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1. Introduction

In their talks, Erich Neuwirth and Carlotta Simens have given a description of diverse
musical temperaments and, respectively, of some uses of equal temperament.
Presently I will describe a mathematical frame in which an old musical practice known
as “expressive intonation” by singers and string players can find an explanation which
would be impossible in any system of equal temperament. This does not mean that a
phenomenon of the sort cannot occur in piano playing, but in this case it belongs to
the concept of homonymy : each black key being a sort of “double entendre” as it is in
Beethoven’s Moonlight Sonata where the black key which is just above C is considered
to mean C# in the first and last movements and to mean Db in the second.
We will show how players who are not slaves to a fixed pitch, may dispel this ambiguity.

2. “Petite fleur”

I have chosen to let the audience listen to a well-known piece of popular music as
an example of this practice : this is “Petite Fleur” played by S. Bechet on an alto
saxophone.

The theme of the refrain begins by the top Eb of the minor sixth
Eb

G
. According

to all treatises this minor sixth is attracted to the perfect fifth
D

G
. The musicologist

D. Cooke says in [C] that the expectation of the perfect fifth in this context creates a
sentiment of anguish, and this can be checked if you pay attention to the meaning of
the words underneath the notes of “Petite Fleur”.
Each time this refrain reappears, S. Bechet tries to emphasize in his way of playing this
sentiment of expectancy. Among other things, the listener notices that his Eb is inten-
tionally flat : too flat according to equal temperament but nevertheless marvellously
in tune !
H. Helmholtz ([Hh], p. 428) was perfectly aware of this shortcoming of equal temper-
ament, when he wrote :
“When the organ took the lead among musical instruments it was not yet tempered.
And the pianoforte is doubtless a very useful instrument for making the acquaintance
of musical literature, or for domestic amusement, or for accompanying singers. But for
artistic purposes its importance is not such as to require its mechanism to be made the
basis of the whole music system”.
“I think that many of our best musical performances owe their beauty to an unconscious
introduction of the natural system, and that we should oftener enjoy their charms if
that system were taught pedagogically, and made the foundation of all instruction in
music, in place of the tempered intonation which endeavours to prevent the human
voice and bowed instruments from developing their full harmoniousness, for the sake of
not interfering with the convenience of performers on the pianoforte and the organ”.

3. Scale constructions

The tuning of string instruments is usually based on the pure fifth, which is the interval
3
2
. The reason for this is that it is very easy to produce experimentally, as you only have
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to check that the harmonic of order 2 of the upper string concides with the harmonic
of order 3 of the lower string.
If we extend this construction mentally in both directions, we find the fractions of a

subgroup of Q∗+ generated by
3
2
, subgroup usually noted <

3
2
> by mathematicians.

If we translate these intervals in the first octave (the interval [1, 2[) modulo the powers
of 2 (namely the elements of the group < 2 >) we can notice that, although there are
near concidences, all the fractions we get are different.
Expressed in other terms the “equation of the musicians” namely :(3

2

)x
= 2y

with (x, y) ∈ Z2, is impossible except for the trivial solution (x, y) = (0, 0).
This was well known to Pythagoras, but at the same time Pythagoras noticed that

(x, y) = (12, 7) was a very good approximate solution since
312

219 is very near 1. We will
call this quantity “Pythagoras’ comma” and denote it by $. As D. Cooke puts it in
[C] p. 44 :

“We may say that whereas musically we want the equation
312

219 = 1, the correct mathe-

matical equation is
312

219 =
(3

2

)12
× 1

27 = 1, 013642 . . . ”.

Solving “mathematically” this impossible equation can be done in several ways :

1) the official solution, which consists in taking “2” = 2 and “ 3
2

” = 2
7
12 ∈< r0 >

with r0 = 2
1
12 ∈ R∗+.

This can be given a rigourous mathematical meaning if you consider the homor-
phism h0 of the free abelian group < 2, 3 > on < r0 > given by :

h0(2x3y) := r12x+19y
0 ∈< r0 >

The theorem of isomorphism tells us then that :

Im(h0) =< r0 >∼=< 2, 3 > /Ker(h0)

with Ker(h0) =<
312

219 >=< $ > .

We will say that < r0 > is the official tempered scale.

2) the solution of S. Cordier [Cr] which is similarly constructed when you consider
hc given by :

hc(2x3y) := r12x+19y
c ∈< rc >

with rc :=
(3

2

)1/7
∈ R∗+.

As above we deduce that :

Im(hc) =< rc >∼=< 2, 3 > /Ker(hc)

with Ker(hc) =<
312

219 >=< $ > .

We will say that < rc > is S. Cordier’s tempered scale.

3) The above isomorphisms suggest to consider an “abstract scale” which is :

< 2, 3 > / < $ >
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when $ denotes Pythagoras’ comma
312

219 . From what we have already said we know
that this quotient group is isomorphic to Z and we can check that it is generated

by the class of
28

35 . In fact it can be verified that

h
(28

35

)12
= h(2)

where h means either h0 or hc, and this means that the twelfth power of the class

of
28

35 is the class of the octave.

These solutions can be summed up in a same diagram :

N ↪→ G
s←−−→
ϕ
Z

where G means < r > in the case of the tempered scales and < 2, 3 > is the case of
the abstract scale, where N means < 1 > in the case of tempered scales and < $ >
in the case of the abstract scale, where ϕ is either rn 7−→ n or 2x3y 7−→ 12x+ 19y
and where s is a section chosen such that ϕ ◦ s = idZ. Mathematicians say that G
is an extension of N by Z. In both cases the extensions are “trivial” in the sense
that we can take for s a homomorphism (the extension is “split”).

But, in the second case, musicians do not take for s a homomorphism !

L. Euler helps us to understand the musical choice we have to make by the following
remark :

“The sense of hearing is accustomed to identify with a single ratio, all the ratios
which are only slightly different from it, so that the difference between them be
almost imperceptible”.

By “difference” Euler naturally means “interval” or equivalently the quotient of
the two ratios.

So, in the case of the abstract scale, we decide to take for s(ϕ(x)) the “simplest”
ratio ρ in the class of x modulo N.

But what meaning shall we attach to this concept of simplicity ?

We will chose ρ as close as possible to 1 for the “harmonic distance” on Q∗+
(see [He], §1 for the definition of this distance) or, equivalently, we will take ρ =

n

d
(the fraction being reduced in its simplest terms) with sup(n, d) minimal in the
class of x modulo N.

It turns out that this choice of ρ is unambiguous in the sense that there is only
one element in xN which satifies our condition.

The first twelve values of s(n) are :

n 0 1 2 3 4 5 6 7 8 9 10 11

s(n) 1
28

35

32

23

25

33

34

26

22

3
36

29

3
2

27

34

33

24

24

32

35

27

name C D E F G A B

Db Eb F# Ab Bb

and we can check that the intervals of the C major scale are exactly the ones given
by E. Neuwirth in his empirical construction.
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Remarks

1) As we noticed in the introduction there is an ambiguity in the naming of the notes
which do not belong to the C major scale. This is the reason why we placed their
names on a lower line. We will go back to this later.

2) This construction is the paradigm of an infinite series of Pythagorean chromatic
scales which have respectively :

1, 2, 5, 12, 41, 53, etc.

degrees in one octave.

The usual Pythagorean scale is the fourth in this series and the next one (with 41
degrees in an octave) is called Janko’s scale.

It is given by the diagram :

N ↪→ G
s←−−→
ϕ
Z

=< 265

341> =<2,3>

and the generator of G/N is the class of $ =
312

219 .

The “concrete scale” s ◦ ϕ(G) begins as follows :

0 1 2 3 4 5 6 7

1
312

219

227

317

28

35

37

211

319

230

216

310

32

23

C Db C# D

So, in Janko’s scale, the Pythagorean diatonic semitone
Db

C
is

3
7

of the whole

Pythagorean tone
D

C
and the chromatic semitone

C#

C
is

4
7

of the whole tone. But
we will come back later to the definition of those semitones.

3) The sixth scale is Mercator’s scale.
It is given by the diagram :

N ↪→ G
s←−−→
ϕ
Z

=< 265

341> =<2,3>

The generator of the “abstract” scale G/N is the class of
265

341 .

One can check that the Pythagorean whole tone
32

23 is divided in nine parts and

that the diatonic semi-tone is
4
9

of a whole tone while the chromatic semi-tone is
5
9

of a whole tone.
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4) Finally if we consider the ratio of the logarithms of the chromatic semi-tone and of
the whole tone we find : 0, 4425 . . . and it can be proved that it is the limit of the
number of degrees contained in those intervals when the scale tends to infinity in
the Pythagoric series referred above.
As a comparison we have :

3
7

= 0, 4285 . . . <
logC#

logC
= 0, 4425 . . . <

4
9

= 0, 4444 . . .

So the theories about Holder’s comma seem consistent with this construction.

4) Playing “Petite Fleur” in the Pythagorean scale

The score of “Petite Fleur” shows that the first note is an Eb and that the next chord
contains D and F#, so the abstract scale in which it is written is G minor, and this
has to be present in the mind of all the listeners from the beginning.
A player like S. Bechet (I mean a good player) will play the Eb in a way which will
make it quite different from a D# (to suppress the homonymy) and the F# in a way
which will make it quite different from a Gb : this can be done in the Pythagorean
scale but not in a tempered scale !
And in so doing this player will follow the teaching of masters like P. Casals [B] or the
findings of musicologists like D. Cooke [C].

5) Mathematical interpretation of expressive intonation

Sharps and flats are usually introduced by transposing by successive fifths the C major
scale. When you want to introduce sharps and flats in the Pythagorean scale you must

therefore multiply the ratio by
3
2

several times (translation).

In fact the practice of transposition of the scale of C major was very popular in the
XIXth century, when it was taught systematically by the Tonic Sol-faists (see [Hh] p.
422-428) as the basis for natural intonation. Let us introduce F#, C# and Bb.

C C# D E F F# G A Bb B C

C maj 1
32

23

34

26

22

3
3
2

33

24

35

27 2

G maj 1
32

23

34

26

36

29

3
2

33

24

35

27 2

F maj 1
32

23

34

26

22

3
3
2

33

24

24

32 2

D maj
37

211

32

23

34

26

36

29

3
2

33

24

35

27

Up to now there are no problems of homonymy, but when they do occur we see that :

F#

Gb
=
C#

Db
=
G#

Ab
=
D#

Eb
=
A#

Bb
=
E#

F b
=
B#

Cb
= $

We can observe here the intervention of what the mathematician call the factor sys-
tem attached to the section sp.
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Consider the diagram :

N ↪→ G
s←−−→
ϕ
Z

with ϕ ◦ s = idZ.
The “system of factors” of s is the application :

Z× Z ν−→ N

given by :

ν(m,n) :=
s(m)s(n)
s(m+ n)

We can check that it is a 2−cocycle on Z with values in N. It is a well-known fact that
the homology group H2(Z, N) is null (see [N] p. 249). So ν is also a 2−coboundary
(which we already remarked since the extension is trivial).
In the case of equal temperament, N = {1} and everything is trivial, so there is no
expressive intonation in a temperate system.
But in the case of N =< $ >, the choice of the musical section sp gives a non constant
musical factor system νp since :

C#

Db
=
sp(25)sp(−24)

sp(1)
= $ 6= 1.

So what musicians do unconsciously is to express their feelings through a factor system !

6) Pure intonation

The “pure scale” (or Zarlino’s scale) can be defined in the same frame :

N ↪→ G
s←−−→
ϕ
Z

=<$,δ> <2,3,5>

where δ means the Didymus (or the syntonic) comma
34

24.5
. The musical section s is

defined in the same way as before and we get a similar system of expressive intonation
arising from the factor system of our new s, although there are some minor differences
with the Pythagorian expressive intonation. Zarlino’s scale seems to be well adapted
to the works of certain composers like Mozart (see [He], §6 and [Hh] p. 327) whose
music requires great harmonic purity.

7) Conclusion

When an artist is faced with a particular score it seems that a natural question he
should ask himself is to know in which temperament the composer was hearing (in his
inner ear) the symbols he was putting on paper.
In the case of the composers of the second Viennese school (Schœnberg, Berg, Webern)
there is no doubt that they were thinking in the equal temperament.
It may happen that some work of our composer has been recorded with his approval,
then the style of this performance can give a clue to our question, as it was the case
with “Petite Fleur” and its Pythagorian intonation.
In other cases (a certain quartet by Mozart for example) a study of the score in different
temperaments might allow one to make a choice which would give the work a greater
coherence (see [He] §6).
But these remarks are just concerned by a single aspect of a much broader problem
and the reader is referred to [L] for a deeper study.
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