx (a) QCoh™ (A)
which can also be seen as a diagram

g/ g//
\ /
& = E'lspec(n)

A/ A//

~h—

A

where the arrows £ — £ and £ — £” are respectively the cartesian arrows
in QCoh™ defining & = &' |spec(a) as the pullback of £’, and the analogue
arrow &”|gpec(a) — £, composed with the isomorphism 6 : &'|gpec(a) =
E"|spec(4) (Which is a genuine isomorphism of sheaves of A-modules) re-
spectively.

We consider then the sheaf of Ox Al A -modules € = & x¢ £" on the
scheme X 4y , 47; with £ x¢ £” here we mean the sheaf defined over an
open subset U of X by

EWU)={(s,8"):s€&'(U),s" €&"(U)suchthats ® 1 =s"®1€ &)}
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where the equality must be interpreted as: s’ ® 1 € £’[gpec(a) and 8" ®@ 1 €
& |spec(4) correspond to each other under the isomorphism 6.

Since £’ and &” are quasi coherent, £ is as well, and by the local con-
struction (Proposition 1.4.2) we have that it is flat over A’ x 4 A”. In conclu-
sion we can set W(&/,£",0) = €.

It is easy to see that an arrow (&', £”,6) — (G',G",v) will yield a homo-
morphism £ — G, and one can easily check that ¥ is a quasi-inverse of ®,
and so we are done. O
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Chapter

Tangent space

This chapter is devoted to the introduction and study of the tangent space
of a deformation category. This concept generalizes the corresponding ones
for schemes and deformation functors, and basically parametrizes first-
order deformations.

After defining the tangent space and discussing its action on isomor-
phism classes of liftings, we will calculate it in our three main examples,
and give an application to deformations of smooth hypersurfaces in P}.

Section 2.2 recalls some definitions and facts about extensions of alge-
bras that will be fundamental in the rest of this work.

2.1 Definition

Let F — (Art /A)°? be a deformation category and suppose &, € F (k). We
start by defining the tangent space as a set.

Definition 2.1.1. The tangent space of F at & is the set
Te, F = {isomorphism classes of objects in Fe,(k[e])}.

Remark 2.1.2. Recall that if z( is a point of a scheme X over k, there is a
bijection between elements of the tangent space T;,, X, where z is a rational
point of X, and morphisms Spec(kle]) — X such that the restriction to
Spec(k) — Spec(k[e]) is the point xo.

Using the point of view of Remark 1.3.11 we see then that (at least before
taking isomorphism classes) there is an analogy between the tangent space
just defined, and the classical one of a scheme.

Next we want to justify the name of tangent space, showing that there
is a canonical structure of k-vector space on T¢, F. To do so, we consider the
functor F': (FVect /k) — (Set) defined as follows: givena V' € (FVect /k),
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we take the ring k[V] of dual numbers of V' (which is the k-algebra k & V,
with product defined by (z,v) - (y, w) = (zy, zw + yv)), and associate to V'
the set

F(V) = {isomorphism classes of object in F¢, (k[V])}.

If V— W is a k-linear map, we get a homomorphism k[V] — k[W], and
by pullback (in the fibered category F¢,) an arrow F(V) — F(W). Clearly
F(k) = Tg, F.

We will show now that F has a lifting F : (FVect /k) — (Vect /k) to the
category of k-vector spaces, so that every F'(V) (in particular F'(k) = T, F)
will have a natural structure of k-vector space. As shown in appendix A, to
do this it suffices to check that I’ preserves finite products.

Recall that this means the following: given V, W € (FVect /k) the two
projections V& W — Vand V@ W — W induce functions F(V & W) —
F(V)and F(V & W) — F(W), which in turn give a function F(V & W) —
F(V) x F(W). F is said to preserve finite products if the last map is a
bijection for every V, W.

Proposition 2.1.3. The functor F defined above preserves finite products.

Proof. This follows directly from the fact that 7, — (Art/A)° satisfies
[RS], as was shown in Proposition 1.3.10. Take V, W € (FVect /k), and put
A" = k[V], A” = k[W] with the projections 7’ : k[V] — k, 7" : k[W] — k.
Then the fibered product A’ x; A” is just k[V & W], and [RS] gives us an
equivalence of categories

O Fey (R[V @ W) = Feo (k[V]) Xz (k) Feo (KW])-

The induced function on the sets of isomorphism classes of objects coin-
cides with the one F(V & W) — F(V) x F(W) induced by the projections
as above, which is then a bijection, because ® is an equivalence of cate-
gories. O

For completeness” sake we describe briefly this structure: first of all
F(0) has exactly one element, which is simply the isomorphism class of
the identity §, — &o in F¢, (k). Moreover every V € (FVect /k) has a nat-
ural map 0 — V that induces F(0) — F(V); the zero element of F(V) is
then the image of this map. In our particular case this corresponds to the
isomorphism class of the “trivial” pullback of £, along the inclusion homo-
morphism k — k[V].

Addition is defined by the composite

FOV)x F(V) = F(V e V) 25 oy
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where + : V @ V — V is the addition of V. Similarly multiplication by
a € kis simply F(u,) : F(V) — F(V), where pi, : V — V is multiplication
by a.

From now on we will consider F' as a functor (FVect /k) — (Vect /k).

Remark 2.1.4. Suppose we have another object 9 € F(k), such that there
is an arrow f : {g — np (which is an isomorphism). It is clear then that f
will induce a bijection T¢, F — T),,F, which is actually an isomorphism of
k-vector spaces.

So isomorphic objects over k will have isomorphic tangent spaces.

Remark 2.1.5. As discussed in appendix A this canonical lifting (FVect /k) —
(Vect /k) is a k-linear functor, so we can apply Proposition A.6 and con-
clude that for every V' € (FVect /k) we have

F(V)2Ve,Fk)=V e TgF.

Remark 2.1.6. If I is the deformation functor associated with F¢, it follows
immediately from the definition that TF' = T¢  F as k-vector spaces, so that
the given definition of tangent space generalizes the standard definition for
deformation functors (and for schemes, as noticed in Remark 2.1.2).

In particular if we have a moduli space M representing a certain functor
F : (Sch/S)°? — (Set) (and suppose that the corresponding deformation
category satisfies [RS]), we can get informations on the tangent space of M
by studying that of the deformation category associated with F'.

As expected, along with the concept of tangent space comes the one of
differential of a morphism.

Let H : 7 — G be a morphism of deformation categories, and sup-
pose &y € F (k). Then as in Remark 1.3.12 we have an induced morphism
He, @ Fey — Gr(gy)- fwecall F,G @ (FVect /k) — (Set) the two functors
involved in the construction of the tangent spaces of F at &y and G at H (o)
respectively, Hg, will induce a natural transformation ¢ : F' — G.

Precisely, givena V' € (FVect /k) we have a functor

He, (K[V]) = Feo (k[V]) = Gr(eo) (K[V])

and taking isomorphism classes we obtain a function (V') : F(V) — G(V).
The naturality property follows directly from the fact that He, : F¢, —
GH(¢) is a functor.

Since F' and G are k-linear functors, from Proposition A.5 we see that
¢ is automatically k-linear. In particular (k) : F(k) — G(k) will be a
k-linear map.

Definition 2.1.7. The differential of H at & is the k-linear map

d&)H = gﬁ(k/‘) : TgO]: — TH(Eo)g
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Concretely, given a € T¢, F and an object £ € F¢,(k[e]) in the isomor-
phism class a, the image d¢, H (a) is just the isomorphism class of H (&) €

G (eo) (Kle])-

Remark 2.1.8. As one expects the differential of the composite of two mor-
phisms of deformation categories is the composite of the differentials, as is
very easy to see. Moreover if a morphism H : 7 — F is isomorphic to the
identity, then the differential d¢, H : Ty F — Tiy(¢,)F is an isomorphism.

If in particular H : F — § is an equivalence, then d¢,H : T¢, F —
Ty ()9 is an isomorphism too. This is because in this case H has a quasi-
inverse K : G — F, and the composites H o K and K o H are isomorphic
to the identities; this implies that

dH(fo)K (¢] déOH : Tgof — T&J]:

and
deoH © dpr(o) K Th(0)9 — Th(eo)9

are isomorphisms, and so dg, H will be too. Here actually K (H (&)) needs
only to be isomorphic to &, so we use the isomorphism of Remark 2.1.4 to
identify T (py(¢,))F and Tg, F in the composites above.

2.2 Extensions of algebras and liftings

In this section we define and state some standard facts about extensions of
algebras that will be used very frequently from now on. Let R be a ring,
and A be an R-algebra.

Definition 2.2.1. An extension of A is a surjection A" — A of R-algebras with
square-zero kernel I = ker(yp) C A’. We also say that A" — A is an extension of
Aby I

An extension as above is usually pictured as the exact sequence or R-
modules
0 1 A A 0.

It is a standard fact that in this situation I is an A-module in a natural way:
givena € Aand ¢ € I we just take an element o’ € A in the preimage of a
and define a - i as a’i € I. This is well defined because 1% = (0).

Example 2.2.2. If M is an A-module, then there is a trivial extension of A
by M, that we obtain by considering A & M as an R-algebra in the natural
way (defining the product by (a,m) - (a’,m’) = (ad’,am’ + a’m), so that in
particular M? = (0)), and the projection A & M — M. This is called the
trivial extension of A by M.

The R-algebra A © M defined above is called the ring of dual numbers
of M, and we will denote it by A[M]. In particular if A = k is a field and
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M = k, we obtain the k-algebra k[t]/(t?) = k @ kt, which is the usual ring
of dual numbers k[e] (where €2 = 0).

The following is also a standard fact, that will be used later on.

Proposition 2.2.3. Let A’ — A be an extensions of R-algebras with kernel I, B
an R-algebra, and f,g : B — A’ two homomorphisms of R-algebras such that
the composites with A" — A coincide. Then the difference f — g : B — I is an
R-derivation.

Conversely, if f : B — A’ is a homomorphism of R-algebras and d : B — I is
an R-derivation, then the map f + d : B — A’ is a homomorphism of R-algebras

such that the composite with A" — A coincides with B Loaoa

Suppose now we have two extensions of R-algebras A’ — A and B’ —
B, with kernels I and J respectively, and an homomorphism of R-algebras
¢ : A" — B’, such that ¢(I) C J. Then ¢ will induce p : A — B and
¢|r : I — J, which fit together with ¢ in a commutative diagram.

Definition 2.2.4. A morphism between two extensions of R-algebras A’ — A
with kernel I and J respectively is a triplet of homomorphisms (f, g, h), where
f:I—Jg:A — B' h:A— B,such that the diagram

0 1 A’ A 0

Foe

0 J B’ B 0

is commutative.

So a homomorphism ¢ as above induces a morphism (¢|7, ¢, ®) be-
tween the two extensions.

Definition 2.2.5. A splitting of an extension of R-algebras A" — A is a homo-

morphism of R-algebras ¢ : A — A’ such that the composite A 2> A" — A'is the
identity.

Standard arguments show that an extension admits a splitting if and
only if it is isomorphic to a trivial extension.

Now we restrict our attention to extensions of algebras in (Art /A). The
following type of extensions will play a particularly important role.

Definition 2.2.6. An extension A" — A in (Art /A) is said to be small if the
kernel I is annihilated by the maximal ideal m 4/, so that it is naturally a k-vector
space.

A small extension is called tiny if I = k as a k-vector space, or equivalently if
I is principal and nonzero.
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From now on when we write “A" — A is a small (tiny) extension”,
we mean also that A’, A € (Art /A) (and recall that the homomorphism is
automatically local).

The following proposition will allow us to consider small extensions in
most of the questions we will face.

Proposition 2.2.7. Let A’ — A be a surjection in (Art /A). Then it can be
factored as a composite of tiny extensions

A =4)— A — - — A, =A.

Proof. Let I be the kernel of A’ — A, a proper ideal of A’. Since I C my
and m, is nilpotent, say m’, = (0) and m’;,' # (0), then Im’, ! =
Moreover we have a chain of ideals

O)=Imy ' CIm?C..-C1I
which gives a compostion of surjections
A=At — AT’ — s AT A

which are easily seen to be small extensions.

Finally, since the kernel of each of the homomorphisms A’/Im?, —
A’'/Im’;" is a finite-dimensional k-vector space we can take a basis and
consider the successive quotients by elements of this basis, thus factoring
the projection A'/Im’,, — A'/I mi‘_,l into a composite of tiny extensions. []

Now we come to liftings of objects of a deformation category. The idea
is that if we want to study the deformations over A € (Art /A) of a given
object over k, we should do this inductively using the factorization of the
surjection A — k given by the preceding proposition to reduce to the case
of small extensions.

Definition 2.2.8. Let F — (Art /A)° be a deformation category, ¢ : A’ — A
a surjection in (Art /A), and & € F(A). A lifting of £ to A’ is an arrow § — ¢’
over .

Equivalently, a lifting of £ to A’ is an object &’ € F(A’) together with an
isomorphism of its pullback ¢, (¢’) with £ in F(A). Sometimes we will refer
to a lifting only by means of the object &’ over A’ leaving the arrow from ¢
understood.

Generalizing the construction of the category F¢, it is easy to see that
given ¢ and ¢ as above, the liftings of { to A’ are the objects of a category
Lif (¢, A"), in which arrows from f : £ — & tog : & — £ are arrows
h:¢& — & of F(A) such that ho f = g. We will call Lif(¢, A’) the set of
isomorphism classes of liftings of £ to A’.

Both Lif(¢, A") and Lif(¢, A") clearly depend also on the homomor-
phism A’ — A, but we will not specify it in the notation, since it will always
be clear from the context which homomorphism we are considering.
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Remark 2.2.9. In the following we will make some constructions starting
with an isomorphism class [¢'] of a lifting and possibly pick one of its ele-
ments in the process, without mentioning that the final result will not de-
pend on this choice (because we will be often taking isomorphism classes
again in the end).

In particular if we have an element a € I ®;, T¢,F, we will also write a
for an object of F¢, (k[I]) belonging to the isomorphism class a.

2.3 Actions on liftings

Part of the usefulness of the tangent space is the fact that it gives some con-
trol on the liftings of objects of F along small extensions, as the following
theorem shows.

Theorem 2.3.1. Let F — (Art /A)P be a deformation category, A" — A a small
extension with kernel I, and take §y € F(k), § € Fe,(A). Then Lif (€, A') is either
empty, or there is a free and transitive action of I ®y, T¢,F on it.

Proof. Let £ — & and & — & be two liftings of £ to A’, and notice that to-
gether they give an object of the category F(A’) x z(4) F(A’). By [RS], they
give rise to a lifting £ — {&7,&5} of £ to the fibered product A’ x4 A’, and
exactly as in the proof of Proposition 1.3.10 one can see that this construc-
tion gives a bijective correspondence between pairs of isomorphism classes
of liftings of £ to A’ and liftings of { to A’ x4 A'.

We have an isomorphism of rings f : A’ x4 A’ = A'@I = A'[I], given by
f(a1,a2) = (a1, a2 — a1), commuting with the projections on the first factor
A’ Tt is clear that it is an additive isomorphism. Moreover using the fact
that 12 = (0) we see that f is a ring homomorphism: we have

f((a1,a2)(b1,b2)) = f(arb1, azbz) = (a1by, azbs — a1by)
and on the other hand
fla1,a2) f(bi,b2) = (a1, a2—a1) (b1, ba—b1) = (a1b1, a1(ba—b1)+bi(az—ar)).
But now
ai(by —b1) + bi(ag — a1) = asba — arby — (a2 — ay1)(ba — b1) = azbs — a1by

because (a2 — al)(bg — bl) e I%

Moreover, if we call 7 : A — k the quotient map, there is an isomor-
phism A'[I] = A’ x, k[I], defined by (a,v) — (a, 7(a) & v), which also com-
mutes with the projections on the first factor, and so as before we have a
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bijection between the isomorphism classes of liftings of £ to A’[I] and pairs
of isomorphism classes of liftings of £ to A" and of & to k[I].

s ] /]
i

/ - / e e

k

In conclusion we have a bijection ® given by
Lif(¢, A") x Lif(¢, A") — Lif(¢, A") x Lif (&, k[I]) = Lif (¢, A") x (I @y TeoF).

By construction if m; : Lif(§, A") x Lif(§, A’) — Lif(¢, A’) is the projection
to the first factor, then m o ®~! is also the projection to the first factor
Lif(§, A") x (I @ Tg, F) — Lif (&, A’). Let us consider now

p=myo® 1 Lif(¢, A) x (I @ Te, F) — Lif (¢, A')

where 7y : Lif(§, A") x Lif (¢, A’) — Lif(§, A’) is the projection on the second
factor, and let us show that it gives an action of I ®;, T¢,F on Lif(§, A').
Once we have done this, the action will automatically be free and transitive
because of the bijectivity of .

We have to show:

* p([£,0) = [¢] for every [¢'] € Lif(E, A"),

o u([¢],a+b) = u(u([¢],a),b) for every [¢'] € Lif(§, A’) and a,b €
I®k Tgof.

Let us start with the first statement; we show that ®([¢'],[¢]) = ([¢],0).
Consider the diagonal map d : A’ — A’ x4 A’ given by d(a) = (a,a),
and notice that the pullback of ¢ along this map is isomorphic to {¢&',£'}.
Moreover the composite fod : A" — A" @ I'is (f o d)(a) = (a,0), so the
following diagram commutes.

A/

fod ~
Aol A" xy k[]

Since the second component of ®([¢'], [£']) can be obtained by pulling back
¢’ along the top homomorphism A’ — k[I] of the above diagram, it is pre-
cisely the element we obtain by pulling back ¢’ along the “trivial” homo-
morphism A" — k — k[I], and so it is the zero element of I ®;, T, F.
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For the second statement, we consider an element [¢'] € Lif(¢, A’) and
a,b € I ®y T, F. With arguments similar to the ones used before, we see
that the triple fiber product A" x4 A’ x4 A’ is isomorphic to A’ & I & I by
means of the map (a1, az2,a3) — (a1,a2 — a1,a3z — a2), and isomorphism
classes of liftings of { to A’ x 4 A’ x 4 A’ are in correspondence with triplets
of liftings of £ to A’, and similarly for A’ & I & I = A’ xy, k[I] xj, k[I]. So we
have a bijection

Lif (€, A') x Lif (¢, A') x Lif (¢, A') 2 Lif(¢, A) x (I @ Tey F) x (I @ Te, F)

such that the triplet ([¢'], u([¢'], @), u(p([€'], @), b)) corresponds to ([¢'], a, b).

In particular p(u([¢'], a),b) is the isomorphism class of the pullback of
the object {&',a,b} on A" xj, k[I] xj, k[I] = A’ ® I ® I along the induced
projection on the third factor

ﬂé:A/@I@I§A’XAA/><AA/—>A’

given by (a,v,w) — a+ v + w.

On the other hand we have a homomorphism A'@I&I — A'®I = A'x;,
E[I]induced by addition on I (explicitly given by (a, v, w) — (a,v+w)), and
by definition of addition in I ®j, T¢,F the pullback of {£', a, b} to A" x, k[I]
is just {¢’, a + b}. We can now pullback further along

A xp kI = A xq A2 A

and we obtain exactly p([¢'],a + b) € Lif(§, A’). In conclusion we have a
commutative diagram

AeTal 29 g —" e Ay k[] — A x4 A

Trg l ._//
A/

that lets us conclude that p(u([¢'],a),b) = p([¢'], a + b). O

From now on we will drop the notation p : Lif(&, A") x (I ®@ T¢, F) —
Lif (&, A’) for the action, and we will simply write it as a multiplication on
the right.

The following corollary is a straightforward application of Proposition
2.3.1.

Corollary 2.3.2. Let F — (Art /A)°P be a deformation category, and &y € F (k).
If Te, F = O, then there is at most one isomorphism class in F¢,(A), for every
A€ (Art /A).
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Proof. Take A € (Art /A), and consider the quotient map 7 : A — k. Using
Proposition 2.2.7 we can factor 7 as a composite of small extensions

A=Ay— A —...— A, =k.

Call n(A) the least n with such a factorization. We will use an induction on
n(A).

If n(A) = 0 we have A = k, and the result is clear. So suppose we know
the conclusion up to n(A) — 1, and consider the small extension A — A;
(with the above notation), with kernel I.

By inductive hypothesis F¢,(A;) is either empty or all its objects are
isomorphic. If it is empty, F¢,(A) will be too (because there is a pullback
functor F¢,(A) — F¢,(A1)), and in this case we are done; if it is not empty,
consider two objects §y — & and &y — &' of F¢, (A), if there are any.

We have that the pullbacks &y — £|4, and §y — &'| 4, are isomorphic in
Fey (A1), and so [¢] and [¢'] are both elements of Lif(&]4,, A). Since this set
has a transitive action of I ®j, Tg, F = 0, we have that [¢] = [¢/], and then
¢ = ¢’ (also as objects of F¢,(A")). O

Remark 2.3.3. We will sometimes use the following notation: when [¢], [¢”]
are two isomorphism classes of liftings of { € F¢,(A) to A’, where A’ — A
is a small extension with kernel I, we will denote by g([¢'], [£”]) the element
g € I ®y, T¢, F such that [¢"] - g = [¢'].

This action has two natural functoriality properties, that we now dis-
cuss. The first one is a functoriality with respect to the small extension. Let
F — (Art /A)°? be a deformation category, and A’ — A, B’ — B two small
extensions, with kernels I C A" and J C B’. Suppose we also have a homo-
morphism ¢ : A” — B’ such that ¢(I) C J, and thus inducing 3 : A — B
and ¢|7 : I — J. In other words, we have a morphism of extensions

0 I A A 0
\L@h i‘P l%’
0 J B’ B 0.

Letusalsohave ¢ € F(k),§ € F¢,(A) and assume Lif (€, A") is nonempty
(so that Lif (%, (£), B') will also be nonempty). We have a k-linear map

ol ®@id : I @ Tey F — J @y Tey F

(which by naturality of the isomorphism of Remark 2.1.5 corresponds to
the pullback function Lif (§y, k[I]) — Lif(&p, k[J]) induced by id &¢|;), and
a pullback function on isomorphism classes of liftings

p. 1 Lif (g, A') — Lif(9.(6), B).
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Proposition 2.3.4. We have

e«([€] - a) = ¢u([€']) - (¢lr @id)(a)
for every a € I @y, Te, F and [€'] € Lif(§, A).

Proof. Call
pa : Lif(€, A) x (I @ T, F) — Lif (¢, A')

and
pp : Lif(2.(€), BY) x (J @ Te, F) — Lif(9.(€), BY)
the two maps giving the actions, as in the proof of Theorem 2.3.1. We have
to prove that the following diagram commutes.
Lif(€, A') x (I @y, Tg,F) . Lif (€, A")
(<P*M|1®id)l lso*
Lif(.(€), B')  (J @k TeyF) — = Lif(9,(€), B)

Fix [¢'] € Lif({,A") and a € I ®; Tg, F = Lif(&, k[I]), and recall that
pa([€'], a) is defined as the (isomorphism class of the) pullback of the object
{¢,a} over A’ xy, k[I] along the composite

A xpk[I] =2 A xa A2 AL

To get . (1a([¢], a)) we have to pullback further along ¢ : A” — B’. On the
other hand we obtain p5(¢«([¢']), (¢|r ® id)(a)) by taking first the pullback
of {¢/, a} along the induced homomorphism

(p,id®ply) : A" xp k[I] — B’ xy k[J]
and then pulling back again along B’ x; k[J] = B’ xg B’ =% B'.
But we have a commutative diagram
A Xy k[I] = A x4 A =D
(%id@”)i l%"
B %3 k[J] == DB' x5 B —> B/
so the pullbacks of {¢', a} along the two homomorphisms are isomorphic,

and we are done. O

Remark 2.3.5. Using the notation of Remark 2.3.3, we can equivalently say
that if [¢'], [¢"] € Lif (&, A") we have

(e« (€], [ (€M)]) = (elr @ id)(g([€'], [€"]))-
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The second one is functoriality with respect to the deformation category.
Let F — (Art /A)°? and G — (Art /A)°P be two deformation categories
with a morphism F : 7 — G, A" — A a small extension with kernel I, and
let §y € F(k), & € Fey(A). Assume also that Lif (¢, A’) is nonempty (so that
Lif (Fg, (€), A") will also be nonempty).

There is a k-linear map

id@dg,F : I @ TeyF — 1 @ Tp(e,)9
induced by the differential d¢, F' : Tg, F — TG, and we still denote by
F:Lif(¢, A) — Lif(F(€), A)
the induced function on isomorphism classes of liftings.
Proposition 2.3.6. We have
F([¢] - a) = F([¢]) - (}d @dg, F)(a)
for every a € I @y, Tg, F and [£'] € Lif (€, A").

Proof. Consider [¢'] € Lif(¢, A’) and a € I1®;Tg,F; as in the preceding proof,
we recall that [¢'] - a is defined as the isomorphism class of the pullback
along A’ x k[I] =2 A’ x4 A" ™% A’ of the object {¢/,a} over A’ xj k[I], so
that there is a diagram

{S’Ia} ~— {5’15”} ~— fff
A k[l —Ss A xq A

where ¢ € F¢,(A4’) is such that [”] = [¢'] - a.
If we apply the base-preserving functor F' to this diagram, we get a
similar one with top row

{F(&), Fa)} <—A{F(), F(§")} =—F(")
so that F(¢”) is (isomorphic to) the pullback of {F(¢'), F(a)} along A" xy,

2

k[I] =2 A" x4 A" = A’, whose isomorphism class is F'([¢]) - F(a) by defini-
tion of the action of I ®j, Tr(¢,)7-
But by definition of differential F'(a) is precisely (id ®dg, F')(a), and so

F([§ - a) = F(I"]) = [F(£")] = F([¢]) - (id @dg, F') (a). O

Remark 2.3.7. As before we can reformulate this result using the notation
of Remark 2.3.3, and obtain

g((FE], [F(EN)]) = (id@dg, F)(g(1€], [€)
for every [¢'], [¢"] € Lif(¢, A').
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There is a generalization of the previous constructions, that we will
need later to state a theorem about vanishing of obstructions (see Theo-
rem 4.1.9). Given A € (Art /A), £ € F(A), we consider the liftings of £ to
A-algebras of the form A[M] where M € (FMod /A) (and the homomor-
phism A[M] — A is the quotient map).

We have a functor F¢ : (FMod /A) — (Set) defined on objects by

F¢(M) = {isomorphism classes of liftings of £ to A[M]}

and sending an A-linear map M — N to the pullback function F¢(M) —
F¢(N).

Since F — (Art /A)°P satisfies [RS], one can readily show (as in the con-
struction of the tangent space) that the functor F preserves finite products,
and so by Proposition A.3 it has a canonical lifting (FMod /A) — (Mod /A),
which we still call F¢. Notice that in opposition to the case A = k, the func-
tor F¢ need not be exact. Nevertheless, one can easily prove using [RS] that
it is half-exact, that is, if

0 M’ M M" 0
is an exact sequence of finitely generated A-modules, then the sequence
Fe(M') — Fe(M) — F¢(M")

is exact.
The following proposition can be proved in the exact same way as The-
orem 2.3.1.

Proposition 2.3.8. If A" — A is a surjection in (Art /A) with kernel I such that
I? = (0) (so that I is an A-module), and ¢ € F(A), then Lif(¢, A') is either
empty, or there is a free and transitive action of F¢(I) on it.

24 Examples

We now calculate the tangent space in each of the examples introduced in
Section 1.4, and give an application to infinitesimal deformations of smooth
hypersurfaces in Py’.

2.4.1 Schemes

We first consider the deformation category Def — (Art /A)°P correspond-
ing to deformations of schemes of finite type.

Theorem 2.4.1. Let X be a reduced and generically smooth scheme of finite type
over k. There is an isomorphism (sometimes called the Kodaira-Spencer corre-
spondence)

TXOZ/)—E} = EXt}QXO (QXO, OX())'
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Proof. Call F : (FVect /k) — (Set) the functor defined on objects by
F(V') = {isomorphism classes of objects in Def xo (E[V])}

and that sends a k-linear map V' — W to the pullback function F(V) —
F(W). Our aim is to construct a functorial bijection

F(V) 2V @ Exto, (2x,, Ox,)

that will give a k-linear natural transformation between the functors F' and
— Qp Ext%gx0 (2x,,Ox,), and in particular we will get an isomorphism

Tx,Def = F(k) = Extl, (Qx,, Ox)-

We will proceed in several steps.
Step 1. We start by constructing a function

v : F(V) —V ® EXt}QXO(QX()?OXo)'

Take an object X € Def x,(k[V]), which is a flat scheme of finite type over
E[V] with an isomorphism

X XSpec(k[V]) Spec(k) = Xo

(in particular Ox @y k = Ox,).
We see first that the sheaf of ideals I of X in X can be identified with
V @k Ox,: tensoring the exact sequence of k[V]-modules

0 1% k[V] k 0 (2.1)

with Ox, by flatness of X over k[V] we get an exact sequence of Ox-
modules

00—V @) Ox Ox Ox, 0
where the second map is the canonical projection. So we have
I£2v Qk[v] Ox 2V @ (k Qk[v] Ox) =V @ Ox,-

In particular 12 = (0),and I/I? = I 2V ®j, Ox,.
Now consider the conormal sequence of Xy C X

V®k OXOL'QX|XOHQXO*>O

where d is the homomorphism induced by the universal derivation Ox —
Qx. From Proposition C.9 we see that in our case d is injective, and so we
have an exact sequence of Ox,-modules

0 - V ®k OXO I QX’X() QXO O
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whose isomorphism class in an element of Ext}, < (Qx,,V®rO0x,) 2V 4

Ext}gxo (2x,,0x,). Itis also clear that isomorphic objects of Def X, (K[V])
will give isomorphic extensions, and so we have our function

v : F(V) -V ® EXt}?XO (QXO, OXO)-
Step 2. We construct a function

Yy V @ Ext}QXO (Qx,,O0x,) — F(V)

in the other direction. We start then with an element of Ext%f)xo (Qx,, V @
Ox, ), represented by an extension

00—V ®; Ox, E ! Qx, 0

of Ox,-modules. We define then a sheaf of k-vector spaces O(E) by
O(E) = OXO XQXO FE C OXO ok

where the morphism Ox, — Qx, is the universal derivation dy. The sheaf
O(F) fits in the following commutative diagram with exact rows

00—V ®;O0x, — O(F) Ox, 0
L,

From Proposition C.11 we see that O(E) has a natural structure of sheaf of
(flat) k[V]-modules (coming from the first row).

We check now that it is a sheaf of subrings of Ox, @ E, where the
product here is defined by (s1,€1)(s2,€2) = (s152, s1€2 + s2e1). Recall that
O(F) = Ox, Xq Xo E C Ox, @ FE is by definition the submodule of the ele-
ments s + e with s is a section of Ox,, and e one of E, such that dy(s) = f(e)
as sections of Qx,.

First, the identity 1 +0 of Ox, ® E is in O(E), because dp(1) = 0 = f(0).
Moreover if s; + €1, s9 + eg are sections of O(FE), then (s1 + e1)(s2 + e2) =
5189 + s1e9 + sgeg and

d(s182) = s1d(s2) + sad(s1) = s1f(e2) + saf(e1) = f(s1e2 + saf1)

because d is a derivation, d(s1) = f(e1), d(s2) = f(e2), and f is Ox,-linear
respectively. So (s1 + e1)(s2 + e2) is a section of O(E) as well. Stability
under sum and multiplication by elements of % is clear. It is also immediate
to check that the defined product is compatible with the structure of k[V]-
module.
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Then O(E) is a sheaf of flat k[V]-algebras on the topological space | Xy|.
It is easy to see that its stalks are local rings, so that X (E) = (|Xo|, O(E))
is a locally ringed space, and moreover it is a scheme (flat over k[V]). This
is simply because if U = Spec(A) is an open affine subscheme of X, then
(U, O(F)|v) is isomorphic to Spec(A xq, E(U)).

Since O(E) @y k = Ox, we see also that X (E) Xgpec(k[v]) Spec(k) =
Xo. Furthermore, X (E) is quasi compact because X, is, and from the exact
sequence

00—V & OXOHO(E) OXO 0

we see that X (F) is of finite type over k[V].

Suppose U = Spec(A) is an open affine subscheme of X, such that A
is a finitely-generated k-algebra; call z1,...,z, a set of generators. Then
taking cohomology (and observing that H(U,V ®;, Ox,) = 0 since U is
affine and V' @, Ox, is quasi-coherent) we get the exact sequence

0——=T(U,V ®, Ox,) ——=T(U,O(E)) —L=T(U,Ox,) = A —>0.

Take liftings y1,...,y, € I'(U, O(E)) of x1, ..., x,, and the k[V]-subalgebra
B they generate; we see that B is the whole I'(U, O(E)). If € T'(U, O(E)),
then g(x) € Ais p(x1,...,x,) for a polynomial p € k[z1,...,2,]. Thena —
P(y1,-..,Yn) € ker(g), and so we have polynomials p1, ..., p, € klz1, ..., 2]
(where r is the dimension of V') such that

a_p(yh'"’yn) :i(vl ®p1(x1,...,xn)+-~-+w ®p7-(.’II1,--- 7‘7:71))

where v, ..., v, is a basis of V. Since

i(vi @pi(x1, ..., 20)) =i - 0i(y1,- -, yn) € T(U,O(F))

we have written a as a polynomial P(yi,...,y,) with coefficients in k[V],
and this proves that a is an element of B, and our claim.

Finally, noticing that this construction is independent (up to isomor-
phism) of the representative chosen for the element of Ext}o < (Qx,,V @

Ox,), we get a function
1/1\/ . V ®k EXt%QXO (QX(M OXo) - F(V)

Step 3. We show that ¢y and 1y are inverse to each other. Given an
object X € Def y, (k[V]), we have the associated extension

of Ox,-modules, and we have to show that the scheme we get from this
one is isomorphic to X over k[V].
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We have a commutative diagram with exact rows

00—V ®; O0x, Ox Ox, 0
\Ld ldo
0—V ®r Ox, — Qx|x, ! Qx, 0

where d and dj are induced by the universal derivations, and the top row
is the exact sequence associated with the closed immersion Xy C X. The
induced map Ox — O(Qx|x,) = Ox, Xay, {1x|x, is an isomorphism of
sheaves of k-vector spaces, and again by Proposition C.11, also of sheaves
of k[V]-vector spaces. Furthermore it is immediate to see that it is actually
an isomorphism of sheaves of k[V]-algebras, and this shows that X (x| x,)
is isomorphic to X over k[V].
Conversely, if we start from an extension of O x,-modules

00—V ®; Ox, E Qx, 0
we have to show that the conormal extension

00—V &, Oxy — Qx(p)lxo — Qx, —>0

is isomorphic to the one above. Consider the second projection y : O(E) —
E; itis a k-derivation, because if a is a section of Ox,, coming from k clearly
m2(a) = 0 (since a corresponds to the section (a,0) of Oy, @ E), additivity
is obvious, and if 21 + e; and x5 + eg are sections of O(F), then

mo((z1 +e1)(x2+e2)) = mea+x2er = (21 +e1)ea + (2 + e2)eq
= (21 +e1)ma(w2 + e2) + (v2 + e2)m2 (21 + €1).

Then we have an induced Ox g)-linear homomorphism Qx () — E such
that a section of the form d(x + ¢) of Qx () goes to the section e of £. This
in turn gives an Oy, -linear homomorphism f : Qxgy|x, — E that fits into
a commutative diagram

00—V & Ox, — Qx(p)lxo — Qx, —>0

i

00—V ®; Ox, E Qx, —=0

and this (by the five Lemma) gives an isomorphism of extensions, as claimed.
Step 4. We show that ¢y is functorial in V. In other words, given a
k-linear map f : V — W, the diagram

F(V) v V Ext%gx0 (2x,,0x,)

(id®f)« lf@id

F(W) —2= W @ Exty (2x,, Ox,)
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is commutative.

This is almost immediate from the functoriality of the conormal exact
sequence: if X is an object of Def x,(k[V]), and X" is the pullback of X to
E[W], we have a commutative diagram

0——V ® OX();)QX|XO QXO 0 (2.2)
o |
0 I W ®k‘ OX() I QX’ ’XO QXO O

where the map Qx|x, — Qx|x, is induced by the natural morphism X’ —
X.
On the other hand the image of the extension

0 —_— V ®k‘ OXO I QX’X() QXO O

in W ®;, Ext}gxo (2x,,Ox,) is the second row of

00—V &, Ox, — Qx|x, Qx, 0
S
0—— W ®; Ox, E Qx, 0

where FE is the pushout of the following diagram.
V @ Ox, — Qx| x,
fj
W ®i, Ox,

But 2.2 implies (by the five Lemma, as usual) that this “pushout extension”
is isomorphic to the one associated with the deformation X’ over k[W]

00— W &, Ox, — Qx/|x, Qx, 0

so we have the functoriality of ¢y, and this concludes our proof. O

Remark 2.4.2. If X is of finite type over k, it is easy to see that every de-
formation of X, over A € (Art /A), say X, will also be of finite type over
A. This follows from the same arguments used to show that X (E) was of
finite type in the preceding proof, starting from the exact sequence

00— my Qf OXO Ox OXO 0
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where my ®j, Ox, is seen as ideal sheaf of X in X. In particular if X is
of finite type over k the deformation categories Defx, and Def x, are the
same, so from now on we will only consider Defx, in this case.

From this we see that if X is reduced, generically smooth and of finite
type over k, then we also have

TXODCf = EXt}QXO (QXO, OXO)'

Given ¢ € Fg,(k[e]), the element of Ext}QXO (Qx,,Ox,) associated with &
is sometimes called its Kodaira-Spencer class, from the names of the two
mathematicians who first studied this type of problems in the case of com-
plex varieties.

Remark 2.4.3. If X is also smooth over k, then the tangent space T'x,De f
is isomorphic to Ext}gxo (Qx,,0x,) = H'(Xo,Tx,), where Tx, = Q&O =
Hom(Slx,, Ox,) is the tangent sheaf of X.

In particular we see that every first-order deformation of a smooth and
affine variety X is trivial, because in this case H!(Xy,T,) vanishes. So
smooth affine varieties are rigid.

Remark 2.4.4. In the general case, in which X is not necessarily reduced
and generically smooth, one has to resort to the cotangent complex L,
associated with the structure morphism X, — Spec(k); the general result,
which can be found in [I11] (III, 2.1.7), states that there is a canonical isomor-
phism

Tx,Def = Exto, (Lxo/k: Oxo)

and implies Theorem 2.4.1, since if X is reduced and generically smooth
the cotangent complex is just the sheaf Qx,.

2.4.2 Smooth varieties

Now suppose Xy is a smooth variety over k. We describe the bijection
Tx,Def = H' (X0, Tx,)

more explicitly in this case, using Cech cohomology. This will be useful
in Chapter 4, where we will use this description to give an example of an
obstructed variety.

Consider an object X € Defx,(kle]) and take an open affine cover U =
{U;}ier of Xo; notice that since X is separated, every finite intersection
of elements of this cover will be affine again. Because of Remark 2.4.3 the
induced deformation X|y, of U; is trivial for every index i, and from this
we get a collection {6; };c; of isomorphisms of deformations

ei : Uz XSpec(k) Spec(k[a]) — X|Ui‘
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Now put 0;; = 0, 19j ; these are automorphisms of the trivial deformations
Uij Xspec(k) Spec(k[e]) that restrict to the identity on the closed fiber Uy;.

It is an easy consequence of Corollary 3.1.4 and Proposition 3.2.1 below
that there is an isomorphism between the group of automorphisms of the
deformation Uj; Xgpec(k) Spec(k[e]) that induce the identity on the closed
fiber, and the group Dery(B;;, Bij) = I'(Ui;, Tx, ), where U;; = Spec(DB;;).

For each 6;; we get then an associated element d;; € I'(U;;, Tx,). Fur-
thermore, on U;;;, we have for each triplet of indices the cocycle condition

035 0 05 = Os

on automorphisms, which translates into the relation d;; + dji, — diz = 0
(here and from now on when we write relations of this kind, the restriction
on the triple intersection is understood). This in turn says that the family
{di;}ijer is a Cech 1-cocycle for Tk, and so defines an element [{d;;}; je1]
of H (U, Tx,) = H' (X0, Tx,)-

This element does not depend on the cover Y = {U;}ic;. To see this,
given another affine cover V = {V;}cs of Xy, it suffices to consider a com-
mon affine refinement (for example {U;NV;}; j)erx.7), and restrict the cocy-
cles relative to the two covers to cocycles relative to the common refinement
to see that they represent the same class in H'(Xy, Tx,)-

Let us check that this construction is invariant under isomorphism. Sup-
pose Y € Defx,(kle]) is another deformation of X, with an isomorphism
of deformations F' : X — Y. Then, writing v; and v;; for the analogues of
the 0; and 0;; relative to the new deformation, the following composite

Fly; .

0; vy
Ui XSpec(k) Spec(k:[s]) — X’U,‘ — Y|Ui — Ui XSpec(k) Spec(k:[s])

is an automorphism «; = v; ! o F|y;, 0 6; of U; X spec(k) Spec(k[e])]) inducing
the identity on the closed fiber, so it defines an element a; € I'(U;, T'x,).
Since by definition v; o o; = F|y, o ;, we get

ozi_l ovijoay = (v;0 ai) lo (vjoay) = 91-_1 o F|511] o Fly,; 00 = 0y

and in turn this implies 6;; + a; — a; = d;;, where J;; are the elements
of I'(U;j, Tx, ) associated with the automorphisms v;;. Then {d;;}; jer and
{6i}4,jer are cohomologous, and so their class is the same. This gives us a
well-defined function

Tx,Def — H'(Xo,Tx,)

that can be seen to correspond to the one we constructed in the proof of
Theorem 2.4.1.

The inverse function is as follows: given an element of H'(X, Tx,),
we can represent it as a 1-cocycle {d;;};jer for some open affine cover
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U = {U, }ier of Xo. The d;; correspond to automorphisms of the trivial de-
formation U X spec(r) Spec(ke]), and the cocycle condition says exactly that
these automorphisms can be used to glue the schemes U; X gp,cc(1) Spec(k|e])
along the subschemes Uj; Xgpec(r) Spec(k[e]), to get a flat scheme X over
k[e]. It is easy to see that this construction does not depend (up to isomor-
phism) on the affine cover, and on the cocycle we choose in the cohomology
class. Finally it is clear that the two constructions are inverse to each other,
so we have the bijection above.

2.4.3 C(Closed subschemes

Next we consider the case of deformations of closed subschemes. Given an
object of Hilb* (k), i.e. a closed subscheme Zy C Xy = X X spec(n) Spec(k),
call I the ideal sheaf of Z; in Xy, and consider the normal sheaf Ny =
Hom([o/Ig, OZO)'

Theorem 2.4.5. There is an isomorphism
Tz, Hilb™ = H®(Zo, No) = Homo, (Io/15, Oz,).

Proof. We consider the functor F' : (FVect /k) — (Set) defined on objects
by
F(V) = {objects in Hilby, (k[V])}

and sending a k-linear map V' — W to the associated pullback function
F(V) — F(W). We will construct a functorial bijection

F(V) 2V @, Homoy, (Io, Oz,)

that will give a k-linear natural transformation, and in particular an iso-
morphism
Tz, Hilb™ = F(k) = Homoy (I, Oz,)

(notice that Homo, (1o, Oz,) = Homo,, (Io/I5, Oz,)). We divide the proof
in steps.
Step 1. We define a function

v F(V) = V @, Homo, (1o, Oz,).

Take an object Z € Hilb)z(o(k[V]), that is, a closed subscheme Z C Xy,
where Xy = Xo Xgpec(k) Spec(k[V]) is the trivial deformation of X over
k[V], and restricting to Z over k; call I C Oy, its sheaf of ideals.

Starting as usual from the exact sequence of k[V]-modules

0 v k[V] k 0
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and tensoring it with Oz and Oy, , using flatness we get two exact se-
quences
0—— % ®k‘ OXO OXV OXO 0

and

0——V ®; Og, Oz Oz, 0

of Ox,,-modules and Oz-modules respectively. Moreover, tensoring

0 I Oxy Oz 0
with k, by flatness of Z we get

O*>1®k:[V] k OXO OZO 0

and from this we see that I ® k[v] k can be identified with I, the sheaf of
ideals of Zy C Xj.

These four exact sequences fit into the following commutative diagram
of Ox,,-modules.

0 0 2.3)
I Iy 0
0 I V ®k OXO OXV DX OXO O
l q 9
0—V ®; Og, Oz —5,~ Oz 0
0 0

Since
Ox, = Ox, @k k[V] =2 Ox, ® (V ®; Ox,)

as an Ox,-module, the map px has an Ox,-linear section, which we call o,
simply defined by o(s) = (s,0), where s is a section of Oxj.
The composite
filyg 5 O0x, % Ox, L Oy
factors through V @, Oz, — Oz, because

pzof=(pzoqloooi=qyo(pxoo)oi=gyoi=0.

So we have an Ox,-linear morphism Iy — V ®; Oz, which is then an
element of Homo (1o, V @1 Og,) =V ®y Homo, ({9, Oz,), and this gives
us a function

F(V) -V Rk HOIIl@XO (Io, OZO)
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that we call py.

Step 2. We construct a function in the other direction. Take a homomor-
phism of Ox,-modules f : Iy — V ®;, Oz,, and consider the subsheaf I; of
Ox, = O0x, ® (V ®; Ox,) given on an open set U of | Xy | by

It (U) ={(s,t) € Ox, (U) : s € Iy(U) C Ox,(U) and f(s)+(id ®qo)(t) = 0}.

where qp : Ox, — Oy, is the quotient map.
An easy verification shows that I is a sheaf of ideals of Ox,,, and it is
clearly coherent, begin the kernel of the homomorphism

fom + (id®g) o : Ox, — V @) Og,.

between two quasi-coherent sheaves. So I; defines a closed subscheme of
Xy thatwecall Z; C Xy
We see that

Z§ Xspec(k[v]) SPec(k) C Xv Xgpec(k[v]) SPec(k) = Xo

is the closed subscheme Zj: this follows simply from the fact that the sheaf
of ideals of Z; X Spec(k[V]) Spec(k) in X is I Qk[V] k= Ip.

Furthermore, we see that Z; is flat over k[V]. Using the local flatness
criterion, we have to check that Tor]f[v]((’)z, k) = 0. We have an exact se-
quence of Ox,,-modules

0 Iy Ox,, Oz 0

from which, taking the Tor exact sequence (tensoring with k), we get
Torf Oy, , k) = Tor'(0 4, k) — Iy @y k — Oxy — Oz, — 0.

Since Xy is flat over k[V] we have Tor]f[v] (Ox,,k) =0, so we only need to
show that the map I Qv k — lo C Ok, is injective, and this is clear (it is
the isomorphism already used above).

This gives us a function

V Q4 HOIHOXO (I(), OZO) — F(V)

that we call ¢y .

Step 3. We show that ¢y and vy are inverse to each other. Starting
from an object Z € Hilby, (k[V]), with sheaf of ideals I in Xy, we have the
Ox,-linear homomorphism f = ¢y (Z) : Ip — V ® Og,, and we have to
show that I; = I.

If sisasectionof I C Oy, = Ox, ® (V ®; Ox,), write s = sp + t in
this decomposition, where sy is a section of Iy and ¢ one of V ®; Ox,. Then
f(s0) = q(o(s0)), and

0=gq(s) =q(so+1t) =q(c(s0)) +q(t) = f(s0) + (id ®qo)(t).
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Then sg + ¢ is a section of I, and I C Iy.
Conversely, take a section (s,t) of I #, which we see also as the section
s+t of Ox,,. Then

q(s +1) = q(o(s)) + q(t) = f(s) + (id@qo)(t) = 0

and this implies that s + ¢ is a section of I, so Iy C I. In conclusion I = Iy,
andso Z = Zy.

The other half of the claim follows from straightforward diagram chas-
ing, using 2.3.

Step 4. Finally we see that ¢y is functorial in V. This is also immediate:
given a k-linear map f : V. — W, it amounts to the commutativity of the
diagram

Hilby (k[V]) —— V @} Homoy (I, Oz,)

(id @f)*l lf@id
Hilby (k[W]) —Y>= W @, Homoy, (Io, Oz,).

The map Homo, (lo,V ®; Og,) — Homo, (Lo, W ® Og,) corresponding
to f ®id above is given by composite with f®id : V®, Oz, — WOz, on
the left, and it is easy to see (for example adding the rows corresponding to
W to diagram 2.3) that, given Z € Hil b)Z(O (k[V]), taking the homomorphism
ov(Z) : Iy — V ®f Og, and composing with V ®; Oz, — W ®; Oz,
will precisely give the homomorphism Iy — W ®; Oz, associated with
the pullback of Z to k[IW]. So we have the functoriality of ¢y, and this
concludes our proof. O

In the following discussion we suppose also that X is of finite type over
A (and then any of its closed subschemes is as well). We then have a nat-
ural forgetful functor F : HilbX — Def that sends an object Y C X4 of
HilbX (A) to the flat morphism Y — Spec(A), which is an object of Def(A),
and acts on the arrows in the obvious way.

The functor F'is a morphism of fibered categories, and we are interested
in its differential at a closed subscheme Zy C X = X Xgpec(a) Spec(k), with
Zy reduced and generically smooth.

Since Tz, Hilb™ = Homo,, (Io/I§, Oz,) and Tz, De f = Extly, (Qz,,Oz,),
the differential of " will correspond to a k-linear map
dz,F : HOInOZO (Io/lg, OZQ) — EXt%’)ZO (QZO, OZO)
that we still call dz, F.

Lemma 2.4.6. If Zy and X are as above, the conormal exact sequence of the closed
immersion Zy C X

IO/Ig 4d> QX0|Zo QZO 0
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gives a coboundary map & : Homo,, (Io/13,0z,) — Ext%gzO (Qz,,02z,).

Proof. First, it is well known that d is injective where Zj is smooth. Since
it is generically smooth, if we let X = ker(d), then supp(K) can’t contain
any irreducible component of Z. It follows that Homeo Z (K,0z,) =0,and
from this we get

Homo,, (lo/1, Oz,) = Homo, ((1o/15)/K, Oz,).

Then from this isomorphism and the induced exact sequence

00— (lo/I5)/K — Qx| 2 Qz, 0
taking the long Ext exact sequence we get our coboundary
¢ : Homo, (Io/15,0z,) = Homo, ((Io/15)/K,Oz,) — Ext}QZO (Qz,,02,).
O

Proposition 2.4.7. The differential d, F of the forgetful functor F coincides with
the homomorphism 6 of Lemma 2.4.6.

Proof. We have to show that the following square (where the vertical func-
tions are the isomorphisms we described in the proofs of Theorems 2.4.1
and 2.4.5) is commutative.

dzy F

Ty Hilb™ Ty, Def

| i

Homo,, (Io/13,02z,) 9 Extlozo (Q2z,,02,)-

By possibly replacing Iy/I3 with the quotient (Iy/12)/K, we can suppose
that the conormal sequence of Zy C X

0 IO/Ig QX0|Z0 QZO 0

is exact. Then the coboundary § sends a homomorphism f : Iy/I3 — (g) ®y
Oy, to the “pushout extension”, the bottom row of the diagram

0 10/13 QXO‘ZO QZO 0
d |
0— (¢) @k O, E Qz, 0
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where FE is the pushout of
Io/ 1§ —— x|z
4
(5) Xk OZO’
We have to show that the extension we get by taking f = fz, the homo-

morphism associated with an object Z € Hilb)Z(O(k[z-:]), is (isomorphic to)
the extension

0— (¢) ®k Oz, — Qz|z, Qz, 0

corresponding to Z € Def 7o (kle])-

We now notice that the section Ox, — Ox. = Ox,®((e)®1Ox,) (Where
X, is the trivial deformation X Xgpec(r) Spec(ke])) used in the proof of
Theorem 2.4.5 induces a section Qx, — Qx.|x, of the homomorphism of
Ox,-modules Qx_|x, — x,, which is part of the conormal sequence of
Xo € X.. This section induces by pullback an Oz, -linear g : Qx,|z, —
QXE ’ZO'

Moreover the inclusion Z C X, gives Qx_|z — Qz, which we can pull-
back to Zj, and get another O, -linear homomorphism h : Qx_|z, — Qz|z,.

The composite h o g is an Ogz,-linear homomorphism Qx,|z, — Qz|z,
that fits into a commutative diagram

0 I/ I§ Qx, |z Qz, 0 (2.4)
R
0— () @k Oz, — Qz|z, Qz, 0.

Commutativity of the right square follows at once from the one of the fol-
lowing square
Qx| xo — Oxo

.

Qz|z, —Qz,

where the horizontal maps are induced by the closed immersions Xy C X,
and Zy C Z, the vertical ones by Z C X, and Zy C Xy, and the map
Qx, — Qx.|x, is the section mentioned above.

Commutativity of the left square follows from the fact that f = f was
defined (in the proof of Theorem 2.4.5) using the section Ox, — Ox_, which
we used also to define h o g (by taking the one induced on the shaves of
differentials).

51



CHAPTER 2. TANGENT SPACE

Finally we notice that 2.4 implies that the pushout extension above is
isomorphic to

0 —— (8) ®k OZO — QZ‘ZO QZ() 0
and this concludes the proof. O

Remark 2.4.8. If X is smooth and Zj, is a generically smooth local complete
intersection in X, we have that the conormal sequence

0 IO/Ig : Qx| Qz, 0

is also exact on the left, and all the terms are locally free Oz, -modules. This
is because, if we put K = ker(d), since Zj is generically smooth K will be
concentrated on a nowhere dense closed subset of Zj (because d is injective
where Zj is smooth); from the facts that Iy/13 is locally free on Z, and that
Z is a local complete intersection, so it cannot have embedded points, it
follows then that L = 0.

If Zy is also smooth, dualizing we get another exact sequence

0——=1T7, *)TXO‘ZO —=Nog—=0

that induces a coboundary map H%(Zy, Ny) — H'(Zy,Tz,). This map cor-
responds to § when we identify H°(Zo, Ny) with Homo, (Io/I§,Oz,) and
H'(Zo,Tz,) with Extp,, (Qz,,Oz,).

From now on we will write d also for the coboundary map H®(Zy, Np) —
H(Zy,Tz,), when Zy and X, are smooth.

2.4.4 Hypersurfacesin A}

We study now the case of deformations of hypersurfaces in A?; in partic-
ular our aim is to describe explicitly the Kodaira-Spencer correspondence
Tx,Def — ExtbxO (Qx,,Ox,) of a reduced and generically smooth hyper-
surface Xo C A}.

Suppose Xy = Spec A where A = k[zo,...,z,]|/(f), and put Iy = (f).
First of all we calculate Ext}gxo (Qx,, Ox,) = Extl(Qa, A). Consider the
conormal exact sequence of the immersion Xy C A}

0 Io/13 Qfzryzn] Ok A ——=Qy ——0

which is also exact on the left, by Remark 2.4.8.

We recall that Q. ., is a free k[z1, ..., z,]-module on n generators
that we denote by dx1,...,dz,, and the map I/IZ — Qfar,zn] Ok Ais
defined by

[=df = 8fd$1®1+--~+8—fdxn®1
8331 8

n
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and extended by linearity.
Let us apply the functor Hom4(—, A) to the sequence above, and take
the Ext exact sequence. We get

Homa (Q(e,.....2.] Ok A, A) < Homa(Io/12, A) — ExtY(Q4,4) —=0

where the map Homa(Ip/IZ, A) — Extl(Q4, A) is the differential of the
forgetful morphism F' : Hilb*x — Def at the object Xy € Hilb*: (k). In
particular we see that this differential is surjective, or in other words, every
deformation of Xy, over algebras of the type k[V] is affine as well.

Noticing that Iy/I3 = A and Q.00 @A = A", the map G will corre-
spond to an A-linear function A™ — A that is given by scalar multiplication
by the vector (0f/0z1,...,0f/0xy,). The image of G corresponds then to
the Jacobian ideal J = (9f/0z1,...,0f/0x,) C A of Xy, and we have

Extjlé‘(QA,A) > AT 2 Eklzy,...,x,)/(f,0f)0x1,...,0f/0xy).

From this we see that Tx,Def is finite-dimensional if and only if X has
isolated singularities (for the singular locus is exactly defined by the ideal .J
in Xo, and k[z1,...,2,]/(f,0f/0x1,...,0f/0x,) will be finite-dimensional
exactly when V' (.J) is zero-dimensional).

The dimension of k[z1,...,x,]|/(f,0f/0x1,...,0f/0x1) as a k-vector
space is called the Tyurina number of X, and since this is also the dimen-
sion of T'x, De f, we see in particular that it is independent of the immersion
of X in the affine space.

Suppose now we have a first order deformation X € Defx,(k[¢]) of
Xo; by the remark about the forgetful morphism above we have a closed
immersion X C AZ[E] that extends Xy C A7. Taking a lifting f 4+ cg €
kle]lx1,...,x,] of f along the projection k[e|[z1,...,zn] — k[z1,...,24]
(where g is some element of k[x1, ..., z,]) we see easily that

X = Spec(kle][z1, ..., zn]/(f +€9)) € Ajy.

Then the class of X in Extg, < (Q2x,, Ox,) will be the image along the differ-
ential Hom4(Ip/I2, A) — Ext!(Qa, A) of the homomorphism /I3 — A
corresponding to the object X C Ay € Hilb*A (k[e]), as in the proof of
Theorem 2.4.5.

Using diagram 2.3 in this particular case, one can easily check that the
morphism I/ Ig — A we are looking for is the one that sends f (a generator
of Ip/12) to the class of g in A. In conclusion we have proved the following:
Proposition 2.4.9. If X = Spec(k[¢][x1,...,xn]/(f +€g)) is a first-order defor-
mation of X, then the corresponding element of Ext, o (Q2x,,0x,) is

lg] € k[x1,...,2,]/(f,0f )Ox1,...,0f/0xy).
In particular X is a trivial deformation ifand only if g € (f,0f /0x1,...,0f/0xy).
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2.4.5 Smooth hypersurfaces in P}

We give an application of the previous constructions to deformations of
smooth hypersurfaces of P}. Take A = k, and suppose we have a smooth
hypersurface Z, C P} of degree d, withn > 2,d > 1.

We can ask the following question: given a deformation Z of Z; over
Spec(k[V]), where V' € (FVect /k), can we find a closed immersion Z C
P that extends Zy C IP}? The existence of such an immersion for every
such Z is equivalent to the surjectivity of the differential of the forgetful
morphism at Zj

dzoF =8 : H*(Zo,No) — H'(Zo,Tz,).-

Proposition 2.4.10. The map ¢ is surjective exactly in the following cases:

e n=2d<4.
e n=3d#4
* n >4, anyd.

Proof. We start with a piece of the cohomology exact sequence

HO(Zo, No) == H'(Zo, Tz,) — H (20, Tep | 2,) —= H'(Zo, N) ~ (2.5)

induced by the dual of the conormal sequence of Zy C P}, as in Remark
2.4.8.
The first step is to prove

Lemma 2.4.11. coker(0) = H*(P}, Ty (—d)).
Proof. First, we notice that H'(Zy, Ny) = 0. This is because Ny = Oy, (d)

(since Iy = Opy(—d)), and HY(P7, Opr(d)) = H%(P7, Opr) = 0, so from the
cohomology exact sequence induced by

0 Opp —> Opy (d) ——> Oz,(d) —0

where f is an equation for Zy, we get H'(Zy, No) = H' (P}, Np) = 0 (be-
cause N has support contained in Zj).
From 2.5 we deduce then that coker(§) = H'(Z, Tpr|z,), which is the
same as H 1(]?%, Ipy |z,), again because Ipy |z, has support contained in Zj.
Tensoring the exact sequence

00— Orp(~d) L Oy Oz, 0
with Tpr we get

0 —Tpp(—d) ——Tpp ——Tpr|z, —0. (2.6)
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Now we notice that H* (P, Ty ) = 0 fori > 1: this follows from H ‘e, Opn) =
H'(P}, Opy (1)) = 0, using the cohomology exact sequence coming from the
dual of the Euler sequence

0 Opp Opp (1)) —— Ty —— .
From 2.6 we get then an isomorphism
H (P, Ty | z) = H* (P, Tpp (—d)). N
To understand H?(P?, Tpn(—d)), we consider the exact sequence
0 — Opp(—d) — Opp (1 — d)® ) —— Tpn (—d) —0

obtained by twisting the dual of the Euler sequence by Opr (—d), and the
following piece of its cohomology exact sequence

H?(P}, Opp (—d)) —= H?(P}, Opn (1 — d))""' —= H2(P}, Tpp (—d)) (2.7)

HP (P}, Opp(—d)) — H* (P}, Opp (1 — d))" .
Suppose now n > 4. In this case we have
H* (PR, Opp (1 = )" = HP (P}, Opp(—d)) = 0

and then from 2.7 we obtain coker(§) = H?(P?, Tpr(—d)) = 0, so that § is
surjective.

Now take n = 2. We have then H? (P2, Opz (—d)) = 0 and so again from
2.7 we get

H2(B}, Ty (~d)) = coker (H*(B}, Oz (~d)) 5> H*(B}, Opy (1~ d))°)
where the map ¢ is the one induced by

O]Pg(—d) - Opi(l—d)%

T
[ — flx
<$2>

where the z;’s are homogeneous coordinates on P2 (seen as sections of the
sheaf Op: (1) of course).

By Serre’s duality we have H?(P%, Op2 (—d)) = HO(P%, Op2 (d—3))V and
H%(P?, Opz (1 —d)) = HO(P2, Opz (d — 4))", and the adjoint map
HO(B, Ops (d — 4))* £ HO(B, Ops (d — 3))
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is given by scalar multiplication by the vector (zo, 1, z2).

Now coker(p) = ker(p"). If d < 3 the source of " is trivial, so certainly
ker(pV) = 0. If d = 4, we have HO(P?, Opz2(d — 4)) = k, and the map AT
injective, because the sections xg, z1, z2 are linearly independent over Opi ,
so that ¢ is surjective. On the other hand when d > 5 clearly ¢" is it not
injective anymore, and so ¢ will not be surjective.

Suppose now that n = 3. Then H?(P2, Op2(—d)) = 0, and using again
- W};get (P%, Op2(—d)) g ag

H (P}, Tya (—d)) = ker (H3(PY, Opy (~d)) > H*(P, Opy (1 - d))*)

where ¢ is the analogue of the one we had in the preceding case. Again
using Serre’s duality we have to study

coker (HD(Pi, Opa (d - 5))" Eal HO (P}, Ops (d — 4))) :

If d < 3 the target is trivial, so that certainly coker(¢") = 0, and if d > 5 the
map ¢" is surjective, because every homogeneous polynomial of positive
degree in variables z¢, z1, x2, z3 can be written as a linear combination of
the variables z;’s, with homogeneous polynomials of one degree less as
coefficients. In these cases then ¢ will be surjective.

The only case in which ¢" is not surjective (and so J will not be too) is
d = 4, when the source is trivial and the target is not. O

We will examine the case n = 3,d = 4 further in Section 5.4, where it
will give a counterexample about algebraizability of deformations of sur-
faces.

We now state a more general result that follows from what we have
shown here, and from the following fact, which will be proved in Section
424.

Proposition 2.4.12. If Z, is a smooth hypersurface of P} of degree d, with n >
land d > 1, any object Z C P of Hilbg’; (A) can be lifted along any small
extension A" — A.

Proposition 2.4.13. Let Z — Spec(A) where A € (Art /k) be a flat morphism
of schemes over k, and Zy = Z Xgpec(a) Spec(k) C P} be a closed immersion,
making Zy a smooth hypersurface of degree d in P}, withn > 2 and d > 1.

Then there is a closed immersion Z C P} inducing Zo C P} in all cases except
n=2,d>5andn=3,d =4.

Proof. We already know from the preceding discussion that in cases n =
2,d > 5and n = 3, d = 4 there are counterexamples.
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Suppose then that we are not in one of the cases above, and take the
given Z € Defz,(A). We consider a factorization of the homomorphism
A — k as a composite of small extensions

A=Ay— A —...— A, =k.

and proceed by induction on n(A), the least n with such a factorization.

If n(A) = 0 there is nothing to prove. Suppose we know the result for
n(A) — 1, and consider the extension A — A; with kernel I. The pullback
Z|a, € Defz,(A1) of Z to A; admits then a closed immersion Z|4, C P,
because of the induction hypothesis.

From the discussion above we also know that the differential of the for-
getful morphism dz, F : T, Hilb®x — Tz, Def is surjective, and in particu-
lar

id@dg, F : I @ Tz, Hilb"* — I @y Tz Def

will be surjective too.

Because of Proposition 2.4.12 we can find a lifting Z’ C P} of Z|4, C
P7, to A; both Lif(Z|4,, A) and Lif(Z4, C P’} , A) will then be nonempty,
and by Theorem 2.3.1 we have free and transitive actions on them, respec-
tively of I ®; Tz, Def and I ®j Tz, Hilb" .

The object Z' € Defz,(A) is a lifting of Z|4,, as is Z, so by transitivity
of the action we have an element g € I ®j, Tz, Def such that [Z'] - g = [Z];
take then h € I ®j, Tz, Hilb"k such that (id ®dz, F)(h) = g.

Then using Proposition 2.3.6 we have

F((Z' CPh)-h) =2 ([d®dg F)(h) = [Z] - g = [Z].

In other words the object (Z' C P7%) - h is (after possibly composing with
an isomorphism of schemes over Spec(A)) a closed immersion Z C P’} that
induces Zy C P} on the closed fiber, which is what we were looking for. []

The only things we really used in this proof were surjectivity of the dif-
ferential and existence of liftings in the source deformation category. Ev-
erytime these two facts hold in an abstract setting we can repeat the same
argument to deduce that every object of the target deformation category is
isomorphic to the image of an object of the source.

2.4.6 Quasi-coherent sheaves

Consider now a scheme X over Spec(A), and the deformation category
QCohX — (Art /A)°P of deformations of quasi-coherent sheaves on X. Let
& € QCoh™ (k).

Proposition 2.4.14. There is an isomorphism

Tg, QCoh™ = Exty (&0, €o)-
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Proof. Consider the functor F' : (FVect /k) — (Set) defined on objects by
F (V') = {isomorphism classes of objects in QCohgg (k[V])}

and sending a k-linear map f : V. — W to the corresponding pullback
function F(V') — F(W'). We show that there is a functorial bijection

F(V)=V ey EXt}oxo (&0, &0)

that will give as usual a k-linear natural transformation, and in particular
an isomorphism

Tg, QCoh™ = F(k) = Exty, (&, &)-

It is an easy consequence of Proposition C.12 that the category QC ohé{) (k[V])
of quasi-coherent Oy, -modules £ on Xy = Xo Xgpec(r) Spec(k[V]) with an
isomorphism & @y k = &, is equivalent to the category whose objects are
extensions of quasi-coherent O x,-modules

00—V ®; & E & 0

and arrows defined in the obvious way. This automatically gives us the
bijection ¢y we wanted, taking isomorphism classes.

So we only have to check functoriality. Suppose f : V. — W is a k-linear
map; we show that the diagram

F(V) —"V @ Exto, (&, &)

(id@f)« J{f@id
F(W) W W g EXt}QXO (50, 50)
is commutative.

Starting with an object £ of QCohgg (k[V']), we have the associated ex-
tension

00—V &, & & &o 0
that gets mapped by f ® id to the “pushout extension”, the bottom row of
0——=V & & & &o 0
foa l
0——= W& & F &o 0

where F is the pushout of the following diagram.

Veply——E&

f®id‘

W Qp &

58



CHAPTER 2. TANGENT SPACE

But on the other hand we have a commutative diagram with exact rows

00—V ®r & £ & 0
f®idl i«p
0——=W & & &’ &o 0

where &’ is the pullback of £ to k[W], coming from the fact that £’ is just
& Qox,, Ox,, in this case. This gives an isomorphism between the bottom
row of the last diagram (which is the extension associated with £’) and the
“pushout extension”, providing the functoriality we needed and ending
our proof. O

Remark 2.4.15. If & is locally free, than we have
Tg, QCoh™ = Extg . (€0, €0) = H' (X0, Endoy, (€0))

and moreover if & is invertible, then Endo . (€0) = & Vo, (&)Y = Ox,,
so that
Te, QCoh™ = H (X, Ox,)

which does not depend on &.
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Chapter

Infinitesimal automorphisms

The purpose of this chapter is to introduce and discuss the so-called group
(or space) of infinitesimal automorphisms of a deformation category at an
object &y € F (k).

We will see that this space gives a measure of the “rigidity” of a defor-
mation problem, and tell us how far our deformation category is from its
corresponding deformation functor. After the definition, we will examine
some of its properties, and finally calculate it in some examples.

3.1 The group of infinitesimal automorphisms

Suppose F — (Art /A)°P is a deformation category, and ¢ : A’ — Aisa
small extension. Fix £ € F(A), and let ¢’ € F(A’) be a lifting of £ to A’. We
are interested in automorphisms of ¢’ that induce the identity on &.

Definition 3.1.1. If A € (Art /A) and £ € F(A), we denote by Aut 4(€) the set
of automorphisms of the object £ in the category F(A).

Recall from Section 1.2 that ¢ induces a pullback functor ¢, : F(A") —
F(A). In particular we have a “restriction” function Aut/(§') — Auta(€)
(given by the composite Auta/ (&) — Auta(£'|a) = Auta(§), where the
last map comes from the canonical isomorphism &'|4 = €), which is a ho-
momorphism of groups. The automorphisms inducing the identity on ¢,
which we call infinitesimal automorphisms of & (with respect to &), are
the ones in the kernel of this homomorphism.

In this chapter we will see that the subgroup of infinitesimal automor-
phisms of £’ depends only on ker(y) and on the pullback of £ to Spec(k).

We start by defining the group of infinitesimal automorphisms of &, €
F (k). Notice that if A is a k-algebra we have a trivial deformation of {, over
A, which we denote by |4, given by the pullback of £, along the structure
homomorphism k£ — A.

60



CHAPTER 3. INFINITESIMAL AUTOMORPHISMS

Definition 3.1.2. The group of infinitesimal automorphisms of & is the sub-
group of Auty(&olkfe))

Inf (&) = ker (Auty (Soli)) — Autr(&o)) -

When we need to specify the category F in the notation, we will write
Infg, (F) instead of Inf(&p).

The group of infinitesimal automorphisms has also a canonical k-vector
space structure, coming from the fact that it is the tangent space of defor-
mation category.

Consider the functor Aut(§p) : (Art /k) — (Set) that sends an object A €
(Art /k) to Aut4(&o]4), and an arrow A’ — A to the function Aut 4/ (o] /) —
Aut4(&o]a) introduced above. This functor gives a category fibered in sets
over (Art /k)°?, and from the fact that F satisfies [RS] (precisely from the
“fully faithful” part), we get that Aut(§y) does too.

We can then consider the tangent space Tid50 Aut(&p), which is easily
seen to be as a set exactly Inf({y) defined above.

Remark 3.1.3. We see that the addition coming from the definition of the
tangent space and the group operation given by composition coincide (so
that Inf(y) will always be an abelian group).

Recall that addition is defined on Tig,, Aut({o) = Aut(&o)ia., (k[€]) by
the following diagram

Aut(&o)iag, (kler, e2]) —— Aut(&o)ia,, (k[e]) x Aut(&o)ia,, (K[e])

Aut(o)iae, (kle])

where we see k[e1,e2] as k[e] X}, k[e] (and of course 3 = €2 = e1e5 = 0), the

horizontal bijection is given by [RS], and the map ¢, is the pullback map
induced by ¢ : k[e1, 2] — k[e] that sends both £1,¢5 to €.

The horizontal map and ¢, are group homomorphisms (with compo-
nentwise composition as group operation on the product), so that the ad-
dition + is a homomorphism too. In other words for every f, f',g,¢" €
Tig,, Aut(§o) we have

(fof)+(god)=(f+g)o(f +g).
Taking ' =g = idg,),., we get f +4¢ =fog.

From the fact that Inf(&y) is the tangent space of a deformation category,
using Theorem 2.3.1 we deduce the following corollary.
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Corollary 3.1.4. Let F — (Art /A)°P be a deformation category, A" — A a small
extension with kernel I, and f € Aut(&o)ia,, (A). If Lif(f, A') is not empty, then
there is a free and transitive action of I ®y, Inf(&p) on it.

We now prove the initial assertion about the infinitesimal automor-
phisms of a lifting.

Proposition 3.1.5. Let F — (Art /A)°P be a deformation category, A’ — Aa
small extension with kernel I, &y € F(k), & € Fe,(A) and & a lifting of € to A’
Then we have an isomorphism

ker (Aut (£) — Auta(§)) = I @4 Inf(&).

Proof. We generalize the construction of the functor Aut(&p).

Consider the functor Aut(¢’) : (Art /A") — (Set) that sends a A’-algebra
B to the set Autp(¢'|p) (where &'|p is the trivial pullback of ¢ along the
structure homomorphism A" — B), and an arrow B’ — B to the induced
function Autp/ (¢'|p) — Autp(£|B).

The functor Aut({’) gives a category fibered in groupoids that satisfies
[RS] (over (Art/A’)), so we have a tangent space Tiq, Aut({') at idg, €
Aut (&) (k). Up to isomorphism we can also assume that ¢'|4 = ¢ (that
is, in the following we leave the isomorphism Aut4(§) = Auta(&'|4) un-
derstood).

Now notice that K = ker (Aut 4/ (§') — Aut4(§)) coincides with the set
of liftings of id¢ to A’, in the category Aut(¢’). Since this set of liftings
is nonempty (we have at least id¢/), by Theorem 2.3.1 we have a free and
transitive action of I ®y Tia,, Aut(¢’) on K. Moreover using the fact that
sum and composition coincide in Tjq, Aut(¢ ') (as is easily shown with the
same argument of Remark 3.1.3) it is easy to see that the bijection I @y
Tiq,, Aut(¢') — K defined by a +— idg -a is an isomorphism of groups.

To conclude it suffices to notice that Tig, Aut(§') = Tig, Aut(§o) =
Inf(&)), because every trivial lifting of £’ to a k-algebra of the form k[V]
is in particular (up to isomorphism) a trivial lifting of £y (the structure ho-
momorphism A" — k[V] is defined as the composite A’ — k — k[V]). O

Remark 3.1.6. Suppose we have two liftings of { to A’, say &1, &2 € F¢, (A7),
and an isomorphism of liftings f : £&; — &». Take an infinitesimal automor-
phism g; € Auta (&) of &, and consider go = fo gy o f7! € Auta (&),
which is an infinitesimal automorphism of &;. Then it is clear from the pre-
ceding proof that the elements of I ®j, Inf(&p) corresponding to ¢g; and g2
with respect to the isomorphism constructed above are the same.

From Proposition 3.1.5 we immediately get the following corollary.

Corollary 3.1.7. Let F — (Art /A)°P be a deformation category, and &y € F (k).
If Inf(&y) = 0, then for every A € (Art /A) and & € Fe,(A) the homomorphism
Aut 4 (&) — Autg(&o) is injective.
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Proof. Fix A € (Art/A) and ¢ € F¢ (A), and factor the homomorphism
A — k as a composite of small extensions

A=Ay — A —...— A, =k.

As in Corollary 2.3.2, call n(A) the least n with such a factorization, and
proceed by induction on n(A).

If n(A) = 0, then A = k and the conclusion is trivial. Suppose now that
we have our claim for n(A) — 1. Then the homomorphism Aut 4, ({|4,) —
Auty (&) is injective by inductive hypothesis, and Proposition 3.1.5 applied
to the small extension A — A; gives that ker(Auta(§) — Auta, ({|a,) =
I ®j, Inf(&y) = 0 (where I is the kernel of A — Aj).

Then Auta(§) — Autg, (£|4,) is also injective, and so is the composite

Aut4(§) — Auta, (§]a,) — Autg(&o). O

Further, we see that the group of infinitesimal automorphisms gives a
measure of the “rigidity” of our deformation problem.

Proposition 3.1.8. Let F — (Art /A)° be a deformation category and &, €
F (k). Then Inf(&) = 0 if and only if F¢y, — (Art /A)°P is a category fibered in
equivalence relations.

Proof. Recall that a groupoid is an equivalence relation if and only if the
only automorphisms are the identities.

Suppose that Inf(£y) = 0, and consider the category F¢,. By Corollary
3.1.7 we have that for every A € (Art /A) and object §, — &£ € F¢,(A), the
induced homomorphism Aut 4(§) — Autg(§p) is injective, and in particular
Auta(§o — &) (which is the preimage of idg,) has at most one element (it
will have exactly one, namely id¢).

It follows that F¢,(A) is an equivalence relation for every A € (Art /A),
and so F¢, — (Art /A)°P is fibered in equivalence relations. The converse
is trivial. O

In other words if a deformation problem does not have any nontrivial
infinitesimal automorphism, we do not lose anything by studying its de-
formation functor instead of the deformation category.

3.2 Examples

We now analyze the group of infinitesimal automorphisms in our three
examples.

3.2.1 Schemes

Consider the deformation category Def — (Art /A)° of flat schemes, and
Xo € Def(k).
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Proposition 3.2.1. We have an isomorphism
Iano (Def) = Derk (OXO 5 OXO ) = HOII](QX0 (QXO 5 OXO ) .

Proof. We have to understand the functor F' : (FVect /k) — (Set), that takes
V € (FVect /k) to

F(V) = ker (Autyy)(Xolxpy)) — Auty(Xo))

where Xo|yy) is the trivial deformation Xy = Xo Xgpec(r) Spec(k[V]). In
particular as topological spaces |Xy| = |Xp|, and on the structure sheaves
we have

Ox, = Ox, ® k[V] = Ox, ® (V ® Ox,).

Take an element ¢ € Aut(Xy)(V). Then ¢ will clearly be the identity as a
map between topological spaces, so we turn to the morphism o0 Xy —
Ox, on the structure sheaf, which is an automorphism of sheaves of k[V]-
algebras such that the diagram

#
Ox, ® (V & Ox,) —— Ox, @ (V @ Ox,)

mi | im

id
OX 0 OX 0

is commutative.
Using the analogue of Proposition 2.2.3 for extensions of sheaves, with
respect to the extension

0—V @ Ox, Ox,, Ox, 0

we see that ¢ differs from the identity of Ox,, by a derivation
Dw € Derk((’)XO, V Q4 OXO).

Conversely every ¢ as above can be obtained in this way, and so for each
V € (FVect /k) we get a bijection

F(V) = Derk((’)xo,v Rk OXO) =2V Derk((’)xo, OXO)‘

These maps are also functorial in V (as is readily checked), so the corre-
sponding natural transformation is k-linear, and in particular we have an
isomorphism

Iano (Def) = F(kﬁ) = Derk(OXO, OXO). L]

Remark 3.2.2. Notice that if X is of finite type over k, then (as we have
already remarked) every trivial deformation Xy will be of finite type over
E[V], so we will also have

Inf x, (Def) = Derg(Ox,, Ox,) = Homo, (2x,, Ox,).
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Remark 3.2.3. In particular if X is smooth Homox0 (Qx,,Ox,) coincides
with HY(Xy, T, ), so that infinitesimal automorphisms correspond to sec-
tions of the tangent sheaf, or “vector fields”, which is an old intuitive idea
from differential geometry.

3.2.2 C(Closed subschemes

Now we turn to deformations of closed subschemes. It was already men-
tioned that in this case the space of infinitesimal automorphisms is trivial.

Proposition 3.2.4. Infz, (HilbX) is trivial for every Zo € Hilb™ (k).

Proof. This is immediate from the fact that, for source and target fixed, the
arrows in HilbX are uniquely determined by their image in (Art /A)°P. In
particular an object of Hilb* (k[e]) can only have one automorphism (be-
cause they map to the identity of k[¢] in (Art /A)°P), which is the iden-
tity. Ul

3.2.3 Quasi-coherent sheaves

Finally let us consider the infinitesimal automorphisms of & € QCoh™ (k)
in the deformation category QCohX — (Art /A)°P.

Proposition 3.2.5. We have an isomorphism
Infg, (QCoh) = Homo . (€0, o)
Proof. We have to study the functor F' : (FVect /k) — (Set) defined by
F(V) = ker (Autgy(Ev) — Aut(&))
where, if V' € (FVect /k), the sheaf &y is the trivial lifting
Ev = m (o) = Eo @k k[V] = & @ (V @ &)

(where 7y : Xo Xgpec(r) Spec(k[V]) — Xo is the projection).

Consider an automorphism ¢ : & (V ®1 &) — £ (V @k &) of Ox,, -
modules that induces the identity on &. Using k[V]-linearity and V2 = (0),
we see as in Proposition 3.2.1 that ¢ restricts to the identity on V @y, &, and
if we write ¢(f) = f + G,(f) for a section f of the summand & C &y, then
Gy, : & — V @y & is a homomorphism of O x,-modules, and determines ¢
completely.

Conversely, given an O x,-module homomorphism G € Homp Xo (&0, Ve
&o), we can define a homomorphism of O, -modules

0e: € ® (V&) — & & (V k&)
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by ¢ (f+a) = f+G(f)+a, where f is a section of & and a one of V ®y, &.
Moreover ¢ will be an automorphism, with inverse ¢_¢.

These two correspondences are inverse to each other, so that for each
V € (FVect /k) we have a bijection

F(V) =2 Homoy, (&, V @ &) =V @) Homo (€0, €o)-

These maps are easily seen to be functorial in V, so the resulting natural
transformation will be k-linear, and we have an isomorphism

Infg,(QCoh™) = Homoy (&0, &) O
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Chapter

Obstructions

The present chapter is about obstruction theories, which tell us whether
we can lift a given object along a small extension or not. In opposition
to tangent spaces and groups of infinitesimal automorphisms, which are
canonically defined, there can well be more than one obstruction theory for
a given problem, and the choice of a particular one is important in some
cases.

After the definition, we will concentrate on minimal obstruction spaces
and their properties, and we will state a theorem on the vanishing of ob-
structions that will be proved in Chapter 5. We will then present a partic-
ular obstruction theory for each one of our examples, and give a classical
example of a variety over C with nontrivial obstructions.

4.1 Obstruction theories

We focus now on the problem of existence of liftings. Given a deformation
category F — (Art /A)°? and a small extension A’ — A, with an object
¢ € F(A), we would like to have a procedure to decide whether there is a
lifting of £ to A'.

Definition 4.1.1. An obstruction theory for {, € F (k) is a pair (V,,,w), where
Vi, is a k-vector space and w is a function that assigns to every small extension
A" — Awith kernel I and § € F¢,(A) an element

w(€7A/) €1®, Ve
called the obstruction to lifting & to A', in a way such that:
* w(&, A") = 0if and only if there exists a lifting of { to A'.

* We have the following functoriality property: if B’ — B is another small
extension with kernel J, ¢ : A" — B’ is a homomorphism such that o(I) C
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J,and o : A — B, ¢|r : I — J are the induced homomorphisms, then
(plr @id)(w(€, A)) = w(@.(6), B') € J @ V.

The space V,, called an obstruction space for &,. If the association w is
identically zero (that is, every object can be lifted along any small exten-
sion), we say that {y (or the deformation problem associated with F,) is
unobstructed; otherwise, we say it is obstructed.

Example 4.1.2. If {; € F (k) has the property that any object of F restricting
to &y on k can be lifted along any small extension, then it obviously admits
a “trivial” obstruction theory, with V,, = 0 and w the only possible function.
In this case we will also say that &; is unobstructed.

Remark 4.1.3. Notice that the functoriality property implies in particular
thatif w(¢, A’) = 0 (i.e. { admits a lifting to A’), then surely w(%,(£), B’) =0
(i.e. $,(¢) admits a lifting to B’). But this is clear, because the pullback
along ¢ of a lifting of £ to A’ will be a lifting of 3, (£) to B'.

When dealing with concrete problems, it is usually possible to construct
an obstruction theory, and sometimes the obstruction space is a cohomol-
ogy group of a quasi-coherent sheaf on a certain noetherian scheme (usu-
ally one degree higher than the one representing the tangent space of the
deformation problem we are considering). We will see some examples of
this later. In these cases in particular the obstruction will always vanish
locally (at least on affine open subschemes).

If we stick to the abstract setting, that is, if we consider an arbitrary
deformation category F — (Art /A)°? and an object {; € F(k), it is possi-
ble to construct “abstract” obstruction theories for &. In [Fan] the authors
define a more general notion of obstruction theory (for morphisms of de-
formation functors) using pointed sets, and among other results they show
that, with mild hypotheses, one can always find an obstruction theory for
a deformation functor (and also a universal one, in some sense).

Nevertheless notice that obstruction spaces are something that is intrin-
sically “not-canonical”, and moreover the choice of the obstruction theory
one considers is very important in some cases (for example, in Gromov-
Witten theory).

4.1.1 Minimal obstruction spaces

An undesirable thing that can happen (see Proposition 4.2.7), is that, if
(Vy,w) is an obstruction theory for some & € F(k), the vector space V,,
is not zero, but nevertheless the map w is. To try to avoid this type of be-
havior, we eliminate from the vector space V,, all the unnecessary elements.
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Definition 4.1.4. Let (V,,,w) be an obstruction theory for &, € F (k). The min-
imal obstruction space ), of the given obstruction theory is the subspace of
V., of elements v € V,, that correspond to obstructions along tiny extensions,
in the following sense: there exists a tiny extension A’ — A, with a fixed iso-
morphism I = k, and § € Fg,(A), such that v is the image of the obstruction
w(&, A') € I @y V, under the induced isomorphism I @y, V,, = k @5 V,, =V,

For this definition to make sense, we have to check that Q, is a vector
subspace of V,,.

Proposition 4.1.5. €, C V,, is a vector subspace.

Proof. First of all notice that 0 € ),,. For example, we can take the tiny
extension k[e] — k, and the object §, € F(k). Then we have at least the
trivial lifting, obtained by pulling &, back along k — k[e], so w(&, kle]) =
0 € (¢) ®; Vi, which corresponds to 0 in V.

Next, we check that ), is closed under scalar multiplication. Suppose
we have an element v € ), corresponding to w(&, A") for a tiny extension
A" — A with kernel I, an isomorphism f : I = k, and £ € F¢, (A); take
also z € k, and suppose x # 0, since we already know that 0 is in €2,.
Then we can consider the same tiny extension A" — A with the same object
¢ € F¢, (A), but take the isomorphism « - f : I = k. The element of V,, that
we get this way will clearly be z - v.

Now take two elements v, w € Q,, corresponding respectively to w(&, A”)
and w(n, B’), with A’ — A and B’ — B two tiny extensions with kernels
I and J, fixed isomorphisms f : I = k, g : J = k, and objects £ € F¢,(A),
1 € Feo(B).

Then we take the fibered product A x;, B, and notice that by [RS] £ and
n induce an object {&,n} of F¢ (A xj, B) (since they restrict to & over k).
The map A’ x, B — A X}, B gives a small extension, with kernel f & g :
I®J =k dk; we have then an obstruction

w{Enth A xgBYe(Ia)@p Vo 2(kd k)@ Vo2V, 8V,

that corresponds to the pair (u, v).
In fact, the first projection m; : A’ xj; B — A’ induces a morphism of
extensions

0—=I10J——A %, B —=AXx; B——=0

lﬂlhe;‘] \Lﬂ'l \Lm

0 1 A’ A 0

so by functoriality of the obstruction (and (71).({&,n}) = £) we have
(Wl‘I@J ® ld)(w<{§7 77}7 A’ Xk B/)) - w((ﬁl)*({éa 7]})7 A/) = w(§7 A/) =u.

69



CHAPTER 4. OBSTRUCTIONS

But (71|res @ id)(w({£,n}, A’ xi B')) is the first component of the corre-
sponding element in V,, ® V,,, because 71 |1e; @id : (I® J) Q@ V,, — [ @1V,
corresponds to the first projection V,, ® V,, — V,,. The same goes for v.

We take then the sum s : I & J = k& k — k, defined by s(i,j) =
f(@) + g(j), and consider K = ker(s) C I @& J C A’ x;, B/, an ideal. Since s
is surjective we have an isomorphism h : (I ¢ J)/K = k.

Putnow €’ = (A’ x;, B")/K. We have a tiny extension C’ — A x;, B with
kernel (/& J)/K = k (which is a sort of “sum extension” of the given ones),
and the projection 7 : A’ x;, B’ — C' induces a morphism of extensions

0——Ia®J A xx B'—=Ax; B—>0

R N

0—=({UaJ)/K ' Axp B——=0

where the map 5 is the projection to the quotient, and corresponds to the
addition + : k£ ® k — k under the isomorphisms above.
By functoriality of the obstruction we have then

w(@({&,1}), C") = F@id)(w({& n}, A" xi, B))
which corresponds to u + v € V,,, because the diagram

~

(I J) Rk Vy, (k® k) @KV,

is@id \L+®id \L—i—

(I J)/K) @k Vo — k@ Vo

(where the horizontal isomorphisms are the one considered before) is com-
mutative. So we also have u + v € €, and this concludes the proof. O

Next, we see that (£, w) is an obstruction theory.

Proposition 4.1.6. Given a small (not necessarily tiny) extension A’ — A with
kernel I, and & € Fe¢,(A), we have

w(& A) eT®y, N C IRV,
In particular (,,w) is an obstruction theory for &.

Proof. Let vy,...,v, be a basis of I as a k-vector space, and write the ob-
struction w(§, A") € I ®; V,, as a sum

wE, A =v @w + -+ v, @y,

where w1, ...,w, € V,. We have to show that wy,...,w, are elements of
Q..
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Fix1 < i < n, and let
K; =ker(v;) = {v € I : if we write v = a1v1 + - - - + anvy, thena; =0} C 1

where v} : I — k is the dual element of v; € I.

K,isanideal of A, soput B’ = A’/ K;. We have a tiny extension B’ — A
with kernel I/K; = k (where the isomorphism is induced by v}), and the
projection 7 : A’ — B’ induces a morphism of extensions

0 I Al A 0
iﬂ'h lﬂ ln
0—I/K; B’ A 0.

By functoriality of the obstruction we get then
w(m (), B') = (wr @ id)(w(€, A7)

which corresponds to the i-th component w; of w(§, A’) under the isomor-
phism I ®; V,, = k" ®@; V,, = V! given by the basis v1, . .., v,, because the
diagram

~

I®,V, k" Qp Vi — v

lw;@id lm@id im

(I/K;) @ Vo — k®pV,—— V.,

(where the horizontal isomorphisms are the one already considered) is com-
mutative.

Finally notice that w(7. (), B) is the obstruction associated with a tiny
extension (since I/K; = k), so that w; € Q,,, and we are done. O

After the study of miniversal deformations in Chapter 5, we will see
that we can obtain a formula for the dimension of €}, from a miniversal de-
formation of ¢ (provided it exists). In particular dim(€2,,) does not depend
on the starting obstruction theory (V,,,w).

This also follows from the next result, which says that minimal obstruc-
tion spaces are canonical.

Proposition 4.1.7. Let 7 — (Art /A)°P be a deformation category, (V1,w1) and
(Va,w2) be two obstruction theories for & € F(k), and denote by Q0 and Qo the
corresponding minimal obstruction spaces. Then there is a canonical isomorphism
@ : Q1 = Oy that preserves obstructions.

With “preserves obstructions” we mean that if A’ — A is a small exten-
sion with kernel I, and ¢ € F(A), then

(id @) (wi(§, A)) = wa(§, A) € I ® Q.
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Proof. We define a function ¢ : 1 — (9: take a vector v € €; and a tiny
extension A’ — A, with kernel I and an isomorphism f : I = k, and an
object £ € F(A), such that the image of w(§, A") € T ®, ;1 in O is v. We
define ¢(v) € 9 to be the image of wy(§, A’) € I ®j Qg in Q9 (using the
same isomorphism f : I = k).

The main point is to check that this association is well-defined. Suppose
that B’ — B is another tiny extension, with kernel J and an isomorphism
g : J =k, and take n € F(B), such that the image of w(n, B') € J ®;
in €y is v again. If we define ¥(v) € Q as the element corresponding to
wa(n, B') € J @y, Qs in Q9 using the isomorphism g, we have to show that
o) = ().

We consider the “difference extension”, defined similarly as the “sum
extension” in the proof of 4.1.5: the small extension

0—=I1pJ——A %, B—=Ax, B——=0
leads to an obstruction
wi{&n}, A" x By e (I J) @t Qi =2 (kDk) k0 = Q dQ;

which in the case i = 1 corresponds to the pair (v,v), and if i = 2 to
(¢(v), ¥ (u)) (as in the proof above).

There is a difference homomorphism d : I & J = k & k — k defined
by d(i,7) = f(i) — g(j), with kernel K = ker(d) C I & J C A’ x; B'. d
induces an isomorphism d : (I ® J)/K = k, and considering the quotient
C" = (A’ x};, B")/K and the projection 7 : A’ x;, B’ — C’ we get a morphism
of small extensions

0 IoJ A %, BB——=AXxy; B——=(
d \Lﬂ' lw
00— (I ®J)/K c AxyB—>0

(with d corresponding to the difference — : k & k — k) and an element
wi(@({&n}),C") € T @ T) /K @p U = k@ U =

which corresponds for i = 1tov —v = 0, and for i = 2 to ¢(v) — ¢ (v).

But now 7. ({§,n}) will lift to C” (since its obstruction with respect to the
first obstruction theory is zero), so we must also have wa (7. ({£,7}),C") = 0,
which implies ¢(v) — ¢ (v) = 0.

So we have a well-defined function ¢ : Q; — Q», preserving obstruc-
tions along tiny extensions. In the same way we define ¢ : Q3 — Q5. Itis
clear that ¢ and v are inverse to each other, so both of them are bijective.
Moreover using the fact that, if v, w € ; correspond to the obstructions of
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(two objects with respect to) two tiny extensions, the sum v+w corresponds
to the obstruction of the (induced object on the) “sum extension” as in the
proof of 4.1.5, we easily see that ¢ is additive. k-linearity is checked in the
same way, and finally we conclude that ¢ is an isomorphism of k-vector
spaces.

By construction ¢ preserves the obstruction on tiny extensions. With a
reasoning similar to that of the proof of 4.1.6 one can readily check that it
preserves obstructions in general, and this concludes the proof. O

Remark 4.1.8. Even though the minimal obstruction space seems a good
thing to have, in practice it is (in general) very hard to calculate. Because
of this, in most application it suffices to have an obstruction theory that is
possibly easier to calculate and more naturally defined, as in the examples
we will see later on.

4.1.2 A result of unobstructedness

The following theorem (which was first stated and proved in [Kaw]) can
be applied in some cases to conclude that a deformation problem is unob-
structed. In this section we assume A = k.

Theorem 4.1.9 (Ran-Kawamata). Let F — (Art /k)°P be a deformation cate-
gory, and take &y € F (k). Assume that:

* Ty, F is finite-dimensional.
e char(k) = 0.

e If A € (Art /k) and £ € Fg,(A), then the functor F¢ : (FMod /A) —
(Mod /A) described at the end of Section 2.3 is right-exact (that is, carries
surjections to surjections).

Then & is unobstructed.
We postpone the proof until Section 5.3.1.

Example 4.1.10. Let X be a scheme over k and consider an invertible sheaf
Lo € QCoh*X (k) on X. Suppose also that char(k) = 0 and H'(X,Ox) is
finite-dimensional. We want to show that in this case £ is unobstructed in
QCoh™, using the Ran-Kawamata Theorem.

To do this, we consider A € (Art /k) and £ € QCohfo (A), and we want
to understand the functor F : (FMod /A) — (Mod /A); recall that this is
defined by

F(M) = {isomorphism classes of liftings of £ to A[M]}.

Notice that if £); denotes the trivial pullback of £y to A[M] for any M €
(FMod /A) (the one along the inclusion A — A[M]), then there is a natural
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equivalence of functors ¢ : Fo, = Fp (Where X4 = X Xgpec(r) Spec(A)
is the trivial deformation, as usual); if M € (FMod /A), the function ¢y, :
Foy (M) — Fg(M) is defined by

oul[E)) = [€ ®ox, ,, Lu]

]

Moreover one can show that there is a functorial isomorphism
Foy (M) = H'(X,M ©4 Ox,).

Now M @4 0x, =M ®4 (A®k Ox) = M ® Ox, and the functor — ®; Ox
is exact. Consequently H}(X, — ®; Ox) & HY(X,— ®4 Ox,) & Foy, is
exact too, and since char(k) = 0 and

Ty, QCoh™ = Exty (Lo, Lo) = H' (X, Endoy (Lo)) = H' (X, Ox)

is finite-dimensional, we can apply Theorem 4.1.9, and conclude that £y is
unobstructed.

We have the following corollary, which is useful for example when con-
sidering deformations of abelian varieties, Calabi-Yau manifolds, K3 sur-
faces, etc.

Corollary 4.1.11 (Ran). Let X be a smooth and projective scheme over k (with
char(k) = 0), whose canonical sheaf wx, is trivial (i.e. isomorphic to Ox,). Then
X is unobstructed.

Proof. Since char(k) = 0 and the tangent space Tx,Def = H'(Xo, Tx,) (see
Remark 2.4.3) is finite dimensional, to apply the Ran-Kawamata Theorem
we only need to show, given A € (Art /k) and an object X € Defx,(A),
that the functor Fx : (FMod /A) — (Mod /A) defined by

Fx (M) = {isomorphism classes of liftings of X to A[M]}

is right-exact.

If M € (FMod/A), and we call f : X — Spec(A) the structure mor-
phism, then one can show (using the same techniques we used to calculate
the tangent space of Def, in section 2.4.2) that there is a functorial isomor-
phism

Fx(M) = HY(X, f*(M) ®oy Tx/a) = H' (X, M @4 Tx/a).

Using the results about base change of appendix C we will show that there
is also a functorial isomorphism

HY (X, M @4 Tx/a) = M ®4 H' (X, Tx)) (4.1)

which shows that the functor Fx is isomorphic to — ®4 H*(X, Tx /4), and
so it is right-exact.
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Set n = dim(Xp) = dim(X); since wx, = Q% = Ox, (recall that QfXO
denotes /\l 1x,), we have a global nowhere vanishing section s of Q”O,
which is an element of H°(Xg, Q). By Deligne’s Theorem (Theorem C.8)
the natural map

ko H(X, Q%) — H(Xo,%,)

is an isomorphism, and s corresponds to a global section of Q' , that is

nowhere vanishing as well, since | X| = | Xj|.
From the existence of this section we get that (', /A ~ Ox. Moreover for
each j < n we have a bilinear nondegenerate pairing

Dy jp X Q) — Uy p = Ox

that induces then an isomorphism Q};i = (O / N

This implies in particular that T/, = Q4 / )Y = Q?&i, which by
Deligne’s Theorem again satisfies base change, and then we have our func-
torial isomorphism 4.1. This concludes the proof, as we already noticed.

O]

4.2 Examples

We describe now an obstruction theory for each of our main examples, and
give a classical example of a variety with nontrivial obstructions.

4.2.1 Schemes

We consider the category of deformations of schemes Def — (Art /A)%,
and X, € Def(k) alocal complete intersection, generically smooth scheme
of finite type over k.

Theorem 4.2.1. With the hypotheses above, there is an obstruction theory (V,,, w)
for X with vector space

V, = EXt%XO (QXO, OX0)~

A proof of this theorem can be found in [Vis].

Remark 4.2.2. If X, is also affine, then Ext?, Xy (Q2x,,0x,) = 0. In particular
deformations of an affine X, with the hypotheses above are unobstructed.

Let Spec(A) = Xy C A} be a closed immersion, with sheaf of ideals /.
Then as in Remark 2.4.8 the conormal sequence

0 —— Io/ 12 —%= Quplxy —= Qx, —>0 (4.2)
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is exact also on the left. Notice that Io/I§ and Qan|x, are locally free in this
case, hence projective, and so sequence 4.2 is a projective resolution of 2 x,.
This implies that ExtZ, X (Q2x,,Ox,) is trivial.

Remark 4.2.3. As with the tangent space, in the general case one can still
find an obstruction theory for Xy, by using the cotangent complex. In gen-
eral X has an obstruction theory with obstruction space

Vw = EXt%XO (LXO/k:7 OX())

(see Théoreme 2.1.7 of Chapter III in [I11]).

4.2.2 Smooth varieties

We give a proof of the theorem above only in the case of smooth varieties,
which can be studied using Cech cohomology. Consider the deformation
category Def — (Art /A)°P.

Theorem 4.2.4. Every smooth variety Xo € Def (k) has an obstruction theory
(Viy, w) with obstruction space

V., = H*(Xo, Tx,)-

Proof. Let A’ — Abe a small extension with kernel I, and X € Defx,(A) be
a deformation of X over Spec(A). We show how to construct the element
w(X, A" € I®p H* (X0, Tx,)-

Let U = {U,}icr be an open affine cover of Xy, and denote by X |, the
induced deformation of U; over A, obtained just by considering U; C X as
an open subscheme of X (recall that | X| = | X|). By Remark 4.2.2 we have
that U; is unobstructed, and so we can find deformations Y; € Defy,(A)
such that the restriction of each Y; to A is X|y,.

Now notice that, since U;; is affine as well, the restrictions Yi]UZ.j and
Yj|UZ.j are isomorphic deformations of U;; over A’, by Remark 2.4.3 and
Corollary 2.3.2. For each pair of indices there exists then an isomorphism
of deformations

0i : }/j|Uij - Yi|Uij

which restricts to the identity of X[y, on the pullback to 4, and for each
triplet of indices we can consider the composite

e .. . _1
Ol = bij 0 Ok 0 07

Each 6, is an automorphism of the deformation Y; ’Uz-j . of Uyj, over A’ that

restricts to the identity on the pullback to A, and so by Propositions 3.1.5
and 3.2.1 it corresponds to an element

dijk el ® Inf(Uijk) > ®y Derk(A,-jk,Aijk) = F(Uijk, I ®y TXO)
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where SpeC(Aijk) = Uijk:-

The family {d;;x}i jrer is a Cech 2-cocycle for the sheaf I ®j, T'x,, with
respect to the cover U: we have to show that for every quadruple of indices
i,7,k,l € I wehave

djgl — digl + diji — dijr =0
as elements of I'(Ujjx, I @ T'x,) = I @y, Inf(Usji). We rewrite this as
diji — dikg — diji, = —djp (4.3)

and notice that the left-hand side corresponds (under the isomorphism of
Proposition 3.1.5) to the infinitesimal automorphism

-1 -1 -1 -1
Oiji 0 Oy © 0355 = bij 0 03 © 0y
of the deformation Y;|y,;,, of U;;x;, and the right-hand side to the infinites-
imal automorphism 49;,{/,1[ of the deformation Y;|y,,,,. Moreover the restric-
tion of 6;; is an isomorphism between these two deformations, and so 4.3

follows from Remark 3.1.6.
Then we have an element [{d;;}i j ker] of

H2(U, T @, Tx,) =2 H*(Xo, I @5 Tx,) = T @ H*(Xo,Tx,)

that we call w(X, A"). We check that it is independent of the choice of the
0;;’s: let {v;;}: jer be another collection of isomorphisms as above. Then
for any pair of indices v;; o Gi_jl is an infinitesimal automorphism of the
deformation Y; ’Uz‘j of U;j, so that (again by Proposition 3.2.1) it corresponds
to an element

eij € I ®y Derk(Bij, BZJ) = F(Uij, I ®p TXO)

(where Spec(B;;) = Uj;). Moreover, if f;j, € I'(Uij, I ®k Tx,) are the sec-
tions corresponding to the automorphisms v;;; = v;j o v, o v, one easily
checks that
fijk = dijr + (eij + ejr — eix)

which says exactly that { fi;x }i j ker and {d;;i }: j rer are cohomologous, and
so define the same element in H?(U, I @y, Tx,).

It is also clear that each cocycle in this cohomology class corresponds to
a family of isomorphisms, just by reversing this construction. Finally one
can check as in Section 2.4.2 that the w(X, A’) defined does not depend on
the open affine cover U of Xj.

Notice now that the element w(X, A’) € I ®; H?(Xo,Tx,) vanishes
if and only if a lifting of X to A’ exists: d;j, = 0 above corresponds to
0;; o 0,5, = 0,1, which is exactly the condition that lets us construct a lifting
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of X to A’ by patching the local liftings Y; along the restrictions to the in-
tersections U;j. On the other hand if X’ € Defx,(A’) is a lifting of X, then
(by the arguments already used above) the restriction X’|y;, will be isomor-
phic to Y;, and this implies that there is a choice of the §;;’s that satisfies the
cocycle condition, and so w(X, A") = 0.

The functoriality property is an easy consequence of the functoriality of
the isomorphism we constructed in the proof of Proposition 3.2.1. O

Remark 4.2.5. In particular if X is a smooth curve, then H?(Xo, Tx,) = 0
and so X is unobstructed.

Remark 4.2.6. The preceding proof shows a typical pattern that can be used
in other cases to construct obstructions. Here is the (rather vague) idea:
if our deformation problem has an underlying scheme X (X in the case
above), and it localizes naturally on this scheme, in the sense that every
deformation over X induces one over any of its open subschemes (just by
restriction, in the case above), and moreover:

¢ Infinitesimal automorphisms form a sheaf 7 on X.
¢ Locally we always have liftings.
¢ Two liftings of the same deformation are always locally isomorphic.

¢ We can reconstruct our deformations from local compatible data.

Then we can mimic the preceding proof to construct an obstruction theory,
with space H?(X,Z) (see [Oss]).

We show an example of a smooth variety X such that 2(Xo,Tx,) # 0,
but nevertheless X is unobstructed, so the map w must be zero.

Proposition 4.2.7. Let Zy C P} be a smooth surface of degree d > 6. Then
H?(Zy,Tz,) # 0, but Zy is unobstructed.

Proof. The fact that Zj is unobstructed is immediate from Propositions 2.4.12
and 2.4.13: given an object Z € Defz,(A) and a small extension A’ — A,
because of 2.4.13 we have a closed immersion Z C P3, which by 2.4.12 lifts
to some Z' C P3, over A’, and forgetting the immersion this gives a lifting
Z' € Defz,(A")of Zto A'.

The fact that H?(Zy, Tz,) # 0 is proved by the following calculation,
similar to the ones we used in the proof of 2.4.10. From the dual of the
conormal sequence of Z, C P?

OHTZO HTF%‘ZO H(/)Z()(d> H0

we see that it suffices to show that H?(Z, Tps |z,) # 0. By Serre’s duality

we have
H*(Zo, Tps | 2,) = H*(Zo, Qpa (d — 4)| 7,)"
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and by the twisted and restricted Euler sequence
00— 3 (d —4)| 20 — O, (d — 5)%* — Oz,(d — 4) —0
it is sufficient to check that
dimy,(H®(Zy, Oz,(d — 5))*) > dimg(H(Zy, Oz,(d — 4)))

or, using known formulas for the dimensions above, that

d—2 d—1
1(57)= (%)
for d > 6, which is easy to check. O

4.2.3 An obstructed variety

Using the calculations done with Cech cohomology up to this point, we
now describe a classical example of Kodaira of a variety over C with non-
trivial obstructions.

Let X be a smooth variety over k. Recall that the tangent sheaf Tx =
Hom(Q2x, Ox) has a natural structure of sheaf of Lie algebras over k: on an
open affine subset U = Spec(A), we have T'x (U) = Derg(A, A), and given
two derivations D, E' : A — A we can define [D, E]: A — Aby

[D, E](x) = D(E(z)) — E(D(x)).

It is immediate to check that [D, E| is still a k-derivation, and that this prod-
uct gives a structure of Lie algebra over k to T'x(U). Moreover this local
construction gives a global Lie product [, -] : Tx x T'x — Tx, which, being
k-bilinear, induces T'x ®j, Tx — Tx, which we still denote by |-, -].

Moreover if we fix an open affine cover of X, say U = {U,}icr, then
there is a product

H' U, Tx) x H' (U, Tx) — H*U, Tx @, Tx)

in Cech cohomology, induced by the tensor product (see for example II, § 6
of [God]).

From this product and its properties we get a quadratic form H'(U, Tx) —
H?(U,Tx), defined as the composite

H'U,Tx) — H' (U, Tx) x H'(U,Tx) — H*U, Tx @, Tx) — H*U, Tx)

where the first map is just the diagonal v — (v,v), the second is induced
by the tensor product, and the last one by the Lie product. If we represent
an element v € H'(U,Tx) as a 1-cocycle {a;;}ijer, then the image of v
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along the above map, which we denote by [v, v], is given by the class of the
2-cocycle {[aij, ajk} }Z‘,j,k-ej.

We remark that there is an analogous quadratic form HY(X,Tx) —
H?(X,Ty) induced in a similar same way, and that is compatible with the
preceding one and the canonical isomorphisms H'(U, Tx) = H'(X,Tx)
and H*(U, Tx) = H*(X, Tx).

Finally recall that if X is a smooth variety, then T'x,Def = H L( X0, Tx,)
and we have an obstruction theory with vector space H?( Xy, Tx,)-

Proposition 4.2.8. Let Xy be a smooth variety over k, with char(k) # 2, U =
{Ui}icr an open affine cover of Xo. Then the map

®: HY U, Tx,) — H*(U,Tx,)

defined by ®(v) = [v,v] has the property that ®(v) = 0if and only if a first-order
deformation X, associated with v can be lifted to k[t]/(t3).

Proof. With the notation of Section 2.4.2, we take an element v, a first-order
deformation X, corresponding to v, and the associated 1-cocycle {d;; }i jer.
Recall that d;; is the derivation associated with the infinitesimal automor-
phism 0;; of Uj Xspec(k) Spec(k[t]/(t?)); in other words we have

0L (f +tg) = f + t(dij(f) + g)

where we see Oy, |v,; as Oy,; © ((t) ® Ou,;) and f, g are sections of Oy,;
(see proposition 3.2.1).

Now, by the proof of Theorem 4.2.4, X,, will lift to k[t]/(¢?) if and only
if the 0;;’s lift to automorphisms v;; of Ui Xgpec (k) Spec(k[t]/(t3)), satisfy-
ing the cocycle condition v;; o v, = vy, This in turn is equivalent to the
existence of automorphism of sheaves of k[t]/(t3)-algebras

wij : Ou,; @y k[t]/(1*) — Ou,, @y k[t] /(%)

that restrict to the 93]-’5 on Op,; ® ((t) @k Ou,,), and satisfy an analogous
cocycle relation.

Let us try to construct such automorphisms: since they must extend the
Hfj’s, if f is a section of Oy,; we must have

©ij(f) = f+tdi(f) + t2ei;(f)

where we see OUij R k[t]/(tg) as OUij @ ((t) Rk OUZ'J') ® ((tg) Qg OUZ.].),
and e;; is a function Opy,; — Oy,;. Because of the k[t]/(¢*)-linearity of ¢;},
ei;; will actually be a k-linear homomorphism, and conversely a k-linear
homomorphism e;; : Oy, — Op,, will give a k[t]/(t)-linear ;.

Moreover (using linearity) we see that ¢;; is completely determined by
d;; and e;j, by the formula

@ij(f+tg+t2h) = f+t(di;(f) + g) + £*(dij(g) + e (f) + h)
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where f, g, h are sections of Oy, ;.
Now we turn to the conditions on e;; that correspond to ¢;; being a
homomorphism of algebras. If f, g are sections of Op,; we have

vii(f)eijlg) = (f+tdij(f)+t2€ij(f)))( + tdij(g) + t2ei;(g))

g
= fg+t(fdij(g9) + g9dij(9))
+t*(feij(g) + gei(f) + dij(£)dij(9))

and on the other hand

©ij(fg) = fg+tdi;(fg) + t2ei;(f9g).

From these formulas (and recalling that d;; is a derivation) we obtain that
;; is an homomorphism of algebras if and only if

eij(fg) = feij(g) + geij(f) + dij(f)dij(g) (4.4)

for f,g sections of O,; (for the “if” part notice that the sections of Oy,
generate the whole Oy, ®y, k[t]/(t*) as a k[t]/(t*)-algebra).
We consider now d?j = d;; o d;;, which satisfies

d7;(fg) = dij(fdij(9) + gdij () = fd3;(9) + gdi; () + 2di; (f)di;(g)

where f, g are sections of Oy, so if we set
Lo
hij = eij — §dz‘j

then h;; is a derivation (i.e. an element of I'(U;;, T, )) if and only if 4.4
holds.

In other words, the automorphisms of Oy,; ®; k[t]/(t?) as a k[t]/(t?)-
algebras that extend the 0;;’s are of the form

pulf) = 14151+ 2 (g () + 33 )

for some h;; € I'(U;j, Tx, ) and all sections f of Oy, (the inverse is obtained
taking —d;; and —h;;).
Finally we examine the cocycle condition ¢;; o @i = ;1 we have

©ij(@ie(f)) = wij(f +tdi(f) + 2hi(f))
= [+ tdij(f) + djx(f))

42 (hig (F) + hin(F) + 3,(F) + 3a2,(F) + dig (dn()))
whereas

el ) = £+ 1)+ () + 5l1)).
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Equating the coefficients of ¢? (and using the cocycle condition d;; + dj; =
d;i, for d;; in the last formula) we get

1 1
hij + hjk — hip = 5 (dji(di () = dij(dj(f))) = =5 [dij. dji].
In conclusion, the cocycle condition holds for the ¢;;’s (and so a lifting
to k[t]/(t3) exists) if and only if there is some cochain {h;;}; jer of Tx, such

that .
{Q[dijadjk]} = —0{hij}ijer
’L,],k)EI

or in other words if and only if $[v,v] = 0. O

Example 4.2.9. Because of the proposition just proved, to give an example
of an obstructed variety it suffices to find one such that the map ® above
is nonzero, or equivalently such that the quadratic for given by the Lie
product is not identically zero.

We take X, = P{ Xspec(c) Y Where Y is an abelian variety over C of
dimension at least 2. Then the product

HY(Y,0y) ®@c H'(Y,Oy) — H*(Y,Oy)

induced by the tensor product is not identically zero, because in this case it
coincides with the wedge product of the graded algebra A\ H'(Y, Oy) (this
can be found for example in Chapter 1 of [Mum]); moreover this is also true
for the product

H°(Pg, Tpy) @c HO(Pg, Tpy) — H° (P, Tpy)

induced by the Lie product. In fact if z is a coordinate on Al = P} \ {oo},
then % and z% are two global sections of TRIC , and we have

0 0 0
[az’ a] 5.7 0
Take a,b € H'(Y,Oy) such thata ® b # 0 and D, E' € H°(P, Tps ) such
that [D, E] # 0,and call m; : X¢ — IP’}C and 7 : Xo — Y the two projections;
we will denote by 7 the pullback maps induced on sections of Oy and Tp...
We have then two induced elements aD and bE of H'(Xy,Tx,) that
we describe using Cech cohomology. We choose an open affine cover U/ =
{U;}icrof Y and one V = {V,, }4e4 of ]P’}C, and suppose that a is represented
by a 1-cocycle {a;;}i jer, and D by a 0-cocycle {Dq}aca. We have then
a product affine cover {U; Xgpec(c) Valt(ia)erxa of Xo that we denote by
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U x V. The element aD is defined by the composite

H'(U,Oy) @c HO(V, Tpy) [{aij}] ® [{Da}]

H'(U x V,0x,) @c H'U x V,Tx,)  [{73(aij)}] @ {71 (Da)}]

H'(U x V,0x, @c Tx,) [{m3(aij) @ w1 (Da)}]

HY U x V,Tx,) [{73(aij) 7} (Da)}]

and bE is defined in the same way. Here the first map from the top is in-
duced by the two pullbacks, the second by the tensor product, and the last
one by the homomorphism Ox, ®c Tx, — Tx, that corresponds to scalar
multiplication of sections of T’x, by sections of Ox,; moreover the various
71 and 75 on the right are actually the pullbacks along the projections from
Uij Xspec(C) Va, but to avoid introducing a heavy notation we will not in-
clude these indices.

We consider then the Lie product [aD,bE] € H?(Xo,Tx,), and claim
that this is nonzero. This will show that the quadratic form induced by the
Lie product is not trivial, and that X is obstructed.

Writing b = [{b;}ijer] and E = [{Es}aca] in the same way, as we
recalled at the beginning of this section the Lie product [aD,bE] will be
represented by the 2-cocycle

{[m3(aij)mi (Da), 73 (bji) 71 (Ea)l}ij kel aca-

Fixing the indices ¢, j, k € I and o € A, we have that

[75(ai)77 (Da), 75 (bjk) 77 (Ea)] = 75 (ai;)77 (Da) (75 (bjk) T (Ea))
=75 (bj) 7T (Ea) (73 (aij) 75 (Do)

But now 7] (Dq)(75(bjx)) and 7§ (Eq)(75(as;)) are zero: this is because we
have compatible isomorphisms

and if f is a section of Ox, coming from Oy, and D is a section of T,
coming from Tpy, then D(f) = 0 (taking local coordinates z for P, and
r1,...,o, for Y, D will be a linear combination of %, z E?z , 22 62 and f will
be a function of x1, ..., zy).
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So we have
[m5(aij)7i (Da), 75 (bjk) 77 (Ea)] = 73(ai)m5(bjk) 7] (Da) (7] (Ea))
—75(aij) 75 (bjk) T (Ea) (77 (Da))
= Wg(aijbjk)[WT(Da)vWT(Ea)]
= m5(ai;bjr) (7] ([Das Eal)

which is a (component of a) cocycle representing the element (ab)[D, E| €

H?%(Xo, Tx,), defined as the preceding ones by the composite

H*U, Oy) ®&c H(V, Tpy) {aijbj}] © [{[Da, Eal}]

| |

H?(U x V,0x,) @c HOU x V,Tx,)  [{73(aijbje) ] © {71 ([Da; Eal)}]

| |

I:IQ(Z/[ xV,Tx,) [{W2(azjb]k)(7rf [Da, Eal]))}]

Finally we deduce that (ab)[D, E] € H?*(Xy,Tx,) is not zero, using the
Kiinneth formula: in our particular case (for more on the Kiinneth formula
see for example VI, § 8 of [Mil]) it implies that there is a canonical isomor-
phism
P H(Y,0v) @c H(PL, Tpr) — H*(Xo, Tx,)
i+j=2
and from its definition it is immediate that the restriction

HQ(Y, Oy) R HO(P}C, TIP’%:) — H2(X0,TX0)

(which is then injective) carries ab ® [D, E] to the product (ab)[DE] de-
fined above. Since by hypothesis ab = a ® b # 0 and [D, E]| # 0, we get
that (ab)[D, E] € H?(Xy,Tx,) is also not zero, and since it coincides with
[aD,bE] we are done.

4.2.4 Closed subschemes

Now we consider the deformation category HilbX — (Art /A)°P, with X
separated. Take Z, € Hilb~ (k) (which is separated as well), call Iy its sheaf
of ideals, and N the normal sheaf Ny = Hom(Iy/1Z,Oz,).

Here we add the hypothesis that Zj is a local complete intersection in
Xo = X Xgpec(r) Spec(k). In this case one can show (see [Vis] for the proof)
that for any A € (Art /A), any Z € Hz’lb)Z{O (A) is a local complete intersec-
tion in X 4.

Theorem 4.2.10. There is an obstruction theory (V,,,w) for Zy, with obstruction
space
Vo = H' (Zo, No).
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Proof. Take a small extension A’ — A, Z € Hilb)Z(O(A) and call I C Oy, its
sheaf of ideals, where X4 = X Xgpec(a) Spec(A). By the remark above, Z
is a local complete intersection in X 4. Let us show first that liftings always
exist locally.

Take an open affine subscheme Uy = Spec(R) of X, and the correspond-
ing ones U = Spec(R®pA) and U’ = Spec(R®, A’) of X 4 and X/, such that
Z is a complete intersection in U. This means that the ideal sheaf I of ZNU
is generated by a regular sequence z1,...,x, € R ®x A; consider liftings
Y1, Yn € Ry A" Wedefine I' = (y1,...,y,) and S = (R®, A)/I', and
check that the closed subscheme Z' = Spec(S) C U’ isalifting of ZNU C U
to A’.

It is clear that the restriction of Z’ to X4 will be Z, so the only thing to
check is that 7’ is flat over A’. For this we use the local flatness criterion:
starting from the exact sequence

0—=J] —Rp A —=S——=0
and taking the Tor long exact sequence (tensoring with A over A’) we get
Tor{(5,A) —I' @p A—> R@y A——> (R@p A) /T —>0

where the next term Tor{' (R @, A’, A) is zero, because X 4 is flat over
A’. Then to show that Tor{"' (S, A) = 0 (and conclude that Z’ is flat over
A) it suffices to show that the natural map I’ ®y A = I'/II" — I is an
isomorphism.

Since it is clearly surjective, we show that the kernel of I’ — I'is I1": take
an element a;y; + - -+ + apyn € I’ such that its image byz1 + - - - + byx,, in
I is zero. Since z1, . .., z, is a regular sequence, we have that (b1,...,b,) €
(R ®p A)™ is a linear combination of standard relations of the form

zij =(0,...,24...,—xj,...,0)

where z; is in the j-th place, and —z; in the i-th one; say (b1,...,b,) =
C1Tjy 5, + +++ + i g,
These standard relations lift to analogous ones y;; among the y;’s, and
the difference
(a17 .. ,an) — (clyiljl + -+ cryi,,jr)

is an element (dy,...,d,) € (I(R®x A"))™. In conclusion we have a1y, +
<o+ anyn = diy1 + - -+ + dpy, € IT', and this gives the flatness of Z'.

Now take an open affine cover Y = {U;};c; of X such that Z is a
complete intersection in each of the corresponding open subschemes V; =
Ui Xspec(n) Spec(A) of X4, and for each index i take a lifting Z; C W; =
Ui Xgpec(a) Spec(A’) of Z NV, C V. As before, every finite intersection of
the U;’s (and the V;’s, and the W;’s) will be affine, because of the separated-
ness of X.
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For each pair of indexes 1, j the restrictions Z; N W;; and Z; N W;; are
both liftings of ZNV;; C V;;, so by Theorem 2.3.1 we have a unique element

hij € I ®, Tzonu, Hilb"s = T(Zo N Uy, I @4 No)

such that

(ZZ{ N Wij - Wz‘j> . hZ’j = Z; N Wij C Wij.
From the fact that the action of I'(Zy N Ujj;, I ®j, Np) on the liftings is free
(and compatible with restriction to open subsets, as can be easily checked),
for every triplet of indices i, j, kK we have

hij + hji = hik
so that {h;;}; jer is a Cech 1-cocycle for the sheaf I ®j N (notice that &/ N
Zy = {Zy N Ui }ier is an open affine cover of Z).
Let us check that its cohomology class is independent of the choice of
the liftings Z!. Suppose for every index i we have another lifting Z/ C W;

of ZNV; CV,, and call {k;;}i jcr the corresponding cocycle. Then again by
Theorem 2.3.1 we have sections I; € T'(Zy N U;, I @ Np) such that

ZIC W= (2! CWy) - 1.
Restricting to U;; we have
Z; CWij = (Z; S Wy) - hij = (Z{ € Wi5) - (li + hij)
and on the other hand
Zj CWij = (2] S Wij) -1 = (2 € Wij) - (kij + 1;).
Again by freeness of the action we must have
kij = hij +1; — lj

and this says that {h;;} jer and {k;;}: jer are cohomologous, and so define
the same cohomology class in

]:Il(UﬂZO,IQ@k Ny) = HI(ZO,I(E%N()) = HI(ZO,No)

that we call w(Z C X4, A").

As in the preceding cases it is also easy to see that this class does not
depend on the choice of the open cover {U;}icr, and that we have a lift-
ing Z/ C Xy if and only if w(Z C X4,A") = 0. In fact this corresponds
exactly to the situation in which the restrictions of the liftings Z; on the in-
tersections W;; are compatible, and can be used to define a global lifting
(notice that we do not have infinitesimal automorphisms, so in this case
these restrictions are equal, and not only isomorphic).

Finally the functoriality property is immediate from the one of the ac-
tion of the tangent space. O
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Remark 4.2.11. Proposition 2.4.12 is an immediate consequence of this the-
orem: Zy C P} has an obstruction theory with space H Y(Zy, Np), which in
this case is trivial, as we already saw in the proof of proposition 2.4.10. In

other words Z is unobstructed, so any Z € Hz’lbg% (A) can be lifted along
any small extension A" — A.

4.2.5 Quasi-coherent sheaves

We turn now to the case of deformations of quasi-coherent sheaves. Take
A = k and the deformation category QCoh™ — (Art /k)°?, and consider a
quasi-coherent sheaf & € QCoh* (k) (notice that Xy = X in this case).

Theorem 4.2.12. There is an obstruction theory (V,,,w) for &, with obstruction
space
V., = Extg (&, &)

Proof. Take a small extension A’ — A with kernel I, and an object £ €

QCohgfJ (A), which is a quasi-coherent sheaf on X4 = X Xgpec(k) Spec(A)

with an isomorphism € ® 4 k = &. We construct the obstruction w(&, A”).
Take the exact sequence of A’-modules

0 I my my 0

and notice that, since my/ - I = 0, my is also an A-module (and I is too
because I? = (0)), so that the sequence above is also an exact sequence of
A-modules. We tensor it with £ to get (by flatness)

0—=I®pE——my RE—>myuR4E—0

(since I®AE = IR (k®AE) = I®RE) whichis an element e € Ext}QX (MA®4
E T ®y &).
We consider then the exact sequence of A-modules

0 my A k 0

and tensor it with &, getting (by flatness again)

0——=my R4 & E & 0.

This induces a long Ext exact sequence (taking Homp, (—, I ®; &)) that
contains in particular the following piece

Extd (€,1 @k &) — > Bxtd (ma @4 &, 1@y &) s, Ext$, (&0, 1 ® &)
We take asw(&, A’) the element §(e) € Extg, (€0, I®4Eo) = I0kExty, (£0, &)

Now we have to verify that £ has a lifting to A’ if and only if d(e) =
0. Suppose first that £ has a lifting £ € QCohg (A'). Then notice that
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my Qa8 2 (mapyRay A)@4E Zmy R4E (because my @40 A = mys, since
my is already an A-module). Tensoring the diagram with exact rows

0 I my ma 0
0 I A’ A 0

with £, we get

0—1I®Rp &% ——my DpE—>myR4&—>0

| i

0——1®; & & E 0

where the top row is the extension e obtained before.

But this diagram implies that e is obtained by pullback from an exten-
sion in Ext, (€,1 @ &) (the bottom row), so that it is in the image of the
map ; then we have §(e) = 0.

Conversely, suppose that d(e) = 0. Then by exactness of the Ext long
exact sequence above, e is in the image of the map ~. In other words we
have a commutative diagram of O x-modules with exact rows

0—I®E —my @& ——>my R4 —0 (4.5)
§ |
00— 1 ®y & F 2 £ 0

where F is an O x-module.
We define a structure of Oy ,,-module on F in the following way: since

Ox, = O0x @p A= Ox ® (my @ Ox)

~

(because A" = k @ mys as a k-vector space) we only need to define = - s
where 7 is a section of m 4 ®; Ox and s one of F. Given two such sections
z =a ®tand s, we define then

(d®@t)-s=gld @m(ts)) € F.

(notice that g is injective, since f is by flatness of £). It is readily checked
that this gives a structure of O ,,-module to 7. Moreover F is quasi co-
herent, because it is an extension of two quasi-coherent sheaves.

Finally, we notice that the natural homomorphism F® 4/ A — & induced
by F — £ above is an isomorphism (it suffices to tensor the second row of
4.5 with A over A’), and from the local flatness criterion we have that F is
flat over A’. Precisely, tensoring

0 my A k 0
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with F we get

mys ®A/f F g() 0.

But now
my Qu FE2my @4 (ARay F) Zmy Q4 E

and using this isomorphism the map m4 ®4 F — F corresponds to g of
4.5, which is injective. So Tor{" (F, k) = 0, and F is flat over A'.

In conclusion, F is a lifting of £ to A’. Functoriality of the obstruction
defined is immediate from the construction. O

Remark 4.2.13. If & is locally free, than we have
Extd (€0, &) & H*(X, Endoy (&0))

and in this case (with the additional hypothesis that X is separated) Theo-
rem 4.2.12 can be proved using Cech cohomology, in the same way as we
did for Theorem 4.2.4.

In particular if X is affine, or of dimension at most 1, then every locally
free sheaf is unobstructed.

Example 4.2.14. We describe a simple example of a quasi-coherent sheaf
with nontrivial obstructions. Take the affine curve Xy C Ai over k defined
by the equation

y? =z(z—1)

so that the origin p = (0,0) is a singular point of Xy, and put & = O,,
the pushforward of the structure sheaf of the point p = Spec(k) along the
morphism Spec(k) — X with image p. Consider the tangent cone C) Xy
of Xy at p, which is a union of two lines contained properly in the tangent
space T, X, which is two-dimensional, and take a tangent vector v € T, X¢\
Cp Xo.

We see v as a morphism v : Spec(k[e]) — Xj in the usual way, and
notice that it gives a section Spec(k[e]) — X of the structure morphism
X. — Spec(kle]) (where as usual X, is the trivial deformation of X, over

k[g]).
Spec(l{-:]\) \

v
~
\\
A
\ X

\, XO
.

N |

Spec(k[e]) — Spec(k)

Moreover the image of this section, call it Z; C X, is closed, because X, —
Spec(k[e]) is a separated morphism.

Now put & = Oy, € QCohé]O(k[s]), which is again the pushforward
on X, of the structure sheaf of Spec(k[e]). & is flat over k[e], being free of
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rank 1; we claim that there exists n > 2 such £; cannot be lifted to R,, =
K[t]/(t"*1), so that & must be obstructed.

Suppose that the claim is false, and lift £; inductively to every R,, ob-
taining a sequence of quasi-coherent flat sheaves &, € OC ohéio (Ry), which
will all have support only in the origin p. We also lift successively the sur-
jective homomorphism Oy, — &; together with the generator of £, obtain-
ing a sequence of surjective homomorphisms Ox,, — &, (where X, is the
trivial deformation of X, over R,,) and generators of &,, in the following
way: suppose we already lifted it for n and that the section e,, (which has
sopport only in the origin) is a generator of £, over Oy, , and the image of
the unit section of Ox,, in &,. Consider the diagram

Oxpin —>0Ox,

o

En1 —&,

where the top arrow is the surjection corresponding to the closed immer-
sion X,, C X, 1, the bottom one is obtained tensoring R, 1 — R, — 0 by
Eny1 (notice that &, 11 ®g,., Ry, = &,) and in particular it is surjective, and
the vertical one is surjective by inductive hypothesis.

If we take an arbitrary section e, of £, lifting e,,, this will be a gen-
erator for &, (because the kernel of R,,11 — R, is nilpotent), and so it
suffices to define Oy, , — &,y1 by sending the unit section of Oy, ,, to
€n+1-

The kernels of these surjections will define a sequence of compatible
closed subschemes Z,, C X,, (which topologically are just the origin p), and
for each n the structure sheaf &, of is free of rank 1 over it. The structure
morphism Z,, — Spec R,, is then an isomorphism, and we have a sequence
of compatible sections Spec(R,) — Z, C X,, of the structure morphisms
Xy, — Spec(Ry,).

In particular we have a system of compatible morphisms f,, : Spec(R,,) —
Spec(Ox, ) — X that correspond to homomorphisms of k-algebras ¢, :
Ox,p — Ry. These together induce a homomorphism ¢ : Ox, ,, — lim R; =
E[[t]] that in turn corresponds to a morphism f : Spec(k[[t]]) — X, that
sends the maximal ideal to p.

Moreover if i : Spec(k[e]) — Spec(k[[t]]) is the inclusion, we have that
foi=v,and since f will carry the tangent cone of Spec(k|[[t]]) (Which is
A,lc) to the one of X, we conclude that the vector v must be in the tangent
cone of Xy, which is a contradiction with the initial assumption.
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Chapter

Formal deformations

After developing tools to study infinitesimal deformations, in this chapter
we go one step further and try to put together infinitesimal deformations
that are successive liftings of a fixed £y € F (k) at higher orders. A collection
of such liftings is said to be a formal deformation.

After defining precisely these objects and organizing them in a fibered
category, we will consider universal and versal formal deformations, whose
existence is related to prorepresentability of our deformation category. Us-
ing the properties of these particular deformations, we will state and prove
an analogue of Schlessinger’s Theorem for deformation categories. Finally,
we will give some applications to obstruction theories, and consider briefly
the problem of algebraization of formal deformations.

Throughout this chapter we will use some notation and results about
noetherian local complete A-algebras that can be found in appendix B.

5.1 Formal objects

Let 7 — (Art /A)°P? be a deformation category, and R € (Comp /A) (re-
call that this denotes the category of noetherian local complete A-algebras
with residue field k). We want to consider sequences of compatible defor-
mations on the quotients R, = R/m's": the idea is that Spec(R) should
be a little piece of the base scheme S of a deformation we are trying to
construct or study: for example it could be the spectrum of the comple-
tion of the local ring Og , of that base scheme at a point sy, and we con-
sider then sequences of compatible deformations on all the “thickenings”
Spec(Os,s,/my,) of the point so = Spec(k(so)), hoping to get an actual de-
formation over Spec(@s’so )

Definition 5.1.1. A formal object of F over R is a collection & = {&,, fn}nen,
where &, is an object of F(R,) and fy, : &, — &nt1 1s an arrow of F over the
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canonical projection Ry, 11 — Ry,

Sometimes we will call &, the term of order n of £, and say that R is the
base ring of the formal object £. If we need to specify it in the notation, we
will denote a formal object as above by (R, €).

Remark 5.1.2. The condition of having fixed arrows f, : & — &,41 re-
flects the fact that the objects &,, are compatible, in the sense that if n > m,
then the pullback of &, to R,, along the projection R,, — R,, is isomorphic
to &,,, and moreover we have a canonical isomorphism, coming from the
composite &, — {1 — - -+ — &, of the given arrows.

We also remark explicitly that a formal deformation is known (up to
isomorphism) if we know &, for n arbitrarily large. This is because &, de-
termines all the &;’s with i < n, by taking pullbacks along the projections

A formal object as above should be thought of as an “inverse limit”
object of the sequence &, € F(R,), with respect to the given arrows f;,.
We will see that formal objects do actually have some properties similar to
those of inverse limits, see for example Remark 5.1.9 below.

Definition 5.1.3. A morphism o : £ — n of formal objects over R, where { =

{&n, futnen and n = {nn, gn}nen is a collection o = {ou, fnen of arrows ay, :
&n — Mn of F(Ry,), such that for every n the diagram

fn
gn - §n+1

ani lan+1

M ———Tn+1
adn

commutes.

As with objects, a,, will sometimes be called the term of order n of «.

Formal objects over a fixed R with morphisms form a category (compo-
sition of arrows is defined as composition at each order), that we call the
category of formal objects over R and denote by F(R).

Here we used the canonical filtration {m} },cn, but to define a formal
object we can use any filtration that defines the right topology on R. Let
A = {I,,}nen be a filtration of R, that is, a sequence of ideals I,, such that
I, € I, whenever n > m, and inducing on R the same topology as the
canonical filtration.

This is equivalent to saying that the filtrations A and {m} },cy are cofi-
nal (for every n there exists m such that m} C I,,, and conversely), or we
can say that R with the mg-adic topology is complete with respect to the
topology induced by the filtration, or that the canonical homomorphism

R — lim R/I;
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is an isomorphism of topological rings.

We can consider then a category Fa(R), whose objects are collections
€ = {&n, fnlnen that we still call formal objects of F over R, where &, €
F(R/I,) and fy, : & — &y is an arrow of F over the projection R/ 1,11 —
R/I,, and an arrow o = {ap}tnen : & — 1 (Where n = {1, gn}nen) is a
collections of arrows a,, : &, — 7y, of F(R/I,) such that for every n the
diagram

fn
gn - gn—l—l

Olni lan+1

Nn —— Tin+1
an
commutes.

Proposition 5.1.4. For any R and filtration A = {I,,},en that defines the mp-
adic topology on R, the categories F 4(R) and F(R) are equivalent.

Proof. We define a functor F' : F A(R) — F (R). Given a formal object
€ = {&n, fatnen in Fa(R), we define F(£) = {nn, gn}tnen € F(R) in the
following way: for every fixed n, there exists an m such that I,, C m’s™,
so that the projection R — R, will factor as R — R/I,, — R,. We
take the least m with such a factorization (we denote it by m(n) when we
want to stress its dependence on n), and define 7,, to be the pullback of
&€m € F(R/Iy) to R,,.

Since clearly m(n + 1) > m(n), for every n we get an arrow g, : 1, —
nn+1 over the projection R, 1 — R, taking the pullback of f,,,), as in the
diagram

ém(nJrl) Tn+1

S an
f\;>\ T L

m(n) l/

R/Im(n-I—l) I Ry

N ™~

R/ 1)

This defines an object F'(§) = {nn, gn }nen € F(R).

Given an arrow a = {ap }nen : € — p where p = {pp, hp }nen, we get
an arrow F'(a) : F(§) — F(p), where F(p) = {vn,ln}nen, by taking the
sequence [y, : 1, — vy, of arrows of F(R,,) obtained by pullback, as in the

Tin

R,.
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diagram
Pm(n) Un
\ §\ \,Bn
QU (n) N N

The F just defined gives a functor F A(R) — F (R). In the same exact
way one can define a functor in the other direction G : F(R) — Fa(R),
which will be a quasi-inverse to F. Indeed, starting from an object { =

{&ns fnlnen of Fa, put F(§) = {mn,gn}tnen and G(F(E)) = {&,, fr}nen:
Then for every n we have a diagram

& Nm &

o]

R/I,—> R,, — R/I,

(coming from the definition of 7,, and &, as pullbacks) that gives a canon-
ical isomorphism ¢, — &, identifying the two as pullbacks of & to R/I,.
Straightforward arguments (using the universal property of pullbacks) show
that the collection of these isomorphisms is an arrow G(F'(§)) — &, and that
these arrows give a natural equivalence G o F' = id. The same goes for the
other composite F' o GG, and so we have our equivalence. ]

To define a formal object of 7 over R we can use then any filtration with
the hypotheses above, and not just the canonical one.

The notation 7 (R) suggests that we want to consider a fibered category
F — (Comp /A)°P, which is indeed the case.

Definition 5.1.5. A morphism o : (R, &) — (S,n) of formal objects of F, where

€ = {&n, futnen and n = {nn, gn}nen, is a pair (o, @), where ¢ : S — Risa
homomorphism, and o = {ay, Inen is a collection of arrows «, : &, — 1y, of F
over @y, : Sy, — Ry, such that for every n the diagram

fn
§n ——&nt1

(7% \L lan+1

Nn —— Tin+1
dn

commutes.
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Again, sometimes we will call o, the term of order n of («, ¢).

We define a category F, and call it the category of formal objects of F:
its objects are formal objects (R, ), and an arrow (R, &) — (S, n) is a mor-
phism of formal objects. We have a functor F - (Comp /A)°P that takes
(R,€) to R and an arrow (o, ¢) : (R,&) — (S,n) to the homomorphism ¢,
which is an arrow R — S in (Comp /A)P.

Proposition 5.1.6. F — (Comp /A)% is a category fibered in groupoids.

Proof. First of all we check that 7 — (Comp /A) is a fibered category.
Suppose we have a homomorphism ¢ : R — S in (Comp /A), and a formal
object £ = {&n, fn}nen Over R; we want to define an object n = {n, gn }nen
over S and a cartesian arrow 1 — £ over .

For each n, we consider the homomorphism ¢,, : R, — S, induced by
¢, and take as 7, € F(S,,) the pullback of &, to Sy; further, call v, : 1, — &,
the cartesian arrow defining the pullback. For every n we have a diagram

Qn1
b1 ~—————— T4l

}\5 RS

Tn

that defines an arrow g,, : 1, — 7,41 by pullback, and shows that o =
{an }nen together with ¢ gives a morphism of formal objects « : (S,7) —
(R, &), wheren = {77717 gn}neN- N

We check that « is a cartesian arrow in F. Suppose we have another
formal object (7, p), where p = {pn, hn}nen, and a diagram

f\ (5.1)

%

<] ]

S<7R

ﬂ<—|b

where the morphism 1) and the top arrow are given, and we want to con-
struct a dotted arrow 8 = {3, } nen OvVer 1.
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We consider the part of order n of diagram 5.1

pn\\ﬁn
I i s
n

Sp<——R,

where we have a unique dotted arrow f,, that fits in, because o, : 9, — &,
is cartesian. Drawing the diagrams relative to orders n and n + 1 together,
straightforward verifications show that {3, } ,en gives a morphism of for-
mal objects, that fits in 5.1. Uniqueness is trivial, since the term of order
n of an arrow p — 7 fitting in 5.1 will fit in the last diagram, and so it is
uniquely determined.

Finally, we check that F(R) is a groupoid. Suppose then we have two
formal objects & = {&,, fnlneny and n = {7, gn}nen over R, with a mor-
phism o = {a,}nen : € — n over the identity of R. Then for each n we
have an inverse 3, : 1, — &, of o, in F(R,,), and the commutativity of
diagram

In
§n ——>&nt1

(7% i lan+1

Mn o Tn+1
implies immediately that

fn
En ——&n+1

BnT Tﬁn«kl

n T> MNMn+1

is commutative as well.
So 3 = {Bn }nen is a morphism of formal objects, and is an inverse for o
in F(R), which is then a groupoid. O

Remark 5.1.7. Suppose we have two deformation categories 7 — (Art /A)°P
and § — (Art /A)°P, and a morphism F' : 7 — G. Then there is a nat-
ural induced morphism F:F — Gof categories fibered in groupo1ds

a formal object & = {&,, fn}nen of F goes to the formal object F(§) =
{F(&,), F(fn)}neny of G, and an arrow a = {ap}nen goes to the arrow
ﬁ(oz) = {F(an)}nen. Itis immediate to check that this is well-defined,
and gives a morphism of categories fibered in groupoids.
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Now we show that F is a subcategory of F. First notice that if A €
(Art /A), then in particular A € (Comp /A), so we can consider the fiber

category F(A).

Proposition 5.1.8. We have an equivalence F(A) = F(A). Moreover these
equivalences give rise to a morphism of categories fibered in groupoids F' : F —
Fl(Art /a)er that is an equivalence, so that F can be regarded as a full subcategory

of F.

Proof. In the above statement with F |(Art /A)o» We mean the full subcategory

of F whose objects are formal objects (A, £) of F with A € (Art /A).

The idea of the proof is quite clear: since A is artinian its maximal ideal
m is nilpotent, so that there exists an m such that m’} ™' = (0), and then
A; = A for all i > m; because of this, a formal deformation will be com-
pletely determined (up to isomorphism) by its term of order m.

Formally, there is an obvious functor F' : F(A) — F(A) that carries a
formal object {&,,, fr }nen to the object &, € F(A), and an arrow o = {o, } :
{&n, fatnen = {Nn, gntnen t0 am  &m — Mim. N

We construct a quasi inverse G : F(A) — F(A) as follows: given an
object £ € F(A), for i < m — 1 we can consider the pullbacks &; of £ along
the quotient maps A — A/mfjl = A;, and the canonical arrows f; : & —
&i+1, identifying &; as a pullback of &1, and for i > m, weput§; = £ €
F(A),and f; =id : £ — & Then G(§) = {&n, fn}nen is an object of .7?(14)
Moreover, if 7 is another object of F(A), with G(n) = {7, gn}nen, and
a : & — nis an arrow in F(A), we define an arrow G(a) = {an}nen :
G(§) — G(n), taking for i < m — 1 the arrow «; : & — 1 that is the
pullback of o : £ — 7 to A;, and for ¢ > m, since §; = £ and 7; = 7, we take
simply o : & — 7.

It is clear that the functor F oG is the identity, and also that for every for-
mal deformation § = {&,, fi }nen the object G(F'(§)) will be isomorphic to
&: in fact as we already remarked, every formal deformation is determined
(up to isomorphism) by knowing terms of arbitrarily high order, and in our
case for ¢ > m the terms of order i of both G(F({)) and ¢ are isomorphic
to &,. The usual arguments involving the universal property of pullbacks
show that these isomorphisms give a natural equivalence G o F' = id.

So for every A € (Art /A) we have an equivalence Fjy : F(A) — F(A).
We put these together in a morphism F' : F |(Art Jayer — F that takes a
formal object (A, §) to &, € F, where { = {&,,, fn }nen and m is the order of
A, and an arrow a = {ap fnen : (4,8) — (A, ¢) to ap, < & — &, where m
is the maximum of the orders of A and A’. Thanks to Proposition 1.2.15 the
morphism F' is an equivalence of categories fibered in groupoids, and this
concludes the proof. O

Because of the preceding proposition we can then talk about arrows
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between an object { over A € (Art /A) and a formal object n = {7, gn }nen
over R € (Comp /A), using the above identification.

In particular giving an arrow £ — 7 corresponds to giving a homo-
morphism ¢ : R — A of A-algebras, and an isomorphism & = (., )«(7m)
in F(A), where m is the order of A, so that ¢,, is a homomorphism ¢, :
R,, — A. A pullback of n to A is ()« (nm) € F(A), where m is as above.

Finally, if A € (Art /A) and { € F(A), we will sometimes write (4, §)
for the corresponding object in F(A) defined in the proof above.

Remark 5.1.9. We point out here (using again the identification given by
Proposition 5.1.8) that giving a morphism of formal objects is equivalent to
giving a sequence of morphisms from the artinian quotients of the source,
compatible with the projections.

Let (R, &), (S,n) be two formal objects of F, where & = {&,, fn}nen and
17 = {Nns gn Inen; call A the set of arrows (R, £) — (S,7) in F, and B the set
of sequences {h, }nen of morphisms of formal objects hy, : (R, &,) — (S, 1)
such that for every n the composite

hn+l

(Rnaén) - (Rn+1a£n+1) —_— (5777)

coincides with h,,.

There is a natural map A — B sending a morphism (R,{) — (S,n) to
the sequence of composites (R, &,) — (R, &) — (5,n). Conversely given a
sequence h,, as above, the arrow h,, : (R,,&,) — (S, n) of F corresponds to
an isomorphism between §,, and the pullback of 7,, € F(S,,) to R,, which
gives an arrow «, : &, — 1, of F. The fact that {h,, },cn has the compat-
ibility property above ensures that @ = {ay, }nen gives an arrow of formal
objects o : (R,{) — (S,n), and this gives a map B — A that is clearly
inverse to the previous one.

5.1.1 Formal objects as morphisms

Now we change point of view, and describe formal objects as morphisms
of categories fibered in groupoids. For an object R € (Comp /A), consider
the opposite category (Art /R)°P of the category of local artinian R-algebras
with residue field &, or equivalently objects A € (Art /A) with a homomor-
phism of A-algebras R — A.

There is an obvious functor (Art /R)? — (Art /A)°P that sends an object
R — Aof (Art /R)°P to the A-algebra A defined by the composite A — R —
A, and ahomomorphism A — Bin (Art /R) to itself, as a homomorphism
of A-algebras.

Proposition 5.1.10. (Art /R)°? — (Art /A)°P is a category fibered in sets that
satisfies [RS], and so it is a deformation category. Moreover its tangent space
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Tr—k(Art /R)°P at the unique object R — k over k is isomorphic to the vertical
tangent space of R

TR*,]C(AI"D /R)0p = TAR = (mR/(mAR + m%{))v

Proof. We check first that (Art /R)? — (Art /A)°P is a category fibered in
groupoids: if R — A is an object of (Art /R)? over A € (Art/A), and
¢ : A — Bis ahomomorphism in (Art /A), then the only possible pullback
v«(R — A) is simply the composite R — A — B, and the cartesian arrow
from R — B to R — Ais g itself, as a homomorphism of R-algebras.

Moreover it is fibered in sets, because if we have A € (Art /A), and
f:R— A, g: R— Aare objects of (Art /R)°P(A), then the only morphism
of R-algebras A — A that induces the identity id : A — A as A-algebras is
the identity itself, so in particular we must have f = ¢. This shows that in
(Art /R)°P(A) there are no arrows other than the identities, and so it is a set
(precisely the set Homy (R, A)).

Now we turn to [RS]. If A, A’, A” are objects of (Art /A),and 7' : A" — A
and 7" : A” — A are two homomorphisms with 7" surjective, then we have

(Art /R)OP(A/ X A A”) = HomA(R, A’ XA AH>.

On the other hand (Art /R)P(A’) X (axt /r)or(4) (Art /R)P(A”) is by defini-
tion Homp (R, A") Xtiom , (r,4) Homp (R, A”) and the properties of the fibered
product imply that the natural function

Homp (R, A" x4 A”) — Homp (R, A") Xom, (r,4) Homp (R, A”)

is a bijection.

Finally, we calculate the tangent space. Notice first that (Art /R)P (k) =
Hom (R, k) has precisely one element, which is the quotient map R — k.
To find the tangent space, we consider the functor F' : (FVect /k) — (Set)
that associates to V' € (FVect /k) the set F(V) = Homy (R, k[V]), and acts
on arrows by pullback.

We will show that there is a functorial bijection

F(V)=V @, TaR
where T) R is the vertical tangent space of R
TAR = (mp/(mpAR +m%))".
This will give an isomorphism Tr_,,(Art /R)P = Tx R.
We construct a function F'(V) — V ®;, Tp R. Take a homomorphism of

A-algebras ¢ : R — k @ V. We can restrict ¢ to the maximal ideal mp of R
to get a function @ : mp — V, and since p(mp R +m%) = 0 (for p(mpR) = 0
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and ¢(m%) = 0, respectively because of A-linearity of ¢ and V2 = (0)), we
can pass p to the quotient to get a k-linear function

fo:mp/(mAR —|—m?%) -V
which is an element of
Homk(mR/(mAR + m%), V)=V Q@ (mp/(mpyR+ m%))v.

Conversely, suppose we have an element of V ®j, (mp/(mpyR + m%))" that
corresponds then to a k-linear function

frmp/(mAR+m%) — V.

Since mp/(maR +m%) = mp/mZ (where R = R/my R, see appendix B), we
can consider the composite g : mz — mp/(mpyR + m%) — V, and define
o : R — E[V]as
pr(r) =m(r) +g(n'(r) —(r)).

where 7 : R — kand 7’ : R — R/myR = R are the quotient maps (we are
using the fact that R is a k-algebra, so 7(r) € R).

It can readily be checked that these two functions are inverse to each
other, and we have our bijection. Functoriality is immediate. ]

Consider now a morphism ¢ : (Art /R)? — F of deformation cate-
gories. From & we get a formal object of F over R, taking &, = {(R,), and
fn = &(Rp+1 — Ry), and if we have a base-preserving natural transforma-
tion o : £ — 1 between two morphisms (Art /R)? — F we get an arrow
Qo {fna fn}nEN - {77717971}7161\1 taking Qp = @(Rn) 28 = M- R

This association gives a functor ® : Hom((Art /R)?, F) — F(R). We
have the following “Yoneda-like” proposition.

Proposition 5.1.11. The functor ® is an equivalence of categories.

Proof. We construct a quasi-inverse U : F(R) — Hom((Art /R)°P,F) to ®.
Given a formal object £ = {5, fn }nen, We getamorphism Fy : (Art /R)P —
F in the following way: if A € (Art /R)° we associate to A the pullback
€4 = (om)«(&m) € F, where m is the order of A and ¢,,, : R,,, — A s the ho-
momorphism induced by R — A. On arrows, if we have a homomorphism
¢ : A — Bin (Art /R), the commutative diagram

fm\ §A‘ o
gn —J[ \§B
Ry —|——A
N ~N
R, B.
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gives (by pullback in F) an arrow £, : {g — &4 of F over ¢ (as an arrow in
(Art /A)).

This defines a morphism F¢ : (Art /R)? — F. To an arrow o =
{an nen : &€ — nbetween two formal objects over R, where 1 = {1, gn }nen,
we associate a natural transformation F,, : F¢ — F;,. Given an object
A € (Art /R)°P of order m, we define an arrow Fy,(A) : F¢(A) — F;,(A) sim-
ply as the pullback of o, : &, — 1, along the homomorphism R,, — A.
Standard arguments show that this gives a natural transformation, and this
completes the definition of W.

Routine verifications using the universal property of pullbacks prove
that ¥ and ® are quasi-inverse to each other, and then our result. O

So giving a formal object of F over R is equivalent to giving a morphism
of deformation categories (Art /R)°” — F. From now on we will use both
these points of view.

In particular we will use the same symbol for a formal object and for
the associated morphism, and if £ : (Art /R)°? — F is a formal object and
¢ : R — Aahomomorphism of A-algebras, we will denote by &, (or simply
€r—a when there is no possibility of confusion) the object £(R — A) of
F(A).

We get the following corollary (which is an analogue of the “weak”
Yoneda’s Lemma), simply by taking F = (Art /R’).

Corollary 5.1.12. There is a natural bijection Hom((Art /R)°P, (Art /R')°P) =
Homy (R', R) that respects composition.

In particular (Art /R)°P and (Art /R’)°P are isomorphic if and only if R ad
R’ are isomorphic.

By “respects composition” above we mean that if R” is another ob-
ject of (Comp /A), and F : (Art /R)? — (Art/R')?, G : (Art /R')P —
(Art /R")°P are two morphisms corresponding to ¢ : R — Rand ¢ : R" —
R' respectively, then G o F' € Hom((Art /R)°P, (Art /R")°P) corresponds to
p o1 € Homp(R", R).

Notice also that Hom((Art /R)°, (Art /R')°P) is a set, since (Art /R)°P
is fibered in sets. As to the proof, bijectivity is immediate from 5.1.11, and
the part about respecting composition is very easy.

Remark 5.1.13. From this description of formal objects we get another in-
terpretation of the pullback: if (R, ) is a formal object of 7, and ¢ : R — S
is a homomorphism in (Comp /A), then from the last corollary we have an
associated morphism @ : (Art /S)? — (Art /R)°P, and we can consider the
composite

(Art /S)? & (Art /JR)® & F

which is then a formal object of 7 over S. One can easily see that this formal
object is (up to isomorphism) precisely the pullback of £ to S along ¢.
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5.1.2 The Kodaira-Spencer map

Given a formal object (R, ) of F, we can consider the differential at the only
object over k of (Art /R)° of the corresponding morphism ¢ : (Art /R)P —
F.

Definition 5.1.14. The k-linear function drp—,¢ : Tr—r(Art /R)? — TeF
is called the Kodaira-Spencer map of the formal object (R, §). We will usually
denote it by ke : TAR — Te, F.

Remark 5.1.15. More explicitly, the Kodaira-Spencer map can be described
in the following way: if ¢ : R — kle] is an element of T, (Art /R)P (we
do not need to take isomorphism classes here, for (Art /R)° is fibered in
sets), the image k¢ () is the isomorphism class of the pullback of the formal
object £ along the map .

Notice that, since €2 = 0 and by A-linearity,  will factor through the
quotient map R — Ry, and r¢(¢) can be described as the isomorphism class
of the pullback of £; € F(R;) along the induced map R, — k[e], where &;
is the pullback of the formal object £ along the quotient map above.

There is another natural k-linear map TAR — T¢,F associated with
(R, €), defined in the following way: consider the object £, € F(R;) de-
fined in the previous remark. This is a lifting of &, to Ry, and since R, is a
k-algebra, we can compare it to the trivial lifting & ]E of & to R;.

Since these objects are liftings of & to R, and

0 —myp/ m% Ry k 0

is a small extension, we get an element

9([&1]. [éolg,]) € (mp/mE) @k T, F

(using the notation introduced in Remark 2.3.3) that we call the Kodaira-
Spencer class of £, and denote by k..
This element corresponds to a k-linear function

TAR = (mp/m2,)" — Te, F.

Proposition 5.1.16. The last map coincides with the Kodaira-Spencer map r¢ of
3

Proof. Notice first that if F' : (FVect /k) — (Set) is the functor defined
on objects by F(V)) = {isomorphism classes of objects of F¢,(k[V])}, then
since mp = mp/ mzE is a square-zero ideal we have

Ry = k& mp/mZ = k[mp/m2]
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so that F'(my/ m%) = {isomorphism classes of objects of F¢,(R1)}.

By definition of the action of Theorem 2.3.1, the element k¢ = ¢([§,], [€ol3,])
corresponds then to the isomorphism class of &, in

F(mﬁ/m%) = (mﬁ/m%) Q Teo F.
To conclude it suffices to recall that the isomorphism
F(E[V]) 2V @ Ty, F = Homk(VV, TeoF)

of Remark 2.1.5 takes an element [¢y] of F(k[V]) to the k-linear function
VYV — T, F that carries a functional V' — k to the (isomorphism class of
the) pullback of &y to k[e], along the induced k[V] — k & k = k[e].

From this description, taking V' = my/ m% and [¢y] = [£;], and from
Remark 5.1.15 we see that the k-linear map corresponding to the element
k¢ is exactly the Kodaira-Spencer map k. O

This proposition shows in particular that ¢ is completely determined
by the first-order term ¢; € F(R;) of £, because this determines £; € F(R;)
up to isomorphism. Conversely, by freeness of the action, £, is determined
(up to isomorphism) once we know .

The following functoriality property is an immediate consequence of
Proposition 2.3.4. Take two objects R, S of (Comp /A), a homomorphism
¢:R— S,and £ = {&,, fn}nen a formal object of F over R.

Call 3, : Ry — S the induced homomorphism, which in turn induces
a morphism of small extensions

0 — mp/m2 Ry k 0
\Lw l%ﬁ L
0 —> mg/m% Si k 0.

Recall also that ¢ induces a differential dy : ThS — T R that is the adjoint
of the codifferential ) : mz/m2, — mg/mZ (see appendix B).

Proposition 5.1.17. We have the following relations between the Kodaira-Spencer
maps and classes of £ € F(R) and of the pullback ¢, (§) € F(5).

° k%"*(f) = (w ® ld)(k‘g) S mg/m% O T{()F-

® K (e) = keodp :T)S = (mg/m%)v — T¢, F.

Proof. The first property follows immediately from Proposition 2.3.4, and
we get the second one by using Remark 5.1.13, and noticing that the dif-
ferential of the morphism (Art /S)? — (Art /R)° corresponding to ¢ is
precisely dy : Tp\.S — Th R.

Alternatively the second part follows from the first, the fact that dy is
adjoint to 1, and Proposition 5.1.16. O
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5.2 Universal and versal formal deformations

As the classical Yoneda’s Lemma, Proposition 5.1.11 lets us speak of “uni-
versal formal objects” for a deformation category F.

Definition 5.2.1. A universal formal object over R € (Comp /A) for F is a
formal object & € F(R), such that the corresponding & : (Art /R)P — F is an
equivalence.

Thanks to Proposition 1.2.15, £ is a universal formal object if and only
if €4 : (Art /R)°P(A) — F(A) is an equivalence for every A € (Art /A), or
equivalently if and only if for every A € (Art /A) and n € F(A) there exist
a unique homomorphism of A-algebras R — A and a unique isomorphism
€r—a = nin F(A). This can also be restated by saying that for every A €
(Art /A) and n € F(A) there is a unique arrow (A,7n) — (R, &) of formal
objects in F.

Using Remark 5.1.9 we see that the above universal property can be
strengthened to: for every formal object (S, 7) of F there exists a unique
arrow (S,7n) — (R, §). That is, every formal object can be obtained as pull-
back of (R, ), in a unique way. This can easily be checked by considering
the sequence of arrows hy, : (S, 7,) — (R, §) coming from the “weak” uni-
versal property above, and noticing that they are necessarily compatible
because of uniqueness.

Using this last universal property it is easy to check that two universal
deformations are canonically isomorphic.

Definition 5.2.2. We say that a deformation category F — (Art /A)°P is prorep-
resentable if it is equivalent to a deformation category of the form (Art /R)°P for
some R € (Comp /A), or equivalently if F has a universal formal object (R, ).

Since (Art /R)° is a category fibered in sets, a necessary condition for
a deformation category F — (Art /A)°P to be prorepresentable is that F
should be fibered in equivalence relations. Other necessary conditions are
that (k) should be a trivial groupoid, because it will be equivalent to a
singleton, and F should have finite-dimensional tangent space T, F at any
(actually it suffices that this holds for one, given the former condition) ob-
ject & € F(k), because dimy (T R) is finite.

The main result of this chapter is that the converse also holds.

Theorem 5.2.3 (Schlessinger). Let F — (Art /A)°P be a deformation category.
Then F — (Art /A)°P is prorepresentable if and only if:

* F(k) is a trivial groupoid.
o T¢,F is finite-dimensional for any § € F (k).
o Inf(&) is trivial for any & € F (k).
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This is an analogue of Schlessinger’s Theorem 1.1.14 for deformation
categories, even though there are no direct implications between the two
(see the discussion at the end of Section 1.3). We will prove the theorem in
Section 5.3, after discussing miniversal deformations.

Example 5.2.4. As a simple example, suppose that X is a projective scheme
of finite type over k, set A = k, and consider the deformation category
HilbX — (Art /k)P.

Take Zy a closed subscheme of X, and notice that the deformation cat-
egory Hilby — (Art /k)? of objects restricting to Zy over k meets all hy-
potheses of Theorem 5.2.3: we have already seen that Infz, (HilbX) = 0,
clearly the only object over k is Z itself, and the tangent space Tz, Hilb* =
H°(Zy,Np) is finite-dimensional over k. Then we can conclude that the
deformation category Hilby — (Art /k)° is prorepresentable.

We can see this in a more concrete way: the deformation category (which
is fibered in sets) HilbX — (Art /k)°? comes from a functor, called the
Hilbert functor of X, and denoted by HilbX : (Sch /k) — (Set); a theo-
rem of Grothendieck (see for example Chapter 5 of [FGA]) states that with
the hypotheses above this functor is represented by a scheme, called the
Hilbert scheme of X, that we still denote by Hilb* € (Sch /k).

The closed subscheme Z; corresponds then to a point in the Hilbert
scheme, Z, € HilbX. Since Hilb™X represents the Hilbert functor, every
object Z € Hilb} (A) corresponds to a morphism Spec(A) — HilbX with
image Zy, that factors through Spec(@ HinX z,), by the usual argument. In
particular the resulting homomorphism O Hinx z, — A gives an object of
(Art /Oppx 7,)-

This gives a morphism

Hilby, — (Art/ O 20)”"

of deformation categories that is easily seen to be an equivalence. Then
Hilb)Z(O is prorepresentable, as we already knew from Theorem 5.2.3. The

universal formal object (R, Z) in this case has R = O Hinx .z, and the term
of order n of the formal deformation Z = {Z,,, f,, }»en over R is the pullback

to Spec(Opinx 7, /™ px 2,) of the universal closed subscheme of H ilbX.

5.2.1 Versal objects

The condition of not having infinitesimal automorphisms prevents many
deformation categories from being prorepresentable. Because of this, we
try to weaken the condition of universality on formal objects, to end up
with a more useful notion. The right definition is the following.

105



CHAPTER 5. FORMAL DEFORMATIONS

Definition 5.2.5. Let 7 — (Art /A)°P be a deformation category. A formal object
(R, p) of F is called versal if the following lifting property holds: for every small
extension ¢ : A — A, every diagram of formal objects

_(ALE)

¥
(R.p)

(4,€)

can be filled with a dotted arrow.

Remark 5.2.6. It is easy to check that a formal object (R, p) is universal if
and only if for any diagram as above there exists a unique dotted arrow
making it commutative. So universal deformations are versal.

Proposition 5.2.7. Let F — (Art /A)°P be a deformation category, and (R, p)
a versal formal object. Then the lifting property of the definition above holds also
when A" — A'is a surjection in (Comp /A).

Proof. First of all, it is easy to see that the lifting property will hold when
A" — A is a surjection in (Art /A), as usual by factoring A’ — A into a
composite of small extensions and lifting the morphism successively.

Let A — A be a surjection in (Comp /A), and we write § = {&,, fn}
and & = {&,, f} }nen. Let us show inductively that for each n we can find
a morphism of formal objects g,, : (A4},,¢],) — (R, p) such that for all n the
composite

(A €0) = (Alyy1,€npn) 2 (R, p)

coincides with g,, and the diagram

/ (A%‘, &n)
(R, ;f) (An,&n)

commutes.
Suppose we have constructed g,,, and consider the diagram

An+1 I An
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where the maps from R are the homomorphism R — A, coming from g,
and the one R — A, ;1 associated with (A,&) — (R, p), and B is the fibered
product. Taking the pullback of p to B along the dotted homomorphism
above we get an object n € F(B) restricting to &, on A/, and on &,,4; on
Apyi.

Notice now that there is a homomorphism A7, ; — B induced by the
quotient map A; ; — A; and the map A4; , — A, coming from A" —
A, and which gives a morphism of formal objects (B,n) — (4] 1,&,,1),
fitting in the commutative diagram

(A21+1v &Hrl) \\

(B,n) (45, 80)

| |

(An-‘rlv ‘Sn—i-l) - (Am 5”)

Moreover from the fact that A],, ;| — B is a surjection in (Art /A) (as is read-
ily checked, using the surjectivity of Aj, | — A, 1), and from the diagram

(A;H-l? 57/1-1—1)

(B,n)

by versality of (R, p) we get the dotted morphism g, 41 : (4, ,1,&,41) —
(R, p) that has the desired properties.

Finally, notice that by Remark 5.1.9 the sequence { g, } nen of compatible
morphisms induces a morphism of formal objects (4’,¢') — (R, p) that
gives the desired lifting. O

Notice that the dotted arrow in the diagram of definition 5.2.5 will give
a lifting R — A’ of the map R — A, and conversely the existence of such
a lifting implies at least that the deformation ¢ will lift to A’ (just by taking
the pullback of p). In other words in presence of a versal deformations the
problem of lifting objects becomes a problem of lifting maps of A-algebras.
From this remark we will get a criterion to decide wether a deformation
problem is obstructed or not, knowing a versal deformation (see Proposi-
tion 5.2.12).

As in the case of deformation functors, the property of being versal can
be restated as a smoothness condition.
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Definition 5.2.8. Let F — (Art /A)°P and G — (Art /A)°P be two deformation
categories, and F : F — G be a morphism. We say that F is formally smooth if
for every surjection A" — Ain (Art /A) the functor F(A') — F(A) xgayG(A')
induced by the diagram

F(A) ——=F(A)

G(A") —=G(4)
is essentially surjective.

Remark 5.2.9. The term “smooth” comes from the fact that if 7 and G
are deformation categories corresponding to the functors of points of two
schemes X and Y, then a morphism X — Y locally of finite type is smooth
if and only if the corresponding morphism F — § is formally smooth. This
is the so-called “infinitesimal smoothness criterion” of Grothendieck (see
Théoreme 3.1 of Exposé III in [SGA1]).

Proposition 5.2.10. Let F — (Art /A)°P be a deformation category. A for-
mal object (R, p) of F is versal if and only if the corresponding morphism p :
(Art /R)°P — F is formally smooth.

Proof. This is immediate from the definitions: if A’ — A is a surjection in
(Art /A), the natural functor

(Art /R)P(A") — (Art /R)™(A) x p(a) F(A)

sends a homomorphism R — A’ to the object (R — A, pr_a/,6), where
R — A is the composite R — A" — A, and 6 : pr_a|la = proa is the
canonical isomorphism between the pullbacks of p.
From this it is evident that an object (R — A,¢’,0) € (Art /R)P(A) X r(a)
F(A"), which corresponds to a diagram of formal deformations
(4,¢)

—
-

-

(Ra p) (AapR—>A)

will come from a homomorphism R — A’ exactly when there exists a lifting
(A", ¢&") — (R, p) of the morphism (A, pr—a) — (R, p). O

Here are two immediate properties of versal deformations.

Proposition 5.2.11. Let F — (Art /A)°P be a deformation category, and (R, p)
a versal formal object of F. Then:
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(i) For every formal object (S, §) restricting to po on k there is a morphism (S, §) —
(R, p) (in particular this also holds if S € (Art /A)).

(ii) The Kodaira-Spencer map r, : TAR — T,,F is surjective.

Proof. The first part of the statement is immediate from Proposition 5.2.7,
where we consider as surjection the quotient map S — k, and the diagram

(8,9

e
e

/
Vg

(R, p) (k, po)

that identifies pg as the pullback of p and & over k.

Now we prove (ii): take a vector v € T, F, the usual ring of dual num-
bers k[e], and consider the element of (¢) ®j, T),,F corresponding to v. We
can then find an object ¢ € F,,(k[¢]) such that

9([&]; [polkpeg)) = v € (&) @k Tpo F

(simply by taking a representative of [po || - v, where this is the usual ac-
tion of Theorem 2.3.1) which is the same as saying that the Kodaira-Spencer
map k¢ : k = (e)¥ — T,,F of the formal object (k[e], £) sends 1 to v.

By the first part of the proposition we get a morphism of formal objects
(kle],€) — (R, p) (and in particular a homomorphism ¢ : R — k[e]) that
identifies £ as a pullback of p, and from the second part of Proposition 5.1.17
we get

v = re(1) = rp(de(1))
where dy : k — T R is the differential induced by ¢. From this we see that
v is in the image of «,, and thus this map is surjective. O

In particular if 7 admits a versal object (R, p), then the tangent space
T,,F is finite-dimensional.

We can now state and prove the anticipated criterion to recognize un-
obstructed objects.

Proposition 5.2.12. Let F — (Art /A)°P be a deformation category, and (R, p)
a versal formal object of F. Then py is unobstructed if and only if R is a power
series ring over A.

Proof. We first recall the smoothness criterion B.9: R € (Comp /A) is a
power series ring over A if and only if for any homomorphism ¢ : R — A
with A € (Art /A), and small extension ¢ : A" — A, there exists a lifting
A: R — A, that is, a homomorphism A such that ) o A = ¢.

Suppose pg is unobstructed, and take a homomorphism ¢ : R — A and
a small extension A’ — A. Then considering the pullback £ = ¢*(p) of p
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to A we get a morphism of formal deformations f : (4,§) — (R, p), and
since pg is unobstructed (and clearly the pullback of ¢ to k£ will still be pg),
we have a lifting ¢’ € F(A’) of {, which gives a morphism of formal objects
(A,§) — (A, ). By versality we have then a morphism (4',¢') — (R, p)
that lifts f, and in particular we get a homomorphism R — A’ lifting ¢. By
criterion B.9, we conclude that R is a power series ring.

Conversely, suppose R is a power series ring, and take a small extension
o : A — Awith £ € F(A), such that the pullback to k is pg. From the ver-
sality of (R, p) (and Proposition 5.2.11) we get a morphism of formal objects
(A,€) — (R, p), that is, a homomorphism ) : R — A with an isomorphism
i(p) = €. Since R is a power series ring, ¢ will liftto A : R — A, and we
can take the pullback £’ = A\.(p) € F(A’). Since ¢ o A = 9, the pullbacks
(&) and Y. (p) = £ will be isomorphic; in other words we have an arrow
€ — Yu(p) — @u(&) — & of F over ¢ that makes ¢ into a lifting of £ to A'.
This shows that pg is unobstructed. O

5.2.2 Miniversal objects

The second part of Proposition 5.2.11 suggests us to consider versal defor-
mations where R is as “small” as possible, and leads us to the following
definition.

Definition 5.2.13. A versal formal object (R, p) of F is called minimal if the
Kodaira-Spencer map k, : TAR — T, F is an isomorphism.

A versal minimal formal object is shortly called miniversal; Schlessinger
calls the corresponding concept for deformation functors a hull. Some-
times we will also say that (R, p) is a miniversal deformation of py € F(k).

We now show that all universal deformations are miniversal, and that
miniversal deformations are all isomorphic, in a non-canonical way.

Proposition 5.2.14. Let F — (Art /A)°P be a deformation category. Then:
(i) Any universal formal object of F is miniversal.

(ii) Any two miniversal formal objects of F with the same pullback to k are non-
canonically isomorphic.

Proof. We start by proving (i): it is clear that a universal object is in par-
ticular versal (and moreover the lifting morphism in the versality property
will be unique), so we only have to prove that if (R, p) is a universal formal
object of F, then the Kodaira-Spencer map «, : TAR — F is an isomor-
phism. But this follows from Remark 2.1.8, since x, is the differential of
p: (Art /R)°P — F, which is an equivalence by definition.

For the second statement, take two miniversal objects (R, p) and (5, v)
such that pp and 1 are isomorphic. By Proposition 5.2.11 we have two
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morphisms of formal objects (R, p) — (S,v) and (S,v) — (R, p), and we
callp : S — Rand ¢ : R — S the corresponding homomorphisms.

By functoriality of the Kodaira-Spencer map and minimality of (R, p)
and (S,v), the two differentials dp : TAR — TxS and dy) : TpS — TAR
will be isomorphisms (so the codifferentials are also), and from Corollary
B.4 we get that ¢ and ¢ are isomorphisms. In conclusion (R, p) and (S, v)
are isomorphic formal objects. O

Next, we see that all versal formal objects can be described in term of a
miniversal one (provided we have one).

Proposition 5.2.15. Let F — (Art /A)°P be a deformation category, (R, p) a
miniversal formal object of F, and consider the power series algebra on n indeter-
minates S = R][x1,...,xy]] € (Comp /A), with the inclusion i : R — S. Then
the formal object (S, i.(p)) obtained by pullback is versal.

Conversely if (P,§) is a versal formal object of F restricting to py on k, and
the kernel of k¢ : TAP — T¢yF has dimension n, then (P,§) is isomorphic to the
formal object (S, i+(p)) above.

Proof. Suppose we have a diagram

(5.1.(0)) (4.6

and we want to show that the dotted lifting exists. By versality of (R, p),
the composite (4, &) — (S,i«(p)) — (R, p) will lift to a morphism of formal
objects (A’,¢') — (R, p) that corresponds in particular to a homomorphism
p:R— A Callalsoy : S — Aand X : A’ — A the two homomorphisms
corresponding to the morphisms above.

The following diagram, in which the labels of the arrows are the corre-
sponding homomorphisms (going then in the inverse direction), sums up
the situation.

(A, ¢)
A

(R, p) =—— (S,ix(p)) (4,6)

Wenow liftp: R — A'tov : S — A’: if we choose for each i an a; € A’ such
that ¢(x;) = A(a;), then by the properties of power series rings there exist a
unique homomorphism v : S — A’ such that voi = ¢ and v(x;) = a; for all
i (this is proved in the same way as Proposition B.6). This homomorphism
also satisfies A o v = 1) by construction.
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Since v o i = ¢, the pullback v, (i+(p)) of ix(p) to A’ will be isomorphic
to ¢, and this isomorphism together with v will give an arrow (A4’,¢') —
(S,i4(p)) that fits in the above diagram, showing that (S, i.(p)) is versal.

Conversely, suppose (P, ¢) is a versal formal object of F restricting to
po over k. Then by Proposition 5.2.11 and versality of (R, p) we have a
morphism of formal objects (P,{) — (R, p) that corresponds to a homo-
morphism ¢ : R — P. Moreover by 5.1.17 and surjectivity of k¢ (by 5.2.11
again), we get that dy : Ty P — T R is surjective, so that in turn its adjoint
map ¢ : mg/ m% — mp/ m% is injective, and the codimension of the image
is exactly n, since x, is an isomorphism.

Take then elements a1, ..., a, € mp such that their image in m5/ m% is
a basis for a complement of the image of v, and define v : S — P (where
S = R|[x1,...,xy]] as above) by imposing that v o i = ¢, and v(z;) = a; for

all i. The pullback v, (i.(p)) will then be isomorphic to £, and this gives us a
morphism (P, &) — (5, i.(p)), which we now prove to be an isomorphism.

Since v; : S; — Pj is an isomorphism by construction, we have an
inverse \; : P; — S that gives in particular an isomorphism of formal ob-
jects (S1,p1) — (P1,i«(p);), inverse to the restriction of (P, &) — (S,i«(p))
to the first-order terms. By versality of (P, ¢), the composite

(S1,ix(p)1) — (P1,€1) = (P,€)

can be lifted to a morphism (5,i.(p)) — (P,§), which corresponds to a
homomorphism A : P — S.

Notice now that the composites A o v and v o A induce the identity
on mg/mZ and mp/m2, so using Corollary B.4 we conclude that they are
isomorphisms, and in particular v is as well. This shows that (P,§) —
(S,ix(p)) is an isomorphism. O

5.3 Existence of miniversal deformations

Now we give an analogue of the “existence of hulls” part of Schlessinger’s
Theorem, in the context of deformations categories.

Theorem 5.3.1. Let F — (Art /A)°P be a deformation category, and &y € F(k),
such that the tangent space T¢, F is finite-dimensional. Then F admits a miniver-
sal formal object (R, p), with py = &.

Moreover if n is the dimension of T¢,F, then R will be a quotient P/I of the
power series ring P = A[[x1, ..., x,]] on n indeterminates, with I C mp P +m%,.

Proof. The proof will be in two steps. First of all, we show that it is suf-
ficient to find a formal object (R, p) such that the Kodaira-Spencer map
Kp : TAR — T¢, F is an isomorphism, and for every small extension A" — A
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with a diagram

(4,¢)

(R, p) (4,¢)
of formal objects, the homorphism R — A lifts to R — A'.

Proof. We show that this weaker lifting property implies versality, if «,, is
an isomorphism.

Write ¢ : A — Aand ¢ : R — A for the homomorphisms associated
with the arrows above, and suppose we have a lifting v : R — A’ of ¢
(which is a lifting of the object ¢ € (Art /R)°P(A) to A’); we consider then
the pullback pr_, 4’ of p to A’. Since ¢ o v = 1), the pullback ¢, (pr—_ /) of
pr— A to A will be isomorphic to £, and this makes pr_, 4/ into a lifting of £
to A

Since ¢’ is a lifting of £ too, by Theorem 2.3.1 we can find an element
g € I ®y, Tg, F such that [pr_a] - g = [¢]. But now k, : TAR — T¢,F is
an isomorphism, so that id ®«, : I ®; TAR — I ®j, T¢,F is as well, and in
particular we can find an element i € I ®;, T R such that (id ®«,)(h) = g.

Recalling that x,, is the differential of the morphism p : (Art /R)® — F
and that the action on the liftings is functorial with respect to the deforma-
tion category (Proposition 2.3.6), we get that

[o(r—aryh) = [PrR—ar] - (Id ®Ky)(R) = [pR—a] - g = [€]-

So (R — A’) - h is a homomorphism R — A’ such that the pullback of p
along it is isomorphic to ¢, and this gives a lifting (4’,¢') — (R, p) of the
given (A,§) — (R, p), showing that (R, p) is versal. O

Now we will construct a formal object (R, p) with the two properties
above.

Let £ = Tg) F, the dual of the tangent space T¢,F, and z1,...,z, be
a basis of F as a k-vector space. Put P = Al[z1,...,x,]]. Then we have
P = k@ E and we can consider a lifting p, € F (P1) of &, such that the
Kodaira-Spencer map x5, : EY — T¢,F = EY of the formal deformation
(P1,py) is the identity.

There exists precisely one such lifting (up to isomorphism), and it is
obtained applying to the trivial lifting & |5, the element of £ @y, Tg, F cor-
responding to the identity (see the comments after the proof of Proposition
5.1.16). One could easily see that this object has the versality property with
respect to artinian A-algebras of the form k@ V.

Now we will progressively extend p, to a formal object on some bigger
quotient of P. We first define inductively a sequence of ideals I; C P and
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objects p; € F(P/1;) (itis easy to check that all the quotients will be actually
artinian) starting with Iy = mpy P + m%; and p; = p;.

Suppose we have I,,_; and p,—1 € F(P/I,—1). Consider the set A of
ideals I C P such that mpl,,_1 C I C I,_; and there exists a lifting p €
F(P/I) of pp—1, and take I, to be the minimum element of A with respect
to inclusion, that is, every element of the set A contains I,,.

To show that such an element exists, we show that A is closed under in-
tersection (it is clearly nonempty, since I, satisfies the conditions). Notic-
ing that ideals mpl,,_y C I C I,,_; correspond to subspaces of the finite-
dimensional k-vector space I,,_1/mpl,_1, we only have to show that A is
closed under finite (or pairwise) intersection.

So suppose I, J € A, withn € F(P/I) and o € F(P/J); working in the
k-vector space I,,_1 /mpl,_1 we can find an ideal J' of P such that J C J’' C
L1, INnJ=INnJ and I + J' = I,,_1. Then we have that

P/(INJ) = P/Ixp, , P/

and using [RS] we get a deformation over P/(I NJ') = P/(I N J) lifting
pn—1, corresponding to the objects n on P/I, and the pullback of o along
the projection P/J — P/J’,on P/J’. Thus I N J is in A as well.

Now set I =, I;, and R = P/I. Notice that R is still complete in the
mp-adic topology, and we have also R = lim(P/;) = lim(R/(1;/I)). This
is because, since mﬁg C I; for every ¢, we have exact sequences

0 — I;/m}, — P/m}, P/I; 0

for every ¢, which together give an exact sequence of projective systems.
Moreover, since P/m’, is artinian, the projective system {I;/m’};cn with
the natural maps satisfies the Mittag-Leffler condition, and so the induced
map P = lim(P/m)) — lim(P/1;) is surjective, and it is clear that its kernel
is precisely I =, ;.

This shows that the filtration {I,,/I },en of R defines the same topology
as its canonical one, and so (see Proposition 5.1.4) we can define a formal
object p on R as {pn, fnnen, Where p; € F(R/(I;/I)) are the ones defined
above, and f, : p, — pp+1 are the arrows defining p, 1 as a lifting of p,,.

Let us show that the formal object (R, p) satisfies the two properties
above: clearly the Kodaira-Spencer map «, : TA\R = EY — Ty, F = EV is
an isomorphism, since it is nothing else than 7, .

Now for the lifting property: suppose A — A is a small extension,
and that we have a diagram of formal objects as above. We want to show
that R — A lifts to R — A’. We can clearly assume that A’ — A is a tiny
extension, because if we prove it in this case, we can lift the homomorphism
form R successively, using the fact that every small extension is a composite
of tiny extensions.
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Notice that the homomorphism R — A factors through some P/I;, say
P/I, — A. Let us consider the fibered product R' = (P/I;) x4 A’, and
take a lifting of the homomorphism P — P/I,, — Ato P — A’. These
homomorphisms together induce P — R/, such that the following diagram
is commutative.

~ R/ - > A/
A
P P/, A

Call J = ker(P — R'), and notice that J C I,. If J = I,, we are done,
because the projection R — P/I,, will have a section that we can use to
define our lifting as the composite R — P/I,, —» R — A'.

So suppose that .J is properly contained in I,,. Identifying P/J with its
image in R/, we have that I,,/J C ker(R' — P/I,,), which is isomorphic to
ker(A" — A) = k, so that necessarily I,,/J = ker(R' — P/I,). Looking at
the diagram with exact rows

0 In/J P/J P/In*>()
0 —ker(R' — P/I,) R P/I,—=0

we get that R = P/J. It is also easy to check that mpI,, C J (and we had
already that J C I,,), and by [RS] we have a lifting p € F(R') = F(P/J)
of py,. By definition of I, as the minimal ideal of P with these properties,
we have that I, 1 C J, so that the homomorphism P — R’ factors through
P/I,41. Now it is clear that the composite R — P/I,+1 — R’ — A'isa
lifting of the given R — A, so we are done. O

Now we turn to the proof of Schlessinger’s Theorem 5.2.3. The key
point is the following proposition.

Proposition 5.3.2. Let F — (Art /A)°P be a deformation category, and (R, p) a
miniversal formal object of F. If Inf(pg) = 0 and F (k) is a trivial groupoid, then
(R, p) is a universal formal object of F.

To prove it we need a lemma.

Let ¢ : A — A be a small extension with kernel I, and B € (Art /A).
Suppose we have two homomorphisms f,g : B — A’ such that the com-
posites h = po f = pog : B — A coincide. Then the difference f—g: B — I
is a A-derivation (see Proposition 2.2.3), so easy calculations, which use also
the fact that A’ — A is a small extension, show that (f — g)(m%) = 0 and
(f — g)(mpB) = 0; we can consider then the induced k-linear function

A(f.g) ¢t (B + i) 2 mig/m, — 1
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Notice that by A-linearity of f and g, and the fact that B is generated by mp
and A as a ring, we have f = g if and only if A(f,g) = 0.

Take now an object £ € F(B), and consider the pullbacks f.(§), g«(§) €
F(A"), which are liftings of h.(€). In particular by Theorem 2.3.1 we have an
action of I ®y, T¢,F on Lif(h.(§), A"), where & is the pullback of ¢ to k, and
recall also that the formal deformation (B, &) has an associated Kodaira-
Spencer class k¢ € mg/m2 @4 Tg, F.

Lemma 5.3.3. With the notation of Remark 2.3.3, we have
9([£(©)], [9(O)]) = (A(f,9) @id)(ke) € I @y, Tg, F.

Proof. Set V' = mE/m%, and consider B = B & V with the obvious A-
algebra structure, and the trivial small extension

0 V B’ B 0.

Ifr: B — kand n' : B — B = B/myB are the quotient maps, there is
a derivation D : B — V that sends b € B to the class of 7'(b) — 7(b) in
mpg/m2.

We consider the two homomorphisms i,u : B — B/, defined by i(b) =
(b,0) and u(b) = (b, D(b)), and the one F' : B’ — A’ given by

F(b,x) = g(b) + A(f, 9)(2).

One can easily check that F'oi = g and F' o u = f, and using Proposition
234 (withp =F: B"— A') we get

9([£+(&)], [9«(E)]) = (A(f, 9) @ id)(g([ux(E)], [ix (£)]))

(since F'ly = A(f,9)). B

We now consider By = B/ m% = k @V, and the homomorphism A :
B’ — B defined by h(b,z) = m(b) + z. If we call 7" : B — B the quotient
map, we have hou =, and (h o i)(a) = m(a) € By.

From this we get that A, (u.(£)) = &; and h.(i.(€)) = §ol5,; noticing that
hly is the identity, using Proposition 2.3.4 again we infer that

9([ux(E)]; [1(E)]) = 9([&4], [é0l5,))-

But now g([&,], [€o |5,]) = k¢ by definition, and this concludes the proof. [
Now we can prove 5.3.2.

Proof of 5.3.2. By Proposition 5.2.11 we already know that for any formal
object (S, &) of F there exists a morphism (5,¢) — (R, p) (§ will be neces-
sarily isomorphic to py, for F (k) is a trivial groupoid).
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As for uniqueness, we have to show that any two morphisms of formal
objects f,g : (S,§) — (R, p) are the same. Using Proposition 3.1.8 we see
that, since Inf(py) is trivial, we only need to show that the two homomor-
phisms ¢, : R — S associated with f and g are equal.

Moreover it is sufficient to show that ¢,,v¢, : R, — S, are equal for
every n, and we do this inductively. Obviously ¢g = v, so suppose ¢,,—1 =
Yp—1. In this case ¢, ¥, : R, — S, are the same map when composed with
Sp — Sp—1, s0 we can consider

A(‘Pny wn) : mﬁn/m%n = mﬁ/m% I mg/mg’+1-
Since by assumption (¢y,)«(pr) and (¢y,)«(pn) are isomorphic as liftings of
(en—1)x(pn-1) = (¥n—1)+(pn—1), by the preceding lemma we conclude that

(A(gpn, wn) ® id)(kp) =0¢€ mg/mgﬂ Rk Tpof

where k, € mz/ m% ®y, T, F is the Kodaira-Spencer class of p.
This means that if we compose the adjoint map

Ao, tn)" = (mg/mgH)Y — (mp/m)

with the Kodaira-Spencer map x, : TAR — T,,F of p we get the zero map.
But now £, is an isomorphism, so we conclude that A(y,,1,) = 0, from
which follows that ,, = v,,, as we wanted to show. O

Schlessinger’s Theorem is now an easy corollary of 5.3.1 and 5.3.2.

Proof of 5.2.3. We already remarked that if a deformation category is prorep-
resentable, than it has the properties of the statement. So suppose con-
versely that we have a deformation category F satisfying the hypotheses.
Pick pg € F (k). Since T,,F is finite-dimensional, there exists a miniver-
sal object (R, p) of F restricting to py over k. Moreover since Inf(pg) = 0
and F (k) is a trivial groupoid, by Proposition 5.3.2 we conclude that (R, p)
is a universal formal object for 7, which is then prorepresentable. ]

The following proposition gives a useful criterion that will be used later
to show that some formal deformations are miniversal.

Proposition 5.3.4. Let F — (Art /A)°P be a deformation category, and suppose
that (R, p) is a formal object of F such that:

* Ris a power series ring over A.
* The Kodaira-Spencer map k, : TR — T, F is an isomorphism.

Then (R, p) is a miniversal formal object, and in particular pg is unobstructed (see
5.2.12).
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Proof. Since k, is an isomorphism, we have that 7},) 7 is a finite-dimensional
k-vector space; by Theorem 5.3.1 we can then find a miniversal object (.5, &)
restricting to pg over k. By Proposition 5.2.11 and versality of (.5, £) we have
a morphism of formal objects (R, p) — (5, &), and since both of the Kodaira-
Spencer maps x, and r¢ are isomorphisms, the k-linear map 7S — T\ R
induced on the cotangent spaces is an isomorphism too (by Proposition
5.1.17.

Since R is a power series ring over A, this implies that the homomor-
phism S — R is an isomorphism (see Corollary B.7), and then the mor-
phism (R, p) — (5, €) is an isomorphism too, so (R, p) is miniversal. O

5.3.1 Applications to obstruction theories

Now that we have proved the existence of miniversal deformations, we
can give a proof of the Ran-Kawamata Theorem (Theorem 4.1.9) and the
anticipated formula for the dimension of the minimal obstruction space
associated with an obstruction theory.

Proof of 4.1.9. Let (R, p) be a miniversal deformation of {; coming from The-
orem 5.3.1. In particular R is a quotient P/I, where P = k[[z1,...,z,]] and
n = dimy(T¢, F), and I C m%. We want to show that I = (0), so that R is a
power series ring, and by Proposition 5.2.12 £, will be unobstructed.

The first step is to prove that the module of continuous differentials {2 =
Qr (see appendix B) is a free R-module. Since R is local we can equivalently
show that Q2 is a projective R-module, and to do this it suffices to check that
for every surjection M’ — M of R-modules of finite length the induced
homomorphism Homp (2, M') — Homp(Q2, M) is surjective.

In fact, since R is noetherian and €2 is finitely generated, to show that
Q is projective it suffices to show that Ext’(Q, N) = 0 for all i and finitely
generated R-modules N; for then, if N is not finitely generated, we can
write N = lim N, where the N,’s are finitely generated, and

Ext}(Q, N) & lim Ext} (2, N,) = 0.

Now fix a finitely generated R-module INV; in particular the quotient mod-
ules N/m%N have finite lenght and N is separated in the mg-adic topol-
ogy, thatis, lim V/m% N = N. Taking a projective resolution P of Q2 whose
terms are finitely generated R-modules, we have

Extiy(Q, N) = H(Homp(P,, N)) = H' (@ Homp(P, N/m%N))

where Hompg(FP,, V) denotes the complex obtained by applying the functor
Homp(—, N) to the complex P,. Finally one can use a “Mittag-Leffler”-like
argument to show that the last module is isomorphic to

lim H'(Hompg(P., N/miN)) = lim Ext (2, N/miN).

118



CHAPTER 5. FORMAL DEFORMATIONS

But now the condition that for every surjection M’ — M of R-modules of
finite lenght the induced homomorphism Hompg(Q2, M’) — Hompg(Q, M) is
surjective implies that Ext%(Q2, Q) = 0 for every R-module of finite length
Q, and from this (and the above isomorphisms) we get that Ext%(Q, N) =
0 for every finitely generated R-module N. In conclusion, this condition
about surjections implies that (2 is projective.

Let us take then a surjection M’ — M of R-modules of finite length,
and n large enough for M’ and M to be R/m’s" -modules. Set A = R,
and consider a homomorphism ¢ € Hompg(€2, M). This will correspond to
a k-derivation R — M, which in turn is the same as a homomorphism of
R-modules R — A[M] (this is a standard fact) that is moreover compatible
with the two quotient maps to A. In other words the diagram

R— A[M]

A
is commutative.

Take then the pullbacks & € F¢ (A) and & € F¢, (A[M]) of the miniver-
sal deformation p along the two homomorphisms above. The class of &
is an element [¢'] € F¢(M), and so by right-exactness of F; we can find a
(€] € Fe(M') that maps to [¢'] via the canonical function F¢(M') — Fe(M).
In other words ¢"” € F¢ (A[M']) is an object whose pullback to A[M] is
isomorphic to &

By versality of (R, p) the homomorphism R — A[M] can then be lifted
to R — A[M']

(A[M],€7)

(R, p)

and this lifting corresponds to a k-derivation R — M’, which in turn is the
same as a homomorphism 1) € Hompg(Q2, M’). This homomorphism ) will
then be in the preimage of the chosen ¢ € Hompg(2, M), and this proves
that Homp (2, M’) — Homp($2, M) is surjective. In conclusion Q = Qrisa
free R-module.

Now we deduce that I = (0), and this will conclude the proof, as we
already noticed. We consider the conormal sequence

(A[M],£)

/12— Qp9p R—>0p—0 (5.2)

(see Proposition B.16) and notice that, since P is a power series ring on n
indeterminates, the R-module Qp ®p R is free of rank n. Moreover if m is
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the rank of () R, tensoring 5.2 with k£ we obtain an isomorphism
(Qp®p R)®rk=Qpr@rk

(for the homomorphism d becomes the zero map), and this tells us that
m = n.

Therefore the surjective homomorphism Q pQpR — Q r of 5.2 has to be
an isomorphism, and sod : I/ 2 . Q p ®p R is the zero map. This means
that the image of I along the universal derivationd : P — Q p is contained
in the ideal 10 p, and this implies that forany f € Tand ¢ = 1,...,n, the
partial derivative 0f/0x; is an element of I.

Since char(k) = 0, it is easy to see that this implies I = (0) (for example
considering an element of I of minimal degree and recalling that I C m%),
and so we are done. Ul

Now consider a deformation category 7 — (Art /A)°?, an object & €
F (k) such that T, F is finite-dimensional, and an obstruction theory (V,,, w)
for £. By Theorem 5.3.1 {; has a miniversal deformation (R, p) where Ris a
quotient P/I, with P = A[[z1, ..., z,]], n = dimy(T¢, F) and I € my P+m3.

We denote by 1(I) the minimal number of generators of theideal I C P,
which by Nakayama’s Lemma is the same as dimy(I/mpI). Finally let €,
denote the minimal obstruction space associated with (V,,,w), as in Section
4.1.1.

Proposition 5.3.5. The dimension of S, as a k-vector space coincides with p(I) =
dimk (I/mpl).

Proof. We will show that there is an isomorphism of k-vector spaces €, =
(I/my,I)Y, and this will imply the result. Put R = P/mpI (which is an object
of (Comp /A) as well), so that we have an exact sequence of P-modules

0——1/mpl R R 0.

Tensoring this with P, = P/ mﬁﬂ, we obtain

I/mpl >R R, 0

and by the Artin-Rees Lemma we see that ker(a,,) = (I/mpl) N m%“ = (0)
for n large enough.

For every such n then the sequence

0—=1I/mpl “>R, Ry, 0

is a small extension, and we have an object p, € F(R,,), coming from the
versal deformation (R, p). We can consider then the obstruction

wn = w(pn, Ry) € I/mpl @ O, = Homy((I/mpI)¥, Q).
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Notice that this element does not depend on n (large enough): this follows
immediately from functoriality of the obstruction, and the fact that for ev-
ery n large enough we have a commutative diagram with exact rows

0—=I/mpl —=R, . —> Ruy1—0

|

0——1I/mpl R, R, 0.

From this we get a well-defined element f € Homy((I/mpI)¥,Q,,), that is,
a k-linear map f : (I/mpl)Y — Q. We show now that f is bijective.

First we show that it is injective. Take a nonzero u € (I/mpIl )Y, which
is a surjective k-linear function u : I/mpI — k, and put K = ker(u), which
is an ideal of R, (for n large enough). We consider then (I/mpl)/K = k
and S, = R, /K, and the following commutative diagram with exact rows

0 HI/mpI En R, 0
0 k Sh R, 0.

(where the vertical arrows are the quotient maps) that gives a morphism
between the two small extensions.

By definition of the isomorphism I/mpI ®j Q, = Homy ((I/mpl)Y, Q)
and by functoriality of the obstruction w, we have that

f(u) = wp(u) = (u®id)(wn) = w(pn, Sn) € k @k Uy = Q.

Suppose that f(u) = 0. Then there is a lifting n,, € F(S,) of p, € F(R,),
and by versality of (R, p) the homomorphism R — R, will liftto R — S,,.
On the other hand since mgjl = (0) this last map will factor through R,,
and give then a splitting R,, — 5, of the small extension above.

Finally notice that this splitting (as well as S,, — R,,) will induce an iso-
morphism between cotangent spaces of R,, and S,,, and then (by part (ii) of
Corollary B.4) the map S, — R,, is an isomorphism. But this is a contradic-
tion, because the kernel of this map is isomorphic to k. In conclusion this
shows that f(u) # 0, and so f is injective.

We show that it is surjective. Take a vector v € (), and suppose it
corresponds to the obstruction w(¢, A’) associated with a small extension
A" — A with kernel J and an isomorphism ¢ : J = k, and an object { €
Fey(A).

By versality of (R, p) and Proposition 5.2.11 we have an arrow of formal
objects (A,&) — (R, p), and since A is artinian the homomorphism R — A
will factor through R, for n large enough (and the pullback of p, to A is

121



CHAPTER 5. FORMAL DEFORMATIONS

isomorphic to £). Moreover if we lift the homomorphism P — R — A to
¢ : P — A’ using the fact that P is a power series ring over A, then ¢(I) will
be contained in J, and consequently p(mpl) = (0), so ¢ will factor through
R.

Taking n large enough we get then a commutative diagram with exact
rows

0—=I/mpl R, R, 0
0 J Al A 0

where u : I/mpl — J = k can be seen as an element of (I/mpI)Y. By
functoriality of the obstruction (and the other arguments used above) we
get

fu) = wp(u) = (u@id)(wy) = w(é A € J @k Qu, 2 Q,
which corresponds to v. This shows that f is surjective, and concludes the
proof. O

Remark 5.3.6. Using this we get immediately another proof of Proposition
5.2.12: R is a power series ring if and only if / = (0), and this happens
exactly when dimy(€2,,) = 0, and & is unobstructed.

The last proposition has the following corollaries.

Corollary 5.3.7. Let F — (Art /A)°P be a deformation category, & € F(k), and
(Vi, w) be an obstruction theory for &. If T, F is finite-dimensional, then €, is
as well.

Corollary 5.3.8. Let 7 — (Art /A)°P be a deformation category, & € F(k)
such that T¢, F is finite-dimensional, and (V,,,w) be an obstruction theory for .
Moreover let (R, p) be a miniversal deformation of §. Then

dim(R) > dimy,(Tg, F) — dimy () > dimy(Te, F) — dimg (V).
Proof. The right inequality is clear, so we prove only the left one, by show-
ing that dim(R) > dimy(T¢, F) — (1) for the miniversal deformation (R, p)
considered above, and using the preceding proposition. Setn = dimy(T¢,F).
Notice that we can reduce to the case A = k by considering the canon-
ical homomorphism P = A[[z1,...,z,]] — k[[z1,...,zy]], and the induced

surjection R = P/I — k[[z1,...,zy]]/J where J is the extension of I. In-
deed if we know that dim(k[[z1, ..., z,]]/J) > n — p(J), then we have

dim(R) > dim(k[[z1,...,za]]/J) > n—w(J) > n— pu(I).

So we can assume that A = k. By Krull's Hauptidealsatz we have that
dimy(I/mpl) = p(I) > ht(I); because of this inequality and the fact that
P = E[[z1,...,zy]] is catenary, we get

dim(R) = dim(P/I) = dim(P) — ht(I) > dim(P) — pu(I) =n — p(I). O
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This result can be applied to find a lower bound on the dimension of
the base ring R of a miniversal deformation.

Example 5.3.9. Let Z; C P% be a smooth curve of genus g and degree d,
and (R, p) a universal deformation of Zj in Hilb®: (we have a miniversal
one since dimy, TZOHile% = dimy, H%(Zy, Np) is finite, and it is universal
because HilbF: is fibered in sets). Recall that Hilb¥é comes from a repre-
sentable functor, so if we denote by H ilbP% the Hilbert scheme of ]P’z, the
dimension of R in this case is the same as dim, HilbF*.

By the preceding corollary we get then
dimy, Hilb®% >  dimy (T, HilbFh) — dimy (V)
= dimk(Ho(Zo,N())) - dimk(Hl(Zo,No))
= x(Mo)
(here we are considering the obstruction theory described in Section 4.2.4)

where Y is the Euler characteristic and N is the normal sheaf of Z in IP’%.
Now from the dual of the conormal sequence of Z, C P}

0—> Tz, —=Tpslz —= Ny —0

we get x(Ny) = X (T3 |zo) — x(T'z,), and from the restriction of the dual of
the Euler sequence

0 OZ() OZ0(1)€B4 HTF%|ZO —0

we obtain further that x(Ny) = 4x(Oz, (1)) — x(Oz,) — x(Tz,). Using the
Riemann-Roch Theorem to calculate explicitly the three terms in the last
expression, we get

dimy, Hilb®* > y(Ng) = (4d+4 —4g) —(1—g) — (2— 29+ 1 —g) = 4d
which gives a lower bound on dimz, Hil bER independent of the genus g.

Example 5.3.10. Consider now a smooth projective curve X over k. Since
Tx,Def = H'(Xy, Ty,) is finite-dimensional, X has a miniversal deforma-
tion (R, p), and since H?(X,,Tx,) = 0 we see that Xj is unobstructed (by
Theorem 4.2.4), and so R is a power series ring, and dim(R) = dimy(T'x,Def).

We can calculate this dimension explitictly: if g is the genus of X, then
Tx, has degree 2 — 2g, and by the Riemann-Roch Theorem we get

X(Tx,) = dimg(H®(Xo, Tx,)) — dimy (H" (X0, Tx,)) = 2—2g+1—g = 3—3g.
Now if g > 2, then Tx, has negative degree, so dimy (H" (X, Tx,)) = 0 and
dim(R) = dimy(H' (X0, Tx,)) = 39 — 3.

On the other hand if g = 1 we find dimy(H' (X, Tx,)) = 1, and in the case
= 0 we have dimy (H' (X, Tx,)) = 0.
These values give the minimum number of parameters that are neces-
sary to describe a versal deformation of X for a given genus.

123



CHAPTER 5. FORMAL DEFORMATIONS

5.3.2 Hypersurfaces in A}

As an example (which will be useful in the next chapter), we calculate a
miniversal deformation of a reduced and generically smooth hypersurface
Xo C A}, using the facts already proved in Section 2.4.4. In particular, since
we showed that T'x,Def is finite-dimensional if and only if X has isolated
singularities, we have to restrict to this case.

Suppose then that Xy C A7 is a hypersurface as above, with equation
f € klx1,...,x,), and so defined by the ideal I = (f) and with coordinate
ring A = k[z1,...,z,]/I. Recall from Section 2.4.4 that

Tx,Def = K1, ..., 2a)/(f,0f /0a1,...,0f [Oxy).

Let m = dimy(Tx,Def) (which is finite because X has isolated singulari-

ties), and choose elements g1, . .., g, € Alz1, ..., z,] such that their images
ink[z,...,x,]/(f,0f /0x1,...,0f/0x,) form a basis.
We consider then the power series ring R = Al[t1,...,ty]], and the

closed subscheme
X =V(f +tig1 + -+ tmgm) C A}

where f' € Alz1,...,xz,] is a lifting of f. X induces a formal deformation
X = {Xi, fitien of X over R, by taking X; to be the pullback of X to
R; = R/mi.{f1 along the quotient map R — R;, and as arrows f; : X; — X1
the natural closed immersions.

Proposition 5.3.11. The formal object (R, X ) of the deformation category Def —
(Art /A)°P is miniversal.

Proof. We use the criterion given by Proposition 5.3.4: R is a power series
ring, so we only have to check that the Kodaira-Spencer map

kgt ITAR — Tx,Def

is an isomorphism. Recall that this map is the same as K, s where X is the
pullback of X to Ry = k & mz/m2 along the projection R — R;.
In this particular case we have

X1 =Spec(Rilx1, ..., xn]/(f+ 1191 + - + tmTm))

where g, is the image of ¢; in k[z1, . .., z,] (and we still write ¢; for the class
of t; in mﬁ/m%). Since the images of t1,...,t, in TYR = mﬁ/m% form a
basis of the cotangent space, we can consider the dual basis s1,...,s, €
TxR. The Kodaira-Spencer map

tx,  TanR — Tx,Def = klxi,...,z,]/(f,0f)0x1,...,0f/0xy)

sends then s; to the class of g;.

124



CHAPTER 5. FORMAL DEFORMATIONS

This is because the k-linear function s; : 7Y R — k corresponds to a ho-
momorphism ¢; : Ry — k[e], and by definition of the Kodaira-Spencer map
the element 1+ (s;) will be the isomorphism class of the pullback of X to
k[e] along ¢;. This pullback is seen to be given by the closed subscheme
V(f+eg;)in AZ[ o and by Proposition 2.4.9, the corresponding element in
Elxi,...,x,)/(f,0f/0x1,...,0f/0xy,) is exactly the class [g;].

By the choice of the g;’s the map x| is then an isomorphism (since the
two spaces have the same dimension, and a basis goes to a basis), and this
concludes the proof. O

Example 5.3.12. Consider the union of the two axes
Xo =V (xy) C Af, = Spec(k[x, y]).

In this case the Jacobian ideal is J = (z,y) C k[z,y]/(zy), and a basis of
Tx,Def = k[z,y]/(z,y) is given by the class of —1. A miniversal deforma-
tion of X is then for example the one induced by X = V(zy —t) C Ai[[ -

Example 5.3.13. Assume char(k) # 2, 3, and consider the cuspidal curve
Xo=V(y* —a%) C A} = Spec(k[z, y]).

In this case we have J = (2y,322) C k[z,y]/(y* — 23), and a basis of
Tx,Def = k[z,y]/(y,2?) is given by the classes of 1 and z. The formal ob-
ject induced by the closed subscheme X = V(y? — a3+t +tax) C A%[[thb”
is then a miniversal deformation.

5.4 Algebraization

The next step in constructing (or studying) deformations, is to pass from
formal ones to “actual” ones (over notherian complete local rings). In other
words given a formal deformation, which is a sequence of compatible de-
formations over the artinian quotients of the base ring, we ask if there is a
“true” deformation over the base ring that restricts to the given ones over
these quotients.

Formally, suppose F — (Art /A)°P is a deformation category coming
(by restriction) from a category fibered in groupoids F — (Sch /A), which
is associated with some deformation problem we are trying to study. This
is the case for the three deformation categories Def, Hilb* , QCoh™ we have
studied up to this point.

Definition 5.4.1. A formal object (R, §) of F, where § = {&n, fntnen, is called
algebraizable if there exists an object £ € F(Spec(R)) with a collection {g, } nen
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of arrows gy, : &, — goff over the immersion Spec(Ry,) — Spec(R), such that
for every n the following diagram (in F) is commutative.

&n
In

dn

gn41 -~
€n+1L>f

We call £ an algebraization of €.

The idea is that ¢ is an actual deformation of & over R, whose approx-
imations to the various orders correspond to the terms of the formal object

¢.

Example 5.4.2. The miniversal deformation we constructed in the previous
section for a hypersurface of A} with isolated singularities is algebraizable
(if we take F to be the category of flat morphisms of schemes), since we
constructed it by taking pullbacks from an actual deformation over an ob-
ject R € (Comp /A).

Remark 5.4.3. Actually (as we already remarked) when dealing with global
deformations of schemes one assumes other additional hypotheses, a typ-
ical example being properness of the morphism defining the deformation.
So the last example is formally correct, but not so meaningful.

From now on when we say that a formal deformation (R, X ) of a scheme
Xo € Def(k) is algebraizable we will usually mean that there exists a
scheme X that is flat and proper over R, and that induces the formal defor-
mation X by pullback.

The problem of algebraization is not solvable in general. The main re-
sult when dealing with it in concrete cases is the following theorem, due to
Grothendieck.

Let A be as usual, and X a scheme over A; set X, = X|gpec(a,,)- Together
with the obvious morphisms, the sequence {X,,, f, }nen gives a formal de-
formation X of Xo over A.

We denote by Coh(X) the category of coherent sheaves on X, and by
Coh(X) the category of formal coherent sheaves on X:its objects are collec-
tions {&,, gn nen Of coherent sheaves &, on X,,, with isomorphisms g, :
En = Entilx, (where this pullback is along the immersion f, : X, —
Xn+1), and an arrow {&,, gntnen — {Gn, hntnen is a sequence {F), }nen
of homomorphisms F,, : £, — G, of coherent sheaves on X,,, compatible
with the isomorphisms gy, h,,. This is an abelian category, even though in a
not completely trivial way.

There is a natural functor ® : Coh(X) — Coh(X), sending a coherent
sheaf £ on X to the formal coherent sheaf {€|x,,, fn}nen, where f,, are the
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obvious isomorphisms identifying the pullback of £|x, ,, to X, with the
one of £, and a homomorphism F' : £ — G goes to the sequence {F}, },en of
homomorphisms induced on the pullbacks.

Theorem 5.4.4 (Grothendieck’s existence Theorem). If X is proper over A,
the functor ® is an equivalence of abelian categories.

For a discussion about this theorem, see for example Chapter 8 of [FGA].

From this theorem we get an algebraization result that will be used in
the next chapter. First of all, we have the following corollary about embed-
ded formal deformations.

Corollary 5.4.5. Let X be a proper scheme over A, and consider the formal defor-
mation X = {Xn, fn}nen of Xo as above. Consider a sequence {Yy, }nen of closed
subschemes Y,, C Xy, such that for every n we have Y, 11 N X,, =Y, (where we
see Xy, C Xp41 by means of the closed immersion f,). Then there exists a closed
subscheme 'Y C X such thatY,, =Y N X, for any n.

Proof. We use Grothendieck’s Theorem: consider the formal coherent sheaf
{Oy,,, fn}nen, where f;, are the obvious isomorphisms. By the theorem we
have a coherent sheaf £ on X, and a sequence of isomorphisms ¢,, : £|x, =
€ ®oy Ox, = Oy, compatible with the projections Ox,,, — Ox, and
Oy, ., — Oy,.

Moreover we have an arrow {Ox,, gntnen — {Oy,,, fn}nen of formal
sheaves on X, given by the surjections Ox,, — Oy, defining the closed
subschemes Y;,. This arrow corresponds (by the theorem again) to a homo-
morphism 1) : Ox — & of coherent sheaves on X, such that for every n the
diagram

P x,
Oxlx, — €|x,

|

Ox, — Oy,

n

is commutative.

Notice finally that since the functor ® of Grothendieck’s Theorem is
an equivalence of abelian categories, and {Ox.,,, gn}nen — {Ov,, fnlnen
has trivial cokernel in Coh(X), we get that ¢ is surjective. The kernel of
1 : Ox — & defines then a closed subscheme Y C X with structure sheaf
&,such that Y N X,, =Y, for every n. O

Now we go further, and consider abstract deformations.

Proposition 5.4.6. Let X be a projective scheme over k such that H*(Xy, Ox,) =
0, and suppose X = { Xy, fn}nen is a formal deformation of Xo over A (that is, a
formal object of the category Def restricting to X, over k).
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Then X is algebraizable, i.e. there exists a flat and projective scheme X over
A such that X,, is isomorphic to the pullback of X to A, along the projection
A — A, and the isomorphisms are compatible with the arrows fp,.

For the proof we need the following lemma.

Lemma 5.4.7. Let Z be a scheme and Zy C Z a closed subscheme with square-zero
sheaf of ideals I C Oy. Then there is an exact sequence of sheaves of groups

0 I1—= 05 07, 0

where « is defined by a(u) = 1 + u.

Proof. Consider the exact sequence

0 I Oy —2 0y, 0

coming from the closed immersion Zy C Z. We first show that if U is
any open subset of |Z| = |Zy|, then f € Oz(U) is a unit if and only if
g(f) € Oz, (U) is.

It is clear that if f is a unit then g(f) is, so suppose conversely that we
know that ¢g(f) is a unit in Og,(U). Then there exists h € Og,(U) such
that g(f)h = 1, and by surjectivity of g there exists k € Oz(U) such that
g(k) = h. So g(f)g(k) = 1, or equivalently ¢g(fk — 1) = 0, and hence
fk —1 € I. This implies that fk = 1 + u with v € I(U), which is invertible
in Oz(U), since (1 +u)(1 —u) = 1 (because I? = (0)), so that f is invertible
too.

The argument we used above shows actually that the induced homo-
morphism Oy — O is surjective, and that its kernel is isomorphic to I
as a sheaf of groups, by means of the homomorphism I — O3, defined by
u +— 1 + u, where u is a section of I. This concludes our proof. O

In particular since H'(Z, 07%,) = Pic(Zp) and HY(Zy,03) = Pic(Z),
taking the cohomology exact sequence we get
o — HY(Zy, I) — Pic(Z) — Pic(Zy) — H*(Zy, I) — - - -
where the map Pic(Z) — Pic(Zp) is just the natural pullback homomor-
phism.

Proof of 5.4.6. We start by showing that the natural restriction homomor-
phism Pic(X,,) — Pic(X,_1) is surjective. By the lemma, for a fixed n we
have an exact sequence of groups

0—— mX/mXJrl ®r Ox, 0%, Ox, , —=0.
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Taking the cohomology long exact sequence and recalling that by hypoth-
esis
H2(Xo, mi oy @) Ox,) = mi /iy @y HY(Xo, Ox,)

is trivial, we see that the homomorphism H'(Xo, 0% ) — H'(Xo,0% )
corresponding to the restriction Pic(X,,) — Pic(X,,—1) is surjective.

Take now a very ample invertible sheaf £, on X, such that H'(Xy, £o) =
0, and let so, ..., s, be a basis of H(Xy, Lo) as a k-vector space, defining
the closed immersion X, — P}*. By surjectivity of Pic(X,,) — Pic(X,—1)
we can lift £y successively to X,,, obtaining thus a sequence {£,, }nen of
compatible invertible sheaves on the formal deformation X ; moreover we
can also lift the basis above at each step.

In fact tensoring the exact sequence

0 —m} /mi™ ®), Ox, — Ox, —= Ox,_, —>0

with £,,, we get

0 mX/mX—i_l K 'CO > »Cn > Enfl — ().

Noticing that
H(Xo, mh /m7+ @y £o) = m} /mi @ HY(Xo, Lo)

is trivial, and taking the cohomology long exact sequence of the last short
one, we see that the restriction homomorphism H%( Xy, £,,) — H%(Xo, Lr—1)

is surjective, and so we can surely lift inductively sy, ..., s, to elements
sB,..., 8" € HY(Xo, Ly).
Moreover the sections (s, ..., sp,) will not have base points (because

if they did, these points would also be base points of (so,...,s)), and
then for every n we have an induced morphism ¢, : X, — P ; since
@o : Xo — P}' is a closed immersion, every ¢, will be as well.

This makes the sequence { X, } ,cn into a sequence of closed subschemes
X, C© P}, compatible with the immersions P’ € P¢' . Corollary 5.4.5
gives then a closed subscheme X C P} restricting to X, over A,,. If we
show that X is flat over A, then it will be an algebraization of X.

By generic flatness, the locus of points at which X is flat over A is an
open subset of X; consider its complement Z, a closed subset of X. Since
X — Spec(A) is proper, we have that Z N X, is nonempty (because the
image of Z will contain the maximal ideal ms). Now if we take a point
p € Z N Xy, from the fact that Ox, , = Ox,/ mK’Ll(’)X’p is flat over A,, for
every n and from the local flatness criterion, it follows that X — Spec(A) is
flat at p, which is a contradiction.

Then Z = ), and X is flat over A. O
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Example 5.4.8. We give here an example of a formal deformation of a scheme
that is not algebraizable. To do this, we will take as Xy a smooth quartic
surface in P, such that the Picard group Pic(Xj) is cyclic, generated by the
invertible sheaf Ox,(1). One can check that in this case H?(X,Ox,) = C,
so that the hypotheses of the last theorem are not satisfied.

To know that such a surface exists, we need the following theorems.

Theorem 5.4.9 (Noether-Lefschetz). Let d > 4, and PY be the projective space
of surfaces of degree d in P?.. Then there exists countably many hypersurfaces

Hi,Hy,...,H,, ...CPN
such that if Xo € PN \ U, Hi, then Pic(Xy) is cyclic and generated by Ox,(1).
For a discussion about this theorem, see for example [Griff].

Theorem 5.4.10 (Baire). In a locally compact and Hausdorff topological space, a
countable intersection of open dense subsets is itself dense.

Combining these two theorems, we get a quartic surface Xy C P2, such
that Pic(X)) is cyclic generated by Ox,(1).

Proposition 5.4.11. We have that H?(X, Tx,) = 0. In particular, by Theorem
4.2.4, X is unobstructed.

Proof. We start from the exact sequence

0 TXO T]P’% ’XO - OXO (4) —0

that we obtain by dualizing the conormal sequence of X, C P{. Taking the
cohomology exact sequence we get

o HI(X()? OX0(4)) - H2(X07 TXO) - HQ(X()vT]I‘%’XO) —

so it is sufficient to show that the other two cohomology groups are trivial.
The exact sequence

0 Ops Ops (4) — Ox,(4) —=0

shows that H' (X, Ox,(4)) is trivial. To check that HQ(XO,TP%|XO) is as
well, consider the restriction of the dual of the Euler sequence

0 —> Ox, — Ox,(1)%* — Tps|xo —>0

from which we see that it suffices to show that H?(X,, Ox,(1)) = 0 (since
H3(Xo,0x,) = 0, for X is a surface). This last fact follows from the exact
sequence

that yields H%(X, Ox, (1)) & H*(P, Ox, (1)) = H3(P, Ops (—3)), and the

last group is trivial, as one can readily check using Serre’s duality. O
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From the results in Section 2.4.5, we know that the differential of the
forgetful morphism F' : HilbP% — Def at X, is not surjective, so we can
take a first-order deformation X. — Spec([¢]), such that there does not
exists a closed immersion X, C IP’%[E} extending X, C P.

Moreover such a deformation has trivial Picard group: the exact se-
quence of shaves of groups

0— Ox, = Ox, @ (¢) Ox. 0%, 0

of Lemma 5.4.7 yields
0 = H'(Xo, Ox,) — Pic(X:) — Pic(Xop) — H?*(Xo, Ox,) = C.

Now since Pic(Xj) is cyclic infinite and C is torsion-free, we conclude that
the map Pic(X.) — Pic(Xy) must be zero, and then Pic(X.) = 0.

R From the fact that X is unobstructed, we can find a formal deformation
X = {Xy, fa}nen of Xo over C[[t]], with term of order one isomorphic to
Xe.

Proposition 5.4.12. The formal deformation X is not algebraizable, that is, there
does not exist a flat and proper scheme X over C|[t]] inducing the formal deforma-
tion X.

Proof. Assume such an X exists, and take an open affine subscheme U C X.
If we denote by D = X \ U the complement of U, then every irreducible
component of D has codimension 1 (see for example Corollaire 21.12.7 of
[EGAIV]), and then, with the structure of reduced closed subscheme, it can
be seen as a Weil divisor on X.

Now notice that X is smooth over C[[t]]: if Z is the locus where X is
not smooth, then Z is a closed subset of X, and (if it is not empty) it must
intersect the central fiber X (since X — Spec(C[[t]]) is proper, and then the
image of Z contains the maximal ideal of C[[t]]). But X is smooth over C,
and this is a contradiction that shows that Z = (.

Hence D is also an effective Cartier divisor over X, and since Xy ¢ U,
we have that DN X is an effective Cartier divisor on X, and it is not trivial
(i.e. the associated invertible sheaf Ox, (D N Xj) is not isomorphic to Ox,).
Finally consider the commutative diagram

Pic(X

Pic(X;)

N

Pic XO

with the maps are the natural pullback homomorphisms. We showed above
that the function Pic(X) — Pic(Xj) is not zero, since the invertible sheaf
Ox (D) goes to Ox, (D N Xp), which is not trivial, but on the other hand we
proved that Pic(X.) = 0, which gives a contradiction. O
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Chapter

Deformations of nodal curves

In this last chapter we apply the results we obtained in the preceding ones
to deformations of affine and projective curves with a finite number of
nodes.

By studying this particular case we will show how knowing a miniver-
sal deformation of a local model for a singularity helps in giving a local
(formal) description of any global deformation of such a singularity. Fi-
nally we will give an algebraization result for projective curves with a finite
number of nodes that relies on the general results of the preceding chapter.

6.1 Nodal curves

We start by describing the type of curves we are interested in. Let X be a
curve over k.

Definition 6.1.1. A closed point p € X is a rational node if p is a rational point,
and the complete local ring Ox , is isomorphic to k[[z,y]]/(zy) as a k-algebra.

We consider then generically smooth curves, having only rational nodes
as singularities.

Definition 6.1.2. By nodal curve we mean a curve X over k that is smooth
outside of a finite number of closed points p1, ..., py, that are rational nodes.

We give a criterion to recognize rational nodes, assuming char(k) # 2:
suppose X is a curve over k, and that the complete local ring of X in p is
isomorphic to k[[z,y]]/(f) for some element f € k[[z,y]]. Write f; for the
homogeneous term of degree i of f, and suppose fo = f1 = 0, and that f,
is a quadratic form equivalent to zy over k. Then there is an isomorphism
E[lz,y]]/(f) = k[[z,y]]/(xy). This basically says that every rational singular
point with multiplicity two and with two rational distinct tangent lines is a
rational node.
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The main ingredient for the proof is Weierstrass’ preparation Theorem
(see for example IV, § 9 of [Lang]) that we recall here.

Theorem 6.1.3. Let R be a noetherian complete local ring, and f = ", fz* an
element of the power series ring R|[[x]]. Assume that fy, f1,..., fr—1 € mp and
[r & mg. Then there exists a unit u = >, w;z" € R[[z]] and a monic polynomial
p € R[z] of degree r and with coefficients in mp, such that f = p - .

Example 6.1.4. The remark above does not hold if we do not assume that f>
is equivalent to the quadratic form xy, unless we add some other hypothe-
sis (for example that the field £ is algebraically closed).

For instance, if we take f € R][[z,y]] to be f(x,y) = 2? + y? + 23, then
the origin is a singular point with multiplicity 2, but the tangent lines (with
equations =z + iy = 0 and = — iy = 0) are not rational, and in fact one
can check that R[[z,y]]/(z* + y?) is not isomorphic to R[[z,y]]/(zy) as an
R-algebra.

6.2 Affine curves with one node

The first case we consider is the one of an affine nodal curve X over k with
only one rational node p. Since the complete local ring should give some
control on the local structure of a scheme at the corresponding point, and
by definition we have an isomorphism of the complete local ring O x,p with
k[[z,y]]/(zy), which is the complete local ring at the origin of V (zy) C A2,
one could hope to link the deformations of X and the ones of V (xy) using
this isomorphism, which is what we will do now.

The starting point is the following theorem of Michael Artin (see [Art]).

Theorem 6.2.1. Suppose X,Y are schemes of finite type over a base scheme S,
also of finite type over a field k. Let p € X and q € Y be two points with a fixed
isomorphism f : k(p) = k(q) over S, and call s the image of p and q in S. Then f
extends to an isomorphism O Xp = @yjq of @S,S—algebras if and only if there exists
a scheme Z over S with two étale morphisms Z — X and Z — 'Y, fitting in the
commutative diagram below.

Spec(k(p)) <——— Spec(k(

4
\
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Back to the curve with a single node, we apply the preceding theorem
with S = Spec(k), X our curve, Y = V(zy) C A%, p the rational node of X,
and ¢ the origin of Az.

Since we have an isomorphism O xp = k[, y]]/(zy) = @y,q extend-
ing the identity £ = k on the residue fields, we conclude that there exist a
scheme Z over k with two étale morphisms Z — X,Z — Y, and a ratio-
nal point z of Z that gets mapped to p and ¢ respectively, and fitting in a
commutative diagram as above.

We will use these two étale maps to link the deformations of X with
the ones of the “standard” nodal “curve” Y (quotation marks since Y is not
irreducible).

6.2.1 Pullback functor induced by an étale morphism

Suppose we have two schemes X, Y; over k, with an étale morphism f :
Xo — Yy. We will show in this section that such an f induces a pullback
functor f* : Defy, — Defx, (Which is a morphism of deformation cate-
gories), and then we will analyze its properties in a particular case. The
natural thing to do is, given an infinitesimal deformation Y of Yj, to take as
f*(Y) a scheme that fits in a cartesian diagram of the form

Xo——=f*(Y)
o
Yo Y.

To show that we can find such a scheme, we start from the following the-
orem of Grothendieck. We consider a scheme Z’/, and a closed subscheme
Z C Z', whose sheaf of ideals is nilpotent. We have two categories, which
we denote by Et(Z), Et(Z'), of étale morphisms of schemes T' — Z (respec-
tively 7" — Z'), with the obvious arrows.

There is also a natural restriction functor ® : Et(Z') — Et(Z), defined
on objects by ®(T" — Z') = Z x z» T' — Z (the projection on the first factor
of the fibered product), and on arrows in the obvious way.

Theorem 6.2.2. The functor ® is an equivalence of categories.
A proof can be found for example in [Mil] (Theorem 3.23).

Remark 6.2.3. More concretely, the fact that ® is essentially surjective is
equivalent to the statement that if 7' — Z is étale, then we can find an
étale morphism 77 — Z’ (which is unique up to isomorphism) such that
the following diagram is cartesian

T——1T

L

z—7.
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® being fully faithful on the other hand implies that if 77 — Z'.5" —
Z',U — Z are all étale morphisms, and we have two cartesian diagrams

U—1T' U——=5
zZ—=7 zZ—7

then there exists a unique morphism 7" — S’ that fits in the commutative
diagram

z—7.

This second property has the following consequence.

Corollary 6.2.4. Let Z — Z' and Z — Z" be two closed immersions with nilpo-
tent sheaf of ideals, and T — Z,T' — Z'.T" — Z" three étale morphisms.
Assume also that we have two cartesian diagrams

T—T' T—>T"
zZ—7 zZ—=27"

and also a morphism Z' — Z", compatible with the closed immersions Z — Z'
and Z — Z".

Then there exists a unique morphism T' — T" fitting in the commutative
diagram

Zl
Proof. This follows directly from the second part of the last remark, after

noticing that giving a morphism 77 — T" over Z' — Z" is equivalent to
giving a morphism 77 — Z' x z» T" compatible with the two morphisms

Z

z".
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T — Z"and Z' x zn T" — Z' (which are étale morphisms).

T/**>Z/><Z//TH

T/ -
|/

Z/Zl\

Z/l
O

Now we can construct the functor f* : Defy, — Defx,, for an étale
morphism f : X — Yj. Take an object Y € Defy,(A), which makes Y into
a closed subscheme of Y with a nilpotent sheaf of ideals. The functor ® :
Et(Y) — Et(Yp) is then an equivalence (Theorem 6.2.2) and X is an object
of Et(Yp), so we have an object X € Et(Y) (unique up to isomorphism),
fitting in the cartesian diagram

XO —_— X

T

Yo ——Y.
From this it follows that the induced diagram
Xo X

L

Spec(k) — Spec(A)

is cartesian too, and so X is an object of De fx,(A) that we denote by f*(Y).
We choose arbitrarily such an object for each Y € De fy;.

Next, suppose we have a morphism Y — Y’ in Defy,, where Y €
Defy,(A)and Y’ € Def(A’). Using Corollary 6.2.4 we get then a morphism
[*(Y) — f*(Y’'), which is the unique one fitting in the diagram

)

Ll
A
Y

Xo )

b e

This makes f* into a functor that we call the pullback functor induced by
f. It is immediate to check that changing our choice of f*(Y") for some of
the infinitesimal deformations Y of Y; gives naturally equivalent functors.
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6.2.2 Quasi-equivalences

Next, we want to show that with some additional hypotheses, the pullback
functor induced by an étale morphism has some nice properties. Namely,
it is what we call a quasi-equivalence.

Definition 6.2.5. Let 7 — (Art /A)? and G — (Art /A)°P be two deformation
categories, and &y € F (k). A morphism F : F — G is a quasi-equivalence at {

if:
* The differential de, I : Tey F — Tpe,)G is an isomorphism.

o If A" — Aisasmall extension and § € F¢,(A), then § has a lifting to A" if
and only if F(§) € G(A) does.

Remark 6.2.6. As usual, if F' is a quasi-equivalence the second property
will hold for any surjection A’ — A in (Art /A), as one sees by factoring it
as a composite of small extensions. In the proof, one uses also the fact that
the differential of F' is an isomorphism, and that it is compatible with the
actions on the isomorphism classes of liftings.

Example 6.2.7. If £ € F (R) is a formal object of F, then the corresponding
morphism ¢ : (Art /R)? — F is a quasi-equivalence (at the only object
over k of the source) if and only if £ is miniversal. This is because the
second property of the definition corresponds exactly to the lifting property
of versal objects, as one easily checks.

Remark 6.2.8. Another property that is easy to check is that a composite
of two quasi-equivalences is still a quasi-equivalence. More precisely, if
F : F — G is a quasi-equivalence at {§; € F(k), and G : § — H is a quasi-
equivalence at F'(§) € G(k), then the composite morphism G o F' : F — H
is a quasi-equivalence at &g.

Now suppose we have a quasi-equivalence F' : F — G at § € F(k),
and let ¢ € F(R) be a miniversal formal object restricting to &, over k, cor-
responding to { : (Art /R)°? — F; then by the above remarks the composite
Fo¢: (Art /R)? — F — G is a quasi-equivalence. The formal object corre-
sponding to this composite, which is the image of £ F along the induced
morphism F : F — G, is then a miniversal formal object of G, restricting to
F (&) over k.

In particular we want to apply the above discussion to the pullback
morphism f* : Defy, — Defx,, obtaining thus a way to get a miniversal
deformation of X, from one of Y.

Proposition 6.2.9. Let Xy, Yy be affine, reduced and generically smooth local
complete intersection schemes of finite type over k, and f : Xo — Y, be an
étale morphism. Assume also that Yy has isolated singularities, and that for any
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singular point g € Y there exists a unique p € Xg such that f(p) = g, and
moreover k(p) = k(q). Then the pullback functor f* : Defy, — Defx, is a
quasi-equivalence.

Proof. Let Xo = Spec(A), Yy = Spec(B). Since f is étale, we have Qx, =
f*(y,), or in other words Q4 = Qp ®p A. We start with some preliminary
remarks about canonical homomorphisms between the Ext modules of Qg
and Q4.

Thanks to flatness of f, we have canonical isomorphisms

Ext%;(Qp, B) ®p A = Exty (Qp ®p A, A) = Ext',(Qa, A)

for any i. Moreover we can compose these isomorphisms with the natural
maps ' '
vi : Exts(Qp, B) — Exty(Qp,B)®p A

given by z — z ® 1. We show that the homomorphisms ¢; are actually
isomorphisms, so that the composites Ext'; (Qp, B) — Ext!y(Q4, A) will be
as well.

Set M = Ext’3(Qp, B). To show that ¢; is an isomorphism, we prove
that the localization

(pi)g: My — (M ®@p A)g = M, ®p, Aq

is an isomorphism for any g € Yy = Spec(B). If ¢ is not a singular point of
Yy, then Qg , is locally free, and

M, = Ext(Q2p, B), = Exty (54, By)

is trivial (as well as (M ®p A)y), 50 ¢4 is an isomorphism.

Take then ¢ to be one of the singular points of Y. Notice that by hypoth-
esis there is a unique point p € X over g, so that in this case A; = A,,. Then
©0q : My — My ®p, Ap, and moreover we have an étale homomorphism of
rings B, — A,, induced by f.

The following lemma lets us conclude that ¢, is an isomorphism.

Lemma 6.2.10. Let R — S be an étale homomorphism of local rings with iso-
morphic residue fields, and M be an R-module of finite length. Then the natural
map

M—M®®grS

is an isomorphism.

Proof. The hypotheses above imply that the induced homomorphism f;, :
R, — S, is an isomorphism for any n > 0 (where as usual R,, = R/m}f{“l,

and the same for 5).
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Since m%“M = 0 for n large enough, we have M ®r R,, = M (and the
same holds for M ®p S); moreover there is a commutative diagram

M M®grS

| |

M ®r R, —— (M ®r S) ®r R,.

But now the bottom homomorphism M ®r R, — (M ®r S) ®r Ry, is an
isomorphism too, because (M ®r S) ®r R, = (M ®r R,) ®g, Sn, and
R, = S, for any n.

In conclusion M — M ®g S is also an isomorphism, and this concludes
the proof. O

Now we turn to the pullback functor f*. First, we show that the dif-
ferential dy, f* : Ty,Def — Tx,Def corresponds to the homomorphism
Exth(Qp, B) — Extl(Q4, A) considered above, and then in particular it is
an isomorphism.

Notice first that Ext5(Qp, B) — Ext!(Q4, A) can be described as the
function that takes an (isomorphism class of an) extension of B-modules

0 B M Qp 0
to the (isomorphism class of the) one obtained by tensoring with A
0—=A—M@pA—=Q4 —0.

Suppose then that Y € Defy,(kle]), put X = f*(Y) € Defx,(k[e]), and
recall from the proof of Theorem 2.4.1 that the class of Y in Ext5(Qp, B) is
given by the conormal sequence

0 B Dy v, QOB 0

and the same holds for X.
Consider now the morphism g : X — Y given by the diagram

Xo—> X = f*(Y)

L)

Yo Y.

This induces a homomorphism Qy |y, ®p A — Qx]|x,, fitting in the com-
mutative diagram with exact rows

04>A4>Qy|y0 QBA— Q4 ——>0

|

0 A Qx| x, Q4 0
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that shows that the image of the extension in Ext} (4, A) corresponding

to Y is isomorphic to the extension corresponding to X, as we wanted.
The property about liftings is trivially satisfied, since X and Yj are both

unobstructed (see Remark 4.2.2). O

6.2.3 Deformations of affine curves with one node

Finally we turn to deformations of curves. Let X be an affine nodal curve
with exactly one node p € X, let Yy = V(zy) C AZ, and ¢ € Y; be the
origin.

Then (by Theorem 6.2.1) we have a scheme Z over k and two étale mor-
phisms f : Z — Xo,g9 : Z — Y, which induce two pullback functors
f*:Defx, — Defz and g* : Defy, — Defz.

Z
f g
XO/ \YO

By Theorem 6.2.9, these two morphisms are quasi-equivalences.

Then we can get a miniversal deformation of X over A[[t]], from the
“standard” one of Y;. Set R = A[[t]] and let Y C A% be the closed sub-
scheme Y = V(xzy — t). Recall from Section 5.3.2 that the formal deforma-
tion Y = {Yy, fn}nen over R obtained by taking the pullbacks Y,, = Y|,
and the induced morphisms is a miniversal deformation of Y.

Applying the functor g* we get then a miniversal deformation 7 =
{Zy, gn} of Z: here Z,, can be defined inductively as a scheme over k with
an étale morphism Z,, — Y, that fits in the cartesian diagram

gn—1
L1 —>=Zp

L

Yn—l —Y,

(we are using the fact that the restriction functor Et(Y,) — Et(Y;_1) is an
equivalence).

Since X has isolated singularities we can also consider a miniversal
deformation X — {Xn, hn} of Xy, say over S € (Comp /A), and apply
the functor f*. This way we get another miniversal deformation 7 =
{Z],, g),}nen of Z, defined the same way as the one induced by Y.

Since two miniversal deformations of the same scheme over k are iso-
morphic (Proposition 5.2.14), we have an isomorphism (.5, 7" — (R, 2),
which consists of an isomorphism of A-algebras ¢ : R — S, together with
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isomorphisms «,, : Z], — Z,, fitting in the diagrams

Qn

Z! Zn

| |

Spec(Sy,) — Spec(R;,)

and that are also compatible with the immersions g,, and gJ,.
Now we can consider the inverse ¢ : S — R of ¢, and the pullback X/,
of X,, along S,, — R,, as in the diagram

TL )T

Spec(R;,) — Spec(Sy).

This, together with the induced arrows h;, : X], — X/, gives another
formal deformation X’ = {X/,, b/, },er of Xo over R that is easily seen to be
miniversal too. Moreover the morphisms Z), — X,, and Z], — Spec(S,) —
Spec(Ry,) induce an étale morphism Z;, — X, over Spec(R,,).

Putting everything together, for every n we have a commutative dia-

gram
Zy e n
/ \ / \
X! Y,
\ R/

Spec(Ry,

where Z), — X/ and Z, — Y, are étale, and moreover the morphisms in
this diagram are compatible with the closed immersions %/, g, g}, f» and
Spec(Ry,) — Spec(Rp+1).

This gives us (by Theorem 6.2.1) a sequence of compatible isomorphisms

An (/Q\X;”p — 6Yn,q = Ryllz, y]l/(vy — 1)

in the sense that for every n the diagram

commutes, where the vertical maps are the projections.
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From this discussion we get the following result, which gives a descrip-
tion of the complete local ring of a global deformation of a curve around a
rational node (which is in some sense a “formal” description of the defor-
mation around the node).

Proposition 6.2.11. Suppose that f : X — S is a flat morphism of finite type,
the fiber Xo = f~Y(so) over a point sy € S is a curve over k(so) with isolated
singularities, and p € X is a rational node. Then there exists u € (55,30 and an
isomorphism of (55780—algebms

Oxp 22 Og. [, y])/ (zy — u).

Proof. Since the statement is local, we can assume that p is the unique sin-
gular point of Xj. We take A = 65750, and consider the formal deformation
X = {Xn, fn}nen over A defined by X,, = f~1(Spec(A,)), where we see
Spec(Ay,) — Spec(A) — S as the n-th infinitesimal neighborhood of s; the
morphisms f,, are the induced closed immersions.

Since (A, X ) is a formal deformation, we have a morphism of formal
objects (A, X) — (A[[t]], X') (where X’ is the miniversal deformation of X
constructed above), that is, a homomorphism of A-algebras A[[t]] — A and
closed immersions X,, — X}, such that for every n the diagram

X, X!

| |

Spec(A) — Spec(A[[t]])

is cartesian.

We call u the image of ¢ along the homomorphism A[[t]] — A, which
we can see as the quotient map A[[t]] — A[[t]]/(t — u) = A. Using the
preceding discussion we get then a sequence of compatible isomorphisms
of A-algebras

Ox,p = Alltl]ulle, y))/ (zy — 1.t — w).

Finally, passing to the projective limit, this sequence induces an isomor-
phism

Oxp = A[[H]][[z, 9]}/ (zy — t,t — u) = Allz, y]]/(zy — u)
which is what we wanted. O

Proposition 6.2.11 can be generalized to local complete intersections
with isolated singularities.

Example 6.2.12. If instead of zy = 0 we take y> — 2> = 0 as standard
singularity (and we assume that char(k) # 2, 3), then by Example 5.3.13 we
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know that a miniversal deformation of V(y*> — 23) C A7 is given by the
pullbacks X,, = X|g, of X = V(y* — 2% + ¢t + uz) C A% to the quotients of
R = A[[t, u]], together with the induced immersions X,, — X, ;1.

Then in the same way one can prove: if f : X — S is a flat morphism
of finite type such that Xy = f~!(so) (with char(k(sg)) # 2,3) is a curve
with isolated singularities over k(sp), and p € X is a rational point such
that Ox,, = k(so)[[z,y]]/(y2 — 2®), then there exist v,w € Og,, and an
isomorphism of @Sjso-algebras

Oxp = Os.ollz, 9]/ (1 — 2° + v + wa).

6.3 Affine curves with a finite number of nodes

Now we analyze the more general case of affine curves with more that one
node. We would like to repeat the argument we used in the previous case,
but now we cannot use Yy = V(zy) C A? anymore, since we have more
than one node. On the other hand we can do the following: call X, our
nodal curve, and suppose the nodes are p1, ..., p, € Xy. For each i we have

a diagram
Zi
i gi
R

where there is a point z; € Z; that goes to p; in X and to the origin ¢ in Yj.
Taking the disjoint unions Z = [ [, Z;, Y =[], Yo, and the induced étale
morphisms f: Z — Xgand g: Z — Y, we get a diagram

A
7 N
Xo Y

that we can use to construct a particular miniversal deformation of Xy, as
in the preceding section.

To do this, we first have to describe a miniversal deformation of the
disjoint union Y = [ [, Yo, starting from the description of the one of ¥ we
already used above. Suppose for example that we have only two copies
of Yy, thatis, Y = Y II Y’ (the general case can be treated inductively
starting from this one), and let Z € Defy(A) be a deformation of Y over
A € (Art /A). Since as topological spaces |Z| = |Y|, we can decompose Z
as a disjoint union Z = Z' 11 Z”, where Z' € Defy,;(A) and Z" € De fy.(A).

This gives a morphism of fibered categories

Defy — Defyy X(art /n)er Defyy
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that is clearly an equivalence. So we are led to study products of deforma-
tion categories, and in particular the relations between miniversal defor-
mations of the product and the ones of the factors.

6.3.1 Products of deformation categories
Let F — (Art /A)°? and G — (Art /A)°P be two deformation categories.

Definition 6.3.1. The product category of F and G (as deformation categories)
denoted by F x G is the fibered product F X (s /n)yor G, equipped with the natural
fuTlCtO}’ f X(Art /A)op g — (Art /A)OP.

If £ and 7 are objects of F and G over A € (Art /A) respectively, we will
denote by (£, 7) the corresponding object of (F x G)(A) (the isomorphism
A — A will be the identity, so we omit it in the notation).

In the following proposition we collect a couple of facts, whose proof is
very easy.

Proposition 6.3.2. Let F — (Art /A)°P and G — (Art /A)°P be two deformation
categories, &y € F (k) and ny € G(k). Then:

* The product category F x G — (Art /A)°P is a deformation category.

* The two projections F x G — F and F x G — G are morphisms of defor-
mation categories, and the map

Tigomo)(F X G) = TeeF @ TG
induced by the differentials of the projections is an isomorphism.

Now assume that T  F and T},,G are both finite-dimensional; by Theo-
rem 5.3.1 we have then two miniversal deformations (R, &) of £ and (S, 7)
of n9. We consider the coproduct R®S € (Comp /A) (as defined in ap-
pendix B), and the two pullbacks ¢ € J?(RGA?S) and 77 € ?(R@S) of £ and 7
along the two inclusions R — R®S and S — R®S.

Together ¢ and 7 give a formal object (&,7) of F x G over R®S.

Proposition 6.3.3. The formal object (R®S, (£,7)) is a miniversal formal object
of F x G.

Proof. First of all, recall from Proposition B.13 that TA(R@)S ) =X TARDT)\S.
It is easy then to check that the Kodaira-Spencer map

is just the direct sum of k¢ : TAR — T¢, F and &, : TAS — T,,,G, and so it is

an isomorphism.
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As for the lifting property, suppose we have a diagram of formal objects
of F x G

(A (V)

|

(R®S, (€,7)) (4, (p, v))-

By definition this diagram corresponds to two similar diagrams, one rela-
tive to F and one to G.

(A p") (A,

|

(4,v)

(R®S, €)

(4, p) (R®S,7)

If we compose the morphism (4, p) — (R®S, ) of the first diagram with
(R®S,€) — (R,€), by versality of (R,¢) in F we see that there exists a
lifting (A, p') — (R, &) of the composite (A4, p) — (R®S,€) — (R, ). This
gives in particular a homomorphism of A-algebras R — A'.

Repeating the argument for the second diagram, we get another homo-
morphism S — A’, which, together with the previous one, gives a homo-
morphism R®S — A’. Moreover we easily see that the two arrows p' — &
and v/ — 7 give (by cartesianity of £ — ¢ and 7 — 1) two other arrows
¢ — €and v/ — 7 over the constructed R®S — A’.

Finally, these two arrows in turn induce a morphism of formal objects

(4, (¢,V)) — (R®S, (€,7))

of F x @G that gives a lifting in the initial diagram, proving the versality of
(&) O
Let us consider now the disjoint union Y = Y II Y of two copies of
Yo = V(zy) C A2. Call {Y,, f/}nen and {Y,, f¥},en the two miniversal
deformations of Y] and Y’ induced by V(zy — t) C Aiw and V(zy —
u) C Ai[[u” respectively. The miniversal deformation of ¥ given by the
proposition above is then (A[[t, u]],Y), where Y = {Y/ 1Y, f/ II f/ }nen.
Going on by induction it is possible to find a similar miniversal defor-

mation, for any disjoint union Y = [[, Yy of a finite number of copies of
Yo.

6.3.2 Deformations of affine curves with a finite number of nodes

Let us now go back to the affine nodal curve X, with a finite number of
nodes p1,...,p, € Xp. Starting from the last example and proceding exactly
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as in Section 6.2.3, using the diagram with étale morphisms

e
N
X() Y

constructed above, one can prove the following proposition (which is the
analogue of the description we gave in the case with only one node).

Proposition 6.3.4. There is a miniversal deformation X = {Xn, fnlnen of Xo
over A[[t1, ..., t]], with compatible isomorphisms of A-algebras

O, = Alltr,- . te]lullz, ]l (xy — t:)
for every n and i.

The following result is a straightforward consequence of Proposition
6.2.11.

Proposition 6.3.5. Let f : X — S be a flat morphism of finite type, and suppose
that the fiber Xo = f~1(so) over a point sy € S is a nodal curve over k(sq) with
r nodes p1,...,pr € Xo. Then there exist uy,...,u, € A and isomorphisms of
Og,s,-algebras

Oxp, = s, llwy]]/ (wy — wi).

6.4 Projective curves with a finite number of nodes

We turn now to the case of projective nodal curves. After proving that their
deformations are unobstructed, we will try to fall back to the case of affine
curves, by taking an affine neighborhood of the nodes.

Let X, be a projective nodal curve over k, and call p1,...,p, € Xy its
rational nodes

Proposition 6.4.1. An X as above is always unobstructed.

Proof. Using thoerem 4.2.1, it suffices to show that Ext?, < (Q2x,,0x,) = 0.
In order to do this, we first show that Qx, , has projective dimension at
most 1 over Oy, ,, for every point p € Xj.

If p is a smooth point of X, then Qx, ,, is free of rank 1 over = Ox, ,,
and then in particular it is projective. So take one of the nodes, p = p;, € X,
and a module M over R = Ox, ,. We want to show that Ext’;(Qx, ,, M) is
trivial for any i > 2.

Since the complete local ring R=0 X,,p 18 faithfully flat over R, we can
instead consider

Exthy (Qxyp, M) ®5 R = Exts(Qx,, ®r B, M @ R).
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As shown in Proposition B.17, the R-module Qx, » OR Ris isomorphic to

the module of continuous Kéhler differentials )5; in our case since p is a
rational node we have

R = Ox,p = K[z, ]}/ (zy)

and then Q) pisan R-module with two generators dr and dy, and the only
relation ydz + xzdy = 0.
This module has a projective resolution of the form

0—=R—">RoR—>0 —0

where « is defined by (1) = (y,z), and 8 by 5(f,g9) = fdz + gdy. The
existence of this projective resolution implies that Ext’; (Q M®&gR)=0
for i > 2, which is what we wanted to show.

Moreover from the same resolution we get that Ext}(Qx, », R) ®g R
k, and so also Ext}%(QXW, R) = k.

Now we use Grothendieck’s spectral sequence for a composite of de-
rived functors (see for example Section 5.8 of [Weib]): there is a spectral
sequence {EZ'?}, cn such that

Ey" = HP(Xo, Extly, (Qx,, 0x,)) = Extg ! (xg, Oxp)-

Using this and the preceding discussion, and the fact that £ xt}QXO (Qx,,0x,)
has support only on the nodes py, . . ., pr, so that H? (X, Ext}gxo (2x,,0x,))
is trivial if p > 1, we get that E5? = 0if p + ¢ > 2.

Consequently Exto, (Qx,,O0x,) is trivial if i > 2, and in particular
Ex‘céxO (Qx,,0x,) =0, so Xy is unobstructed. O

Remark 6.4.2. As by-product, the above proof gives that
E:Jctox (Qx,, Ox,) EB Ky,

where £, is the sheaf on X with support in p;, and the stalk in p; is k.

Remark 6.4.3. We will not use this fact, but it is worthwile to notice that
the tangent space Ty, Def = Ext} Xy (Q2x,,Ox,) is finite-dimensional over
k (because X is projective), so Xy will have a miniversal deformation, de-
fined over a power series ring over A (because of the last proposition).

Now take an open affine subscheme Uy C X, containing all the nodes
p1,...,pr. Since the open immersion i : Uy — X is étale, we have an in-
duced restriction functor i* : De fx, — De fr;,, which in this case is a “true”
restriction (in the sense that ¢*(X) is just the open subscheme of X with un-
derlying topological space Uy). We recall also that there are canonical iso-
morphisms T'x,Def = Ext%,)xo (Qx,,0x,) and Ty, Def = Ext}gUO (Quy, Ovy)
(see Theorem 2.4.1).
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Proposition 6.4.4. In the situation above the homomorphism
EXt%QXO (QXO, OXO) — EXt%gUO (QUO, OUo)
corresponding to the differential dx,i* : Tx,Def — Ty, Def is surjective.

Proof. As in the proof of 6.2.9, the differential dx,i* : Tx,Def — Ty, Def
corresponds to the canonical homomorphism

a: Ext%f)xo (Qx,,0x,) — Ext%,)UO (Quy, Ovy)

that carries an (isomorphism class of an) extension of O x,-modules

0 —_— OXO g QXO 0

to the (isomorphism class of the) one obtained by tensoring with O,

0 Ou, &€ ®oy, Ou, Qu, 0

(where Q1x, ®o, Ov, = Qu, because the open immersion i : Uy — X is
étale).
We have a commutative diagram

EXt}QXO (QXm OXO) @ EXt%/)UO (QUO, OUO)

i i

HO(Xo, gﬂftéXO (QXO, OXO)) . HO(UO, Ea:thO (QUO, OUO))

where the left vertical map is surjective (as one sees using again the spectral
sequence of the proof of 6.4.1), the right vertical one is an isomorphism
(because U is affine), and the bottom horizontal one is also an isomorphism
(because &£ xt}oxo (2x,, Ox,) has support contained in Uj).

From the diagram we see then that the homomorphism « is surjective,
as we wanted to show. O

From the fact that the differential of i* is surjective and that X is unob-
structed, we deduce the following proposition.

Proposition 6.4.5. Every formal deformation of Uy is (isomorphic to) the restric-
tion of one of Xo.

Proof. The proof is very similar to the one of Proposition 2.4.13. Suppose
we have a formal deformation U = {U,,, fy }nen of Up over R € (Comp /A),
and consider the small extension

OHmR/m%HRlﬂRongO.
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Since X is unobstructed, we can find X| € Defx,(R;) that is a lifting of
Xo. Now the two objects Uy, i*(X}) € Defy,(R1) are both liftings of Uy to
R, and by Theorem 2.3.1 we can find an element g € mR/m% ®r Tu,Def
such that [*(X])] - g = [U1].

By surjectivity of

id ®kdX0i* : mR/m%{ Rk TXODGf — mR/m% R TUODGf

we have an h € mg/m% ®; Tx,Def such that (id ®xdx,i*)(h) = g, and
then by functoriality of the action with respect to the deformation category
(Proposition 2.3.6) we get

*([X1] - h) = [i"(XD)] - (id @rdx,i") (h) = [*(X1)] - g = [Uo].

If we take a representative X for [X{]-h, then i*(X;) and U; are isomorphic
liftings of Uj.

Repeating this argument inductively we find a formal deformation X =
{Xn, gn}nen of Xy over R such that *(X) is isomorphic to U (where i* :
@] — D/ef\UO is the induced morphism), as we wanted. O

Using the last proposition, and the results of Section 5.4, we can easily
prove an algebraization result for deformations of projective nodal curves.

Proposition 6.4.6. Let X be a projective nodal curve over k, with rational nodes
D1y, pr € Xo, and uy, ..., u, € A be arbitrary elements. Then there exists a
flat and projective scheme X over A, having closed fiber isomorphic to X, and
such that

Ox i = Allz,yl)/ (wy — ).
for every node p; € Xo.

Proof. Let A[[t1,...,t,]] be the base ring of the miniversal deformation of
Uy of Proposition 6.3.4, and consider the homomorphism of A-algebras
Al[t1,...,t]] — A defined by ¢; — w;. This induces by pullback a formal
deformation U = {Un, fn}nen of Uy over A.

By Proposition 6.4.5 we can find a formal deformation X = {Xn, gn }nen
such that the restriction i*(X) is isomorphic to U. Since Xy is projective
and H?(X(,0x,) = 0 (since Xy is a curve), by Theorem 5.4.6 the formal
deformation X is algebraizable, that is, we can find a flat and projective
scheme X — Spec(A) inducing X.

In particular X has closed fiber isomorphic to Xy, and since it restricts

to a formal deformation isomorphic to U constructed above, by Proposition
6.3.5 we have

Oxpi = [z, )]/ (wy — ).

for every node p;. O
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In particular we deduce the following corollary, that shows that if A is
one-dimensional, we can always deform X in a smooth way.

Corollary 6.4.7. Let X be a projective nodal curve as in the preceding proposi-
tion, and suppose that dim(A) = 1 (for example A = k|[[t]]). Then there exists a
flat and projective morphism X = Spec(A) such that the closed fiber is isomor-
phic to Xo, and X \ Xo — Spec(A) \ {mn } is smooth.

Proof. Let u € my be a system of parameters for A, and take the deforma-
tion X — Spec(A) of X given by Proposition 6.4.6, with u; = u for every
1.

Let U be the open subset of X on which the coherent sheaf 2x/, is
locally free of rank 1 (or equivalently where X is smooth over A). We want
to show that U = X \ {p1,...,pr}.

Consider an irreducible component V' of X \ U, with generic point p €
V C X. Since V is closed in X and X — Spec(A) is proper, we must have
V N Xy # 0 (because the image of X — Spec(A) contains the maximal
ideal my). Since X is smooth outside p1, ..., p,, there exists an i such that
pi € V N Xo; we will show that V' = {p;}, and this will conclude the proof.

We consider the complete local ring R = O x.p = Az, y]]/(xy —u), and
the module of continuous Kahler differentials O r/A = (see appendix B),
which is an R-module with two generators dx, dy, and the relation ydx +
xdy = 0. This can also be seen as the cokernel of the homomorphism R —
R & R given by multiplication by the vector (y, z).

If p € Spec(R) does not contain the ideal (z, y), then one of z, y is invert-
ible in p, and then Q r/A is locally free of rank 1 over R),. Since the radical
of (z,y) is mp, we conclude that Qg /AlSpec(R)\ {mg} 18 locally free of rank 1.

Now the natural morphism Oy, — O x,p; = R 1is faithfully flat, and
then Spec(R) — Spec(Ox p,) is flat and surjective. Moreover the inverse
image of the closed point m,, is {mg}, and so we can restrict the morphism
above to

Spec(R) \ {mgr} — Spec(Oxp;) \ {myp, }

that is flat and surjective too. From this, and the fact that the pullback of
Qx/a to Spec(R) \ {mg} is locally free of rank 1 (see Proposition B.17), we
get that its pullback to Spec(Ox ,,) \ {m,, } along the morphism

Spec(Ox p;) \ {mp, } — X

is also locally free of rank 1.

Finally, the generic point p of V is in the image of the morphism above
(since this image it is the set of the generic points of irreducible components
of X containing p;), but the stalk {2x/, , is not free of rank 1 by hypothesis.
From this we get that the maximal ideal m,, goes to p, or in other words
p=pi,and V = {p;} (since p; is closed), as we claimed. O
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Appendix

Linear functors

In this appendix we give some results about functors from categories of
modules (or vector spaces) that preserve finite products. Throughout this
appendix A will be a noetherian ring (commutative and with identity, as
usual).

Let F' : (FMod /A) — (Set) be a functor. If M, N € (FMod /A) , the
two projections M @ N — M and M & N — N induce two functions
FIM& N) - F(M) and F(M & N) — F(N), and in turn these induce

Definition A.1. A functor F' : (FMod /A) — (Set) is said to preserve finite
products if the function ¢ N is bijective for every M, N € (FMod /A), and
F(0) # 0.

Definition A.2. A functor F' : (FMod /A) — (Mod /A) is said to be A-linear
if for every M, N € (FMod /A) the function

Homy (M, N) — Homa(F(M),F(N))
is a homomorphism of A-modules.

It is easy to see that if /' : (FMod /A) — (Mod /A) is A-linear, then
the induced functor (FMod /A) — (Set) preserves finite products, and the
bijection ppr,n : F(M & N) — F(M) x F(N) is actually an isomorphism of
A-modules (with the product structure on the target).

The following proposition shows that if a functor F' : (FMod /A) —
(Set) preserves finite products, then each F()) has a canonical structure
of A-module.

Proposition A.3. Let F' : (FMod /A) — (Set) be a functor that preserves fi-
nite products. Then there exists a unique A-linear lifting F : (FMod JA) —
(Mod /A) of F, that is, an A-linear functor such that its composite with the for-
getful functor (Mod /A) — (Set) is F.
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With “unique” above we mean really unique, not only up to isomor-
phism.

Proof. We define a structure of A-module on every F(M), and call F(M)
the set F'(M) with this A-module structure. First, notice that F'(0) (where
0 is the zero A-module) has exactly one element. In fact the two pro-
jections 0 & 0 — 0 are the same function, and then the same is true for
the two induced functions F(0 & 0) — F(0). But now we know that
F(0®0) = F(0) x F(0), and for the projections on the two factors to be
the same function, we must have that #'(0) has at most one element. Fi-
nally, it has at least one, since F'(0) # 0 by hypothesis.

Now fix M € (FMod /A), and notice that we have a unique homomor-
phism 0 — M. We define the image of the induced F'(0) — F'(M) to be the
zero vector of F'(M).

Next, we define scalar multiplication: if a € A, we have a homomor-
phism p4 : M — M given by scalar multiplication by a. We define then
scalar multiplication by a in F(M) to be the induced function F(p4) :
F(M) — F(M).

Finally, we define addition. Consider the “sum” homomorphism + :
M @& M — M defined by (m,n) — m + n; this induces a function F(M &
M) — F(M), which, using the bijection wprar @ F(M & M) = F(M) x
F(M), gives a function F'(M) x F(M) — F(M). We define the sum in
F (M) by means of the last function.

We should verify that the data defined give a structure of A-module on
F(M), and that if M — N is a homomorphism, then the induced F (M) —
F(N) is a homomorphism too. The method to verify the various axioms
(and also the last fact about homomorphisms) is the same: one rewrites
everything using of commutative diagrams, and then uses the appropriate
functorialities to conclude.

As an example, we verify only associativity of + on F'(M). Instead of
saying that v + (w + z) = (v 4+ w) + z for every v,w, z € F(M), it can be
restated by saying that the diagram

F(M) x F(M) x F(M) 4 p(M) x F(M) (A1)

| |+

F(M) x F(M) F(M)

is commutative.
To prove this it suffices to consider the corresponding diagram for M

MeMaeMI2 L vrem

ase| |+

Mo M
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(which is clearly commutative) and apply F'. We get

F(+@id)
_—

F(Mo Mo M) F(M o M) (A2)
F(id @‘F)i lFH)
F(M @& M) F(M)

and after noticing that the bijections F(M & M & M) = F(M) x F(M) x
F(M)and F(M & M) = F(M) x F(M) are compatible with the homomor-
phisms in diagrams A.1 and A.2 (basically by the definition of addition in
F(M)), we get that A.1 is commutative.

It is easy to see that the defined structure of A-module on each F(M)
is uniquely determined if we want an A-linear functor. For example, since

addition on M € (FMod /A) is the unique function M & M =+, M such
that the composites M — M & M — M with the two inclusions are the
identities, applying F' we see that the function

F(M)® F(M) = F(M & M) 22 pun
satisfies the same property with respect to the inclusions F'(M) — F(M) &
F(M), and so coincides necessarily with the addition of F'(M).

Finally, let us check that the lifting F : (FMod /A) — (Mod /A) defined
above is A-linear. We have to prove that if M, N € (FMod /A) the induced
function

® : Homa (M, N) — Homa(F (M), F(N)).
defined by f — F(f) is a homomorphism of A-modules. We prove only
additivity, since linearity is similar.

Call A : M — M & M the diagonal homomorphism defined by A(m) =
(m,m), then F(A) : F(M) — F(M & M) corresponds to the diagonal
function A’ : F(M) — F(M) x F(M) if we use the bijection F(M & M) =
F(M) x F(M). The additivity of ® (thatis, ®(f + g) = ®(f) + ®(g) for
every f,g € Homy4 (M, N)) amounts to the commutativity of the diagram

F(M) x F(M) 222209 povy PO (A3)
A/T \L‘F
(M) ————— F(N).

But by definition of the sum homomorphism f + g, we have a commutative
diagram
f®g

MeM-——N&N
AT i-&-
M f+g N
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from which, applying F' and using the bijections F'(M & M) = F(M) x
F(M) and F(N @ N) = F(N) x F(N), we see that A.3 is commutative
too. t

Now we turn to natural transformations.

Definition A.4. Let F, G : (FMod /A) — (Mod /A) be two functors. A natural
transformation o : F' — G is said to be A-linear if for every M € (FMod /A) the
function apy : F(M) — G(M) is A-linear.

The following proposition is useful when one has to prove that some
bijections are isomorphisms of modules.

Proposition A.5. Let F,G : (FMod /A) — (Set) be two functors that preserve
finite products, F,G : (FMod /A) — (Mod /A) the two A-linear liftings coming
from the preceding proposition, and o : F — G a natural transformation. Then
for every M € (FMod /A) the function ayy : F(A) — G(A) is A-linear, and so
o induces an A-linear natural transformation & : F — G.

Proof. Fix M € (FMod /A). We start with additivity; it amounts to showing
that the diagram

F(M) x F(M) 2222 (M) x G(M) (A4)
+l i+
F(M) o G(M)

commutes.
We consider the sum homomorphism + : M @& M — M. By naturality
of a we have then a commutative diagram

aMHM

F(M @ M) G(M & M)
F(+)l lcm
F(M) G(M)

an

and using once again the bijections F(M & M) = F(M) x F(M) and
G(M@&M) = G(M)xG(M),and the fact that the function F/(M) x F(M) —
G(M) x G(M) corresponding to aupranr is aops X ayy, we get the commuta-
tivity of A.4.

Linearity is simple: if a € A we consider the homomorphism p, : M —
M given by multiplication by a. By naturality of o the diagram

F(M) - G(M)
F(ua)l lG(ua)
F(M) s (M)
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is commutative, and this says exactly that oy is A-linear. O

Finally, we see that if A = £ is a field, then k-linear functors are partic-
ularly simple to describe.

Proposition A.6. Let G : (FVect /k) — (Vect /k) be a k-linear functor. Then
for every V€ (FVect /k) there is a functorial isomorphism

G(V) =V @ G(k).

In particular G is an exact functor (carries exact sequences to exact sequences),
since the functor — ®j, G(k) is.

Proof. We define a natural transformation 7 : — ®; G(k) — G as follows:
for V € (FVect /k) we define 7(V) : V ®;, F(k) — F(V) by

T(V)(v@a) = F(py)(a)

where ¢, : K — V is the k-linear function sending 1 to v. It is readily
checked that 7 is a natural transformation.

We check that each 7(V) is an isomorphism. First of all if V' = £, then
Tk + k @k F(k) — F(k) is easily seen to be just the canonical isomorphism
defined by a ® o — a - a.

If V = k", then we have a commutative diagram

k" @y F(k) —=— F(k")

| |

(k @k F (k)" (k)"

(re)™

where the left vertical arrow is the canonical isomorphism, the right vertical
one is the isomorphism given by k-linearity of F'to k" = k@ - -- @k (applied
n— 1 times), and the bottom one is an isomorphism because 7y is. It follows
that 7 is an isomorphism too.

Finally, for a general V' € (FVect /k), we take an isomorphism V' =
k™ where n is the dimension of V, and reduce this case to the preceding
one. ]

155



Appendix B

Noetherian complete local rings

In this appendix we gather some definitions and facts about notherian com-
plete local algebras over A (which is as usual a noetherian complete local
ring) with residue field %, that are applied in Chapters 5 and 6. We denote
the category of such rings by (Comp /A), where as usual we consider only
local homomorphisms (which are also precisely the continuous ones with
respect to the natural topologies).

Vertical tangent and cotangent spaces

First of all we set up some notation. Let R € (Comp /A), and mp C R be the
maximal ideal as usual; there is another important ideal of R, the extension
maR C mp C R of the maximal ideal of A. In this situation, we denote
by R, the quotient R/m’;t!, which is an object of (Art /A), and by R the
quotient R/mp R, an object of (Comp /k). If ¢ : R — S is a homomorphism
in (Comp /A), we will denote by ¢,, : R, — S, and ¢ : R — S the induced
ones.

So R, € (Art /k) will be the quotient E/m%rl >~ R,/maR, = R, @ k,
and in particular we have

R1%k@m§1 %k@mﬁ/m%

because m%l = (0).

Definition B.1. The vertical cotangent space of R is the finite-dimensional
k-vector space
TYR = mp/(mpR + m%).

Its dual
TAR = (mp/(mpR +m%))Y

is called the vertical tangent space of R.
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Remark B.2. The name “vertical tangent space” comes from the fact that
TR is the tangent space of the fiber of the morphism Spec(R) — Spec(A)
over the maximal ideal (which is just Spec(R)), at the only closed point. In
fact one easily checks that there is a canonical isomorphism

TAR = (mp/(mpyR + m3))" = (mp/mZ)

As one expects, there is a related notion of differential of a homomor-
phism ¢ : R — Sin (Comp /A). This comes from the fact that ¢(mp) C mg
and p(mp R + m%) CmpS + m?g, so ¢ induces a k-linear map

o :mp/(myR+ m%) — mg/(mpS + m%)

between the cotangent spaces, that we call the codifferential of ¢.
Dualizing, we get another k-linear map

dip : (ms/(mpS +mg))" — (mp/(maR + mf))"

that we call the differential of ¢, and is just the differential of the morphism
induced by ¢ between the closed fibers Spec(S) — Spec(R).

These constructions are clearly functorial, in the sense that differential
and codifferential of a composite coincides with the composites of the dif-
ferentials and codifferentials respectively.

We have the following important proposition.

Proposition B.3. Let R, S € (Comp /A), and ¢ : R — S be a homomorphism.
If the codifferential @, : T\ R — TS is surjective, than  itself is surjective.

Proof. Letus consider first the homomorphisms of k-algebras ,, : R,, — Sy,
induced by ¢. We show inductively that @, is surjective for every n.
To do this, notice that surjectivity of the codifferential ¢, : mz/ m% —
mg/ m% implies that of the map
n+1 n+1

fn s mp/mET — mg/mT

induced by ¢, for any n (as is easily checked). Now we come to @,,: if
n =1, wehavethatg, : k®TYR — k®T) S is surjective because the codif-
ferential ¢, is, by hypothesis. Suppose that we know that @,,_; is surjective;
we have a commutative diagram with exact rows

n n+1
0 Hmﬁ/mﬁ

lfn lwn lsonl

0 —>mz/m2* S, St 0

—R,—>Ry-1—0

and by diagram chasing the surjectivity of ,,_; and f,, implies that of @,,.
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Now consider ¢,, : R, — S,; we show that all these homomorphisms
are surjective as well. Notice that R,, and 5, are finite as A-modules, be-
cause they have a finite filtration (given by the powers of the maximal
ideal), such that successive quotients are finite-dimensional k-vector spaces.

Recall also that R, = R, ® k and S,, = S,, ®, k, and ,, is the homo-
morphism induced by ¢,,. Since %, is surjective, we can apply Nakayama'’s
Lemma and deduce that ¢, is surjective too.

Finally, we pass to ¢ : R — S, which is the projective limit of the homo-
morphisms ¢,,. If we set K, = ker(R,, — S,,), we have for every n an exact
sequence

0 K, R, Sn 0

that together give an exact sequence of projective systems. Since in our case
R, is artinian (and so K, is as well), the Mittag-Leffler condition (for every
n the image of K,,1, — K, is the same for all £’s large enough) is certainly
satisfied, and then the induced homomorphism

limp, =@ :lim Ry, =R — lim S, =5
is surjective. O
From the last proposition we get the following corollary.

Corollary B.4. Let R, S € (Comp /A), and ¢ : R — S be a homomorphism such
that the codifferential . : T R — Ty S is surjective. Then:

@) If¢(Ry) = L(Sy) for all n (where ¢(—) denotes the length as a A-module), then
@ is an isomorphism.

(ii) If there exists a homomorphism 1 : S — R such that the codifferential ), :
TS — TY R is surjective, then o is an isomorphism.

(iii) If R and S are isomorphic, then  is an isomorphism.

Proof. The first assertion follows from the fact that /(R,,) = £(S,,) implies
((K,) = 0 (with the notation of the preceding proof), and consequently
that each ¢,, : R, — S, is an isomorphism. In conclusion ¢ = @1 pn is an
isomorphism as well.

For the second statement, if ¢) : S — R is a homomorphism with surjec-
tive codifferential ¢, : T}'S — T\ R, by the proof of the preceding propo-
sition we deduce that ¢, : S, — R, is surjective for every n, and this,
together with the fact that ¢,, : R, — S, is surjective as well, implies that
U(Ry,) = {(Sy), so we can apply the first part of the corollary.

This last argument clearly proves (iii) as well (because if ¢ : S — R
is an isomorphism, then in particular the codifferential will be surjective),
and this concludes the proof. O
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Remark B.5. Notice that it is not sufficient to have a surjective map 7{'S —
TX R to conclude that ¢ above is an isomorphism, but we must have a ho-
momorphism S — R with surjective codifferential.

In particular the fact that ¢, is an isomorphism does not imply that ¢
itself is.

Power series rings

Now we turn to power series rings over A. For any n, the power series ring

on n indeterminates R = A[[zy, ..., x,]] is an object of (Comp /A). Since the
ideal myR C R coincides with the kernel of the natural homomorphism
Allz1,...,2,]] — K[[z1,...,2,]] (as one easily checks, using noetherianity

of A), we get that R = k[[z1, ..., z,]]. In particular

TR = Myl an]) /(o]

is a k-vector space of dimension n, with basis [z1], ..., [z,].
The next proposition shows that power series rings have properties sim-
ilar to those of polynomial rings, with respect to complete algebras.

Proposition B.6. Let R € (Comp /A), and ay, . ..,a, € mg. Then there exists
a unique homomorphism ¢ : Al[x1, ..., zy]] — R such that ¢(z;) = a;.

Proof. By the properties of polynomial rings, for every k we have a unique
homomorphism

k+1
Alz1,...,2n

ok N[z, x|k 2 Az, .., ] /m ] — Ry,

sending [z;] to [a;]. By completeness we get then a homomorphism
¢ =limepg : HimAf[z1, ... zn]ls Z Aflzr, .. 20]] — lIm By = R

such that ¢(z;) = a;.
Moreover if ¢ : A[[z1,...,2,]] — R is a homomorphism with this prop-
erty, then for every k the induced homomorphism

g N[z, . .. ,xn]/mmll,...,xn] — B

sends [z;] to [a;], and so coincides with ¢, above. This implies ¢ = lim ¢y, =
lim ¢, = ¢ and concludes the proof. O

The following is an immediate consequence of Proposition B.6 and part
(ii) of Corollary B.4.

Corollary B.7. Let R € (Comp /A), and assume we have a homomorphism ¢ :
R — A[[@1, ..., xy]] such that the codifferential o, : TY R — TYA[[x1,. .., zx]]
is an isomorphism. Then ¢ is an isomorphism.
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Proof. Let us take elements ay,...,a, € mg such that ¢, ([a;]) = [z;], and
[ai], ..., [a,] form a basis of TY R. By Proposition B.6 we can find then a
homomorphism ¢ : Al[z1,...,2z,]] — R such that ¢(z;) = a; its codiffer-
ential will then be surjective, and part (ii) of B.4 lets us conclude that ¢ is
an isomorphism. O

We get now a description of noetherian complete local rings as quo-
tients of power series rings.

Corollary B.8. Every R € (Comp /A) is a quotient of the power series ring
Al[z1, ..., zy]] for some n. Moreover, the minimum such n is the dimension
dimy (T)Y R) of the vertical cotangent space of R.

Proof. Setn = dimg (T R), and consider elements a1, . .., a, € mg such that
[a1], ..., [a,] is a basis of T R. By Proposition B.6 we can define a homo-
morphism ¢ : Af[z1,...,2,]] — R such that ¢(x;) = a;; its codifferential
will then be surjective, and by Proposition B.3 ¢ will be surjective too. In
other words, R is a quotient of A[[z1, ..., z,]].

On the other hand if ¢ : A[[z1,...,2,]] — R is surjective then the cod-
ifferential ¢, : TYA[[z1,...,2,]] — Ty R is surjective too, and this implies
that r > n. O

Finally we prove a criterion that characterizes power series rings as for-
mally smooth algebras in (Comp /A).

Theorem B.9. Let R € (Comp /A). Then R is a power series ring if and only if
for every surjection A" — A in (Art /A) and every homomorphism R — A, we
can find a lifting R — A'.

Proof. If R is a power series ring, then Proposition B.6 implies that we can
lift homomorphisms along small extensions.
Conversely, suppose that the lifting property holds, and take a homo-

morphism ¢ : A[[z1,...,z,]] — R that induces an isomorphism on cotan-
gent spaces, ¢, : TYA[[z1,...,z,])] — TYR (using the last corollary, for
example).
Now notice that the quotient map A[[z1,...,z,)]1 — TYA[[z1,...,2,]]
is a surjection in (Art /A), and then by hypothesis we can lift the homomor-
-1
phism B — TYR P TVA[[zy, ..., za]] to R — Al[z1, ..., z])s
_ - - R
- |
Allz1, ... zp)i —=TYA[[z1,. .., 20]].
Likewise, since the quotient map A[[z1,...,zx)]x — Allz1,..., Zn]]k—1 is
a surjection in (Art /A), we can lift inductively the homomorphism R —
Al[z1, ..., zn]]k—1 to a homomorphism R — Af[x1, ..., 2]k
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Finally, taking the projective limit of the sequence of compatible homo-

morphisms above, we obtain a homomorphism ¢ : R — A[[z1,...,2,]]
such that the codifferential ¢, : TYR — TYA[[x1,...,x,]] is an isomor-
phism (the inverse of ¢,), and by Proposition B.7 this implies that ¢ is an
isomorphism, so R is a power series ring. [

Remark B.10. Actually the criterion can be strengthened by replacing “sur-
jection” A’ — A by “small extension”. To see this it suffices to factor a
surjection as a composite of small extensions and lift the homomorphism
successively, as usual.

Coproducts in (Comp /A)

The following discussion is applied in Section 6.3.1, to find miniversal de-
formations of product deformation categories.

Let R, S be objects of (Comp /A). We ask if there is a coproduct of R
and S in the category (Comp /A), that is, an object 7' € (Comp /A) with
two homomorphisms ig : R — T,ig : S — T, such that given any other
object U € (Comp /A) with two homomorphisms ¢r : R — U,ps : S — U
there is a unique homomorphism ) : T" — U such that ¢ o ig = ¢ and
Yois=gps.

iR g

R —T S
|
|
RW%
\
U

This universal property implies (using the usual argument) that any two
coproducts will be canonically isomorphic. To prove existence, the natural
thing to do is to try to take the tensor product R ®, S, which is a coprod-
uct in the category of A-algebras. Unfortunately does not give the “right”
thing.

Example B.11. Take R = k[[z]],S = k[[y]] € (Comp /k). One can eas-
ily verify (using Proposition B.6) that k[[z, y|| with the two natural inclu-
sions k[[z]] — k[[z,y]] and k[[y]] — Ek[[z,y]] is a coproduct of R and S

in (Comp /A). On the other hand k[[z, y]] is not isomorphic to the tensor
product k[[z]] ® k[[y]].

There is an injective map k[[z]] ®x k[[y]] — k[[z,y]], defined by f(z) ®
g(y) — f(z)g(y) and extended by linearity, but this is not surjective, be-
cause for example one can see that the series h(z,y) = Y, 2y’ is not in the
image.
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Instead of taking the tensor product, we do the following: write R and
S as quotients of power series rings (Corollary B.8),

R A[[z1,...,zu)]/I, S = Ay, yml]]/J
and put

R®S = Al[z1, - @n, g1, -yl /(TA[y1, - ynl] + TA[l2, . zal])

which is clearly an object of (Comp /A). Moreover we have two natural
homomorphisms i : R — R®S andig: S — R®S.

Proposition B.12. The object R®S € (Comp /A) with the two homomorphisms
ig and ig is a coproduct of R and S in (Comp /A).

Proof. Assume that we have an object U € (Comp /A), with two homo-
morphisms ¢p : R — U and ¢g : S — U. If a; € U is the image of
[z;] € Rand b; € U the one of [y;] € S, thenif fr : Al[z1,...,2,]] = U and
fs : Aly1,...,ym]] — U are the homomorphisms (Proposition B.6) sending
x; to a; and y; to b;, we have that I C ker(fgr),J C ker(fs), and ¢g, g are
the induced homomorphisms.

Now we define f : Af[z1,...,Zn,Y1,-..,Ym]] — U by sending z; to a;
and y; to b; (using B.6 again). Because of the above inclusions we have
IN[[y1, -, Ym]] + JA[[z1, . . ., zn]] C ker(f), and so f induces 1) : R®S — U
that satisfies the desired property. Uniqueness is easy. O

The following proposition relates the tangent space of R®S to the ones
of Rand S.

Proposition B.13. There is an isomorphism Th(R®S) = TyR @ TxS induced
by the two homomorphisms ig and ig.

Proof. We prove the analogous statement for cotangent spaces, and our re-
sult will follow by duality. The two homomorphisms ip : R — R®S and
is : S — R®S define two k-linear maps (i)« : TYR — TY(R®S) and
(is)« : TV S — TY (R®S), which together induce a k-linear

d:TYROTYS — TY(R®S).

To prove that this is an isomorphism, we use the following property of the
cotangent space, which is part of Proposition 5.1.10: if R € (Comp /A), then
for every V € (FVect /k) there is a bijection (which is functorial in V)

Homy (R, k[V]) = Hom(TY R, V)

obtained by sending a homomorphism R — k[V] to the induced k-linear
function mp/(mpR +m%) — V.
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For a fixed V/, the map ® induces then a homomorphism
Homy, (T (R®S),V) — Homy,(TYR® TY S, V).

This is actually an isomorphism, being the composite of the natural isomor-
phisms

Homy, (T (R®S),V) 1)

Homy (R®S, k[V
R, k[V]) x Homy (S, k[V])

Homy \%
Homk(TX V) x Homy (TS, V)
Homk(T/\\/R ®TYVS,V)

(R
(R,

11111 1R

(where the second isomorphism comes from the universal property of R®S),
and this (together with functoriality of all these isomorphisms) implies that
® is an isomorphism too. t

Continuous Kihler differentials

In this section we introduce a module of differentials for objects of (Comp /A)
that is much more useful than the standard one.

Let R be an object of (Comp /A). We have then the usual module of
Kéhler differentials g/, with the universal A-derivation d : R — Qg/,,
which has the following universal property: if D : R — M is a A-derivation
then there is a unique homomorphism of R-modules f : Qr/y — M such
that D = f o d.

For some applications this module is too large: for example, one can
show that Q)% is not finitely generated over k[[z]], since the field of
fractions k((z)) of k[[z]] has infinite transcendence degree over k, and

Qi) /b Pnfa)) £((2)) = Qi)

is not finitely generated over k((z)).

Because of this we define another module of differentials that is better
behaved. We consider derivations D : R — M where M is a module that is
separated with respect to the mp-adic topology, that is, the intersection of
the submodules {m% M }cy is the zero submodule. For example, by one of
Krull’s Theoremes, finitely generated R-modules are separated.

We want then a finitely generated R-module Qp /n With a derivation
d: R — Qp /a, such that for every derivation D : R — M, where M is a
separated R-module, there exists a homomorphism f : Q r/A — M such
that D = fod.

Write R as a quotient of a power series ring (Corollary B.8)

R = Al[xy, ..., xn]]/1
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and suppose that I = (f1,..., fx). We consider the free R-module on n

elements dz1, ..., dx,, and its submodule J generated by the elements
| 9fi afi
df; = [(%1] dry + -+ [&L’n] dxy,
fori=1,...,k; we define then

Qp/n = (Rdzy @ - @ Rdzy,)/J.

Moreover we have a derivation d : R — Qp /A given by

a(lg]) = H;ﬂ P {;g} dmn]

for [g] € R, that is easily seen to be well-defined.

Proposition B.14. The R-module Qg /n and the derivation d : R — Qg /A have
the universal property above.

Proof. We sketch the idea of the proof, without going into details. Let D :
R — M be a A-derivation of R into a separated R-module M.

We start by defining Rdzy @ - - - ® Rdx,, — M by saying that dz; goes to
D([z;]), and then extending by linearity. To see that this induces a homo-
morphism on the quotient N /A, the key point is to see that the derivation
D is completely determined by D([z;]) fori=1,...,n.

This is clearly true for D([p]) where p is a polynomial, just by using the
leibnitz rule repeteadly. The fact that D is uniquely determined on power
series follows from the fact that derivations are continuous with respect to
the mpg-adic topology, and from separatedness of M. O

Definition B.15. The R-module Q. /18 called the module of continuous Kéihler
differentials of R, and d is the universal continuous derivation.

The proposition above implies in particular that changing the presenta-
tion of R as a quotient of a power series ring we get isomorphic modules
of continuous differentials.

Suppose now that R, S € (Comp /A), and that ¢ : R — S is a surjec-
tion with kernel I C R. Because of the universal property of Qp /A and the
fact that the composite R — S — Q s/A is a A-derivation, we get a homo-
morphism of R-modules Qp /A — Q s/A, which tensoring by S induces a
homomorphism of S-modules f : Q R/A ®RS — Q S/A-

Moreover the universal derivation d : R — () r/A induces as usual a

homomorphism of S-modules I/1? — Qp /n @r S that we still denote by
d. The following proposition is proved in the same way as its analogue for
the standard modules of differentials.
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Proposition B.16. If ¢ : R — S is a surjection in (Comp /A), then the sequence
of S-modules

I/IQ*d>§R/A ®RS$65/AHO
is exact.

The sequence above is called the conormal sequence associated with
the homomorphism ¢.
The following proposition will be applied in Chapter 6.

Proposition B.17. Let X be a scheme of finite type over A, and p € X be a
rational point. Then there is a natural isomorphism

Qx/np @0x, Oxp = Q5,4

Proof. Since this is a local problem, we can assume that X C A% is a closed
subscheme with ideal I = (fi,..., fx) € k[z1,...,x,], and moreover that
p € X is the origin of A}.

So we have

Qx/n = (Oxdz1 @ -+ @ Oxdxy,)/(df1, ..., dfn)

and R
Oxp = kl[z1,.. ]/ (f1,- - fr) = R

Consequently, using the properties of localization and tensor product, we
get

Qx/ap @0y, Oxp = (Rt ® - @ Rdzy)/(d[f1]. ..., d[fa]) = Qr/a

where d[f;] = [0fi/0z1]dx1 + - - - 4 [0fi/Oxp]|dxy,. This concludes the proof.
O]
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Appendix

Some other facts and
constructions

In this appendix we gather some other miscellaneous standard results and
constructions that are used throughout this work.

Fibered products of categories

Let F,G,H be three categories, with two functors F' : 7 — H and G :
G — H. We want to define a “fibered product” category F x G with two
functors 7 : F x4 G — F and g : F X1 G — G, such that the composites
F oz and G o g are isomorphic as functors F x3 G — H, and such that
for any other category C with two functors o : C — Fand ¢g : C — G
and a fixed isomorphism of functors F' o o r = G o ¢g there exists a dotted
functor as in the diagram below

Za

N

such that 77 o ¢y = ¢r and g o ¢ = ¢g (which are actual equalities, and
not merely isomorphisms of functors).
We define such a category F x4 G as follows:

Objects: are triplets (X,Y, f) where X € F,Y e Gand f : F(X) — G(X)
is an isomorphism in the category H.
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Arrows: from (X,Y, f) to (Z,W, g) are pairs (h, k) of arrows h : X — Z of
Fand k : Y — W of G, such that the diagram

is commutative.

Composition of arrows is defined in the obvious way, as well as the two
functors 7z, mg; for example 7x : F x4 G — F sends an object (X, Y, f) to
X € F,and an arrow (h, k) to h.

Moreover notice that the composites Forr and Gorg are clearly isomor-
phic: starting from (X,Y, f) € F xy G we have (F o7r)(X,Y, f) = F(X)
and (Gomg)(X,Y,f) = G(Y), so f : F(X) — G(Y) gives the desired
isomorphism. The compatibility property on arrows ensures that these iso-
morphisms altogether give a natural transformation.

Proposition C.1. The category F x+ G with the functors 7 r, wg has the property
stated above.

Proof. Suppose we have a category C with two functors ¢ : C — F and
wg : C — G, and a fixed isomorphism of functors o : F' o pr = G o pg.
We define a functor ¢ : C — F Xy G as follows: if X € C, we put ¢(X) =
(pr(X),pg(X),a(X)), and an arrow f : X — Y of C goes to the arrow
(65(f), 99 f)) of F X3 G.

It is immediate to check that v is well-defined, and that 7 o ¢ = @
and g o ¢ = pg. O

Definition C.2. The category F x G is called the fibered product of F and G
over 'H.

Remark C.3. The property that we used as starting point to define the
fibered product looks much like a universal property (which should de-
fine it up to equivalence), apart from the fact that there is no uniqueness
required on the functor ¢. On the other hand we defined the fibered prod-
uct explicitly, and we will not need this “uniqueness” part.

Nevertheless, we remark that it is possible to give a universal property
that identifies the fibered product up to equivalence, but the natural setting
in which this property is stated is that of 2-categories.

The local flatness criterion

The following theorem gives an important flatness criterion.

167



APPENDIX C. SOME OTHER FACTS AND CONSTRUCTIONS

Theorem C.4 (Local flatness criterion). Let A be a ring, I C A a proper ideal,
and M an A-module. If either

(i) I is nilpotent, or

(ii) A is a noetherian local ring and M is a finitely generated B-module, where
B is a notherian local ring with a local homomorphism ¢ : A — B and the
two structures of module on M are compatible with ¢

then the following conditions are equivalent:
* M is a flat A-module.
o M/IM is flat over A/I and Tor{!(M, A/I) = 0.
* M/I™M is flat over A/I"™ for every n > 1.

A discussion about this can be found in § 22 of [Mat].

If in particular condition (ii) is satisfied, and I = my is the maximal
ideal of A, then M /m M is certainly flat over A/my4, which is a field, and
so we get the following corollary.

Corollary C.5. Let ¢ : A — B be a local homomorphism of noetherian local
rings, and M be a finitely generated B-module. Then M is flat over A if and only
if Tor{'(M, k) = 0.

A base change theorem

Let X be a scheme over a noetherian ring A, and £ be a coherent sheaf on X.

We want to understand the relation between the A-modules H (X, M ®4E)

and M ®4 H'(X, ) (this is a particular case of the “base change problem”).
There is a natural homomorphism

Oy Moy H(X,E) — H(X,M ®4&)

that is defined as follows. An element m € M corresponds to a homomor-
phism of A-modules m : A — M, defined by a — a - m. We can consider
then the homomorphism m ®id : £ = A®4 & — M ®4 £, which induces a
homomorphism in cohomology (m ® id). : H(X,&) — H{(X, M ®4 £).

We define then a function F : M x HY(X,£) — HY(X,M ®4 &) by
F(m,a) = (m ® id)«(a); one can check that this function is A-bilinear in
both variables, and so it induces a homomorphism of A-modules <p§w :
M®s H(X,E) = H(X,M ®4 &).

We have the following classical result.
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Theorem C.6. Let X be a proper scheme over A, £ a coherent sheaf on X, flat
over A, and assume that for every closed point p € Spec(A) and a fixed i the
homomorphism

Ghip : k(p) ©4 HI(X,E) — H'(X, k(p) 04 €)

is an isomorphism. Then for every A-module M the homomorphism ©', is an
isomorphism.

Definition C.7. If the concusion of this theorem holds for a coherent sheaf £ and
a natural number i, we say that the cohomology group H' (X, E) satisfies base
change.

For a discussion about base change and the theorem above, see for ex-
ample Sections 7.7 and 7.8 of [EGAIII], or III, 12 of [Har].

The following theorem tells us that sheaves of differentials satisfy base
change in a particular case (see Theorem 5.5 (i) of [Del]).

Theorem C.8 (Deligne). Let X be a proper and smooth scheme over a noetherian
Q-algebra A, and consider the coherent sheaf of Kiihler differentials Q x4, and its
exterior powers 0% 4= N Qx /4. Then all the cohomology groups H'(X, Q]X / n
satisfy base change.

Left exactness of the conormal sequence in a particular
case

Let X be a scheme of finite type over k, V' € (FVect /k), and take a defor-
mation X € Defx,(k[V]) of X, over the ring of dual numbers k[V]. Since
the sheaf of ideals of X in X can be identified with V' ®; Ox, (see the proof
of Theorem 2.4.1), and in particular its square is zero, we can consider the
conormal sequence associated with the closed immersion Xy C X

V @1 Ox, 4> Qx|x, Qx, 0.

Proposition C.9. If X is reduced and generically smooth, then d is injective.

For the proof we will need the following theorem (for a discussion
about it, see Exposé II of [SGAT]).

Theorem C.10. Let X,Y be schemes, with Y noetherian, and f : X — Y bea
morphism of finite type. Then f is smooth if and only if there exists an open cover
{Xi}icr of X and étale morphisms f; : X; — Ay, such that the diagram

X; — T A

N/

Y
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is commutative for all i.

Proof. We proceed by steps, starting from the simplest case.

Case 1. Suppose X = AR,y = Spec(k[V][z1,...,zn]) (and then X, =
A7}). Take abasis vy, ...,v. of V,and put R = k[v1, ... v, 21, ..., 2], so that
we see X as a closed subscheme X = Spec(R/J) C A}"", where J is the
ideal generated by all the products v;v;.

From the conormal exact sequence of this closed immersion

d
J/J2 *X>QA2+T|X HQX —0

and the fact that 2 AT is a free R-module generated by the n + r elements

dvi,...,dv,dxy,. .., dz,, we see that Qx is a k[V][z1, ..., z,]-module with
generators dvy, . .., dv,,dx1, . . ., dx, and relations dx (v;v;) = vidvj+v;dv; =
0.

We conclude from this that Qx|x, = Qx ®o, Ox, is a free Ox,-module,
generated by dvi|x,,...,dv|x,, dx1|x,, - - ., dzn|x, (the relations become
trivial when forcing v; = 0).

Now consider the conormal sequence of Xy C X

V @k Ox, ~4> Qx|xy —> Qxg — 0

and notice that d is defined on the generators v; of V ®; Ox, by v; — dv;|x,.
Since now we know that the images are linearly independent in Qx| x,, we
see that d is injective in this case.

Case 2. Suppose X is smooth over k, which is equivalent to saying that
X is smooth over k[V]. Since our result is a local question, using Theorem
C.10 we can assume that we have an étale morphism f : X — AZM, such
that

X

A

/
Spec(k[V])
commutes. From the properties of étale morphisms we have then that the
natural morphism of Ox-modules f*(Q AZ[V]) — (lx is an isomorphism.

Consider now the closed immersion Al € Ajy1. By the preceding case,
its conormal sequence

00—V ®; Oan HQAZ[V]MZL ——Oar ——0

is exact. Since f is flat, exactness is preserved if we apply f*, and doing so
we get

OHV(@]C OXO LQX|X0 OXO 0
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because f* (2 A7) \ AZ) = Qx| x,. So d is injective in this case too.

Case 3. We turn to the general case. Put £ = ker(d), and call K; the
image of K under the i-th projection ; : V ®; Ox, = O%  — Ox,; these are
Ox,-modules on Xj.

By the preceding case we see that for each 7 the support of K; has to be
contained in the singular locus of X, which does not contain any compo-
nent of X, since it is generically smooth. In particular supp(K;) can not
contain any irreducible component of Xj.

But if we suppose K; # 0, then supp(K;) # 0, and its irreducible com-
ponents would correspond to embedded points of X, which cannot exist
since Xy is reduced. Then K; = 0 for every ¢, and so also K = 0, and d is
injective. O

Two equivalences of categories of sheaves

Let X be a topological space, V' € (FVect /k), and consider the following
categories:

* The category A of sheaves of flat k[V]-modules on X.

* The category BB, whose objects are pairs (E, F') of sheaves of k-vector
spaces on X, with an extension

t u

0—VerFE a

E 0

and arrows from (E, F) to (E’, F') are pairs of k-linear homomor-
phismsa: E — E', 3: F — I, fitting in a commutative diagram

0— Ve FE F FE 0
\Lid@a lﬁ loa
00—V ® E F' E' 0

with the respective extensions.

Consider the functor ® : A — B that takes a flat k[V]-module F' to the pair
(Fo, ), where Fy = I Qv k, with the extension

00—V ® Fy F Fy 0

obtained by tensoring with F' (and using its flatness over k[V]) the exact
sequence of k[V]-modules

0 Vv k[V] k 0

(notice that V @) F1 = V @y, (F ®jy) k), and acting on arrows in the
obvious way.
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Proposition C.11. The functor ® : A — B is an equivalence of categories.

Proof. We define a quasi-inverse ¥ : B — A. Starting from a pair (E, F')
with an extension

t u

0—>=V&,E F E 0 (C.1)

we see that F' has a natural structure of k[V]-module: given a section s of
F,and z +v € k[V]| =k ® V, we define

(x4+v) -s=xs+t(v®u(s))

It is easy to check that this gives a k[V]-module structure.

Moreover, F is flat over k[V], because of the local flatness criterion: if
we put Fy = F ®yy) k, we have an isomorphism Fy = F' @) k = FE (that
we get by tensoring C.1 with k over k[V]), that induces V @y E =V ®, Fp,
and these two isomorphisms fit in a commutative diagram

0—= Ve F F E 0
| |
V @ Fo F Fy 0

where the top row is the extension above, and the bottom is the exact se-
quence of k[V]-modules

0 v k[V] k 0

tensored with F. From the diagram we see that also the bottom left map
is injective, so we have Tor’f[v](F, k) = ker(V ® Fy — F) = 0, and this
implies that F' is flat over k[V].

U sends then the pair (£, F') with the extension above to the k£[V]-module
F, and an arrow (a, ) to the k[V]-linear homomorphism 3 : F — F’.
Straightforward verifications show that the funtors ® and V¥ are quasi-
inverse to each other, and then give an equivalence of categories. O

We will also need a similar result, in which we consider quasi-coherent
sheaves instead of simply sheaves of k[V]-modules. Take a scheme X over
kand V € (FVect /k). We denote by Xy the trivial deformation over k[V],

Xy =X X Spec(k) Spec(k[V])

and recall that | Xy/| = | X |, so we can speak indifferently of sheaves over X
or over Xy .
Consider the following categories:

¢ The category C of quasi-coherent Ox,,-modules on Xy that are flat
over k[V].
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* The category D, whose objects are pairs (£, F) of quasi-coherent O x-
modules on X, with an extension

t u

0—= V& F & 0

and arrows from (£, F) to (', F') are pairs of homomorphisms « :
E—E&, B F— F of Ox-modules, fitting in a commutative diagram

0——=V &€ F £ 0
iid@a lﬁ la
00—V @& F' &' 0

with the respective extensions.

We have a functor ® : C — D that takes a quasi-coherent Ox,,-module
F flat over k[V] to the pair of quasi-coherent O x-modules (Fy, F), where
Fo = F ®yv) k, with the extension

0—V & Fo F Fo 0

that we get tensoring with F (and using its flatness over k[V]) the exact
sequence of k[V]-modules

0 174 E[V] k 0

(again, notice that 7 @) k = F @y, (F @y k)), and acts on arrows in the
obvious way.

Proposition C.12. The functor ® : C — D is an equivalence of categories.

Proof. The proof is very similar to the preceding one. We construct a quasi-
inverse ¥ : D — C as follows: given a pair of quasi-coherent Ox-modules
(€, F) with an extension

t u

0—=V &€ F & 0

we define a structure of a quasi-coherent Ox,,-module on F. Given sections
fof F,and s + v ® s’ of Ox,,, that we see as Ox & (V ®j, Ox ), we define

(s+v@s)f=sf+tvausf)).

It is straightforward to check that this gives indeed a structure of quasi-
coherent Ox,, -module to F. Exactly as in the preceding proof one can show
that F is flat over k[V], using the local flatness criterion.

U sends then the pair (£, F) with the extension above to F, and an
arrow (a, ) to the homomorphism of Oy, -modules 5 : F — F'. Easy
verifications show that ® and ¥ are quasi-inverse to each other, and so
they give an equivalence of categories. O
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