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Part 1. Galois module theory

In this paper, we consider modules over rings not necessarily commutative. These
rings are always algebras over commutative rings; therefore the notion of rank of a
free module is well defined. If nothing is said, the modules we consider are left.

1. An introduction to Galois module structure. The case of tamely
ramified extensions

In this section, we mainly follow [FT93, Joh11].
Let G be a finite group.

Definition 1.1. Let R be a ring. The group algebra of G over R is

R[G] =

󰀫
󰁛

σ∈G

aσσ | aσ ∈ R

󰀬
.

It is an R-algebra, free as R-module with basis G.

Let M be an abelian group. We say that M is a G-module if G acts on M via
endomorphism, that is, if there exists a group homomorphism ϕ : G → End(M).
Equivalently, a G-module is just a Z[G]-module.

We say that M is a Galois module if M is a G-module with G = Gal(L/K) for
an extension L/K and the action of G on M is the Galois action.

Notation 1.2. If K is a number field, that is, a finite extension of Q, then we write
OK for the ring of integers. If K is a p-adic field, so a finite extension of Qp for a
prime number p, then we write OK for the valuation ring.

We call primes of OK the nonzero prime ideals, that is, the maximal ideals, of
OK .

Example 1.3. Let L/K be a finite Galois extension with Galois group G.
• L is a K[G]-module.

Suppose that L and K are number fields or p-adic fields.
• OL is an OK [G]-module.
• The ideal class group Cl(K) of K is an OK [G]-module.
• O×

L is a Z[G]-module.

Definition 1.4. Let L/K be a finite Galois extension with Galois group G. We
say that L/K admits a normal basis if there exists an element α ∈ L, called a
generator of the normal basis, such that one of the following equivalent conditions
holds:

• L = K[G] · α.
• L is a free K[G]-module of rank one, with basis {α}.
• {σ(α) | σ ∈ G} is a K-basis of L.

Every finite Galois extension admits a normal integral basis, as stated by the
following deep result. For a proof, see [Ble07].
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Theorem 1.5 (Normal basis theorem). Let L/K be a finite Galois extension. Then
L/K admits a normal basis.

If L/K is a (finite) Galois extension of number fields or p-adic fields with Galois
group G, then OL is a OK [G]-module. Is OL free over OK [G]?

Definition 1.6. Let L/K be a finite Galois extension of number fields or p-adic
fields with Galois group G. We say that L/K admits a normal integral basis if
there exists an element α ∈ L, called a generator of the normal integral basis, such
that one of the following equivalent conditions holds:

• OL = OK [G] · α.
• OL is a free OK [G]-module of rank one, with basis {α}.
• {σ(α) | σ ∈ G} is an OK-basis of OL.

Remark 1.7. If OL free over OK [G], then the rank has to be one, since if we tensor
with K over OK , we find that this rank equals the rank of L as K[G]-module, which
is one by Theorem 1.5.

Remark 1.8. If L/K is a Galois extension of number fields or p-adic fields with
Galois group G, then OL is the integral closure of OK . This means that for all
α ∈ L, there exists an integer 0 ∕= d ∈ OK such that dα = γ ∈ OL. If α is
a generator of a normal basis, then we immediately find that also γ generates a
normal basis, that is, we can always assume that the generator of a normal basis
belongs to OL.

Clearly this does not mean that γ is in general a generator of a normal integral
basis. But the converse is true: if α ∈ OL generates a normal integral basis, then
it also generates a normal basis. Indeed, it is immediate to see that {σ(α) | σ ∈ G}
is a set of K-generators of L with the right cardinality, so a K-basis.

The same argument shows that the apparently weaker condition OL = OK [G] ·α
is enough to have that OL is free over OK [G] with basis {α}.

Not every finite Galois extension L/K of number fields or p-adic fields admits
a normal integral basis: since OK [G] is free over OK , if OL were free over OK [G],
then OL would also be free over OK , but we know that if OK is not a principal
ideal domain, then this may not be the case. Also if OK is a principal ideal domain,
this may be false.

Example 1.9. Suppose K = Q and L = Q(i), so OL = Z[i]. We claim that L/K
does not admit a normal integral basis. We know that G = Gal(L/Q) = {id,σ},
where σ is the complex conjugation. Suppose that an element α = a+ ib generates
a normal integral basis. Then

Z[G] · α = {λ(a+ ib) + µ(a− ib) | λ, µ ∈ Z} = Z[i].

Since 1 ∈ Z[i] = Z[G] · α, we have either b = 0 or λ = µ. In the former case,
Z[G] · α = Z. In the latter, we find 2λa = 1, which has no solutions in Z.

Example 1.10. Suppose K = Q and L = Q(
√
5). Then OL = Z

󰁫
1+

√
5

2

󰁬
and L/Q

admits a normal integral, generated by 1+
√
5

2 .

1.1. Lattices. Let R be a Noetherian domain with field of fractions K ∕= R, and
let V be a finite-dimensional K-vector space.



4 F. FERRI AND L. STEFANELLO

Definition 1.11. An R-lattice of V is a finitely generated R-submodule M of V
with the property that KM = spanK(M) = V , or equivalently, that M contains a
K-basis of V . An R-lattice M is free if M is free over R.

Remark 1.12. Some authors use the term full lattice to define a lattice in the sense
of Definition 1.11.

Example 1.13. If L/K is an extension of number fields, then OL is an OK-lattice,
not necessarily free.

More generally, if O is a Dedekind domain with field of fractions K, L/K is
a finite separable extension, and OL is the integral closure of O in L, then all
fractional ideals of OL, and so also OL, are O-lattices.

Remark 1.14. An R-lattice M is always R-torsion-free, since it is contained in the
K-vector space V . If M is also free, then M has rank n, where n is the K-dimension
of V . Every R-basis {x1, . . . , xn} of M is also a K-basis of V , as we may identify
V = KM with K ⊗R M . For similar results, see [FT93, Chapter II, section 4].

Lemma 1.15. Let M be an R-module in V . Then M is an R-lattice if and only if
there exist free R-lattices F ′ and F ′′ such that F ′ ⊆ M ⊆ F ′′.

Proof. See [Joh11, Lemma 3.5]. □
Notation 1.16. Let O be a Dedekind domain with field of fractions K. If p is a
maximal ideal of O, then we write Kp and Op for the completions of K and O,
respectively, with respect to the p-adic topology. We remark that Op is a discrete
valuation ring; see [FT93, Chapter II, section 3]. If M is an O-module, then we
write Mp = Op ⊗O M . If V is a K-vector space, then we write Vp = Kp ⊗K V .
Note that this is indeed well defined, since if V is a K-vector space, then

Op ⊗O V ∼= Op ⊗O (K ⊗K V ) ∼= (Op ⊗O K)⊗K V ∼= Kp ⊗K V

as Op-modules, where the composition is given by the natural inclusion Op ↩→ Kp.
Also, if M is finitely generated as O-module, then Mp is exactly the completion

lim←−n
M/pnM of M with respect to p; see [FT93, Chapter II, 4.6.a].

Note that if M is an O-lattice in V , then Mp is an Op-lattice in Vp, since if
F ′ ⊆ M ⊆ F ′′ (Lemma 1.15), then F ′

p ⊆ Mp ⊆ F ′′
p by [FT93, Chapter II, 4.7];

moreover, as torsion-free finitely generated modules over principal ideal domains
are free, Mp is a free Op-lattice in Vp.

Lemma 1.17. Let O be a Dedekind domain with field of fractions K, let V be
a finite-dimensional K-vector space, and let M and N be O-lattices in V . Then
Mp = Np for almost all maximal ideals p of O.

Proof. See [FT93, Chapter II, 4.12] □
1.2. Module index and discriminant. We fix a Dedekind domain O with field
of fractions K and a finite-dimensional K-vector space V .

Let M and N be free O-lattices of V , and let p be a maximal ideal of O, so
Mp and Np are Op-lattices of Vp. Let {α1, . . . ,αn} and {β1, . . . ,βn} be bases for
Mp and Np, respectively, as Op-modules, and so also for Vp as Kp-vector space.
Consider the Kp-linear map

a : Vp → Vp

αi 󰀁→ βi.
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Define [Mp : Np] = det(a)Op. This is a well-defined fractional ideal of Op, as the
map a is uniquely defined modulo AutOp

(Np).
Let now b : V × V → K be a symmetric nondegenerate K-bilinear form, and

define
δ(Mp) = disc(Mp) = det({bp(αi,αj)})Op,

where bp is the Kp-bilinear form on Vp induced by b:

bp

󰀓󰁛
λi ⊗ xi,

󰁛
µj ⊗ yj

󰀔
=

󰁛

i,j

λiµjb(xi, yj).

Then δ(Mp) fractional ideal of Op.
Finally, since for almost all p, Mp = Np by Lemma 1.17 and δ(Mp) = Op by

Lemma 1.18(1), we can define δ(M) to be the only fractional ideal of O such that

δ(M)p = δ(Mp),

and [M : N ] to be the only fractional ideal of O such that

[M : N ]p = [Mp : Np].

Here we are using the fact that if I is a fractional ideal of O with factorisation

I =
󰁜

q

qvq(I),

then the completion of I with respect to a maximal ideal p is

Ip = pvp(I)Op.

We state some important facts.

Lemma 1.18. In the previous setting, the following hold:
(1) For almost all p, δ(Mp) = Op.
(2) If N ⊆ M , then [M : N ] is an integral ideal; if also [M : N ] = O, then

M = N .
(3) δ(N) = δ(M)[M : N ]2.
(4) Let L be a finite separable extension of K, let OL be the integral closure of

O in L, and let bL : L ⊗K V × L ⊗K V → L be the form induced by b and
defined by bL(l ⊗ x, l′ ⊗ x′) = ll′b(x, x′). Then

δ(OL ⊗O M) = δ(M)OL.

Proof.
(1) Let M ⊆ F with F free O-lattice (Lemma 1.15). Then for almost all p,

Mp = Fp (Lemma 1.17). Note that for all p, δ(F )p = δ(Fp). In particular,
if p does not occur in the factorisation of δ(F ), then δ(Fp) = Op, and so
the assertion follows.

(2) The result is clear after completion, and in the general case it follows from
the fact that for every O-lattice A,

A = V ∩
󰀣
󰁟

p

Ap

󰀤
,

where p ranges over all maximal ideals of O; see [Rei03, Theorem 5.3].
(3) See [FT93, Chapter III, 2.4].
(4) See [FT93, Chapter III, 2.10]. □
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We can apply this machinery to the case when V = L is a finite separable
extension of K and b = Tr is given by the trace: for all x, y ∈ L,

Tr(x, y) = TrL/K(xy).

We define δ(L/K) = δL/K(OL) to be the discriminant of the O-lattice OL with
respect to this form, where OL is the integral closure of O in L. Note that δ(L/K)
is an integral ideal of O (the trace of an element in OL is in O), and the following
meaningful result holds.

Theorem 1.19. Let L/K be an extension of number fields or p-adic fields. Then
a prime p of OK is ramified in L if and only if p divides δ(L/K).

Proof. See [FT93, Chapter III, Theorem 22]. □

1.3. Linear and arithmetical disjointness.

Definition 1.20. Let L and F be finite extensions of a field K contained in a
separable closure K. We say that L and F are linearly disjoint if the F -algebra
homomorphism

L⊗K F → LF

x⊗ y 󰀁→ xy

is bijective.

If we write F = K(α) ∼= K[x]/(µK(x)), where µK(x) is the minimal polyno-
mial of α over K, then LF = L(α) ∼= L[x]/(µL(x)), where µL(x) is the minimal
polynomial of α over L, and µL | µK . Since, by extension of scalars,

L⊗K F ∼= L[x]/(µK(x))

as F -algebras, we get that L and F are linearly disjoint over K if and only if
µL = µK , so µK remains irreducible in L, if and only if [F : K] = [LF : L], hence

[LF : K] = [L : K][F : K].

Remark 1.21. If L and F are linearly disjoint over K, then L ∩ F = K, but the
converse is not true. The standard example is given by K = Q, L = Q( 3

√
2), and

F = Q(ζ3
3
√
2), or more generally every two distinct, but conjugate, extensions of

prime degree.

Definition 1.22. Let L and F be finite extensions of a field K contained in a
separable closure K. We say that L and F are arithmetically disjoint if L and F
are linearly disjoint and the discriminants δ(L/K) and δ(F/K) are coprime ideals.

Example 1.23. For all n ≥ 1, let ζn be a primitive n-th root of unity. If n,m ≥ 1
are coprime, then Q(ζn) and Q(ζm) are arithmetically disjoint over Q.

Theorem 1.24. Let K be a number field or a p-adic field, and let L and F be
arithmetically disjoint extensions of F . Write

OF · OL = spanOK
({xy | x ∈ OK , y ∈ OL}).

Then
OLF = OL · OF .
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Proof. The inclusion OL · OF ⊆ OLF is clear.
For the other, set N = LF . Via the identification L⊗K F ↔ N , we can identify

OL⊗OK
OF with OL ·OF . In the same way, we view ON as a OK-lattice in L⊗K F

containing OL ⊗OK
OF . We need to show that [ON : OL ⊗OK

OF ]OK
= OK

(Lemma 1.18(2)), or equivalently, that for all prime p of OK ,

p ∤ [ON : OL ⊗OK
OF ]OK

.

It is enough to show that pOF is coprime with [ON : OL ⊗OK
OF ]OF

. Suppose,
without loss of generality, that p is coprime with δ(L/K), that is, pOF is coprime
with δ(L/K)OF . We know that

[ON : OL ⊗OK
OF ]

2
OF

= δN/F (OL ⊗OK
OF )δN/F (ON )−1,

where δN/F denotes the discriminant with respect to TrN/F . The trace TrN/F ,
under the identification N ↔ L⊗K F , is TrL/K ⊗ id. This implies (Lemma 1.18(4))
that

δN/F (OL ⊗OK
OF ) = δL/K(OL)OF ,

and so δN/F (OL⊗OK
OF ) is coprime with pOF . Therefore, as [ON : OL⊗OK

OF ]
2
OF

is integral, it must be coprime with pOF . □

Remark 1.25. If K is a p-adic field and L and F are finite extensions of K contained
in a separable closure K, then L and F are arithmetically disjoint if and only if L/K
is unramified and [L : K] and [F unr : K] are coprime, where F unr is the maximal
unramified subextension of F/K (or the same holds with L and F swapped).

Proposition 1.26. Let K be a number field or a p-adic field. If L and F are
arithmetically disjoint over K, L/K is Galois with Galois group G, and OL =
OK [G] · α, then OLF = OF [G] · α; moreover, if F/K is Galois with Galois group
H and OF = OK [H] · β, then OLF = OK [G×H] · αβ.

Proof. See [Joh11, Proposition 6.4] □

Proposition 1.27. Let L/K be a Galois extension of number fields or p-adic fields,
and let F be an intermediate field, with F/K Galois. If α generates a normal
integral basis for L/K, then TrL/F (α) generates a normal integral basis for F/K.

Proof. Write G = Gal(L/K) and H = Gal(L/F ); then H is normal in G, and we
may identify Gal(F/K) with G/H. Write OL = OK [G] · α. If x ∈ OL, then

x =
󰁛

σ∈G

aσσ(α),

with aσ ∈ OK for all σ ∈ G. Suppose x ∈ OF ; then τ(x) = x for all τ ∈ H. We
have

󰁛

σ∈G

aσσ(α) = x = τ(x) =
󰁛

σ∈G

aστσ(α) =
󰁛

σ∈G

aτ−1σσ(α),
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from which we deduce that aσ = aτ−1σ for all σ ∈ G and τ ∈ H. Fix a lift 󰁨σ ∈ G
for all σ ∈ G/H. Using that H is normal in G, we find that

x =
󰁛

σ∈G/H

󰁛

τ∈H

aτ󰁨στ󰁨σ(α) =
󰁛

σ∈G/H

a󰁨σ
󰁛

τ∈H

τ󰁨σ(α)

=
󰁛

σ∈G/H

a󰁨σ
󰁛

τ ′∈H

󰁨στ ′(α) =
󰁛

σ∈G/H

a󰁨σ󰁨σ
󰀃
TrL/F (α)

󰀄

=
󰁛

σ∈G/H

a󰁨σσ
󰀃
TrL/F (α)

󰀄
. □

Corollary 1.28. Let L/K be a Galois extension of number fields or p-adic fields. If
L/K admits a normal integral basis, then for all intermediate fields F , TrL/F (OL) =
OF . In particular, TrL/K(OL) = OK .

Proof. The inclusion TrL/F (OL) ⊆ OF is clear.
If x =

󰁓
σ∈G aσσ(α) ∈ OF , then, as before,

x =
󰁛

σ∈G/H

a󰁨σ
󰁛

τ∈H

τ󰁨σ(α) =
󰁛

σ∈G/H

a󰁨σ TrL/F (󰁨σ(α))

= TrL/F

󰀳

󰁃
󰁛

σ∈G/H

a󰁨σ󰁨σ(α)

󰀴

󰁄 ∈ TrL/F (OL). □

1.4. Tamely ramified extensions. Let L/K be a finite extension of number fields
or p-adic fields. If p is a prime of OK , then we can write a factorisation in OL:

pOL = Pe1
1 . . .Per

r ,

where for all i = 1, . . . , r, Pi is a prime of OL and ei ≥ 0. For example, if the
extension is Galois, then ei = e for all i. If L and K are p-adic fields, then r = 1,
since OL is a discrete valuation ring in this case. We say that primes Pi lies above
p and p lies under Pi for all i.

Definition 1.29. Let L/K be a finite extension of number fields or p-adic fields.
We say that a prime p of OK is tamely ramified in L if p ∤ ei for all Pi lying above p,
where if K is a number field, then p is the prime number lying under p. Otherwise,
we say that p is wildly ramified.

We say that L/K is tamely ramified if every prime p of OK is tamely ramified
in L. Otherwise, we say that L/K is wildly ramified.

We can characterise the tamely ramified extension as follows.

Theorem 1.30. Let L/K be a finite Galois extension of number fields or p-adic
fields. Then L/K is tamely ramified if and only if TrL/K(OL) = OK .

Proof. One can show that a prime p of OK divides TrL/K(OL) if and only if p is
wildly ramified; from this, the result is clear. For the details, see [Joh11, Proposition
7.2]. □

Corollary 1.31. Let L/K be a Galois extension of number fields or p-adic fields.
If L/K admits a normal integral basis, then L/K is tamely ramified.

Proof. The assertion follows by Corollary 1.28 and Theorem 1.30. □
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1.5. Hilbert–Speiser theorem. We briefly discuss here tamely ramified exten-
sions of number fields.

Proposition 1.32. Let n be a squarefree positive integer, and let L ⊆ Q(ζn). Then
L/Q admits a normal integral basis generated by TrQ(ζn)/L(ζn).

Proof. By Proposition 1.27, it is enough to show that ζn generates a normal integral
basis for Q(ζn)/Q. We write n = p1 · · · pr and work by induction on r. If r = 1,
then n = p is prime. We know that a Z-basis for Z[ζp] is {1, ζp, . . . , ζp−2

p }. Since ζp
is a unit, then also {ζp, ζ2p , . . . , ζp−1

p } is a Z-basis of Z[ζp], and this is exactly the
set of conjugates of ζp; thus the assertion follows.

Now let n = mp, with (m, p) = 1. By induction on m, ζm generates a normal
integral basis for Q(ζm)/Q. By base case, ζp generates a normal integral basis for
Q(ζp)/Q, and since Q(ζm) and Q(ζp) are arithmetically disjoint, we conclude by
Proposition 1.26 that ζn = ζmζp generates a normal integral basis for Q(ζn)/Q. □

Theorem 1.33 (Hilbert–Speiser theorem). Let L/Q be a tamely ramified abelian
extension. Then L/K admits a normal integral basis.

Proof. By Kronecker–Weber theorem, if L/Q is abelian and tamely ramified, then
L is contained in cyclotomic tamely ramified extension Q(ζn) of Q. Since Q(ζn)/Q
is tamely ramified if and only if n is squarefree, we conclude by Proposition 1.32
that TrQ(ζn)/L(ζn) generates a normal integral basis for L/Q. □

The main result of [GRRS99] tells us that we cannot change the base field or
look for weaker hypotheses in Theorem 1.33. We discuss this in section 8

The next examples are discussed in [Mar69] and [Mar71], respectively.

Example 1.34. There exists a finite Galois extension L/Q with Galois group
isomorphic to the dihedral group D2q of order 2q, with q ∕= 2 a prime number, such
that L/Q admits a normal integral basis.

Example 1.35. Let F = Q(
√
5,
√
21). Consider

m =
5 +

√
5

2
· 21 +

√
21

2
.

Define L1 = F (
√
m) and L2 = F (

√
−3m). Then Gal(Li/Q) ∼= Q8, the quaternion

group, for i = 1, 2, and L1/Q admits a normal integral basis, but L2/Q does not.

1.6. Tamely ramified extensions of p-adic fields. The goal of this subsection
is to study normal integral bases for tamely ramified extensions of p-adic fields. We
begin with unramified extensions.

Notation 1.36. If K is a p-adic field, we write kK for the residue field OK/p, where
p is the prime of OK .

Theorem 1.37. Let L/K be an unramified extension of p-adic fields. Then L/K
admits a normal integral basis.

Proof. Let p and P be the primes of OK and OL, respectively. Since L/K is
unramified,

pOL = P

and
[L : K] = [kL : kK ].
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In particular, L/K is Galois with Galois group

G = Gal(L/K) ∼= Gal(kL/kK) = G.

We identify G with G. By normal basis theorem (Theorem 1.5), there exists α ∈ kL
such that kL = kK [G] · α. Let α be a lift of α in OL, and define M = OK [G] · α.
We claim that M = L. We have

M/PM = kk[G] · α = kL = OL/P = OL/pOL;

therefore OL = M +POL, and by Nakayama’s lemma (see [CR81, (30.2)]), OL =
M . □

Let us now consider totally and tamely ramified extensions.

Theorem 1.38. Let L/K be a Galois extension of p-adic fields with degree e,
and suppose that L/K is totally and tamely ramified. Then L/K admits a normal
integral basis. More precisely, given a uniformiser πK for K, let πL be a uniformiser
for L such that πe

L = πK . Then for all u0, . . . , ue−1 ∈ O×
K ,

α =

e−1󰁛

i=0

uiπ
i
L

generates a normal integral basis for L/K.

Proof. This result is proved in [Joh11, Proposition 9.4]. Here we give a sketch of
the proof.

Every totally ramified and tamely ramified extension of K with degree e is of
the form L = K( e

√
πK), for a suitable uniformiser πK of K. In addition, if L/K is

Galois, then K ∋ ζe and Gal(L/K) is cyclic by Kummer theory. In particular, let
πL = e

√
πK . Then πL ∈ L, vL(πL) = 1/e, and OL = OK [πL], with integral basis

{1,πL . . . ,πe−1
L }.

To show that {σ(α)}σ∈G is a normal integral basis, it is enough to prove that
{σ(α)}σ∈G is a basis. We have

〈{σ(α)}σ∈G〉OK
⊆ 〈{πi

L}0≤i≤e−1〉OK
.

Our claim is that
[OL : 〈{σ(α)}σ∈G〉OK

] = OK ,

that is, the determinant of the map sending {πi
L}0≤i≤e−1 to {σ(α)}σ∈G is invertible

in OK . This would be enough by Lemma 1.18(2).
The Galois group Gal(L/K) is cyclic, generated by the element σ that sends πL

to ζeπL; therefore

σj(α) =

e−1󰁛

i=0

uiσ
j(πi

L) =

e−1󰁛

i=0

uiζ
ijπi

L,

so we need to prove that A = {uiζ
ij} has invertible determinant in OK . We have

det(A) =

󰀣
e−1󰁜

k=0

uk

󰀤
· det(B),

with B = {ζij}. Using that B is a Vandermonde matrix and L/K is tamely
ramified, one can conclude that det(B) ∈ O×

K , and so we derive our assertion. □
Combining these two cases, with some additional work, one can deduce the result

for tamely ramified extensions.
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Theorem 1.39 (Noether’s theorem). Let L/K be a Galois extension of p-adic
fields. Then L/K admits a normal integral basis if and only if L/K is tamely
ramified.

Proof. One direction is Corollary 1.31. The other is quite technical, and we refer
to [ET92, Lemma 3.2], [Kaw86], [Joh11, Theorem 9.5]. □

2. More tamely ramified Galois module structure and an
introduction to wild Galois module structure

2.1. Higher ramification groups. We begin this section with a brief discussion
about higher ramification groups; we refer to [Ser79, Chapter IV, sections 1–2].

Let L/K be a Galois extension of p-adic fields with Galois group G, and let P
be the prime of OL.

Definition 2.1. For all i ≥ −1, the ith ramification group is

Gi = {σ ∈ G | σ(x) ≡ x (mod Pi+1) for all x ∈ OL}.

Note that it is enough to check the condition on a generator α for OL as OK-
algebra, which exists by Hensel’s lemma. This implies that Gi is trivial for i suffi-
ciently large, and since every Gi is the kernel of the natural action of G on OL/P

i+1,
we conclude that the subgroups Gi form a decreasing filtration of normal subgroup
of G:

G = G−1 ≥ G0 ≥ · · · ≥ Gn = 1.

For i = 0, we find the inertia subgroup G0, which has order e, the ramification index
of the extension L/K. In particular, L/K is unramified if and only if G0 is trivial.

Proposition 2.2. Let i ≥ 0, let σ ∈ G0, and let π be an uniformiser of L. Then
σ ∈ Gi if and only if σ(π)/π ≡ 1 (mod Pi).

Proof. Consider the fixed field K0 = LG0 of G0. Since σ ∈ G0, it is enough to show
the result for a generator of OL over OK0

. As L/K0 is totally ramified, we can pick
π as generator; therefore, just dividing σ(π) ≡ π (mod Pi+1) by π, we derive the
assertion. □

Recall that, if we denote by UL the group of units of OK , then we have a filtration
given by UL,i = 1 +Pi = {x ∈ UL | x ≡ 1 (mod Pi)} for all i ≥ 0. We call U i

L the
ith higher unit group.

Proposition 2.3. For all i ≥ 0, there exists an injective group homomorphism

θi : Gi/Gi+1 → UL,i/UL,i+1,

induced by

s 󰀁→ s(π)

π
.

The map θi is independent of the choice of the uniformiser π for L.

Proof. By Proposition 2.2, if s ∈ Gi, then s(π)/π ∈ U i
L. The map is well defined,

since if π′ = πu, with u ∈ UL, is another uniformiser, then
s(π′)

π′ =
s(π)

π
· s(u)

u
,

and s(u)/u ∈ U i+1
L .
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The map Gi → U i
L/U

i+1
L is actually a homomorphism, as

(st)(π)

π
=

s(t(π))

t(π)
· t(π)

π
,

and t(π) is again an uniformiser.
Finally, note that the kernel of this map is precisely Gi+1, by Proposition 2.2

applied to i+ 1. □

Corollary 2.4. The group G0/G1 is cyclic of order coprime with p, and G1 is a
p-group.

Proof. Recall that there are group isomorphisms UL/UL,1
∼= k×L and UL,i/UL,i+1

∼=
kL for all i ≥ 1, by [Ser79, Chapter IV, Proposition 6]. We derive that G0/G1

is isomorphic to a subgroup of kL, so it is cyclic with order coprime with p, and
Gi/Gi+1 is a p-group; since the filtration eventually stops, we conclude that G1 is
a p-group. □

Corollary 2.5. The extension L/K is tamely ramified if and only if G1 is trivial.

Proof. The extension L/K is tamely ramified if and only if p is coprime with e, the
order of G0. As G1 ≤ G0 is a p-group and G0/G1 has order coprime with p, we
immediately deduce the result. □

Definition 2.6. The extension L/K is weakly ramified if G2 is trivial.

2.2. Orders. We refer again to [Joh11].
Let R be a Noetherian domain with field of fractions K. Suppose R ∕= K. Let

A be a finite-dimensional K-algebra.

Definition 2.7. An R-order in A is a subring Λ of A, with the same unity, such
that Λ is an R-lattice.

In particular, an R-order is also an R-algebra.

Example 2.8.
(1) If R = O is a Dedekind domain, L/K is a finite separable extension, and

OL is the integral closure of O in L, then OL is an O-order in L.
(2) For all n ≥ 1, the R-module of n× n matrices Matn×n(R) is an R-order in

Matn×n(K).
(3) Let G be a finite group. Then group ring R[G] is an R-order in K[G].

Let now L/K be a finite Galois extension of number fields or p-adic fields with
Galois group G.

Definition 2.9. The associated order of L/K is

AL/K = {x ∈ K[G] | x · OL ⊆ OL}.

Note that AL/K always contains OK [G], but they may differ, as we see below.

Proposition 2.10. AL/K is an OK-order in K[G].

Proof. It is immediate to see that AL/K is an OK-subalgebra of K[G]. As it contains
OK [G], for which K · OK [G] = K[G], we deduce that K · AL/K = K[G].

We just need to check that AL/K is finitely generated as OK-module. Let α ∈ OL

be a generator of a normal basis for L/K, and write M = {x ∈ K[G] | x ·α ∈ OL},
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so M · α = OL. Note that M ∼= OL as OK-modules; therefore M is a finitely
generated OK-module. Since AL/K ⊆ M and OK is Noetherian, we conclude that
also AL/K is a finitely generated OK-module. □

By definition, OL is an AL/K-module. Is OL free over AL/K?

Remark 2.11. If OL is free over AL/K , then it needs to have rank one, since if
we tensor with K over OK , we find that this rank equals the rank of L as K[G]-
module, which is one by Theorem 1.5. In particular, if OL is free with basis {α},
then L = K ·OL = K ·(AL/K ·α) = K[G] ·α, that is, α generates a normal basis. As
in Remark 1.8, this shows also that the apparently weaker condition OL = AL/K ·α
is enough to obtain that OL is free over AL/K with basis {α}.

The following meaningful result explains how the associated order is the right
ring to study, in relation with OL.

Proposition 2.12. Let L/K be a Galois extension of number fields or p-adic fields
with Galois group G. If OL is free over an OK-order Γ in K[G], then Γ = AL/K .

Proof. Suppose OL = Γ · α. If x ∈ AL/K , then x · α ∈ OL = Γ · α, hence we can
find y ∈ Γ with x · α = y · α. As α is a generator of a normal basis by (a slight
variation of) Remark 2.11, we conclude that x = y ∈ Γ.

Conversely, if γ ∈ Γ, then γ · OL = γ · (Γ · α) = γΓ · α ⊆ Γ · α = OL; thus
Γ ⊆ AL/K . □

Example 2.13. Consider the extension Q(i)/Q, which is wild at the prime 2,
with Galois group G = {id,σ}, where σ is the complex conjugation. Consider
e1 = 1+σ

2 and e−1 = 1−σ
2 . It is straightforward to show that e1 and e−1 map

the ring of integers Z[i] to itself, so they belong to AQ(i)/Q, which is then strictly
larger than Z[i]. Moreover, if α = 1 + i ∈ Z[i], then Z[e1, e−1] · α = Z[i], that is,
AQ(i)/Q = Z[e1, e−1] by Proposition 2.12.

Corollary 2.14. Let L/K be a Galois extension of p-adic fields with Galois group
G. Then AL/K = OK [G] if and only if L/K is tamely ramified.

Proof. If L/K is tamely ramified, then L/K admits a normal integral basis (Corol-
lary 1.31), hence AL/K = OK [G] by Proposition 2.12.

Conversely, if L/K is wildly ramified, then, by Theorem 1.30, TrL/K(OL) ⊆
πKOK , where πK is an uniformiser of OK . In particular,

1

πK
TrL/K =

1

πK

󰁛

σ∈G

σ

belongs to AL/K but not to OK [G]. □

2.3. Locally free class group. Here we follow [Joh11] and [Rei03].
We begin with some useful definitions.

Definition 2.15. Let K be a field, and let A be a K-algebra.
• A is semisimple if A is the direct sum of a finite number of minimal left

ideals.
• A is separable if for all field extensions K ⊆ L, L ⊗K A is a semisimple
L-algebra.
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Remark 2.16. Note that we do not need the algebra structure in Definition 2.15,
just the ring structure.

Remark 2.17. It is clear that a separable algebra is semisimple.

Example 2.18.

(1) If K is a field, then every separable K-algebra is semisimple.
(2) If L/K is a finite field extension, then L is a separable K-algebra if and

only if L/K is a separable field extension; see [CR81, Proposition 7.4].
(3) If G is a finite group, then the group algebra K[G] is separable, as immediate

consequence of Maschke’s theorem; see [CR81, Theorem 3.14].

Let O be a Dedekind domain with field of fractions K, and let Λ be an O-order
in a finite-dimensional separable K-algebra. (For example, we can take K[G]).

Definition 2.19. A Λ-lattice is a Λ-module which is an O-lattice.

Definition 2.20. Two Λ-lattices M and N are locally isomorphic if Mp
∼= Np as

Λp-modules for all maximal ideals p of O; in this case, we write M ∨ N . We say
that M is locally free of rank n over Λ if M ∨ Λn.

If M is locally free of rank one, then we say that M is a locally free ideal.

Remark 2.21. Note that for a finitely generated O-module M and a maximal ideal
p of O, also the localisation of M with respect to p may be denoted by Mp. In par-
ticular, some authors give Definition 2.20 with localisations instead of completions;
this ambiguity is justified by [CR81, Proposition 30.17].

Example 2.22.

(1) If M is free of rank n, then M is locally free of rank n.
(2) Let L/K be a Galois extension of number fields with Galois group G. For

all primes p of OK , write OL,p = OKp
⊗OK

OL. Then OL is locally free of
rank one over OK [G] if and only if OL,p is a free OKp

[G]-module of rank
one for all primes p of OK .

We prove the following result in section 5.

Theorem 2.23. Let L/K be a Galois extension of number fields with Galois group
G. If p is a prime of OK which is tamely ramified in L/K, then OL,p is a free
OKp

[G]-module of rank one. In particular, if L/K is tamely ramified, then OL is
locally free of rank one over OK [G].

We introduce an equivalence relation on the set of locally free Λ-lattices: we
write M ∼ N if there exist r, s ∈ N such that M ⊕Λr ∼= N ⊕Λs as Λ-modules. We
write the class of M as [M ], and lattices in [Λ] are called stably free.

Theorem 2.24. Let M and M ′ be locally free Λ-lattices. Then there exist a locally
free ideal M ′′ and t ∈ N such that

M ⊕M ′ ∼= Λt ⊕M ′′

as Λ-modules.

Proof. See [Rei03, Theorem 26.4]. □
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Theorem 2.24 implies that every class is represented by a locally free ideal. In
addition, if M,M ′ are locally free Λ-lattices and M ′′ is a locally free ideal as in
Theorem 2.24, then we set

[M ] + [M ′] = [M ′′].

This defines a group structure on the set of classes with respect to the equivalent
relation introduced above, where the identity element is [Λ]. The group we get is
called locally free class group and is denoted by Cl(Λ).

Example 2.25. Clearly O is an O-order in the K-algebra K. In this case, Cl(O) is
just the usual ideal class group, a finite group consisting of O-isomorphism classes of
fractional O-ideals in K, where the group operation is determined by multiplication
of fractional ideals.

The following result implies that if O is the ring of integers OK of a number field
K, then Cl(Λ) is finite.

Theorem 2.26 (Jordan–Zassenhaus theorem). If K is a number field, then for all
t ∈ N, there are only finitely many isomorphism classes of Λ-lattices of O-rank at
most t.

Proof. See [Rei03, Theorem 26.4]. □

Remark 2.27. Let L/K be a tamely ramified Galois extension of number fields.
Then OL is locally free of rank one over OK [G] (Theorem 2.23). In particular, we
can consider the class [OL] ∈ Cl(OK [G]). Note that if this class is trivial, then it is
not necessarily true that OL is free over OK [G]. Rather, if OL is stably free, then
there exists r ∈ N such that

OL ⊕ (OK [G])r ∼= (OK [G])r+1

as OK [G]-modules. It can be shown that this holds also for r = 1, but in [Cou94]
there is an example of a tamely Galois extension L/Q with Galois group Q32, the
generalised quaternion group of order 32, where OL is stable free but not free over
Z[Q32].

Let K be a number field, and let Λ be an OK-order in a finite-dimensional
separable K-algebra A. We say that Λ has locally free cancellation if for all locally
free finitely generated Λ-modules X and Y ,

X ⊕ Λ(k) ∼= Y ⊕ Λ(k) for some k ∈ N =⇒ X ∼= Y,

where the isomorphisms are as Λ-modules. In this case, stably free is equivalent to
free, that is, [X] trivial in Cl(Λ) implies that X is a free Λ-module.

Example 2.28.
(1) If A is Eichler/OK , then every O-order in A has locally free cancellation.

This is Jacobinski cancellation theorem; see [CR87, Theorem 51.24].
(2) If G is a finite group and A = K[G], then an OK-order in K[G] has lo-

cally free cancellation if K is totally complex or if G is abelian, dihedral,
symmetric, alternating, or of odd order.

We conclude with a statement of a special case of Fröhlich’s conjecture, proved
by Taylor in [Tay81].
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Theorem 2.29 (Fröhlich’s conjecture, special case). Let L/K be a tamely ramified
Galois extension of number fields with Galois group G. Then [OL]

2 is trivial in
Cl(Z[G]); moreover, if G has no irreducible symplectic characters, then OL is free
of rank [K : Q] over Z[G].

The condition on G of Theorem 2.29 holds, for example, if G is abelian, dihedral,
symmetric, alternating, or of odd order.

2.4. Structural results for generalised normal integral bases. We briefly
summarise the behaviour of the associated order in towers and compositum of
fields, referring to [BL96], [Joh11, section 11].

Lemma 2.30. Let L and F be arithmetically disjoint Galois extensions of a number
field or p-adic field K, and let N = LF . Then the following hold:

(1) AN/F
∼= AL/K ⊗OK

OF OF -algebras, and AN/K
∼= AL/K ⊗OK

AF/K as
OK-algebras.

(2) If there exists α ∈ OL such that OL = AL/K · α, then ON = AL/F · α;
moreover, if there exists β ∈ OF such that OF = AF/K · β, then ON =
AN/K · αβ.

Proof. This is [BL96, Lemma 5], and it makes use of the isomorphism OL
∼=

OL1 ⊗OK
OL2 given by Theorem 1.24, and [CR81, Section 24, Exercise 2]. □

Lemma 2.31. Let K ⊆ L ⊆ N be a tower of Galois extensions of number fields,
and suppose that N/L is tame. If ON = AN/K · α, then OL = AL/K · TrN/L(α).

Proof. See [Joh11, Lemma 11.2]. □

2.5. Leopoldt’s theorem. Following [Joh11, section 12], we explicitly prove a
particular case of Leopoldt’s theorem. We begin with the cyclotomic case.

For every k ∈ N, choose a primitive kth root of unity ζk in such a way that for
all k, ℓ ∈ N with k | ℓ, we have ζ

ℓ/k
ℓ = ζk.

Lemma 2.32. Let p be a prime, let n,m ≥ 1 (with n ≥ 2 if p = 2), and let
0 ≤ k ≤ n+m. Then

TrQ(ζpn+m )/Q(ζpn )(ζpk) =

󰀫
ζpkpm if k ≤ n,

0 otherwise.

Proof. See [Joh11, Lemma 12.2]. □

Proposition 2.33. Let p be a prime number, let n ∈ N (n ≥ 2 if p = 2),
let G = Gal(Q(ζpn)/Q), and let α =

󰁓n
k=1 ζpk . For 1 ≤ k ≤ n, define ek =

1
pn−k TrQ(ζpn )/Q(ζ

pk
). Then

Z[ζpn ] = AQ(ζpn )/Q · α,

where
AQ(ζpn )/Q = Z[G][{ek}n−1

k=1 ].

Proof. We assume that p odd (the case p = 2 is done similarly) and define B =
Z[G][{ek}n−1

k=1 ]. We want to show that B · α = Z[ζpn ]. We know that every element
in Z[ζpn ] is a combination of p-power roots of unity with coefficients in Z.
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By Lemma 2.32,

ek · ζpℓ =

󰀫
ζpℓ if 0 ≤ ℓ ≤ k,

0 otherwise,

and since all the primitive pℓ-roots of unity are G-conjugate and for all σ ∈ G we
have ek · (σ(ζpℓ)) = σek · ζpℓ , we derive that ek ∈ AQ(ζpn )/Q, and so

B := Z[G][{ek}n−1
k=1 ] ⊆ AQ(ζpn )/Q.

By definition of associated order, B · α ⊆ Z[ζpn ].
Conversely, it is immediate to see that σe1·α = σ(ζp) and σ(ek−ek−1)·α = σ(ζpk)

for all g ∈ G and 2 ≤ k ≤ n; hence B · α ⊇ Z[ζpn ].
By Proposition 2.12, we conclude that B = AQ(ζpn )/Q. □

If n ∈ N, write r(n) for the product of all prime numbers dividing n.

Proposition 2.34. Let n ∈ N with n ∕≡ 2 (mod 4), and let α =
󰁓

r(n)|d|n ζd. Then
Z[ζn] = AQ(ζn)/Q · α.

Proof. This follows from Proposition 2.33 and Lemma 2.30. □

Remark 2.35. The condition n ∕≡ 2 (mod 4) in Proposition 2.34 is due to the fact
that if n = 2m with m odd, then Q(ζpn) = Q(ζpm).

Definition 2.36. Let L be a finite abelian extension of Q. The conductor of L
is the smallest natural number n such that L ⊆ Q(ζn). (The natural number n
always exists by Kronecker–Weber theorem.)

Lemma 2.37. Let L be a finite abelian extension of Q of conductor n. Then
Q(ζn)/L is tamely ramified at all primes lying above odd prime numbers. In par-
ticular, if n is odd or i ∈ L, then Q(ζn)/L is tamely ramified.

Proof. See [Joh11, Lemmas 12.6 and 12.7]. □

Theorem 2.38 (Leopoldt’s theorem, special case). Let L be a finite abelian exten-
sion of Q of conductor n. Suppose that n is odd or i ∈ L. Let

α = TrQ(ζn)/Q

󰀳

󰁃
󰁛

r(n)|d|n

ζd

󰀴

󰁄 .

Then OL = AL/Q · α.

Proof. By Proposition 2.34, we have Z[ζn] = AQ(ζn)/Q ·α. By Lemma 2.37, Q(ζn)/L
is tamely ramified. The result now follows from Lemma 2.31. □

Remark 2.39. Leopoldt’s original proof is presented in [Leo59]. One can prove
Leopoldt’s theorem for all finite abelian extensions of Q in almost the same way
as this section, by using the adjusted trace map, as defined in [Joh06]. Finally, a
different and simplified approach can be found in [Let90].
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3. Results on Galois module structure of wildly ramified extensions
and local freeness over the associated order

Let L/K be a Galois extension of number fields, let p be a prime of OK , and
let P be a prime of OL lying above p. Write AL/K,p = OKp

⊗OK
AL/K . There are

three questions that one can ask.
(1) Is OL free over AL/K?
(2) Is OL,p free over AL/K,p?
(3) Is OLP

free over ALP/Kp
?

Clearly, if (1) is satisfied, then also (2) is satisfied. The goal of this section is to
summarise the main results known about these problems and to understand the
relations between them.

Remark 3.1. In all of the previous cases, if we have freeness, then the rank is
necessarily one, as taking the tensor product with K over OK immediately shows.

Notation 3.2. For all n > 1, write Sn and An for the symmetric group and the
alternating group, respectively, of degree n.

3.1. Brief recall on the tamely ramified case. If L/K is a tamely ramified
Galois extension of number fields with Galois group G, then OL defines a class in
Cl(OK [G]). In particular, if Cl(OK [G]) = 0 and K[G] has locally free cancellation,
then L/K automatically admits a normal integral basis. If K = Q, the Cl(Z[G]) = 0
is only true if G is among certain abelian groups, certain dihedral groups, A4, S4,
A5; see [RU74, EH79]. In such cases we automatically have locally free cancellation.
However, we have already seen the following consequence of Fröhlich’s conjecture,
which was proved by Taylor in [Tay81] and tells us much more without assuming
that the locally free class group is trivial.

Theorem 3.3. Let L/Q be a finite tamely ramified Galois extension of Q with
Galois group G. Suppose that G is abelian, dihedral, of odd order, alternating, or
symmetric. Then L/Q has a normal integral basis.

Indeed, in the hypotheses of Theorem 3.3, G has no irreducible symplectic char-
acter, which means that the class of OL in Cl(Z[G]) is trivial, and that there is
locally free cancellation, which implies that OL is free over Z[G]. Note that this in
particular generalises Hilbert–Speiser theorem, and it permits us to conclude that a
sufficiently nice (that is, whose Galois group does not have to do with quaternions)
tamely ramified nonabelian extension of Q admits a normal integral basis.

3.2. Clean orders. One reference for these kind of orders is [Rog70, Chapter IX,
section 1].

Definition 3.4. Let O be a Dedekind domain with field of fractions K, let G be
a finite group, and let Λ be a O-order in K[G]. We say that the order Λ is clean if
Λ satisfies the following property: if M is a projective Λ-lattice which spans over
K a free K[G]-module, then M is a free Λ-lattice.

Example 3.5.
(1) If O is a discrete valuation ring, then O[G] is a clean order. This is Swan’s

theorem; see [CR81, Theorem 32.1].
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(2) If G is abelian and O is a discrete valuation ring with characteristic zero
and finite residue field, then every O-order in K[G] is clean. This is due to
Hattori [Hat65]; see also [Rog70, Chapter IX, Corollary 1.5].

(3) As we see in section 5, if O is a discrete valuation ring, then every maximal
O-order is clean. More precisely, in Definition 3.4, we do not even need to
assume that M is projective.

From Swan’s theorem, we deduce in Section 5 an important relation between
tameness and projectivity.

3.3. Freeness results for Galois extensions of p-adic fields. Let p be a prime
number. We begin with a consequence of Leopoldt’s theorem.

Theorem 3.6 (Leopoldt). Let L/Qp be a finite abelian extension. Then OL is free
over AL/Qp

.

Lettl further generalised the result in [Let98].

Theorem 3.7 (Lettl). Let L/K be an extension of p-adic fields such that L/Qp is
abelian. Then OL is free over AL/K .

Now we shall consider the nonabelian setting. In this framework, the first impor-
tant contributions are due to Bergé [Ber72], Martinet [Mar72], and Jaulent [Jau81].

Theorem 3.8 (Bergé). Let L/Qp be a Galois extension with Gal(K/Q) ∼= D2p.
Then OL is free over AL/Qp

.

Theorem 3.9 (Martinet). Let L/Qp be a Galois extension with Gal(L/Q) ∼= Q8.
Then OL is free over AL/Qp

.

Theorem 3.10 (Jaulent). Assume that p is odd, and let n and r be positive integers
such that n divides p − 1 and r is a primitive nth root modulo p. Let G be the
metacyclic group with the following structure:

(3.1) G = 〈x, y | xp = 1, yn = 1, yxy−1 = xr〉 ∼= Cp ⋊ Cn.

Let L/Qp be a Galois extension with Gal(L/Qp) ∼= G. Then OL is free over AL/Qp
.

Remark 3.11. In the special case n = 2, the group G of Theorem 3.10 is dihedral
group of order 2p.

Notation 3.12. If L/K is a finite Galois extension with Galois group G and H is a
subgroup of G, then we write TrH =

󰁓
h∈H h ∈ K[G] and eH = 1

|H| TrH ∈ K[G].
Note that eH is an idempotent.

Considering a generic base field, Johnston [Joh15] obtained the following result.

Theorem 3.13 (Johnston). Let L/K be a weakly ramified Galois extension of p-
adic fields with Galois group G. Then OL is free over AL/K ; moreover, if L/K is
wildly and weakly ramified, then AL/K = OK [G][π−1

K TrG0
], where G0 is the inertia

subgroup.

One may suspect that it is always the case that, in a Galois extension of p-adic
fields, the ring of integers is free over the associated order, as happens if we further
assume tame ramification. We see below that this is not true.
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Definition 3.14. Let L/K be a Galois extension of p-adic fields with Galois group
G. We say that L/K is almost maximally ramified if eH ∈ AL/K for all subgroups
H of G such that Gi+1 ≤ H ≤ Gi for some i ≥ 1.

Remark 3.15. We can give a version of Definition 3.14 also for Galois extensions of
number fields: if L/K is such an extension, p is a prime of OK , and P is a prime
of OL lying above p, then p is almost maximally ramified in L if LP/Kp is almost
maximally ramified. Note that indeed this property does not depend on the prime
P lying above p.

The following result is due to Bergé [Ber79a, Proposition 7].

Theorem 3.16 (Bergé). Let L/K be a dihedral extension of p-adic fields with
Galois group G such that K/Qp is unramified. Then OL is projective over AL/K

if and only if OL is free over AL/K , if and only if one of the following conditions
holds:

(1) L/K is almost maximally ramified; in this case

AL/K = OK [G][{eGi
}i≥1].

(2) L/K is not almost maximally ramified, and the inertia subgroup G0 is di-
hedral of order 2p; in this case

AL/K = OK [G][2eG0 ].

We discuss further results concerning cyclic extensions of prime orders and ex-
tensions with cyclic inertia group in section 5.

3.4. Freeness results for Galois extensions of number fields. We begin by
recalling Leopoldt’s theorem [Leo59], which generalises Hilbert–Speiser theorem to
wildly ramified abelian extensions of Q.

Theorem 3.17 (Leopoldt’s theorem). Let L/Q be a finite abelian extension. Then
OL is free over AL/Q.

In section 3 we have seen a partial proof in the case K has odd conductor or is
imaginary.

Remark 3.18. Leopoldt also specified a generator and the associated order; Lettl
in [Let90] gave a simplified and more explicit proof of the same result.

We also have the following result of Bergé [Ber72].

Theorem 3.19 (Bergé). Let p be a prime number, and let L/Q be a dihedral
extension of degree 2p. Then OL is free over AL/Q.

Now let L/Q be a Galois extension with Gal(L/Q) ∼= Q8, the quaternion group
of order 8. Suppose that L/Q is tamely ramified. Martinet gave examples of such
extensions with and without a normal integral basis (see Examples 1.34 and 1.35);
moreover, Fröhlich showed in [Frö72] that both possibilities occur infinitely often.
By contrast, in the case that L/Q is wildly ramified, we have the following result
of Martinet [Mar72].

Theorem 3.20 (Martinet). Let L/Q be a wildly ramified Galois extension with
Gal(L/Q) ∼= Q8. Then OL is free over AL/Q.

For other global freeness results, the first author recently obtained the following
results.
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Theorem 3.21. Let n be a positive integer, and let p ≥ 5 be a regular prime number
such that the class number of Q(ζpn)+ is 1. Let L/Q be a dihedral extension of degree
2pn. Then OL is free over AL/Q if and only if the ramification index of p in L/Q
is a power of p.

Corollary 3.22. Let K/Q be a dihedral extension of degree 2pn, where (p, n) is
(5, 2), (5, 3), (7, 2), or (11, 2). Then OL is free over AL/Q if and only if the ramifi-
cation index of p in L/Q is a power of p.

Similar but more complicated results hold when p = 2 or p = 3.

Definition 3.23. A prime number p has full decomposition group in a finite Galois
extension L/Q if there is just one prime of OL lying above p; this means that the
decomposition group of p in L/Q is the whole group.

Theorem 3.24. Let L/Q be a Galois extension with Gal(L/Q) ∼= A4. Then OL is
free over AL/Q if and only if 2 is tamely ramified or has full decomposition group.

Theorem 3.25. Let L/Q be a Galois extension with Galois group G ∼= S4. Then
OL is free over AL/Q if and only if one of the following conditions on L/Q holds:

(1) 2 is tamely ramified.
(2) 2 is weakly ramified and has full decomposition group.
(3) 2 has decomposition group equal to the unique subgroup of G of order 12.
(4) 2 is weakly ramified, it has decomposition group of order 8 in G, and it has

inertia subgroup equal to the unique normal subgroup of order 4 in G.

Here a prime number p is weakly ramified in L if the extension LP/Qp is weakly
ramified, where P is a prime of OL lying above p.

Theorem 3.26. Let L/Q be a Galois extension with Gal(L/Q) ∼= A5. Then OL is
free over AL/Q if and only if all of the following conditions on L/Q hold:

(1) 2 is tamely ramified.
(2) 3 is tamely ramified or not almost maximally ramified.
(3) 5 is tamely ramified or not almost maximally ramified.

3.5. Local freeness results for Galois extensions of number fields. Let L/K
be a Galois extension of number fields, and let p be a prime of OK . Recall that
OL is locally free at p over AL/K if OL,p is free over AL/K,p, and OL is locally free
over AL/K if this holds for all p.

The following results are taken by [Let98, Jau81, Ber79a], respectively.

Theorem 3.27 (Lettl). Let L/K be an extension of number fields such that L/Q
is an abelian extension. Then OL is locally free over AL/K .

Theorem 3.28 (Jaulent). Let L/Q be a Galois extension such that Gal(L/Q) is
metacyclic of type (3.1). Then OL is locally free over AL/Q.

Theorem 3.29 (Bergé). Let L/Q be a dihedral extension with Galois group G, let
p be an odd prime number which is wildly ramified in L, and let N be the unique
cyclic subgroup of G of index 2. Then OL,p is projective over AL/Q,p if and only if
OL,p is free over AL/Q,p, if and only if one of the following conditions holds:

(1) p is almost maximally ramified in L/Q and G1 ≤ N ; in this case

AL/Q,p = Zp[G][{eGt}t≥1].
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(2) p is not almost maximally ramified, |G0| = 2p, and [G : G0] divides 2; in
this case

AL/Q,p = Zp[G][eG0 ].

Remark 3.30. In fact, Theorem 3.29 is [Ber79a, Théorème] specialised to the case
where p is odd and the base field is Q; the more general statement is somewhat
more complicated.

3.6. Interlude: modules over noncommutative rings. Until now, we have
only considered tensor products of modules over commutative rings. In this case,
there is no difference in right and left modules. However, in what follows, we need
to consider tensor products over rings which are not necessarily commutative. We
summarise some of the facts that we implicitly use.

Let R be a ring, let M be a right R-module, and let N be a left R-module.

(1) We can define M ⊗R N is the usual way. It is an abelian group, but not
necessarily a module over R.

(2) If M is an R-bimodule, then M ⊗R N is a left R-module.
(3) If R is a subring of a ring S, then S is an R-bimodule. In particular, S⊗RN

is a left S-module.

3.7. More on local freeness. We begin by mentioning a slightly more general
definition of associated order; see [Joh11, section 3].

Let O be a Dedekind domain with field of fractions K, let G be a finite group,
and let M be an O-lattice in K[G]. The associated order of M in K[G] is

A(K[G],M) = {λ ∈ K[G] | λ ·M ⊆ M}.

So, with the previous notation, AL/K = A(K[G],OL) (after the identification L ↔
K[G] given by Theorem 1.5, under which OL is identified with an O-order in K[G]),
and it is immediate to generalise the properties of AL/K :

(1) A(K[G],M) is an O-order in K[G].
(2) A(K[G],M) is the largest order over which M has a structure of module.
(3) A(K[G],M) is the only O-order over which M can possibly be free, neces-

sarily of rank one.
(4) If M is also an O[G]-module, that is, an O[G]-lattice, then A(K[G],M)

contains O[G], and in particular A(K[G],M) is an O[G]-module.

Remark 3.31. In the previous setting, by [CR81, section 24, Exercise 2], if p is a
maximal ideal of O, then

A(K[G],M)p = A(Op ⊗O K[G],Op ⊗O M) ∼= A(Kp[G],Mp).

In particular, we may identify A(K[G],M)p with A(Kp[G],Mp), to easily switch
from one to the other.

Also, let L/K be a Galois extension of number fields with Galois group G, and
let p be a prime of OK . Since A(Kp[G],OL,p) = AL/K,p, if OL,p is free over some
OKp

-order in Kp[G], then this order is precisely AL/K,p.
Finally, if Λ is an OK-order in K[G] such that OL is locally free over Λ, then Λ

has to be AL/K ; see [Rei03, Theorem 5.3].
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Now let L/K be a Galois extension of number fields with Galois group G, and
let p be a prime of OK . We have decompositions

Lp = Kp ⊗K L ∼=
󰁜

P′|p

LP′

and
OL,p = OKp

⊗OK
OL

∼=
󰁜

P′|p

OLP′ ,

where {P′ | p} consists of the primes of OL above p; see [FT93, page 109]. Fix a
prime P above p and, let D be its decomposition group in G. Then, since G acts
transitively on {P′ | p}, we have

Lp
∼=

󰁜

σ∈G/D

σ(LP)

and
OL,p

∼=
󰁜

σ∈G/D

σ(OLP
),

where the products run over a complete system of representatives of the left cosets
G/D. Now define

IndGD OLP
= OKp

[G]⊗OKp [D] OLP
.

We deduce that
OL,p

∼= IndGD OLP

and
AL/K,p = A(K[G],OL)p ∼= A(Kp[G], IndGD OLP

).

This means that in the context of number fields, local freeness of OL at a prime
p over AL/K is equivalent to saying that the induction from D to G of the ring
of integers of any completion above p is free over its associated order. This opens
interesting questions:

• Since we are interested in finding the conditions under which the implication
“if OLP

is free over ALP/Kp
, then OL is locally free at p over AL/K” holds,

we can just analyse when IndGD OLP
is free over its associated order.

• As ALP/Kp
is an OKp

[D]-module, we can consider IndGD ALP/Kp
. When is

“OLP
is free over ALP/Kp

” enough to deduce that “IndGD OLP
is free over

IndGD ALP/Kp
”, and so also necessarily over its associated order A(Kp[G], IndGD OLP

)?
We try to deal with these questions in a more general setting.
Let O be a Dedekind domain with field of fractions K, let G be a finite group,

let H be a subgroup of G, and let N be an O[H]-lattice in K[H]. We define the
induced module of N to be

IndGH N = O[G]⊗O[H] N.

Lemma 3.32. IndGH N is an O[G]-lattice in K[G].

Proof. Since O[H] is a subring of O[G], we get that IndGH N is a O[G] module.
Since O[G] is a free O[H]-module, the inclusion N ⊆ O[H] yields an embedding

IndGH N ↩→ O[G]⊗O[H] K[H], and we may identify O[G]⊗O[H] K[H] with K[G] to
find an embedding IndGH N ↩→ K[G].
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Finally, as N is finitely generated over O and spans K[H] over K, we immediately
derive that It is immediate to see that IndGH N is finitely generated over O and spans
K[G] over K. □
Remark 3.33. In our previous discussion, we have considered O = Op, K = Kp,
H = D, and N = OLP

.

Our goal is to understand when we can deduce, assuming that N is free over
A(K[H], N), that IndGH N is free over A(K[G], IndGH N), and more generally the re-
lation between A(K[G], IndGH N) and IndGH A(K[H], N) (the latter expression makes
sense since, as before, A(K[H], N) is an O[H]-module). First of all, if N is free
over A(K[H], N), then the rank of course must be one, since this is true after we
tensor with K. In particular, N and A(K[H], N) are isomorphic as O[H]-modules,
and this easily implies that IndGH N and IndGH A(K[H], N) are isomorphic as O[G]-
modules.

However, IndGH A(K[H], N) is not a ring in general, and so it does not always
make sense to conclude that IndGH N is free over IndGH A(K[H], N). We begin by
stating the main result of [Ber79a, section 1.3], which gives an explicit description
of A(K[G], IndGH N) in terms of IndGH A(K[H], N).

Lemma 3.34. We have

(3.2) A(K[G], IndGH N) =
󰁟

g∈G

g IndGH A(K[H], N)g−1.

In particular, IndGH A(K[H], N) is a ring if and only if

IndGH A(K[H], N) = A(K[G], IndGH N).

Remark 3.35. Lemma 3.34 implies that A(K[G], IndGH N) ⊆ IndGH A(K[H], N);
therefore IndGH A(K[H], N) has a structure of A(K[G], IndGH N)-module.

We recall the following lemma.

Lemma 3.36. Let O be a Dedekind domain with field of fractions K, and let Λ ⊆ Γ
be two O-orders in a K-algebra A. Let M and N be Γ-lattices, and let f : M → N
be a Λ-lattice map. Then f is a Γ-lattice map.

Proof. We just need to show that f(a ·m) = a · f(m) for all a ∈ Γ and m ∈ M . Let
r ∈ O be such that rΓ ⊆ Λ. Then

rf(a ·m) = f(r(a ·m)) = f((ra) ·m) = (ra) · f(m).

Being N an O-torsion-free module by definition, we derive our assertion. □
As a consequence of Lemmas 3.34 and 3.36, one can prove what follows.

Proposition 3.37. Suppose that N is free over A(K[H], N). If IndGH A(K[H], N)

is a ring, then IndGH N is free over A(K[G], IndGH N).

Remark 3.38. By (3.2), IndGH A(K[H], N) is a ring if one of the following holds:
(1) There exists a subgroup K ≤ G such that G ∼= H ×K.
(2) H is contained in the center of G.
(3) A(K[H], N) = O[H].

In particular, in all of these cases, Proposition 3.37 allows us to conclude that
IndGH N is free over A(K[G], IndGH N) if N is free over A(K[H], N).



GALOIS AND HOPF GALOIS 25

Remark 3.39. Note that Remark 3.38(3), Proposition 3.37, and Theorem 1.39 give
us a proof of Theorem 2.23.

We have already mentioned that we have an isomorphism

IndGH N ∼= IndGH A(K[H], N)

of O[G]-modules. With Lemma 3.36 we can show the following general result, which
also gives a converse to Proposition 3.37.

Proposition 3.40. Suppose that N is a free A(K[H], N)-module. Then

IndGH N ∼= IndGH A(K[H], N)

as A(K[G], IndGH N)-modules.

Remark 3.41. Proposition 3.40, or more direct considerations, tells us that in fact,
just assuming that N is a free A(K[H], N)-module, we have the compatibility

A(F [G], IndGH A(K[H], N)) = A(K[G], IndGH N).

Corollary 3.42. Suppose that N is a free A(K[H], N)-module. Then IndGH N is
free over A(K[G], IndGH N) if and only if IndGH A(K[H], N) is free over A(K[G], IndGH N).

Remark 3.43. It is not necessarily true that, if N is a free A(K[H], N)-module
and IndGH N a free A(K[G], IndGH N)-module, then IndGH A(K[H], N) is a ring, or
equivalently, that IndGH A(K[H], N) = A(K[G], IndGH N).

Most of the above results are about deducing that IndGH N is free over A(F [G], IndGHN)
if N is free over A(F [H], N). A partial converse is given by [Ber79a, Proposition
2], as follows.

Proposition 3.44. If IndGH N is projective over A(K[G], IndGH N), then N is pro-
jective over A(K[H], N).

3.8. Induction when H is normal in G. Bergé noted that we can restate some
conditions if H is normal in G. In this case we can in fact define the order

A(N)∗ =
󰁟

g∈G

gA(K[H], N)g−1 ⊆ K[H].

Then, using (3.2), one can verify that IndGH A(N)∗ = A(K[G], IndGH N) and the
following lemma.

Lemma 3.45. Suppose H is normal in G. Then IndGH A(F [H], N) is a ring if and
only if A(F [H], N) = A(N)∗.

The following result, which is [Ber79a, Proposition 3], tells us something more
specific than Proposition 3.44.

Proposition 3.46. Suppose that H is normal in G. Then IndGH N is projective
over A(K[G], IndGH N) if and only if N is projective over A(N)∗.
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3.9. Induction when H is abelian and normal in G. We continue to assume
the hypotheses and notation of this section. Recall that, if H is abelian and O is a
discrete valuation ring with characteristic zero and finite residue field, then every
O-order Λ in K[H] is clean; this implies that in this setting N is projective over
A(N)∗ if and only if it is free. We obtain [Ber79a, Corollaire to Proposition 3] as a
consequence, as follows.

Proposition 3.47. Suppose that O is a discrete valuation ring with characteristic
zero and finite residue field, H is normal in G, and H is abelian. Then the following
are equivalent:

(1) IndGH N is projective over A(K[G], IndGH N).
(2) IndGH N is free over A(K[G], IndGH N).
(3) IndGH A(K[H], N) is a ring, and IndGH N is free over IndGH A(K[H], N).
(4) N is free over A(K[H], N), and A∗ = A(K[H], N).

Proof. From Proposition 3.46, if (1) holds, then N is projective over A(N)∗. But
the latter is a clean order and so we have freeness. We conclude that (1) implies
(4), since A(N)∗ now has to be the associated order.

By Lemma 3.45 and Proposition 3.37, (4) implies (3).
We derive that (3) implies (2), for instance, from the last sentence of Lemma 3.34.
Finally, it is clear that (2) implies (1). □

Let us write an application of what we have done above. With the notation and
results we have introduced, we are now able to have a quite good understanding of
local freeness in weakly ramified extensions.

Proposition 3.48. Let L/K be a finite Galois extension of number fields with
Galois group G, and let P and p be primes of OL and OK , respectively, such that
P lies above p and LP/Kp is wildly and weakly ramified. If the inertia subgroup
G0 = G0(P|p) is normal in G, then OL,p is free over AL/K,p. If the decomposition
subgroup D = D(P|p) is abelian and normal in G, then G0 is normal in G if and
only if OL,p is free over AL/K,p.

Proof. By Theorem 3.13, we know that

ALP/Kp
= OKp

[D]

󰀗
1

πKp

TrG0

󰀘
= OKp

[D] +
1

πKp

OKp
[D] · TrG0 ;

hence we can show that

IndGD ALP/Kp
= OKp

[G] +
1

πKp

OKp
[G] · TrG0 .

It is not difficult to see that IndGD ALP/Kp
is a ring if and only if G0 is normal in

G. The first statement now follows from Theorem 3.13 and Proposition 3.37, the
second one from Proposition 3.47. □

4. Explicit Galois module structure of weakly ramified extensions
of p-adic fields

The main reference for this section is Johnston’s paper [Joh15]. We fix a Galois
extension L/K of p-adic fields with Galois group G. Denote by p and P the primes
of OK and OL, respectively. Write vK and vL for the valuations of OK and OL,
respectively.
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Remark 4.1. All the results of this section work also when L and K are local fields,
that is, locally compact topological fields with respect to a nondiscrete topology,
with the additional hypothesis that the residue fields are finite.

We are interested in the following objects:
(1) for all n ∈ Z, Pn as OK [G]-module;
(2) OL as AL/K-module.

Remark 4.2. For all n ∈ Z, Pn is an OK-lattice in L, and since OK is a discrete
valuation ring, we deduce that Pn is a free OK-module of rank [L : K]. In par-
ticular, if Pn is a free OK [G]-module, then it has rank one, and with the usual
argument (see Remark 1.8), the condition Pn = OK [G] · α, for some α ∈ Pn, is
enough to ensure that Pn is free over OK [G] with generator α.

Recall that, for all i ≥ −1, we can define the ramification groups as follows:

Gi = {σ ∈ G | (σ − 1)(OL) ⊆ Pi+1}.
The following holds

(1) L/K is unramified if and only if G0 = 1.
(2) L/K is tamely ramified if and only if G1 = 1 (Corollary 2.5).
(3) L/K is weakly ramified if and only if G2 = 1 (Definition 2.6).

Definition 4.3. The different DL/K of L/K is the integral ideal of OL defined as
follows:

D−1
L/K = {x ∈ L | TrL/K(xy) ∈ OK for all y ∈ OL}.

Proposition 4.4 (Hilbert’s formula). The following equality holds:

vL(DL/K) =

∞󰁛

i=0

(|Gi|− 1).

Proof. See [Ser79, Chapter IV, Proposition 4] □
Remark 4.5. The infinite sum in Proposition 4.4 makes sense, since |Gi| = 1 for i
sufficiently large.

Theorem 4.6. Suppose that L/K is tamely ramified. Then for all n ∈ Z, Pn is
free over OK [G].

For n = 0, Theorem 4.6 coincides with Theorem 1.39, and it is usually attributed
to Noether, even if she only stated and proved in [Noe32] the result in the case that
the residue characteristic of K does not divide |G|, as pointed out in [Cha96, section
1]. The general case is proved in [Ull70].

We briefly review part of the proof for n = 0.
Unramified case: if L/K is unramified, then there is a natural identification

of G with the Galois group of the residue fields extension G = Gal(kL/kK).
By Normal basis Theorem (Theorem 1.5), there exists β ∈ kL such that
kL = kK [G] · β. Using Nakayama’s Lemma, for any lift β ∈ OL of β,
OL = OK [G] ·β. (This actually can be made in an if and only if statement.)

Totally and tamely ramified case: if L/K is totally and tamely ramified
with e = [L : K], then we can find uniformisers πL ∈ OL and πK ∈ OK

such that πe
L = πK and OL = OK [πL]. If α ∈ OL, then

α = u0 + u1πL + · · ·+ ue−1π
e−1
L ,
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for some ui ∈ OK . Then OL = OK [G] · α if and only if ui ∈ O×
K for every

i. This part uses that πL is a Kummer generator and some determinant
calculations.

Tamely ramified case: if L/K is tamely ramified, then we can “glue” the
two previous cases together, with an idea of Kawamoro; see [Kaw86].

4.1. Weakly ramified extensions. We consider now the weakly ramified case.
Two main results are given by Ullom [Ull70] and Köck [Köc04].

Theorem 4.7 (Ullom).

• If there exists n ∈ Z such that Pn is free over OK [G], then L/K is weakly
ramified.

• If L/K is totally and weakly ramified, then P is free over OK [G].

Theorem 4.8 (Köck). The fractional ideal Pn is free over OK [G] if and only if
L/K is weakly ramified and n ≡ 1 (mod |G1|).

The proof of Theorem 4.8 uses cohomological triviality argument; Erez’s work
in [Ere91] on square root of inverse different uses similar ideas.

Theorem 4.9 (Johnston). Suppose that L/K is weakly ramified. Let n ∈ Z such
that n ≡ 1 (mod |G1|). Then we can explicitly construct ε such that Pn = OK [G]·ε.

Proof. We just give an idea of this proof.
We can explicitly construct generators in the following cases:

(1) unramified (Theorem 1.37);
(2) totally and tamely ramified (Theorem 1.38);
(3) totally and weakly ramified p-extensions.

Then we can use a “splitting lemma” (see [Joh15, Section 3]), and “glue” generators
together. Finally, we can take the trace to find the element we are looking for.

This is a generalisation of Kawamoto’s approach. □

Theorem 4.10 (Johnston). Suppose that L/K is wildly and weakly ramified, and
let πK be any uniformiser of K. Then AL/K = OK [G][π−1

K TrG0 ] and if P =
OK [G] · ε, then OL = AL/K · ε.

Proof. Again, we just sketch an idea of the proof.
First, we can show that

OK [G][π−1
k TrG0

] ⊆ AL/K .

Let ε be a free generator of P over OK [G] (for example, as in Theorem 4.9). Then

(4.1) OK [G][π−1
k TrG0 ] · ε ⊆ AL/K · ε ⊆ OL.

We have P = OK [G] · ε ⊆ OK [G][π−1
k TrG0

] and P ⊆ OL. We can prove that the
indices [OK [G][π−1

k TrG0 ] : OK [G] · ε]OK
and [OL : P]OK

are equal, and this forces
equality in (4.1). □

Now we see more in details the proof of Theorem 4.9.
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4.2. Totally and weakly ramified p-extensions. We begin with [Joh15, Theo-
rem 5.2]

Theorem 4.11. Suppose that L/K is a totally and weakly ramified p-extension.
(1) G is an elementary abelian p-group.
(2) Pn is free over OK [G] if and only if n ≡ 1 (mod |G|).
(3) Suppose n ≡ 1 (mod |G|). Then an element δ ∈ L is a free generator of

Pn over OK [G] if and only if vL(δ) = n.

Proof.
(1) This is a standard fact.
(2) It follows immediately from Theorem 4.8.
(3) This was already shown by others: Vostokov [Vos81], Vinaties (in [Vin05],

as consequence of Byott’s paper [Byo99]), and Byott–Elder [BE14]. We
give the idea of the proof in [Joh15], which does not use cohomology:
(a) Use Hilbert’s formula to compute the different of L/K.
(b) Obtain a formula for TrL/K(Pn).
(c) “Mod out” by p, working over kK [G].
(d) Use a minor variant of a result of Childs.
(e) Lift using Nakayama’s lemma. □

Example 4.12. Let K/Qp be an unramified extension, and consider K(ζp2)/K. If
L is the intermediate field such that L/K has degree p, then L/K is a totally and
weakly ramified extension.

4.3. Totally and tamely ramified extensions of arbitrary degree. If L/K
is totally and tamely ramified, then the Galois group G coincides with the inertia
subgroup G0 = I. Write G1 = W , the wild inertia, an elementary abelian p-group.
By Schur–Zassenhaus theorem, we can write I = W ⋊C, where C is a cyclic group.
We have the following situation:

L

E F

K

W C

I

C

where L/E and F/K are totally and weakly ramified p-extensions, while L/F and
E/K are totally and tamely ramified extensions.

Define r by |W | = pr, and let c = |C|. By Bézout’s theorem, there exist a, b ∈ Z
such that apr + bc = 1. Choose uniformisers πE and πK such that πc

E = πK , and
any uniformiser πF of F . Finally, let α = 1 + πE + π2

E + · · ·+ πc−1
E .

Proposition 4.13. The element πb
Fπ

a
Eα is a free generator of P over OK [I].

Proof. This is a special case of [Joh15, Proposition 6.1]. We just give a sketch of
the proof.

The following facts hold:
(1) Since vL(π

b
Fπ

a
E) = 1, P = OE [W ] · (πb

Fπ
a
E).

(2) πa
EOE = OK [C] · (πa

Eα).
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With explicit calculation, using semidirect product and that πF ∈ F = LC and
πE ,α ∈ E = LW , we can derive our assertion. □
Remark 4.14. If L/K is abelian, totally and wildly ramified, and not a p-extension,
then L/K cannot be weakly ramified.

Example 4.15.
(1) Suppose that p is odd. Consider the extension Qp(ζp2)/Qp, and let L be an

intermediate field such that Qp(ζp2)/K has degree p−1 and L/Qp has degree
p. Then L/Qp is weakly ramified, Qp(ζp2)/L is tame, but Qp(ζp2)/Qp is not
weakly ramified (see [Ser79, Chapter IV, Proposition 18]). This is [Joh15,
Remark 6.2], where we remark there is a typo.

(2) The extension Q3(ζ3,
3
√
2)/Q3 has Galois group isomorphic to S3 and is

totally and weakly ramified.

5. Almost maximal ramification, dihedral extensions, A4-, S4-,
A5-extensions

In this section, we focus again the problems introduced in Section 3. We begin
with some clarifications.

5.1. Local versions of global results. We have seen how Leopoldt’s, Bergé’s,
and Martinet’s works imply that if L/Q is abelian or dihedral of degree 2p or Q8-
extension (wild in the last case), then OL is free over AL/Q. Can we immediately
derive the corresponding result for local fields, so for an extension K/Qp with the
same Galois group?

(1) The local result about dihedral extensions of degree 2p is already contained
in [Ber72].

(2) As concerns abelian and Q8-extensions of Q, it seems natural (and folklore)
that the proofs for the global case work as they are in the local case. For
example, this is immediate for Q8-extensions.

(3) By a (nontrivial) result of G. Henniart [Hen01], if p ∕= 2, then given a
finite Galois extension K/Qp, there exists a Galois extension L/Q with the
same Galois group, such that LP = K, where P is the unique prime of L
above p. In particular, if OL is free over AL/Q, then OL,p

∼= OK is free
over AL/Q,p

∼= AK/Qp
. Note that we know this is false for p = 2. In our

specific cases, we can verify through databases the global realisability of
Q8-extensions of Q2, and we can find a cyclotomic extension M (which is
easily globally realisable) containing K such that M/K is tamely ramified
if K/Qp is abelian; compare with [Joh11, subsection 12.3].

(4) In a simpler way, the work in [Let98] immediately implies the p-adic version
of Leopoldt’s theorem.

5.2. Back to our scheme. Let L/K be a Galois extension of number fields with
Galois group G. Fix a prime p of OK and a prime P of OL lying above p. If
D = D(P|p) is the decomposition group, then LP/Kp is a Galois extension with
Galois group D. We identify OL,p = IndGD OLP

and AL/K,p = A(Kp[G], IndGD OLP
).

We know the following facts.
(1) If OL is free over AL/K , then OL,p is free over AL/K,p.
(2) If OL,q is free over AL/K,q for all primes q of OK and Cl(AL/K) = 0, then

OL is free over AL/K .
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(3) If OL,p is projective over AL/K,p, then OLP
is projective over ALP/Kp

(Proposition 3.44). In particular, if projective implies free over ALP/Kp
,

then we deduce that if OL,p is free over AL/K,p, then OLP
is free over

ALP/Kp
.

(4) If OLP
is free over ALP/Kp

and IndGD ALP/kp
is a ring (Proposition 3.37)

or more generally IndGD ALP/Lp
is free over A(Kp[G], IndGD OLP

) (Corol-
lary 3.42), then OL,p is free over AL/K,p.

We call implication (∗) the implication “if OLP
is free over ALP/Kp

then OL,p is
free over AL/K,p”, and implication (∗∗) the implication “if OL,q is free over AL/K,q

for all primes q of OK , then OL is free over AL/K”.
We have a more general result. Note that we have a natural inclusion Kp[D] ⊆

Kp[G].

Proposition 5.1. Let Λ be an OKp
-order in Kp[D], let N be a Λ-lattice, and let Γ

be an OKp
-order in Kp[G] such that Λ ⊆ Γ ⊆

󰁏
t∈H󰃮G Λt. If IndGD N is projective

over Γ, then N is projective over Λ.

We can apply immediately Proposition 5.1 with Λ = OKp
[D] and Γ = OKp

[G],
as IndGD OKp

[D] = OKp
[G].

Theorem 5.2. Let L/K be a Galois extension of number fields with Galois group
G. Then the following are equivalent:

(1) L/K is tamely ramified.
(2) OL is projective over OK [G].
(3) OL is locally free over OK [G].
(4) OK [G] = AL/K .

Proof. We already know that (1) implies (3). For a proof, see Remark 3.39.
For (1) implies (4), note that tameness implies that ALP/Kp

= OKp
[D(P|p)] for

every primes P|p in L/K with decomposition group D(P|p); therefore, AL/K,p =
OKp

[G]. From the local equality of OK [G] and AL/K at every prime p we deduce
global equality; see [Rei03, Theorem 5.3].

Now we show the equivalence between (1) and (2). If L/K is tamely ramified,
by Theorem 2.23, OL is locally free over OF [G], and so OL,p is projective over OKp

for every prime p of OK . Since locally projective for every maximal ideal implies
projective (see [CR81, Proposition 8.19]), we conclude that OL is projective over
OK [G]. Conversely, if OL is projective over OK [G], then OL,p is projective over
OKp

[G] for every prime p of OK . If P is any prime of OL above p, and D = D(P|p)
is the decomposition group, then by Proposition 5.1, OLP

is projective over OKp
[D],

which is clean, and so OLP
is free over OKp

[D], that is, L/K is tamely ramified at
p for all primes p of OK .

It is clear that (3) implies (2) from the already used fact that locally projective
implies projective.

It is now sufficient to show that (4) implies(3). If we assume (4), in particular
for all primes p of OK we know that AL/K,p = OKp

[G]. Let us fix a prime P of OL

lying above p and let D be the corresponding decomposition group. Then by the
results in Section 3 we have that AL/K,p

∼= A(Kp[G],OL,p) and

ALP/Kp
⊆ A(Kp[G],OL,p) ∩Kp[D] = OKp

[G] ∩Kp[D] = OKp
[D].
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We deduce that ALP/Kp
= OKp

[D], and hence LP/Kp is tamely ramified by The-
orem 1.39 and Proposition 2.12.

□
5.3. More on (∗). In the previous setting, take K = Q, and suppose that both
G = Gal(L/Q) and D = Gal(LP/Qp) are dihedral. Suppose also that LP/Qp is
almost maximally ramified. Then, by Theorem 3.16, OLP

is free over ALP/Kp
=

OK [D][{eDi
}i≥1], where the {Di}i≥1 are (some of) the higher ramification sub-

groups of D. If IndGD ALP/Qp
is a ring, then, by Proposition 3.37, OL,p is free

over AL/Q,p. This is the case, for example, if Di is normal in G for all i, that is,
G ∼= N ⋊ C2 with D1 ⊆ N . We deduce the following result.
Theorem 5.3. If both G = Gal(L/Q) and D = Gal(LP/Qp) are dihedral, LP/Qp

is almost maximally ramified, and G = N ⋊ C2 with D1 ⊆ N , then OL is locally
free at p over AL/Q.

Recall that the more general Theorem 3.16 yields a complete classification on
when we have local freeness in dihedral extensions of Q.

Let now L/Q be an A4-extension. Consider prime P of OL lying above the
prime number 2. By Theorem 3.24, OL is free over AL/Q if and only if 2 is tamely
ramified or has full decomposition group in L. Let us study what happens in the
negative case.

If 2 is not tamely ramified and its decomposition group D is not the whole Galois
group G, then either D = V4, the Klein subgroup normal in A4, or D is isomorphic
to C2. In particular, there are three possibilities for the couple (D,D0) modulo
isomorphism class:

• (V4, V4),
• (V4, C2),
• (C2, C2).

Assume that (D,D0) = (V4, C2). Our claim is that OL,2 is not free over AL/Q,2,
and so OL is not free over AL/Q. It is not hard to show that

ALP/Q2
= Z2[V4] +

1

2
Z2[V4] · TrD0

,

hence
IndA4

V4
ALP/Q2

= Z2[A4] +
1

2
Z2[A4] · TrD0 .

Now D0 = C2 is not normal in A4, and this implies that IndA4

V4
ALP/Q2

is not a
ring. This in general is not enough to get our claim, but since V4 is abelian and
normal in A4, we can derive our assertion from the equivalence between (2) and (3)
in Proposition 3.47.
Remark 5.4. Let K be a p-adic field, let G be a finite group, let H be a subgroup
of G, and let N be an OK [H]-lattice in K[H]. Assume that

A(K[H], N) =

r󰁛

i=0

1

πni
OK [H] · TrTi

,

where π is an uniformiser of OK and Ti is a subgroup of H for all i, with 1 = T0 ⊊
T1 ⊊ · · · ⊊ Tr and 0 = n0 < n1 < · · · < nr. Then we have

IndGH A(K[H], N) =

r󰁛

i=0

1

πni
OK [G] · TrTi

,
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and this is a ring if and only if Ti is normal in G for every i. (This means that
if also N is free over its associated order, then IndGH N is free over its associated
order.)

Also, we have

A(K[H], IndGH N) =

r󰁛

i=0

1

πni
OK [G] · TrUi ,

where, for all i, Ui is the normal closure of Ti. Assume also that H is abelian and
normal in G. If IndGH N is projective over A(K[G], IndGH N), then Bi is normal in
G for all i, N is free over A(K[H], N), and IndGH N is free over A(K[G], IndGH N).

5.4. More on (∗∗). Recall that if L/Q is a finite Galois extension with Galois
group G and Cl(Z[G]) = 0, then we automatically have locally free cancellation,
and L/Q admits a normal integral basis.

Theorem 5.5. Let L/Q a finite Galois extension with Galois group G such that
Cl(Z[G]) = 0. If OL is locally free over AL/Q, then OL is free over AL/Q.

Proof. Clearly, if Cl(AL/Q) = 0, then we immediately derive our assertion. The
result follows from a surjection Cl(Z[G]) ↠ Cl(AL/Q) induced by the injection
Z[G] ↩→ AL/Q; see [CR87, Theorem 50.29]. □

Corollary 5.6. Let L/Q be a finite Galois extension with Galois group G isomor-
phic to D2n (and in this case assume also Cl(Z[D2n]) = 0), A4, S4, or A5. Then
OL is free over AL/Q if and only if OL is locally free over AL/Q.

Note that Theorem 3.21 is a corollary of Theorem 5.5.

5.5. Maximal orders. Let K be a field with characteristic 0, and let G be a finite
group. Since K[G] is separable, by Wedderburn’s decomposition theorem, we can
write

K[G] ∼=
󰁜

i

Matni
(Di),

where for all i, Di is a skew-algebra; see [CR81, section 3B]. If we also assume that
G is abelian, we find that

K[G] ∼=
󰁜

γ∈Φ

K(γ),

where Φ is a certain class of characters γ : G → K
×

from the group G to the nonzero
elements of the algebraic closure of K.

If K is a number field or a p-adic field, we would like to have the isomorphism
between OK [G] and

󰁔
γ∈Φ OK(γ). However, this is false in general: on the right-

hand side we have a maximal order, while usually OK [G] is not maximal.

Definition 5.7. Let K be a number field or a p-adic field, and G let be a finite
group. An OK-order Γ is maximal in K[G] if Γ maximal with respect to the
inclusion.

The following meaningful result requires some work to be proved.

Proposition 5.8. Every OK-order is contained in a maximal order.

Proof. See [CR81, section 26] □
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Remark 5.9. If G is abelian, then there exists a unique maximal order, which is the
integral closure of OK in K[G], that is,

󰁔
γ∈Φ OK(γ).

Proposition 5.10. The OK-order OK [G] is maximal if and only if |G| is invertible
in OK .

Proof. See [CR81, Proposition 27.1]. □

Corollary 5.11.
• If K is a number field and G ∕= 1, then OK [G] is not a maximal order.
• If K is a p-adic field, then OK [G] is a maximal order if and only if p ∤ |G|.

Theorem 5.12. Let K be a p-adic field, and let G be a finite group. Let M be
a maximal OK-order, and let M be an M-lattice such that K ⊗OK

M is free over
K[G]. Then M is free over M.

Proof. See [Rei03, Theorem 18.10]. □

Corollary 5.13. Let K be a p-adic field, and let G be a finite group. Then a
maximal OK-order in K[G] is clean.

Corollary 5.14. Let L/K be a Galois extension of p-adic fields. If AL/K is max-
imal, then OL is free over AL/K .

Corollary 5.15. Let L/K Galois extension of number fields, and let p be a prime
of OK . If AL/K,p is maximal, then OL,p is free over AL/K,p.

Combining Corollaries 5.11 and 5.15, we deduce that if L/K is a Galois extension
of number fields with Galois group G, and p is a prime of OK such that the prime
number p under p does not divide |G|, then OFp

[G] is maximal and contained in
AL/K,p = OFp

[G], hence AL/K,p is maximal and OL,p is free over AL/K,p. Indeed,
the extension is tamely ramified at p.

The following result is given in [Let98].

Proposition 5.16 (Lettl). Let p be an odd prime number, let L/Qp be a finite
abelian extension, and let K an intermediate field such that L/K is totally ramified.
Then AL/K is maximal. In particular, OL is free over AL/K .

The maximal orders are linked with almost-maximal ramification.

Remark 5.17. Let L/K is a Galois extension of p-adic field with Galois group G,
let P be the prime of OL, and let H is a subgroup of G. If M is the fixed field of
H, then we have the following equivalences, where we employ [Ser79, Proposition
III.7] and Proposition 4.4):

1

|H| TrH ∈ AL/K ⇐⇒ 1

|H| TrH(OL) ⊆ OM

⇐⇒ TrH(OL) ⊆ |H|OM ⇐⇒ OL ⊆ |H|OMD−1
L/M

⇐⇒ D ⊆ |H|OL ⇐⇒ vP(DL/M ) ≥ e(L/Qp) · vp(|H|)

⇐⇒
∞󰁛

i=1

(|Hi|− 1) ≥ e(L/Qp) · vp(|H|).

This gives us an explicit way to check if the idempotent corresponding to a subgroup
of G is in the associated order.
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Following [Ber78], we introduce the ramification jumps and see their relation
with maximal orders.

Definition 5.18. Let L/K be a Galois extension of p-adic fields with Galois group
G. An integer t ≥ 1 is a ramification jump if Gt ⊋ Gt+1. Write

1 ≤ t1 < t2 < · · · < tm

for the ramification jumps of L/K.

We can find explicit information about the ramification jumps in appropriate
settings; for example, the next result is [Ber78, Proposition 3 and Corollaire]

Proposition 5.19 (Bergé). Let L/K be a Galois extension of p-adic fields with
Galois group G, and assume thta G1 is cyclic of order pn and K/Qp is unramified.
Write r = [G0 : G1]. Then

r

p− 1
≤ t1 ≤ rp

p− 1

and for all i = 2, . . . , n,

ti =
rpi

p− 1
− rp

p− 1
+ t1.

In particular, L/K is almost maximally ramified if and only if there exists Gi ∕= 1
such that eGi ∈ AL/K , if and only if t1 ≥ rp

p−1 − 1.

One might aim to prove that in an almost maximally ramified extension of p-adic
fields, given we have a certain number of idempotents in the associated order by def-
inition, the associated order has to be maximal. We state now [Ber78, Proposition
5], which implies that under some conditions this is the case.

Proposition 5.20. Let L/K be a Galois extension of p-adic fields with Galois
group G. Assume that G is cyclic of order rpn and K/Qp is unramified. Consider,
for all i, a subgroup Hi of G such that |Hi| = pi. Then the maximal OK-order in
K[G] is OF [G][{eHi

}ni=0].

Corollary 5.21. Let L/K be a totally ramified cyclic extension of p-adic fields
such that K/Qp is unramified. If L/K is almost maximally ramified, then AL/K is
maximal.

We complete the subsection giving the main result proved in [Ber78].

Theorem 5.22 (Bergé). Let L/K be a totally ramified cyclic extension of p-adic
fields such that K/Qp is unramified. Then OL is free over AL/K if and only if

t1 >
rp

p− 1
− pn

pn−1 − 1
.

Remark 5.23. If the extension is not totally ramified and G0 is cyclic, there are
some sufficient conditions to get the statement of Theorem 5.22; see [Ber78, section
2.3].

5.6. Return to local freeness: hybrid orders. Let L/Q be a finite Galois ex-
tension with Galois group G, and let p be a prime number. Our goal is to determine
criteria so that OL,p is free over AL/Q,p without the latter being a maximal order.
The idea is to write AL/Q,p in the form AM/Q,p×M, where M/Q is an intermediate
Galois extension and M is a maximal order.
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Let N be a normal subgroup of G such that p ∤ |N |. Then eN is a central
idempotent in Zp[G] and we have the following decomposition of rings:

Zp[G] = eNZp[G]× (1− eN )Zp[G] ∼= Zp[G/N ]× (1− eN )Zp[G].

The next definition was first introduced in [JN16].

Definition 5.24. Let p be a rational prime, let G be a finite group, and let N be
a normal subgroup of G such that p ∤ |N |. We say that Zp[G] is N -hybrid if the
component (1− eN )Zp[G] of Zp[G] is a maximal Zp-order in (1− eN )Qp[G].

The following result is easy to prove; the key is Theorem 5.12.

Proposition 5.25. Let L/Q be a finite Galois extension with Galois group G, and
let p be a prime number. Let N be a normal subgroup of G such that p ∤ |N |, and
let M the subfield of L fixed by N . Suppose that Zp[G] is N -hybrid. Then

AL/Q,p
∼= AM/Q,p × (1− eN )Zp[G]

and OL,p
∼= OM,p⊕ (1−eN )OL,p is free over AL/Q,p if and only if OM,p is free over

AM/Q,p.

Example 5.26. Let G be either A4 or S4. Note that we can write G as V4 ⋊H,
where H is C3 or S3, respectively, and V4 is the normal subgroup of order 4, which
is isomorphic to the Kein group. By [JN16, section 2], Z3[G] is V4-hybrid in both
cases. Now let L/Q be a Galois extension with Galois group G, and let M = LV4 .
Since M/Q is either a C3-extension or an S3-extension, we know by Theorem 3.17
or Theorem 3.19 that OM is free over AM/Q, so that in particular OM,3 is free over
AM/Q,3. By Proposition 5.25, we deduce that OL,3 is free over AL/Q,3.

From Example 5.26 and Corollary 5.6 we can deduce the following fact.

Corollary 5.27. Let L/Q be an A4- or S4-extension. Then OL is free over AL/Q
if and only if OL,2 is free over AL/Q,2.

The conclusion of Corollary 5.27 holds if 2 is tamely ramified or for any prime
P of OL above 2 the decomposition group D(P|2) is equal to G = Gal(L/Q) and
LP/Q2 is weakly ramified, by Theorem 3.13 and Proposition 3.37 (here we are
trivially inducing from G to G). Note also that there is only one A4-extension of
Q2, which is weakly ramified, so that if G is isomorphic to A4, then we automatically
have weak ramification assuming full decomposition group; see Theorem 3.24. We
can deduce (3) and (4) of Theorem 3.25 using Proposition 3.48.

6. Galois module structure of absolutely abelian extensions of
p-adic fields

The goal of this section is to discuss the following meaningful result of Lettl [Let98,
Theorem 1]. Recall that a finite Galois extension of p-adic fields (resp., number
fields) L/K is said absolutely abelian if L/Qp (resp., L/Q) is abelian. By local
Kronecker–Weber theorem, all absolutely abelian extensions of a p-adic field lie in
a cyclotomic extensions of Qp.

Theorem 6.1 (Lettl). Let L/K be an absolutely abelian extension of p-adic fields
with Galois group G. Then the following facts hold:

• OL is free over AL/K .
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• Suppose p ≥ 3, and let G0 be the inertia subgroup. Then

AL/K
∼= OK [G]⊗OK [G0] M0 = IndGG0

M0,

where M0 is the unique maximal OK-order contained in K[G0].

We wish to thank F. Campagna, who provided examples and slight generalisa-
tions of Lettl’s statements and proofs. We begin with some comments.

• In general, the element α ∈ OL such that OL = AL/K · α is not explicit.
However, there are cases in which it can be explicitly computed; for exam-
ple, when N ⊆ Qp(ζpn) for some n ∈ N.

• One can give an explicit description of AL/K also in the case p = 2, by
looking at the proof.

• If L/K is an absolutely abelian extension of number fields, then Theo-
rem 6.1 implies that OL is locally free over AL/K . Indeed, let p be a prime
of OK , and let P a prime of OL lying above p. Write D = D(P|p) for
the decomposition group. Then OLP

is free over ALP/Kp
(Theorem 6.1),

IndGD ALP/Kp
= OK [G] ⊗OK [D] ALP/Kp

is a ring (it is the tensor product
of two algebras over a commutative ring), and so by Proposition 3.37, OL,p

is free over AL/K,p.
• The same result does not hold for absolutely abelian extension of number

fields, as we should see in a moment.
We state a deep result of Brinkhuis [Bri92]. In the statement, “unramified” means
“unramified at all finite primes”, so we allow ramification at infinite places.

Theorem 6.2. Let K be a totally ramified number field such that K ∕= Q, and let
L/K be a finite unramified abelian extension. If L/K is not multiquadratic, then
L/K does not admit a normal integral basis.

We construct now an absolutely abelian extension of number fields L/K where
OL is not free over its associated order.

Example 6.3 (Campagna). Let M = Q(ζ7+ζ−1
7 ) ⊆ Q(ζ7) and N = Q(ζ9+ζ−1

9 ) ⊆
Q(ζ9). Then M/Q and N/Q are arithmetically disjoint cyclic extensions of degree
3. In particular, Gal(MN/Q) ∼= C3 × C3. If H ≤ Gal(MN/Q) corresponds to
the diagonal subgroup of C3 × C3, then K = LH is such that Gal(K/Q) ∼= C3

and K ∕= M,N . Clearly K is totally real, as it lies inside the compositum of
two totally real fields. The only possible (finite) ramification in K is at 3 and 7,
and it is immediate to get that K is totally ramified at both primes. By genus
theory (see [Frö83]), the narrow genus field L = K+ of K is an absolutely abelian
unramified extension of K of degree 3. By Theorem 6.2, L/K does not admit
an integral normal basis, and since L/K is tameky ramified, AL/K = OK [G] by
Theorem 5.2. We conclude that OL is not free over its associated order.

6.1. Reduction step. The first step is to show that it is enough to deduce our
main result for an absolutely abelian extension L/K with

Qp ⊆ K ⊆ L ⊆ Qp(ζpn),

for some n ≥ 1. We know that by local class field theory (for example, see [Mil20]),
if K is a p-adic field and π is an uniformiser, then the maximal abelian extension
of K can be written as

Kab = Kunr ·Kπ,
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where Kunr is the maximal unramified extension of K, and Kπ is a totally ramified
extension depending on the uniformiser π.

We would like to have a similar decomposition for an abelian extension of a
p-adic field K. Unfortunately, this claim is false.

Example 6.4. Consider the following diagram:

MN = Q5(ζ5, ζ624)

M = Q5(ζ5) N = Q5(ζ624)

Q5

The extension Q5(ζ5)/Q5 is a totally ramified cyclic extension of order 4, while since
624 = 54 − 1, extension Q5(ζ624)/Q5 is unramified and cyclic of order 4. Let σ be
the generator of Gal(Q5(ζ5)/Q5), and let τ be the generator of Gal(Q5(ζ624)/Q5).
As M and N are arithmetically disjoint, Gal(MN/Q) = 〈σ〉 × 〈τ〉. Let H be the
subgroup generated by στ2, and L be its fixed field. The maximal unramified
subfield Lunr of L is L ∩ Q5(ζ624), and it has degree 2 over Qp. If there existed a
field Lt with L = Lunr ·Lt, then we we would write Gal(L/Q5) as product of cyclic
groups of order 2. This is a contradiction, since Gal(L/Q5) is cyclic of order 4.

However, we can reach the following result, which is [Let98, Lemma 1]

Lemma 6.5. Let L/K be an abelian extension of p-adic fields with Galois group
G and degree d. Let d′ ∈ N such that d | d′, and let 󰁨K/K be the unique unramified
extension of K of degree d′. Then there exists an abelian and totally ramified
extension L′/L such that, for 󰁨L = L′ 󰁨K, the following properties hold:

(1) 󰁨L/K is abelian.
(2) L ⊆ 󰁨L.
(3) 󰁨L/L is unramified.

Proof. The diagram we want is the following:

󰁨L

L L′ 󰁨K

K

Recall that 󰁨K/K is cyclic, and denote by σ its generator. We set 󰁨L = L 󰁨K. Since
L/K and 󰁨K/K are abelian, also 󰁨L/K is abelian. Clearly L ⊆ 󰁨L and 󰁨L/L is
unramified. We only need to find L′ as in the statement.

Consider the exact sequence

1 → Gal(󰁨L/ 󰁨K) → Gal(󰁨L/K)
π−→ Gal( 󰁨K/K) → 1.

Let τ ∈ Gal(󰁨L/K) such that π(τ) = σ. We claim that the order of τ is d. Since τd
′

is the identity on 󰁨K, we find that d′ divides the order of τ . Conversely, as Gal(󰁨L/K)
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is embedded into Gal(L/K)×Gal( 󰁨K/K), we immediately deduce that the order of
τ is precisely d′. Therefore ϕ : Gal( 󰁨K/K) → Gal(󰁨L/L), defined by ϕ(σ) = τ , is a
splitting homomorphism for the above sequence. In particular, we can write

Gal(󰁨L/K) = Gal(󰁨L/ 󰁨K)×G′,

where G′ is the subgroup of Gal(󰁨L/K) generated by τ . Define L′ = 󰁨LG′
. Then the

other claims immediately follow. □

We prove now [Let98, Proposition 1(b)], a new version of Lemma 2.30.

Proposition 6.6. Let K be a p-adic field, and suppose that L1 and F are Galois
extensions of K such that L/K is totally ramified and F/K is unramified. Write
N = LF . Then ON is free over AN/F if and only if OL is free over AL/K .

Proof. One implication follows immediately from Lemma 2.30, since in this case L
and F are arithmetically disjoint over K.

Conversely, suppose that ON is free over AN/F . We need to use abstract commu-
tative algebra, and this implies that we lose information about the generator. We
have an isomorphism ON

∼= AN/F as AN/F -modules. Recall that ON
∼= OL⊗OK

OF

(Theorem 1.24). We can endow both with a structure of AL/K-module, identifying
AL/K in AN/F

∼= AL/K ⊗OK
OF . In this way, ON and OL ⊗OK

OF are isomor-
phic as AL/K-modules. Similarly, the isomorphism AN/F

∼= AL/K ⊗OK
OF can be

seen as AL/K-module isomorphism. Summarising, we have found an AL/K-module
isomorphism

OL ⊗OK
OF

∼= AL/K ⊗OK
OF .

Since OF is free of rank d = [F : K] over OK , we derive an AL/K-module isomor-
phism

Od
L
∼= Ad

L/K .

As OK is a complete commutative local ring, we can apply Krull–Schmidt–Azumaya
theorem (see [CR81, Theorem 6.12]) to conclude that OL

∼= AL/K as AL/K-
modules, that is, OL is free over AL/K . □

We may now apply our reduction strategy. Suppose that we know that for all
extensions

Qp ⊆ F ⊆ N ⊆ Qp(ζpn),

ON is free over AN/F . We want to show that for all absolutely abelian extension
L/K of p-adic fields, OL is free over AL/K .

So let L/K be an absolutely abelian extension of p-adic fields with degree d. Let
f = [L : Qp] = eKfKd, where eK is the absolute ramification index of K and fK is
the absolute inertia degree of K. It is quite simple to show that the unique unram-
ified extension of K of degree eKd is 󰁨K = KQp(ζpf−1); therefore, by Lemma 6.5,
󰁨L = LQp(ζpf−1) is the compositum of 󰁨K = KQp(ζpf−1), which is unramified over
K, and L′, which is totally ramified over K. After some degree considerations, and
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the observation that Kunr = K ∩Qp(ζpf−1), we find the following diagram:

󰁨L

L L′ 󰁨K

K Qp(ζpf−1)

Kunr

Qp

d

f

eKd

eK
eKd

fK

Lemma 6.7. There exists n ∈ N such that 󰁨L ⊆ Qp(ζpn , ζpf−1).

Proof. By local class field theory, |Q×
p : NL/Qp

(L×)| = [L : Qp] = f , that is,
(Q×

p )
f ⊆ NL/Qp

(L×) (here NL/Qp
is the norm map). This implies that pf ∈

NL/Qp
(L×), and since NL/Qp

(L×) is open, NL/Qp
(L×) contains 1 + pnZp for some

n ∈ N. We deduce that 〈pf 〉×(1+pnZp) ⊆ NL/Qp
(L×), so, again by local class field

theory, L ⊆ Qp(ζpn , ζpf−1). Since 󰁨L = LQp(ζpf−1), we derive our assertion. □

Now assume that n ∈ N is minimal such that 󰁨L ⊆ Qp(ζpn , ζpf−1). Let 󰁨󰁨L =

󰁨L ∩Qp(ζpn), and let 󰁨󰁨K = 󰁨K ∩Qp(ζpn). We find the following diagram:

Qp(ζpn , ζpf−1)

󰁨L Qp(ζpn)

L L′ 󰁨K 󰁨󰁨L

K Qp(ζpf−1)
󰁨󰁨K

Kunr

Qp

By assumption, O󰁨󰁨L
is free over A󰁨󰁨L/

󰁨󰁨K
. Note that 󰁨󰁨KQp(ζpf−1) = 󰁨K, by a simple

degree reasoning. Hence 󰁨K/
󰁨󰁨K is unramified, and since 󰁨󰁨L/ 󰁨󰁨K is totally ramified, we

can apply Proposition 6.6 to derive that O󰁨L is free over A󰁨L/ 󰁨K . Since L′/K is totally
ramified, again by Proposition 6.6 we find that OL′ is free over AL′/K (here we lose
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sight of the generator). As O 󰁨K is free over A 󰁨K/K (the extension in unramified),

O󰁨L is free over A󰁨L/K by Lemma 2.30(2). Finally, since 󰁨L/L is unramified, we can
apply Lemma 2.31 to conclude that OL is free over AL/K .

6.2. The pth power cyclotomic case. We restrict ourselves to p ≥ 3. Let L/K
be a Galois extension of p-adic fields with Galois group G. Suppose that

Qp ⊆ K ⊆ L ⊆ Qp(ζpn),

with n ∈ N minimal. Let 1 ≤ m ≤ n be the minimal integer such that K ⊆ Qp(ζpm).
For all t ∈ N, let

Rt ⊆ Gal(Qp/Qp)

denote a set of automorphisms representing Gal(Kt/Qp) in the absolute Galois
group of Qp, where for all p-adic fields F , we write Ft = F ∩Qp(ζpt). The crucial
result is [Let98, Proposition 3], as follows..

Proposition 6.8 (Lettl).
• AL/K is the maximal OK-order in K[G].
• We have OL = AL/K · α, with

α =

n−m󰁛

j=0

󰁛

σ∈Rn−m−j

TrQp(ζpn−j )/Lm−j
σ(ζp

j

pn).

Proof. The proof of this proposition is rather long and technical; we just give a
brief hint.

Since n is minimal and Qp(ζpn)/L is tamely ramified, we can assume L =
Qp(ζpn). Write G = Gal(Qp(ζpn)/K). The idea is to directly verify that if
M ⊆ K[G] is the maximal OK-order, then

Zp[ζpn ] = M · α.

Indeed, if this happens, then M = AQp(ζpn )/K and α is a generating element. The
key observation is that in the abelian case, the structure of M is well understood:

M =
󰁐

M · eK(χ),

where all eK(χ) are idempotent associated to certain characters χ. □

7. Cyclic extensions of degree p

In this section, we are interested in studying cyclic extensions of p-adic fields of
prime degree.

Remark 7.1.
(1) If L/K is a cyclic extension of p-adic fields with prime degree q ∕= p and

Galois group G, then L/K is tamely ramified, so OL is free over AL/K =
OK [G] by Theorem 1.39.

(2) If L/K is an unramified cyclic extension of p-adic fields with degree p and
Galois group G, then OL is free over AL/K = OK [G] by Theorem 1.37.

This means that we can focus our attention on (totally) ramified cyclic extensions
of p-adic fields of degree p.
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7.1. Notation and statement of the result. We fix the notation, which works
for all this section. Let L/K be a totally and wildly ramified cyclic extension of
p-adic fields with Galois G ∼= Z/pZ, generated by an element σ. We fix uniformisers
πK and πL of K and L respectively, and we normalise the valuations by vK(πK) = 1
and vL(πL) = 1. We also use the following symbols:

(1) e = eK = vK(p) denotes the absolute inertia degree of K.
(2) t is the ramification jump of the extension, that is, the unique integer such

that

G = G−1 = G0 = · · · = Gt, Gt+1 = · · · = {1};
note that t is equivalently defined by the condition

t = min
x∈OL

vL((σ − 1)x)− 1,

where, by convention, vL(0) = +∞ can never be the minimum.
(3) For all i ≥ 0, UK,i = 1 + πi

KOK is ith higher unit group.
(4) t = pt0 + a, where 0 ≤ a ≤ p− 1.
(5) ⌊x⌋ denotes the greatest integer less than or equal to x, where x ∈ R.

In this section, we describe necessary and sufficient conditions for OL to be
free over the associated order AL/K . In particular, we prove part of the following
theorem, combining the main results of [Fer74, BBF72, BF72].

Theorem 7.2.
(1) If t ≡ 0 (mod p), then AL/K is the maximal order of K[G]. In particular,

OL is free over AL/K .
(2) If 0 < t < pe

p−1 − 1, then OL is free over AL/K if and only if a | p− 1.
(3) If pe

p−1−1 ≤ t ≤ pe
p−1 , then OL is free over AL/K if and only if the continued

fraction expansion of a
p has length at most 4, that is, a

p can be written as

a

p
= a0 +

1

a1 +
1

a2+···
= [a0; a1, . . . , an]

with an > 1 and n ≤ 4.

Remark 7.3. The papers [Fer74, BF72] are essentially announcements of results
and contain few proofs. A proof of Theorem 7.2(3) can be found in [BBF72]. The
proofs of Theorem 7.2(1) and Theorem 7.2(2) given here are obtained by following
the breadcrumbs left in [BF72] and filling in the gaps with the help of [DCFL20].

We wish to thank D. Lombardo for the meticulous work.

7.2. Preliminary remarks. We begin with some general comments on the rami-
fication jump t.

Proposition 7.4.
(1) t ≤ ep

p−1 .
(2) If t′ ∈ Z satisfies −1 ≤ t′ ≤ ep

p−1 , where p ∤ t′, then there exists L′/K cyclic
of degree p with ramification jump t′.

(3) If p | t, then t = ep
p−1 . In this case, K contains ζp and there exist uniformis-

ers πK and πL such that πK = πp
L.

We sketch a proof of these facts, based on the next fundamental result about the
groups of local units (the first part is easy; for the second, see [Ser79, Chapter V,
Proposition 4]).
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Proposition 7.5.

(1) For i ≥ ep
p−1 , every ith higher unit is the pth power of a (i − e)th higher

unit. In symbols: UK,i ⊆ Up
K,i−e.

(2) Define

ψ(x) =

󰀫
x if x ≤ t,

t+ p(x− t) if x ≥ t.

Then for all n ≥ 0, the norm map NL/K sends UL,ψ(n) into UK,n and
UL,ψ(n)+1 into UK,n+1.

Sketch of proof of Proposition 7.4.

(1) Assume, by contradiction, t > ep
p−1 , and take

ε = 1 + πt
K ∈ UK,t ⊆ (UK,t−e)

p.

Let ε1 ∈ UK,t−e be a pth root of ε. Then on the one hand NL/K(ε1) =
εp1 = ε = 1 + πt

K does not belong to UK,t+1; on the other, NL/K(ε1) ∈
NL/K(UL,p(t−e)). Now p(t− e) ≥ t+ 1, hence

NL/K(UL,p(t−e)) ⊆ NL/K(UL,t+1) ⊆ UK,t+1

by Proposition 7.5(2). The contradiction proves the result.
(2) The case t = −1 is trivial. For t > 0, one takes L to be the splitting field

of xp − x− α, where vK(α) = −t (see Artin–Schreier theory).
(3) One begins by proving (using similar tricks) that t ≥ ep

p−1 ; hence t = ep
p−1 .

By assumption, σ(πL) − πL = ϑπt+1
L , where ϑ is a unit of OL. Dividing

through by πL we get

u =
σ(πL)

πL
= 1 + ϑπt

L.

Changing ϑ if necessary, since t = ep
p−1 , we obtain u = 1 + ϑπ

e/(p−1)
K . As

the extension L/K is totally ramified, we have OL/(πL) ∼= OK/(πK), so
ϑ ≡ ϑK (mod πL), where now ϑK ∈ OK . Thus

u ≡ 1 + ϑKπi
K (mod πt+1

L ),

or equivalently, u = (1 + ϑKπi
K)u′ with u′ ∈ UL,t+1. Taking the norm of

this equation we obtain

1 = (1 + ϑKπ
e/(p−1)
K )pNL/K(u′)

(note that 1 + ϑKπ
e/(p−1)
K is an element of K), with NL/K(u′) ∈ UK,t+1

by Proposition 7.5(2). By Proposition 7.5(1), NL/K(u′) is the pth power of
unit u0 in UK,t+1−e = UK,e/(p−1)+1. Hence we have obtained

1 = (1 + ϑKπ
e/(p−1)
K )pup

0,

so ζ := (1 + ϑKπ
e/(p−1)
K )u0 ≡ 1 + ϑKπ

e/(p−1)
K (mod π

e/(p−1)+1
K ) satisfies

ζp = 1. In particular, ζ is a pth root of unity in K that is not 1.
The last statement then follows from Kummer theory. □
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7.3. The case t ≡ 0 (mod p). By Proposition 7.4, t = ep
p−1 , and we may choose

uniformisers πK and πL such that πp
L = πK . Since L/K is totally ramified, OL =

OK [πL].

Theorem 7.6. If t ≡ 0 (mod p), then the associated order AL/K is the maximal
order in K[G] and the element ϑ = 1 + πL + · · ·+ πp−1

L generates OL over AL/K .

Proof. The fact that ϑ generates a normal integral basis can be proved as the case of
tamely and totally ramified extensions (see Sections 1 and 4). We choose a different
route, by first describing the associated order AL/K . We have

K[G] ∼= K[t]/(tp − 1) ∼=
p−1󰁜

i=0

K,

where the isomorphisms are given by σ 󰀁→ t and f(t) 󰀁→ (f(ζip))
p−1
i=0 respectively.

The unique maximal order of
󰁔p−1

i=0 K is clearly
󰁔p−1

i=0 OK ; tracing the isomorphisms
backwards, we see that the maximal order of K[G] is given by

M =

󰀻
󰀿

󰀽

p−1󰁛

j=0

ajσ
j ∈ K[G] |

p−1󰁛

j=0

ajζ
ij
p ∈ OK for all i = 0, . . . , p− 1

󰀼
󰁀

󰀾 .

Applying any element of M to a basis element πi
L, since σ(πL) = ζpπL (by Kummer

theory), we obtain
p−1󰁛

j=0

ajσ
j(πi

L) =

󰀳

󰁃
p−1󰁛

j=0

ajζ
ij
p

󰀴

󰁄πi
L ∈ OL.

This shows that M ⊆ AL/K ; hence, by maximality, the associated order coin-
cides with M. From the above calculation we also see that an element λ =
(c0, . . . , cp−1) ∈ Op

K
∼= M acts on ϑ as

λ · ϑ =

p−1󰁛

i=0

ciπ
i
L,

which immediately implies

AL/K · ϑ =

p−1󰁐

i=0

OKπi
L = OL. □

7.4. The fractional ideal Aϑ. From now on, we focus on the case t ∕≡ 0 (mod p).
In particular, since t ≥ 0, we will have t ≥ 1. The method of Bertrandias and
Ferton [BF72] centres around the following object.

Definition 7.7. Let ϑ ∈ OL be a generator of a normal basis for the L/K. Define

Aϑ = {λ ∈ K[G] | λ · ϑ ∈ OL}.

Remark 7.8. Aϑ is not necessarily a ring: for example, it can easily happen that
p−1 ∈ Aϑ, but Aϑ can never contain all the powers of p−1.

Some basic properties of Aϑ are easy to establish; see [BF72, Proposition 1].

Proposition 7.9.
(1) AL/K ⊆ Aϑ, and Aϑ is a fractional ideal of AL/K .
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(2) The map

Aϑ → OL

λ 󰀁→ λ · ϑ

is an AL/K-module isomorphism.
(3) The following are equivalent:

(a) OL is free over AL/K .
(b) There exists a generator ϑ ∈ OL of a normal basis for L/K such that

Aϑ = AL/K .
(c) For all ϑ ∈ OL that generate a normal basis for L/K, the AL/K-ideal

Aϑ is principal.
(d) For all ϑ ∈ OL that generate a normal basis for L/K, Aϑ is a ring.

Before discussing the structure of Aϑ for some interesting choices of ϑ, we identify
a useful element of K[G] and describe its action on OL. Let f = σ − 1 ∈ OK [G].

Lemma 7.10.
(1) {1, f, f2, . . . , fp−1} is an OK-basis of OK [G].
(2) fp = −

󰁓p−1
j=1

󰀃
p
j

󰀄
f j .

Suppose in addition a ∕= 0.
(3) vL(f

iπa
L) = a+ it for all i = 0, . . . , p− 1.

(4) πa
L generates a normal basis for L/K; explicitly, {f i · πa

L}
p−1
i=0 is a K-basis

of L.
(5) vL(f

pπa
L) = ep+ t+ a.

(6) For all x ∈ OL, vL(f · x) ≥ vL(x) + t.

Proof. Parts (1), (2), (5), and (6) follow from easy reasonings and computation.
For (3), as in the proof of Subsection 7.2, we have

σ(πL)

πL
= 1 + πt

Lu

for some u ∈ O×
L . Raising both sides to the jth power, for any j prime to p, gives

σ(πj
L)

πj
L

= 1 + πt
Luj ,

where uj ∈ O×
L since (j, p) = 1. Rearranging the previous equality gives

σ(πj
L)− πj

L = πj+t
L uj ,

so we obtain vL(f · πj
L) = j+ t, provided that (j, p) = 1. The claim then follows by

induction.
Finally, for (4), notice that the L-valuations of the elements {f i · πa

L}
p−1
i=0 are all

distinct modulo p. □

In particular, we can consider Aϑ with ϑ = πa
K . This special choice of ϑ allows

us to easily describe Aϑ.

Proposition 7.11. Aϑ is free over OK with basis {π−νi

K f i}p−1
i=0 , where νi = ⌊a+it

p ⌋
for all i.
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Proof. An element
󰁓p−1

i=0 cif
i ∈ K[G] is in Aϑ if and only if

󰁓p−1
i=0 cif

i · πa
L is

integral. Since the valuations of the terms f i ·πa
L are all distinct by Lemma 7.10(3),

this happens if and only if cif i · πa
L is integral for all i. Since vL(f

i · πa
L) = a+ it,

the condition is vL(ci) + a+ it ≥ 0, or equivalently, vK(ci) ≥ −a+it
p . □

Remark 7.12. An OK-basis of OL is given by {π−νi

K (f i · πa
L)}

p−1
i=0 . Indeed, the L-

valuations of these elements are all distinct modulo p, and are all between 0 and
p− 1.

The description of AL/K is only slightly more complicated.

Proposition 7.13. AL/K is free over OK with basis {π−ni

K f i}p−1
i=0 , where

ni = min
0≤j≤p−1−i

(νi+j − νj).

Proof. We just give a sketch of the proof. Take an arbitrary element λ =
󰁓p−1

i=0 cif
i ∈

K[G]; hence λ is in AL/K if and only if λ
󰀓
π
−νj

K (f j · πa
L)
󰀔

is integral for all i =

0, . . . , p− 1. One checks that this happens if and only if
p−1−j󰁛

i=0

ciπ
−νj

K (f i+j · πa
L) ∈ OL

(the other summands are automatically integral). Since the valuations of the terms
are all distinct, this happens if and only if vK(ci)− νj + νi+j ≥ 0 for j = 0, . . . , p−
1− i, which easily implies the result. □

7.5. The case t ∕≡ 0 (mod p). In this section, we prove Theorem 7.2(2). Theo-
rem 7.2(3) is conceptually similar, but technically much more involved, and so we
do not discussed it here. There are also further extensions to cyclic extensions of
degree pn; see [Ber79b].

Remark 7.14. The condition t < ep
p−1 − 1 is equivalent to ask that the extension

L/K is not almost maximally ramified. The only nontrivial idempotent in K[G]

is eG = 1
p

󰁓p−1
i=0 σi. An amusing computation involving sums of binomials shows

that eG is in AL/K if and only if np−1 ≥ e, and one sees that this is equivalent to
pe
p−1 − 1 ≤ t ≤ pe

p−1 .

We begin by proving that if a | p− 1, then Aϑ = AL/K (where ϑ = πa
L), so that,

by Proposition 7.9, the ring of integers OL is free over AL/K in this case. We need
a simple arithmetical lemma.

Lemma 7.15. If a | p − 1, then νi = it0 +
󰀇
i
k

󰀈
for all i = 0, . . . , p − 1, where

k = p−1
a .

Proof. It follows from an easy induction on i. □

Proposition 7.16. Suppose a | p − 1. Then AL/K = Aϑ, where ϑ = πa
L. In

particular, OL is free over AL/K .

Proof. Recall that AL/K is OK-free with basis {π−ni

K f i}p−1
i=0 and Aϑ is free with

basis {π−νi

K f i}p−1
i=0 ; thus, equality holds if and only if νi = ni for all i = 0, . . . , p−1.
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By definition, νi ≥ ni, so it suffices to show the opposite inequality. Since ni is
defined as a minimum, we need to show

νi+j − νj ≥ νi for all indices i and j with i+ j ≤ p− 1.

Using Lemma 7.15, we simply need to prove

(i+ j)t0 +

󰀙
i+ j

k

󰀚
≥ it0 +

󰀙
i

k

󰀚
+ jt0 +

󰀙
j

k

󰀚
,

which is clear. □

It remains to show that, under the assumptions t <
󰁭

ep
p−1

󰁮
− 1 and a ∕= 0, if the

ring OL is free over AL/K , then a | p − 1. The final conclusion follows from the
next lemma, which we do not prove, since even though it is not very hard, it is also
not very interesting from the point of view of Galois theory.

Lemma 7.17. Assume ni = νi for all i = 0, . . . , p− 1. Then a | p− 1.

So we just need to prove that ni = νi for all i in this case. To this end, we apply
Proposition 7.9(3c). Namely, we assume that for our specific ϑ = πa

L ∈ OL, there is
an isomorphism Aϑ

∼= AL/K of AL/K-modules, and deduce from this that ni = νi
needs to hold for all i.

Proof. Suppose that Aϑ
∼= AL/K as AL/K-modules. This means that there exists

α ∈ Aϑ such that

ϕ : AL/K → Aϑ

λ 󰀁→ λα

is an isomorphism. We represent ϕ as a matrix M(α) in the bases of Aϑ and AL/K

described above. If α =
󰁓p−1

i=0 xi(π
−νi

K f i) (recall that α ∈ Aϑ, so every xi is in
OK), then M(α) =

󰁓p−1
i=0 xiM(π−νi

K f i). Note that M(α) ∈ Matp×p(OK), hence it
makes sense to reduce it modulo πK , and ϕ is an isomorphism if and only if M(α)
is invertible over OK , if and only if detM(α) ∈ O×

K , if and only if detM(α) ∕≡ 0
(mod πK).

Next we claim that the matrices M(π−νi

K f i) are all lower-triangular when reduced
modulo πK , and in fact strictly lower-triangular unless i = 0. Assuming this fact,
the matrix M(α) is congruent modulo πK to a lower-triangular matrix whose kth
diagonal coefficient is x0π

νk−nk

K . In particular, M(α) is invertible if and only if
vK(x0) = 0 and νk = nk for all k, as desired.

It remains to show the claim about the matrices M(π−νi

K f i) being strictly lower-
triangular for i > 0 (for i = 0, the matrix M(π−νi

K f i) is easily seen to be diagonal).
Consider an entry of M(π−νi

K f i) strictly above the diagonal, say in position (c, d)

with d > c. The coefficient of M(π−νi

K f i) in position (c, d) is the coefficient of
π−νc

K f c in
(π−nd

K fd)(π−νi

K f i).

Since d > c, if i+ d ≤ p− 1, then the coefficient in question is simply 0. Otherwise,
using Lemma 7.10 we may rewrite the above as

π−nd−νi

K f i+d−pfp = −π−nd−νi

K

p−1󰁛

j=1

󰀕
p

j

󰀖
f i+d+j−p,
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which we claim is in πKAϑ, and therefore has coefficient along π−νc

K f c divisible by
πK . To finish the proof, we only need to show that π−nd−νi−1

K f i+d−pfp is in Aϑ

(notice the −1 in the exponent of πK). Replacing −nd by −νd (which is larger in
absolute value), this reduces to proving

vL(f
i+d−pfpπa

L) ≥ p(νd + νi + 1),

which follows in a straightforward manner from Lemma 7.10 if one uses the as-
sumption that t is not too large.

Here are the details. By Lemma 7.10(5), we have vL(f
pπa

L) = ep + t + a. By
Lemma 7.10(6), every subsequent application of f increases the valuation by at
least t, so vL(f

i+d−pfpπa
L) ≥ ep+ t+ a+ t(i+ d− p). On the other hand,

p(νd + νi + 1) ≤ a+ dt+ a+ it+ p.

So we need to check that

ep+ t+ a+ t(i+ d− p) ≥ a+ dt+ a+ it+ p.

Simplifying like terms, this is equivalent to

ep+ t− pt ≥ a+ p ⇐⇒ ep ≥ p+ t(p− 1) + a.

By assumption, the extension L/K is not almost maximally ramified, so by Remark
7.14 we have e > np−1 = (p− 1)t0 + a, that is, e ≥ (p− 1)t0 + a+ 1. Multiplying
both sides by p, we get

pe ≥ p(p− 1)t0 + (p− 1)a+ a+ p = (p− 1)t+ a+ p,

as desired.
□

Given a Galois extension L/K, the quantity

m(L/K) := min
α∈OL

[OL : OK [G] · α]

is studied [DCFL20]. By methods not too different from the above, an explicit
formula for m(L/K) when L/K is cyclic of degree p is found, as follows.

Theorem 7.18. Let L/K be a ramified Galois extension of p-adic fields of degree
p, with ramification jump t. Let a ∈ {0, . . . , p− 1} be the residue class of t modulo
p, and let νi =

󰁭
a+it
p

󰁮
. If a ∕= 0, then

vp(m(L/K)) = fK

󰀣
p−1󰁛

i=0

νi + min
0≤i≤p−1

(ieK − (p− 1)νi)

󰀤
;

if a = 0, then

vp(m(L/K)) =
1

2
[L : Qp].

8. On K-theory, realisable classes, and Hilbert–Speiser fields

8.1. K-groups. Here we follow the PhD thesis of Breuning [Bre04]. Let A be a
ring, and denote by P(A) the category of finite A-modules.
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Definition 8.1. We denote by K0(A) the Groethendieck group of P(A), that is,
the abelian group generated by the isomorphism classes (P ) of P for all P ∈ P(A),
modulo the relations

(P )− (P ′)− (P ′′)

for all short exact sequences 0 → P ′ → P → P ′′ → 0. We denote by [P ] the class
of (P ) as an element in K0(A).

Definition 8.2. Let us consider the category of pairs (P, f), where P ∈ P(A) and
f is an automorphism of P . A morphism (P, f) → (Q, g) is given by an A-module
homomorphism P → Q which commutes with f and g. The isomorphism classes
are denoted by ((P, f)). The Whitehead group K1(A) is the abelian group with
generators ((P, f)) and relations

((P, f))− ((P ′, f ′))− ((P ′′, f ′′))

if 0 → (P ′, f ′) → (P, f) → (P ′′, f ′′) → 0 is exact, and

((P, fg))− ((P, f))− ((P, g))

for all P ∈ P(A) and automorphisms f and g of P . We denote by [P, f ] the class
of ((P, f)) in K1(A).

There is an alternative description of K1(A). For all n ≥ 1, we can define a map
GLn(A) → GLn+1(A) by

M 󰀁→
󰀕
M 0
0 1

󰀖
.

Let GL(A) = lim−→GLn(A), and let GL(A)′ = [GL(A),GL(A)] be the commutator
subgroup. Then K1(A) ∼= GL(A)/GL(A)′. The isomorphism is obtained as follows:
let [P, f ] ∈ K1(A). Since P is projective, we can find an A-module Q such that
P ⊕Q is free. Then f ⊕ id is represented by a matrix M ∈ GL(A). For the proof
that this is a well-defined map and an isomorphism, see [CR87, Theorem 40.6].

Definition 8.3. Let ϕ : A → B be a ring homomorphism. We consider the category
of triples (P, f,Q), where P,Q ∈ P(A) and f : B ⊗A P → B ⊗A Q is a B-module
isomorphism. A morphism is a pair of morphisms u : P → P ′ and v : Q → Q′ such
that f ′ ◦ (idB ⊗ u) = (idB ⊗ v) ◦ f . The relative K-group K0(A,ϕ) is the abelian
group with generators ((P, f,Q)) and relations

((P, f,Q))− ((P ′, f ′, Q′))− ((P ′′, f ′′, Q′′))

for all short exact sequences

0 → ((P ′, f ′, Q′)) → ((P, f,Q)) → ((P ′′, f ′′, Q′′)) → 0

(that is, 0 → P ′ → P → P ′′ → 0 and 0 → Q′ → Q → Q′′ → 0 are both exact), and

((P, gf,R))− ((P, f,Q))− ((Q, g,R))

with P,Q,R ∈ P(A), and f : B⊗P → B⊗Q and g : B⊗Q → B⊗R isomorphisms.
We denote classes in K0(A,ϕ) by [P, f,Q].

Proposition 8.4. For all ring homomorphisms ϕ : A → B, there exists an exact
sequence

K1(A)
ϕ∗−→ K1(B)

∂1
A,ϕ−→ K0(A,ϕ)

ϕ0
A,ϕ−→ K0(A)

ϕ∗−→ K0(B).

Here ϕ∗([P, f ]) = [B ⊗A P, idB ⊗ f ], ∂1
A,ϕ([M ]) = [An,M,An] for M ∈ GL(B),

∂0
A,ϕ([P, f,Q]) = [P ]− [Q], and ϕ∗([P ]) = [B ⊗A P ].
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8.2. Realisable classes. Let K be a number field, and let G be a finite group.
Denote by R(OK [G]) the set of classes in Cl(OK [G]) which are realisable as Galois
module classes of rings of integers OL in tamely ramified Galois extensions L/K
with Galois group G.

Conjecture 8.5 (McCulloh). R(OK [G]) is a subgroup of Cl(OK [G]).

Let ℓ be a prime number, let G be a direct product of n cyclic groups of order
ℓ, and let C be a cyclic group of order ℓn − 1. Then G is isomorphic to the
additive group of the finite field Fℓn , and C to its multiplicative group. Via these
isomorphisms, there is an action of C on G via multiplication.

For δ ∈ C, let t(δ) denote the least non-negative residue modulo ℓ of Tr(δ), where
Tr = TrFℓn/F. Let

θ =
󰁛

δ∈C

t(δ)δ−1 ∈ Z[C],

and let
I = Z[C](θ/ℓ) ∩ Z[C]

be the Stickelberger ideal of Z[C].
Recall that there is an augmentation map ε : OK [G] → OK ; it is the OK-linear

map sending σ to 1 for all σ ∈ G.
The following result is stated in [McC83].

Theorem 8.6. If G is elementary abelian, then

R(OK [G]) = Cl0(OK [G])I ,

where Cl0(OK [G]) is the kernel of the map Cl(OK [G]) → Cl(OK) induced by the
augmentation map OK [G] → OK .

In [McC87], McCulloh extended this result to abelian groups G, but we do not
give a precise formulation here.

We conclude this subsection with an important result of [AM18].

Theorem 8.7. Suppose that G is of odd order, |G| is coprime to the class number
of K, and K contains no non-trivial |G|th roots of unity. Then R(OK [G]) is a
subgroup of Cl(OK [G]).

Note that in [AM18] there is an explicit association of elements of K0(OK [G],K)
to number field extensions, where K is the algebraic closure of K.

8.3. Mayer–Vietoris sequence. Let A, A1, A2, and 󰁨A be rings, and let

A A1

A2
󰁨A

f1

f2 g1

g2

be a fibre product of ring homomorphisms, meaning that the diagram commutes
and

A ∼= {(a1, a2) ∈ A1 ⊕A2 | g1(a1) = g2(a2)}.
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Theorem 8.8 (Milnor’s theorem). If g1 or g2 is surjective, then there is a Mayer-
Vietoris sequence

K1(A)
(f1,f2)−−−−→ K1(A1)×K1(A2)

g1×(1/g2)−−−−−−→ K1( 󰁨A)

∂−→ K0(A)
(f1,f2)−−−−→ K0(A1)×K0(A2)

g1−g2−−−−→ K0( 󰁨A).

Proof. See [CR87, Theorem 42.13]. □

Let K be a number field, let G be an elementary abelian group of order ℓn, and
let Σ =

󰁓
δ∈G δ. Write ΓOK [G]/OKΣ and OK = OK/ℓnOK . Then

OK [G] Γ

OK OK

φ

ε ε

φ

is a fibre product of ring homomorphisms. Let us extract a piece of the Mayer–
Vietoris exact sequence:

K1(Γ)×K1(OK)
ε̄×(1/φ̄)−−−−−→ K1(OK)

∂−→ K0(OK [G]).

It can be shown that K1(Γ) ∼= Γ×, K1(OK) ∼= O×
K , and K1(OK) ∼= OK

×

(see [CR87, Theorem 40.31], using Gaussian elimination and the fact that elemen-
tary matrices are trivial in the K1-groups. It can also be shown that ∂(s̄) = [(s,Σ)],
where (s,Σ) = sOK [G] + ΣOK [G] is called a Swan-module and is locally free. All
their classes generate the Swan-subgroup T ⊆ Cl(OK [G]). We get

Γ× ×O×
K

ε̄×(1/φ̄)−−−−−→ OK
× ∂−→ T → 0,

that is,

(8.1) T ∼= OK
×
/O×

K ε̄(Γ
×)

8.4. Swan modules and Hilbert–Speiser number fields. Our main reference
is [GRRS99].

Note that T is a Z[C]-submodule of D, the subgroup of the class group consisting
of those classes that become trivial under extension of scalars to the maximal order.
Actually C acts trivially on T since δ ∈ C acts as an automorphism of G, so it maps
sOK [G] and OKΣ to itself.

Proposition 8.9. Assume G is elementary abelian of order ℓn > 2. Then

T ℓn−1(ℓ−1)/2 ⊆ R ∩D.

Proof. We have

ε(θ) =
󰁛

δ∈C

t(δ) = ℓn−1
ℓ−1󰁛

a=1

a = ℓn(ℓ− 1)/2

and NC(θ/ℓ) = ε(θ/ℓ)NC = ℓn−1(ℓ− 1)/2NC ∈ I. Then

ε(ℓn−1θ −NC(θ/ℓ)) = ℓnℓn−1(ℓ− 1)/2− (ℓn−1(ℓ− 1)/2)(ℓn − 1) = ℓn−1(ℓ− 1)/2.
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Note that D ⊆ Cl0(OK [G]), because the map induced by augmentation commutes
with extension of scalars to the maximal order. Since C acts trivially on T , T I =
T ε(I) and

T ℓn−1(ℓ−1)/2 ⊆ T I ⊆ DI ⊆ Cl0(OK [G])I ∩D = R ∩D. □
Lemma 8.10. If γ ∈ Γ×, then ε̄(γ)ℓ

n−1 ∈ Im(O×
K) ⊆ OK/ℓnOK .

Proof. Let e be the identity of G. Then

0 → (OKΣ)C → (OK [G])C → ΓC → H1(C,OKΣ)

and
0 → OKΣ → OKe⊕OKΣ → ΓC → Hom(C,OKΣ) = 0

Hence φ : OKe → ΓC is an isomorphism (in the paper, it is claimed that ε̄ induces
an isomorphism). Let N : Γ× → (Γ×)C be the norm N(γ) =

󰁔
δ∈C γδ. Then

ε̄(γ)ℓ
n−1 = ε̄(N(γ)) ⊆ Im(O×

K). □
Theorem 8.11. There is a natural surjective map

T → V ℓn−1
ℓn = ((OK/ℓnOK)×/Im(O×

K))ℓ
n−1.

Proof. By (8.1), T ∼= OK
×
/O×

K ε̄(Γ
×) ∼= Vℓn/

󰀃
ε̄(Γ×)/Im(O×

K)
󰀄
. We conclude by

raising to the power ℓn − 1 and using Lemma 8.10. □
Definition 8.12. A number field K is Hilbert–Speiser if all finite tamely ramified
abelian extension L/K admit a normal integral basis.

We recall that Q is a Hilbert–Speiser field (Theorem 1.33).

Theorem 8.13 (Greither–Replogle–Rubin–Srivastav). Let K be a Hilbert–Speiser
numer field. Then K = Q.

Proof. We just outline the strategy. For all K ∕= Q, one finds a prime ℓ such that
Vℓ is divisible by some prime q, which does not divide ℓ − 1. Then V

(ℓ−1)2/2
ℓ is

nontrivial. By Theorem 8.11,

T (ℓ−1)/2 → V
(ℓ−1)2/2
ℓ

is surjective, so also T (ℓ−1)/2 must be nontrivial. Since, by Proposition 8.9,

T (ℓ−1)/2 ⊆ R ∩D,

we conclude that R is nontrivial. □
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Part 2. Hopf–Galois theory

9. An introduction to Hopf algebras

9.1. Introduction. Let L/K be a Galois extension of number fields or p-adic fields
with Galois group G. If L/K is wildly ramified, then we know that L/K does not
admit a normal integral basis, that is, OL is not free over OK [G]. More generally,
if for example K = Q and G is abelian, then OL is free over its associated order
AL/K in K[G] (Leopoldt’s theorem), but this may be false if G is not abelian or if
K ∕= Q. Since AL/K is the unique OK-order over which OL may be free, and since
if OL is free of rank one over an OK-subalgebra A of K[G], then A is an order (by a
straightforward reasoning), we deduce that if OL is not free over AL/K , then K[G]
is the wrong place where to look.

The main goal of this part is to introduce a new object, the Hopf algebra, which
is a generalisation of K[G], to define an associated order also in this context, and
to study the freeness of OL over this new order.

In this section, we mainly follow [Chi00]. We also refer to [Swe69] and [Und15],
where the results are mostly given over fields instead of commutative rings, but the
proofs can easily be adapted to our setting.

9.2. Hopf algebras. We fix a commutative ring R for the rest of the section.
Recall that for us all rings have unity. Unadorned tensors denote tensors over R. If
A and B are R-modules, write τ : A⊗B → B⊗A for the switch map: τ(a⊗b) = b⊗a
for all a ∈ A, b ∈ B.

In the first part of these notes, we have widely worked with R-algebras (usually
for R = K a field). The standard notion we have had in mind of an R-algebra is
a ring A, together with a ring homomorphism R → A with image in the center
of A, or equivalently, a ring A with a structure of R-module, with the following
compatibility property: if r ∈ R and a, a′ ∈ A, then

r(aa′) = (ra)a′ = a(ra′).

However, in this setting, it is convenient to give a third equivalent definition.

Definition 9.1. An R-algebra is a tuple (A, µ, ι), where A is an R-module, and
µ : A ⊗ A → A and ι : R → A are R-module homomorphisms, called respectively
multiplication and unity, such that the following properties are satisfied:

• Associativity: the diagram

A⊗A⊗A A⊗A

A⊗A A

µ⊗id

id⊗µ µ

µ

commutes.
• Unitary: the diagram

R⊗A

A⊗A A

A⊗R

ι⊗id s

µ

sid⊗ι
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commutes, where s denotes the scalar multiplication.

Remark 9.2. Note that A is a ring with unity 1A = ι(1R), not necessarily commuta-
tive. If there is no risk of confusion, we just write aa′ for the element µ(a⊗a′) ∈ A,
for a, a′ ∈ A.

Example 9.3.
• R is the simplest example of R-algebra.
• Let A and B be R-algebras. Then A ⊗ B is naturally an R-module, and

also an R-algebra, with component-wise multiplication:

µA⊗B : (A⊗B)⊗ (A⊗B)
idA ⊗τ⊗idB−−−−−−−−→ (A⊗A)⊗ (B ⊗B)

µA⊗µB−−−−−→ A⊗B

and
ιA⊗B : R

∼=−→ R⊗R
ιA⊗ιB−−−−→ A⊗B.

Explicitly, for a, a′ ∈ A and b, b′ ∈ B, (a ⊗ b)(a′ ⊗ b′) = (aa′) ⊗ (bb′) and
ιA⊗B(1R) = 1A ⊗ 1B .

Definition 9.4. Let A and B be R-algebras. An R-module homomorphism f : A →
B is an R-algebra homomorphism if f respects µ and ι, that is, the diagrams

A B

A⊗A B ⊗B

f

f⊗f

µA µB

A B

R

f

ιA ιB

commute. The R-algebra endomorphisms, isomorphisms, and automorphisms are
defined in the natural way.

Definition 9.5. Let A and B be R-algebras. An R-module homomorphism f : A →
B is an R-algebra antihomomorphism if the diagrams

A B

A⊗A A⊗A B ⊗B

f

µA

τ f⊗f

µB

A B

R

f

ιA ιB

commute.

Definition 9.1 is useful in this context since it naturally yields the definition of a
coalgebra: we just need to “reverse the arrows”.

Definition 9.6. An R-coalgebra is a tuple (C,∆, ε), where C is an R-module, and
∆ : C → C ⊗ C and ι : C → R are R-module homomorphisms, called respectively
comultiplication and counity, such that the following properties are satisfied:

• Coassociativity: the diagram

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗id

id⊗∆ ∆

∆

commutes.
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• Counitary: the diagram

R⊗ C

C ⊗ C C

C ⊗R

ε⊗id

id⊗ε

r

∆

l

commutes, where for all c ∈ C, r(c) = 1R ⊗ c and l(c) = c⊗ 1R.

Notation 9.7. We adopt the mysterious but remarkably efficient Sweedler’s notation.
Let C be an R-coalgebra, and let c ∈ C. We write

∆(c) =
󰁛

(c)

c(1) ⊗ c(2).

Coassociativity becomes

󰁛

(c)

󰀳

󰁃
󰁛

c(1)

c(1)(1) ⊗ c(1)(2)

󰀴

󰁄⊗ c(2) =
󰁛

(c)

c(1) ⊗

󰀳

󰁃
󰁛

c(2)

c(2)(1) ⊗ c(2)(2)

󰀴

󰁄 ,

and we just write this element as
󰁛

(c)

c(1) ⊗ c(2) ⊗ c(3).

Counitary becomes

1R ⊗ c =
󰁛

(c)

ε(c(1))⊗ c(2), c⊗ 1R =
󰁛

(c)

c(1) ⊗ ε(c(2)),

that is,
c =

󰁛

(c)

ε(c(1))c(2) =
󰁛

(c)

c(1)ε(c(2)).

Example 9.8.
• R is the simplest example of R-coalgebra.
• Let C and D be R-coalgebras. Then C ⊗D is naturally an R-module, and

also an R-coalgebra:

∆C⊗D : C ⊗D
∆C⊗∆D−−−−−−→ (C ⊗ C)⊗ (D ⊗D)

idC ⊗τ⊗idD−−−−−−−−→ (C ⊗D)⊗ (C ⊗D)

and
εC⊗D : C ⊗D

εC⊗εD−−−−−→ R⊗R
∼=−→ R.

Definition 9.9. Let C and D be R-coalgebras. An R-module homomorphism
f : C → D is an R-coalgebra homomorphism if f respects ∆ and ε. In other words,
the diagrams

C D

C ⊗ C D ⊗D

f

∆C ∆D

f⊗f

C D

R

f

εC εD

commute. The R-coalgebra endomorphisms, isomorphisms, and automorphisms are
defined in the natural way.
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Definition 9.10. Let C,D be R-coalgebras. An R-module homomorphism f : C →
D is an R-coalgebra antihomomorphism if the diagrams

C D

C ⊗ C C ⊗ C D ⊗D

f

∆C ∆D

τ f⊗f

C D

R

f

εC εD

commute.

We are interested in objects that are simultaneously R-algebras and R-coalgebras.

Lemma 9.11. Let (H,µ, ι,∆, ε) be a tuple where (H,µ, ι) is an R-algebra and
(H,∆, ε) is an R-coalgebra. The following are equivalent:

(1) µ and ι are R-coalgebra homomorphisms.
(2) ∆ and ε are R-algebra homomorphisms.

Proof. It is immediate to see that both conditions are defined by the commutativity
of the same diagrams. □
Definition 9.12. An R-bialgebra is a tuple (H,µ, ι,∆, ε), where (H,µ, ι) is an R-
algebra, (H,∆, ε) is an R-coalgebra, and ∆ and ε are R-algebra homomorphisms.

Definition 9.13. Let H and H ′ be R-bialgebras. An R-module homomorphism
f : H → H ′ is an R-bialgebra homomorphism if f is an R-algebra and R-coalgebra
homomorphism. The R-bialgebra endomorphisms, isomorphisms, and automor-
phisms are defined in the natural way.

We are ready for our main definition.

Definition 9.14. An R-Hopf algebra is a tuple (H,µ, ι,∆, ε,λ), where (H,µ, ι,∆, ε)
is an R-bialgebra and λ : H → H is an R-module homomorphism, called antipode,
such that the following property is satisfied:
Antipode property: the diagram

H ⊗H H ⊗H

H R H

H ⊗H H

id⊗λ

µ∆

ε

∆

ι

λ⊗id

µ

commutes, that is,

ι ◦ ε = µ ◦ (id⊗λ) ◦∆ = µ ◦ (λ⊗ id) ◦∆,

or, in Sweedler’s notation,

ε(h)1H =
󰁛

(h)

h(1)λ(h(2)) =
󰁛

(h)

λ(h(1))h(2)

for all h ∈ H.

Remark 9.15. In the definition of Hopf algebras given in [Chi00], it is required
that the antipode λ is an algebra and coalgebra antihomomorphism. However, this
is implied already by Definition 9.14; see [Swe69, Proposition 4.0.1] or [Und15,
Propositions 3.1.8 and 3.1.10].
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Definition 9.16. Let H and H ′ be R-Hopf algebras. An R-module homomor-
phism f : H → H ′ is an R-Hopf algebra homomorphism if f is an R-bialgebra
homomorphism, and f respects λ, that is, the diagram

H H ′

H H ′

f

λH λH′

f

commutes. The R-Hopf algebra endomorphisms, isomorphisms, and automorphisms
are defined in the natural way.

Definition 9.17. An R-Hopf algebra H is
• commutative if H is so as R-algebra, that is, for all h, h′ ∈ H,

hh′ = h′h;

• cocommutative if τ ◦∆ = ∆, that is, for all h ∈ H,
󰁛

(h)

h(1) ⊗ h(2) =
󰁛

(h)

h(2) ⊗ h(1);

• abelian if H is both commutative and cocommutative.

Example 9.18.
• R is the simplest example of R-Hopf algebra. Here λ is R-linear and respects
ι = id, so necessarily λ(r) = r.

• Let S be an R-algebra. Then S is an S-Hopf algebra, and if H is an R-Hopf
algebra, then S ⊗H is naturally an S ⊗R-Hopf algebra. Identifying S and
S ⊗R, we find that S ⊗H is an S-Hopf algebra.

We can finally study our main source of Hopf algebras.

Example 9.19. Let G be a finite group, and consider the R-group algebra R[G].
We claim that R[G] is also an R-Hopf algebra. Since R[G] is a free R-module of
rank |G| with basis {σ | σ ∈ G}, and all the maps defining the structure of R-Hopf
algebra are R-module homomorphisms, it is enough to define them on the elements
of G: for all σ ∈ G,

∆(σ) = σ ⊗ σ,

ε(σ) = 1R,

and
λ(σ) = σ−1.

It is straightforward to check the axioms; for example,

(µ ◦ (id⊗λ) ◦∆)(σ) = (µ ◦ (id⊗λ))(σ ⊗ σ) = µ(σ ⊗ σ−1) = 1R[G] = (ι ◦ ε)(σ)

and

(µ ◦ (λ⊗ id) ◦∆)(σ) = (µ ◦ (λ⊗ id))(σ ⊗ σ) = µ(σ−1 ⊗ σ) = 1R[G] = (ι ◦ ε)(σ),

so λ satisfies the antipode property.
The R-Hopf algebra R[G] is always cocommutative, and R[G] is commutative if

and only if G is abelian.
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9.3. Interlude: more on commutative module theory. We collect here some
useful facts about modules, which we use in the following sections.

Let H be an R-module. Denote by H∗ the linear dual of H:

H∗ = HomR(H,R).

Clearly, H∗ is an R-module, and it shares some properties of H.

Definition 9.20. A finite R-module is a finitely generated projective module over
R.

Remark 9.21. If R is a field, then finite just means finite-dimensional.

Since the projective modules are exactly the direct summand of the free modules,
we can immediately derive the next results.

Lemma 9.22. Let H be a finite R-module. Then the following facts hold:
(1) H∗ is a finite R-module.
(2) H ∼= H∗∗ as R-modules.
(3) H admits a projective coordinate system, that is, a set {hi, fi}ni=1, where

hi ∈ H and fi ∈ H∗ for all 1 ≤ i ≤ n, such that for all h ∈ H,

h =

n󰁛

i=1

fi(h)hi.

(4) If γ : H → H ′ is an R-module homomorphism between finite modules, we
can define the traspose of γ to be the R-module homomorphism γ∗ : H ′∗ →
H∗, with γ∗(f ′)(h) = f ′(γ(h)). Then γ is bijective if and only if γ∗ is
bijective.

Notation 9.23. Since if H is a finite R-module, then we can identify it with the
dual of H∗, we avoid to choose a point of view using the map

〈 , 〉 : H∗ ⊗H → R,

defined by 〈f, h〉 = f(h).

Remark 9.24. Note that if {hi, fi}ni=1 is a projective coordinate system for a finite
R-module H, then {fi, hi}ni=1 is a projective coordinate system for H∗.

Definition 9.25. An R-module H is
• flat if for all exact sequences of R-modules

0 → A
ϕ1−→ B

ϕ2−→ C → 0,

the sequence

0 → H ⊗A
idH ⊗ϕ1−−−−−→ H ⊗B

idH ⊗ϕ2−−−−−→ H ⊗ C → 0

is exact;
• faithfully flat if, for all R-modules A, B and C, the sequence

0 → A
ϕ1−→ B

ϕ2−→ C → 0,

is exact if and only if the sequence

0 → H ⊗A
idH ⊗ϕ1−−−−−→ H ⊗B

idH ⊗ϕ2−−−−−→ H ⊗ C → 0

is exact;
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• finitely presented if there exist n ∈ N and a surjective R-module homomor-
phism ϕ : Rn → H with finitely generated kernel;

• faithful if the only r ∈ R such that rh = 0 for all h ∈ H is r = 0.

Proposition 9.26.
• Every projective R-module is flat.
• A direct sum of R-modules is flat if and only if each module is flat.

Proof. See [Rot09, Proposition 3.46]. □
Example 9.27. Suppose that R is Noetherian.

• For all maximal ideals m of R, the completion Rm is flat; see [Mat70,
Corollary 1 of Theorem 55]. In particular, the direct sum

󰁏
m Rm over all

maximal ideals of R is flat.
• The direct sum

󰁏
m Rm over all maximal ideals of R is also faithfully flat.

This follows from [Mat89, Theorem 7.2], flatness of Rm, and the fact that
if M is an R-module and Mm = 0 for every m, then also M = 0.

Proposition 9.28. An R-module H is finite if and only if H is finitely presented
and flat.

Proof. Combine [Rot09, Proposition 3.11], Proposition 9.26, and [Rot09, Theorem
3.56]. □

The following fact is really useful in the sequel.

Theorem 9.29. Let S be an R-algebra, and let M and N be R-modules. If M is
finite, then the natural S-module homomorphism

θ : S ⊗HomR(M,N) → HomS(S ⊗M,S ⊗N)

is bijective.

Proof. This result is proved in [Rei03, section 2e] for finitely presented flat modules.
By Proposition 9.28, we derive our assertion. □
9.4. Dual algebra. Let H be a finite R-Hopf algebra. We claim that also H∗ is an
R-Hopf algebra. As one can expect, we use the R-algebra structure of H to define
the structure or R-coalgebra of H∗, and viceversa. If f, f ′ ∈ H∗ and r ∈ R, then

∆H∗(f) = f ◦ µH ,

εH∗(f) = f(1H),

µH∗(f ⊗ f ′) = (f ⊗ f ′) ◦∆H (here we are identifying R⊗R with R),
ιH∗(r) = rεH (note that εH ∈ H∗),

and
λH∗(f) = f ◦ λH .

Proposition 9.30. Let H be a finite R-Hopf algebra. Then H∗, with the structure
defined above, is a finite R-Hopf algebra.

Proof. See [Und15, Proposition 3.1.12]. □
Remark 9.31. By the definition, it immediately follows that H is commutative if
and only if H∗ is cocommutative, and H is cocommutative if and only if H∗ is
commutative.
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Also by definition, it is really straightforward to check the following fact.

Lemma 9.32. Let H be a finite R-Hopf algebra. Then H ∼= H∗∗ as R-Hopf
algebras.

From now on, we identify H∗∗ with H, when H is a finite R-Hopf algebra.

Example 9.33. Let G be a finite group. Then H = R[G] is a finite R-Hopf algebra,
and we can study the dual H∗ = R[G]∗. Consider the dual basis {eσ | σ ∈ G},
where eσ(τ) = δσ,τ is given by the Kronecker’s delta. For all σ, τ, ρ ∈ G and r ∈ R,

∆H∗(eσ)(τ ⊗ ρ) = eσ(τρ) = δσ,τρ =⇒ ∆H∗(eσ) =
󰁛

τρ=σ

eτ ⊗ eρ,

εH∗(eσ) = eσ(1R[G]) = δσ,1G ,

µH∗(eσ ⊗ eτ )(ρ) = (eσ ⊗ eτ )(ρ⊗ ρ) = δσ,ρδτ,ρ =⇒ µH∗(eσ ⊗ eτ ) = δστeσ,

ιH∗(r) = rεH = r
󰁛

σ′∈G

eσ′ ,

and
λH∗(eσ)(τ) = eσ(τ

−1) = δσ,τ−1 =⇒ λH∗(eσ) = eσ−1 .

Note that the elements of the dual basis are pairwise orthogonal idempotents, by
definition of µH∗ .

9.5. Grouplike elements. If G is a finite group, then R[G] is an R-Hopf algebra,
and if σ ∈ G, then ∆(σ) = σ⊗ σ. Motivated by this fact, we can give the following
definition.

Definition 9.34. Let H be an R-Hopf algebra. A nonzero element h ∈ H is
grouplike if ∆(h) = h⊗ h. We write G(H) for the set of grouplike elements.

Proposition 9.35. Let H be an R-Hopf algebra. Suppose that R has no idem-
potents different from 0 and 1R. Then every grouplike element h ∈ H satisfies
ε(h) = 1R and G(H) is a subgroup of the multiplicative group of units of H.

Proof. The first claim follows from counitary: if h ∈ G(R), then

h = (s ◦ (ε⊗ id) ◦∆)(h) = ε(h)h,

hence
ε(h) = ε(ε(h)h) = ε(h)ε(h).

Since R has no idempotent different from 0 and 1R, and h ∕= 0, we conclude that
ε(h) = 1R.

We claim that λ(h) ∈ G(H) and λ(h) is the inverse of h. For the first step, we
need to use that λ is an R-coalgebra antihomomorphism:

∆(λ(h)) = ((λ⊗ λ) ◦ τ ◦∆)(h) = λ(h)⊗ λ(h).

Then, by the antipode property,

1H = ι(ε(h)) = (µ ◦ (id⊗λ) ◦∆)(h) = hλ(h)

and
1H = ι(ε(h)) = (µ ◦ (λ⊗ id) ◦∆)(h) = λ(h)h.
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This also shows that λ(h) ∕= 0. Finally, we see that G(R) is closed under multipli-
cation. Let h, h′ ∈ G(H). As h is invertible, h · h′ ∕= 0. Since ∆ is an R-algebra
homomorphism, we find

∆(hh′) = ∆(h)∆(h′) = (hh′)⊗ (hh′),

that is, hh′ ∈ G(H). □

Remark 9.36. Let H be a finite R-Hopf algebra, and consider f ∈ H∗ different from
the zero map. Recall that, if h, h′ ∈ H, then

∆H∗(f)(h⊗ h′) = (f ◦ µH)(h⊗ h′) = f(hh′).

If f : H → R is an R-algebra homomorphism, then f(hh′) = f(h)f(h′), so f is
grouplike. Also the converse is true if R has no idempotent different from 0 and
1R.

Proposition 9.37. Suppose that R is a field, and let H be an R-Hopf algebra.
Then distinct grouplike elements of H are linearly independent over R.

Proof. Suppose h, h1, . . . , hn are grouplike elements such that h1, . . . , hn are linearly
independent and

h =

n󰁛

i=1

rihi.

We claim that h = hi for some i. Note that
󰁛

i,j

rirj(hi ⊗ hj) = h⊗ h = ∆(h) = ∆

󰀣
n󰁛

i=1

rihi

󰀤
=

n󰁛

i=1

ri∆(hi) =

n󰁛

i=1

ri(hi ⊗ hi).

Since {hi ⊗ hj}i,j are linearly independent over R, we deduce that
󰀫
rirj = 0 if i ∕= j,

r2i = ri for all i.

As R is a field and h ∕= 0, we conclude that there exists exactly one i such that
h = hi, as claimed. □

Corollary 9.38. Suppose that R is a field, and let H be a finite R-Hopf algebra. If
there is an R-basis N = {hi} of H consisting of grouplike elements, then N = G(H)
is a group, and H is the group ring R[N ].

9.6. Modules and comodules. We fix an R-Hopf algebra H for this subsection.
We need to work with R-modules which also admit an action of H. We give the
following definition, since we require compatibility between the two structures.

Definition 9.39. An R-module S is a left H-module if there is an R-module ho-
momorphism α : H ⊗ S → S such that the following properties are satisfied:

• Associativity: the diagram

H ⊗H ⊗ S H ⊗ S

H ⊗ S S

µH⊗id

id⊗α α

α

commutes.
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• Unitary: the diagram

R⊗ S

H ⊗ S S

ιH⊗id s

α

commutes.

Notation 9.40. If there is no risk of confusion, we just write h · s for the element
α(h⊗ s) ∈ S, for h ∈ H, s ∈ S.

Example 9.41.
• R is a left H-module via ε: for all h ∈ H and r ∈ R,

h · r = ε(h)r.

• Let S be a left H-module. Then S ⊗ S is a left H-module via ∆: for all
h ∈ H and s, t ∈ S,

h · (s⊗ t) =
󰁛

(h)

(h(1) · s)⊗ (h(2) · t).

Definition 9.42. Let S and S′ be left H-modules. An R-module homomorphism
f : S → S′ is an H-module homomorphism if f respects α, that is, the diagram

S S′

H ⊗ S H ⊗ S′

f

id⊗f

αS αS′

commutes.

As usual, we can give the “dual” definition.

Definition 9.43. An R-module S is a right H-comodule if there is an R-module
homomorphism β : S → S ⊗H such that the following properties are satisfied:

• Coassociativity: the diagram

S ⊗H ⊗H S ⊗H

S ⊗H S

β⊗id

id⊗∆H β

β

commutes.
• Counitary: the diagram

S ⊗H S

S ⊗R

id⊗εH

β

l

commutes.

Notation 9.44. If S is a right H-module and s ∈ S, then we can adapt Sweedler’s
notation as follows:

β(s) =
󰁛

(s)

s(0) ⊗ s(1), for s(0) ∈ S and s(1) ∈ H.
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For example, coassociativity becomes

(β ⊗ id)(β(s)) = (id⊗∆H)(β(s)) =
󰁛

(s)

s(0) ⊗ s(1) ⊗ s(2).

Example 9.45.
• R is a right H-comodule via ι: for all r ∈ R,

β(r) = r ⊗ ι(1R) = r ⊗ 1H .

• Let S be a right H-comodule. Then S⊗S is a right H-comodule via µ: for
all s, t ∈ S,

β(s⊗ t) =
󰁛

(s),(t)

s(0) ⊗ t(0) ⊗ µ(s(1) ⊗ t(1)).

Definition 9.46. Let S and S′ be right H-comodules. An R-module homomor-
phism f : S → S′ is an H-comodule homomorphism if f respects β, that is, the
diagram

S S′

S ⊗H S ⊗H

f

βS βS′

f⊗id

commutes.

Now suppose that H is finite, with projective coordinate system {hi, fi}ni=1. If
S is a right H-comodule, then S becomes a left H∗-module, via

f · s =
󰁛

(s)

s(0)〈f, s(1)〉.

Since we have identified H∗∗ with H, this also means that if S is a right H∗-
comodule, then S is a left H-module.

Conversely, if S is a left H-module, then S becomes a right H∗-comodule, via

β(s) =

n󰁛

i=1

(hi · s)⊗ fi.

Clearly, there are some properties to be carefully checked; see [Chi00, section 2].
Still, we may deduce the next important result.

Proposition 9.47. Let H be a finite R-Hopf algebra, and let S be an R-module.
Then S is a left H-module if and only if S is a right H∗-comodule. In addition,
the processes of going from the H-module action to the H∗-comodule action and the
opposite are inverse operations.

Proof. We just prove the final claim. Let {hi, fi}ni=1 be a projective coordinate
system for H. Suppose S is a left H-module. Then S is a right H∗-comodule,
where, for all s ∈ S,

β(s) =

n󰁛

i=1

(hi · s)⊗ fi.

This H∗-comodule action induces a H∗∗ = H-module action, as follows:

α(h⊗ s) =

n󰁛

i=1

(hi · s)〈h, fi〉 =
󰀣

n󰁛

i=1

〈h, fi〉hi

󰀤
· s = h · s,
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that is, we recover the original H-module action on S.
Conversely, suppose S is a right H∗-comodule, via

s 󰀁→
󰁛

(s)

s(0) ⊗ s(1) ∈ S ⊗H∗.

Then S is also a left H∗∗ = H-module, via

h · s =
󰁛

(s)

s(0)〈h, s(1)〉.

This H-module action induces a H∗-comodule action, as follows:

β(s) =

n󰁛

i=1

(hi · s)⊗ fi =

n󰁛

i=1

󰀳

󰁃
󰁛

(s)

s(0)〈hi, s(1)〉

󰀴

󰁄⊗ fi

=

n󰁛

i=1

󰁛

(s)

s(0)〈hi, s(1)〉 ⊗ fi

=

n󰁛

i=1

󰁛

(s)

s(0) ⊗ 〈hi, s(1)〉fi

=
󰁛

(s)

s(0) ⊗
n󰁛

i=1

〈hi, s(1)〉fi =
󰁛

(s)

s(0) ⊗ s(1),

that is, we recover the original H∗-comodule action on S. □

10. Hopf–Galois extensions

The goal of this section is to introduce Hopf–Galois extensions, fundamental
structures in this theory. We follow again [Chi00], and we keep the notation of
Section 9.

10.1. Module and comodule algebras. Let us fix an R-Hopf algebra H.

Definition 10.1. Let S be a left H-module and an R-algebra. We say that S is a
left H-module algebra if, for all h ∈ H and s, t ∈ S,

h · (st) =
󰁛

(h)

(h(1) · s)(h(2) · t),

h · 1S = ε(h)1S .

Lemma 10.2. Let S be a left H-module and an R-algebra. Then S is a left H-
module algebra if and only if µS and ιS are H-module homomorphisms.

Proof. This is straightforward, since the two properties defining a left H-module
algebra are precisely describing the commutativity of the diagrams

S ⊗ S S

H ⊗ S ⊗ S H ⊗ S

µS

id⊗µS

αS⊗S αS

R S

H ⊗R H ⊗ S

ιS

id⊗ιS

αR αS

which imply that µS and ιS are H-module homomorphisms. □



GALOIS AND HOPF GALOIS 65

This equivalent way to see left H-module algebras immediately implies the fol-
lowing definition.

Definition 10.3. Let S be a right H-comodule and an R-algebra. We say that S
is a right H-comodule algebra if µS and ιS are H-comodule homomorphisms.

Remark 10.4. Recall that µS is an H-comodule homomorphism if and only if the
diagram

S ⊗ S S

S ⊗ S ⊗H S ⊗H

µS

βS⊗S βS

µS⊗id

commutes. Explicitly, if s, t ∈ S, then

βS(st) =
󰁛

(s),(t)

s(0)t(0) ⊗ s(1)t(1) =

󰀳

󰁃
󰁛

(s)

s(0) ⊗ s(1)

󰀴

󰁄

󰀳

󰁃
󰁛

(t)

t(0) ⊗ t(1)

󰀴

󰁄

= βS(s)βS(t).

Since ιS is an H-comodule homomorphism if and only if βS(1S) = 1S ⊗ 1H , we
deduce that S is a right H-comodule algebra if and only if βS is an R-algebra
homomorphism.

Now suppose H is finite. In Proposition 9.47, we have seen how to move between
left H-modules and right H-modules. The same results also holds for module and
comodule algebras.

Proposition 10.5. Let S be an R-algebra. Then S is a left H-module algebra if
and only if S is a right H∗-comodule algebra.

Example 10.6. Let H be a finite R-Hopf algebra. Then H∗ is a right H∗-comodule
via comultiplication map

∆H∗ : H∗ → H∗ ⊗H∗.

This means that H∗ is a left H-module: for all h ∈ H and f ∈ H∗,

h · f =
󰁛

(f)

f(1)〈h, f(2)〉 ∈ H∗.

Since, by definition, ∆H∗ is an R-algebra homomorphism, µS is an H∗-comodule
homomorphism. An easy verification implies that this is true also for ιS , and so
H∗ is a right H∗-comodule algebra, or equivalently, a left H-module algebra.

We can think to module and comodule algebras as generalisations of the concepts
of actions and gradings of algebras by groups.

If S is a finite commutative R-algebra and G is a finite group of R-algebra
automorphisms of S, then for all σ ∈ G and s, s′ ∈ S, σ(ss′) = σ(s)σ(s′). Clearly
S is a left H = R[G]-module via

󰀣
󰁛

σ∈G

rσσ

󰀤
· s =

󰁛

σ∈G

rσσ(s).
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We claim that S is also a left R[G]-module algebra. Since ∆H(σ) = σ ⊗ σ,
󰀣
󰁛

σ∈G

rσσ

󰀤
· (st) =

󰁛

σ∈G

rσσ(st) =
󰁛

σ∈G

rσσ(s)σ(t)

= µS

󰀣
󰁛

σ∈G

rσ(σ ⊗ σ)(s⊗ t)

󰀤

= µS

󰀣󰀣
󰁛

σ∈G

rσσ

󰀤
· (s⊗ t)

󰀤
.

Since εH(σ) = 1R,
󰀣
󰁛

σ∈G

rσσ

󰀤
· 1S =

󰁛

σ∈G

rσσ(1S) =
󰁛

σ∈G

rσ1S = εH

󰀣
󰁛

σ∈G

rσσ

󰀤
1S .

Definition 10.7. If G is also abelian, we say that S is a G-graded R-algebra if we
can write S as direct sum of R-modules

S =
󰁐

σ∈G

Sσ,

where ιS(R) ⊆ S1 and for all σ, τ ∈ G,

SσSτ ⊆ Sστ .

If we consider the R-module homomorphism

β : S → S ⊗R[G]

s 󰀁→ s⊗ σ,

where s ∈ Sσ, then it is immediate to see that β is an R-algebra homomorphism
and to get that S is a right R[G]-comodule algebra.

10.2. (Hopf–)Galois extensions. In order to define Hopf–Galois extensions, we
need to give a more general definition of Galois extensions.

Theorem 10.8. Let S be a finite commutative R-algebra, and let G be a finite
group of R-algebra automorphisms of S. The following are equivalent:

(1) The R-module homomorphism

j : S ⊗R[G] ∼= S[G] → EndR(S)

󰁛

σ∈G

sσσ 󰀁→
󰀣
t 󰀁→

󰁛

σ∈G

sσσ(t)

󰀤

is bijective.
(2) The R-module homomorphism

h : S ⊗ S → S ⊗HomR(R[G], R) ∼= HomS(S[G], S)

s⊗ t 󰀁→
󰀣
󰁛

σ∈G

sσσ 󰀁→ s
󰁛

σ∈G

sσσ(t)

󰀤

is bijective.
(3) For all maximal ideals m of S and σ ∕= 1 in G, there exists s ∈ S such that

σ(s)− s /∈ m.
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Proof. See [CHR65, Theorem 1.3]. In (2), the isomorphism is given by Theo-
rem 9.29. □
Definition 10.9. Let S be a finite commutative R-algebra, and let G be a finite
group of R-algebra automorphisms of S. Then S is a Galois extension of R with
group G if one condition in Theorem 10.8 holds.

Example 10.10. Let L/K be a finite Galois extension of fields of degree n, and G
be a finite group of K-algebra automorphisms of L. If L/K is Galois with Galois
group G in the usual sense, then L is a Galois extension of K with group G, in the
sense of definition 10.9. Indeed, the injectivity of the map j follows immediately
from linear independence of characters, and since

dimK(L[G]) = dimK(L)|G| = dimK(L)2 = dimK(EndK(L)),

we derive our assertion.
Conversely, if L is a Galois extension of K with group G in the sense of defini-

tion 10.9, then by the isomorphism j we deduce that |AutK(L)| ≥ |G| = n, and so
by Artin’s characterisation of Galois extensions, L/K is Galois with Galois group
G = AutK(L) is the usual sense.

Example 10.11. Let L/K be a Galois extension of number fields or p-adic fields
with Galois group G. Consider OL as a finite OK-algebra (which is projective
as an OK-module, since it is locally projective at every prime). The condition in
Theorem 10.8(3) says that for all primes P of OL, the inertia subgroup

G0 = {σ ∈ G | σ(x) ≡ x (mod P) for all x ∈ OL}
is trivial, that is, P is unramified over OK . We deduce that OL is a Galois extension
of OK with group G if and only if L/K is unramified.

With Definition 10.9 in mind, we can define Hopf–Galois extensions.

Definition 10.12. Let H be a finite cocommutative R-Hopf algebra. A finite
commutative R-algebra S is an H-Galois extension, or H-Galois, if the following
hold:

(1) S is a left H-module algebra.
(2) The R-module homomorphism

j : S ⊗H → EndR(S)

s⊗ h 󰀁→ (t 󰀁→ s(h · t))
is bijective.

Note that this implies that if S and H are free, then their ranks as R-modules
coincide.

If we define a suitable multiplication on S⊗H, we get that j is also an R-algebra
isomorphism, where that the multiplication in EndR(S) is given by composition.

Definition 10.13. Let S be a left H-module algebra. We denote by S#H the
smash product of S and H: as R-module, S#H is just S ⊗ H, and it is endowed
with multiplication given by

(s#x)(t#y) =
󰁛

(x)

s(x(1) · t)#x(2)y,

for s, t ∈ S and x, y ∈ H.
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A long but straightforward computation shows that indeed S#H is an R-algebra,
and we have the following fact.

Proposition 10.14. Let H be a finite cocommutative R-Hopf algebra, and let S
be H-Galois. Then the map

j : S ⊗H → EndR(S)

s⊗ h 󰀁→ (t 󰀁→ s(h · t))
is an R-algebra isomorphism.

Definition 10.15. Let H be a finite cocommutative R-Hopf algebra, and let S be
a left H-module, finite as R-module. The fixed ring of S by H is

SH = {s ∈ S | h · s = ε(h)s, for all h ∈ H}.

Remark 10.16. Note that the elements of S are just fixed up to a scalar, depending
on the counity of H. But if H = R[G] for a finite group G, then ε(σ) = 1 for every
σ ∈ G, so we find the usual fixed ring.

Proposition 10.17. Let H be a finite cocommutative R-Hopf algebra, and let S
be H-Galois. Then SH = ιS(R). In particular, if R ⊆ S and ιS is the inclusion,
then SH = R.

Proof. Ler r ∈ R and h ∈ H. Then

h · ιS(r) = h · (r1S) = r(h · 1S) = rε(h)1S = ε(h)ιS(r),

that is, ιS(R) ⊆ SH .
Conversely, suppose s ∈ SH . We claim that s#1H commutes with t#h in S#H,

for all t ∈ S, h ∈ H.

(t#h)(s#1H) =
󰁛

(h)

t(h(1) · s)#h(2) =
󰁛

(h)

t(ε(h(1))s)#h(2)

=
󰁛

(h)

ε(h(1))ts#h(2) = ts#
󰁛

(h)

ε(h(1))h(2) = st#h

= (s#1H)(t#h).

This means that j(s#1H), the multiplication-by-s, is in the center of EndR(S). We
claim that every element of the center of EndR(S) is a multiplication by an element
of ιS(R) (or equivalently, the scalar multiplication by an element of R). This is
clearly true if S is free. In general, consider the ring homomorphism from R to the
center of EndR(S). This map is surjective if and only the localised map at every
maximal ideal m is surjective, and this is true (after a bit of work) since localising
we find local rings, and so freeness.

We conclude that there exists r ∈ R such that, for all t ∈ S,

j(s#1H)(t) = st = rt = ι(r)t,

and so, for t = 1S , we find s = ι(r), as desired. □
Now let H be a finite cocommutative R-Hopf algebra, thus H∗ is a finite com-

mutative R-Hopf algebra.

Definition 10.18. A finite commutative R-algebra is S an H∗-Galois object, or
H∗-principal homogeneous space, if the following hold:

• S is a right H∗-comodule algebra, with comodule action given by β.
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• The R-module homomorphism

γ : S ⊗ S → S ⊗H∗

s⊗ t 󰀁→ (s⊗ 1H∗)β(t)

is bijective.

Remark 10.19. Notice that both S⊗S and S⊗H∗ are finite S-modules (S acts on
the first factor of the pure tensors), and by Remark 10.4 and the commutativity of
S and H∗, γ is also an S-algebra homomorphism.

The concepts of H-Galois extensions and H∗-Galois object coincide, as we now
shall see.

Proposition 10.20. Let H be a finite R-Hopf algebra, and let S be a left H-module
algebra, finite as R-module. The following are equivalent:

(1) The R-module homomorphism

j : S ⊗H → EndR(S)

s⊗ h 󰀁→ (t 󰀁→ s(h · t))
is bijective.

(2) The R-module homomorphism

γ : S ⊗ S → S ⊗H∗

s⊗ t 󰀁→ (s⊗ 1H∗)β(t)

is bijective.
In particular, S is H-Galois if and only if S is an H∗-principal homogeneous space.

Proof. First of all, S is also a right H∗-comodule algebra, where, for all s ∈ S and
h ∈ H, β(s) =

󰁓
(s) s(0) ⊗ s(1) and h · s =

󰁓
(s) s(0)〈h, s(1)〉.

Since γ is S-linear, γ is a bijective if and only if its transpose

γ∗ : HomS(S ⊗H∗, S) → HomS(S ⊗ S, S)

f 󰀁→

󰀳

󰁃s⊗ t 󰀁→ f(γ(s⊗ t)) = f

󰀳

󰁃
󰁛

(t)

st(0) ⊗ t(1)

󰀴

󰁄

󰀴

󰁄

is bijective. We also have the following isomorphisms as R-modules:

ω : S ⊗H → HomS(S ⊗H∗, S)

(s⊗ h) 󰀁→ (t⊗ f 󰀁→ st〈h, f〉),

η : HomR(S, S) → HomS(S ⊗ S, S)

f 󰀁→ (s⊗ t 󰀁→ sf(t)).

The map ω follows from the isomorphism H ∼= HomR(H
∗, R) and Theorem 9.29,

while η from the tensor-hom adjunction (see [Rot09, Theorem 2.76]). In particular,
we find the diagram

S ⊗H HomR(S, S)

HomS(S ⊗H∗, S) HomS(S ⊗ S, S),

j

ω η

γ∗
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and we claim it is commutative. If so, then we would find that j is bijective if and
only if γ∗ is bijective, if and only if γ is bijective. So let s ∈ S and h ∈ H. Then

η(j(s⊗ h))(t⊗ u) = t(j(s⊗ h)(u)) = ts(h · u).
On the other hand,

γ∗(ω(s⊗ h))(t⊗ u) = ω(s⊗ h)(γ(t⊗ u))

= ω(s⊗ h)

󰀳

󰁃
󰁛

(u)

tu(0) ⊗ u(1)

󰀴

󰁄

=
󰁛

(u)

stu(0)〈h, u(1)〉

= st
󰁛

(u)

u(0)〈h, u(1)〉 = st(h · u),

and so the assertion follows. □

Example 10.21. Let H be a finite cocommutative R-Hopf algebra. We have
already seen that H∗ is a finite commutative right H∗-comodule algebra (Exam-
ple 10.6). We claim that H∗ is an H∗-principal homogeneous space. This holds
since the R-module homomorphism

γ : H∗ ⊗H∗ 󰀁→ H∗ ⊗H∗

f ⊗ g 󰀁→
󰁛

(g)

fg(1) ⊗ g(2)

admits an R-linear inverse:

δ : H∗ ⊗H∗ 󰀁→ H∗ ⊗H∗

f ⊗ g 󰀁→
󰁛

(g)

fλH∗(g(1))⊗ g(2).

We conclude that H∗ is an H-Galois extension, called the trivial H-Galois exten-
sion.

10.3. Base change. Let B be a finite commutative R-algebra, let H be a finite
cocommutative R-Hopf algebra, and let S be an H-Galois extension. Consider
B ⊗ S as B-algebra. It is clearly a left B ⊗ H-module, and a verification shows
that it is also a left B ⊗H-module algebra. We claim that B ⊗ S is B ⊗H-Galois.
Consider the following commutative diagram:

B ⊗ S ⊗H B ⊗HomR(S, S)

(B ⊗ S)⊗B (B ⊗H) HomB(B ⊗ S,B ⊗ S)

idB ⊗j

ψ ω

jB

Since j is an R-module isomorphism, idB ⊗j is an B-module isomorphism. Both
the vertical arrows are B-module isomorphisms: ψ because of the associativity and
the simmetry of the tensor product, and ω by Theorem 9.29. We conclude that
also jB is an isomorphism, that is, B ⊗ S is B ⊗H-Galois.

Suppose now that B is a faithfully flat R-algebra, H is a finite cocommutative
R-Hopf algebra, S is a left H-module algebra, and B ⊗ S is B ⊗ H-Galois, with
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the action given by the H-action on S. Using the previous diagram, we find that
idB ⊗j : B ⊗ S ⊗H → B ⊗EndR(S) is a B-module isomorphism, and by faithfully
flatness of B, j : S⊗H → EndR(S) is an R-module isomorphism, so S is H-Galois.

Example 10.22. Let H be a finite cocommutative R-Hopf algebra, and let S
be a commutative left H-module algebra, finite as R-module. Suppose that R is
Noetherian.

(1) The completion Rm at a maximal ideal m is flat, so if S is H-Galois, then
Sm is Hm-Galois.

(2) The direct sum
󰁏

m Rm over all the maximal ideals of R is faithfully flat. If,
for every m, Sm is Hm-Galois, then it is immediate to see that

󰁏
m Rm ⊗ S

is
󰁏

m Rm ⊗H-Galois, and so that S is H-Galois.
Summarising, S is H-Galois if and only if Sm is Hm-Galois for all maximal ideals
m of R.

With base change, we may prove a specific version of Noether’s theorem. First,
a fundamental fact.

Theorem 10.23. Suppose that R is a complete local ring. Let H be a finite co-
commutative R-Hopf algebra, and let S be an H-Galois extension. Then S is a free
H-module (of rank one).

Proof. Since R is local and S is projective, S is also free. Let n be its rank. Both
S ⊗ S and S ⊗H∗ have the structure of H-modules, where H acts on the second
factors. We claim that γ : S ⊗ S → S ⊗H∗ is also an H-module homomorphism.
To show this, we recall the coassociativity property of the right H∗-comodules: if
t ∈ S, then

(β ⊗ idH∗)(β(t)) = (id⊗∆H∗)(β(t)) =
󰁛

(t)

t(0) ⊗ t(1) ⊗ t(2).

Therefore for all s, t ∈ S and h ∈ H,

γ(h · (s⊗ t)) = γ(s⊗ (h · t)) = γ

󰀳

󰁃(s⊗
󰁛

(t)

t(0)〈h, t(1)〉

󰀴

󰁄

=
󰁛

(t)

st(0) ⊗ t(1)〈h, t(2)〉

=
󰁛

(t)

st(0) ⊗ (h · t(1)) = h · γ(s⊗ t).

We deduce that Sn ∼= (H∗)n are H-modules, and as H is a finite algebra over
a complete local ring, by Krull–Schmidt–Azumaya theorem (see [CR81, Theorem
6.12]), S ∼= H∗ as H-modules. Since H∗ ∼= H as H-modules by Theorem 14.6, the
assertion follows. □
Corollary 10.24. Let L/K be an unramified Galois extension of number fields
with Galois group G. Then OL is locally free over OK [G].

Proof. If L/K is unramified, then OL is an OK [G]-Galois extension of OK (Theo-
rem 10.8). Since OK is Noetherian, by Example 10.22 if p is a prime of OK , then
OL,p is an OKp

[G]-Galois extension of OKp
. By Theorem 10.23, since OKp

is local
and complete, we conclude that OL,p is free OKp

[G] of rank one. □
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We have also found a different proof of the normal basis Theorem.

Corollary 10.25. Let L/K be an finite Galois extension with Galois group G.
Then L is a free K[G]-module (of rank one).

Proof. This is immediate from Theorem 10.23, since every field is a complete local
ring. □

10.4. Galois descent. Fix a Galois extension S of R with Galois group G, and
assume that S is a faithful R-module. If A is an S-module (or more generally a left
module over an R-algebra), then A is also an R-module: if r ∈ R and a ∈ A, then
ra = ιR(r)a. Note that naturally S ↩→ EndR(S), hence a left EndR(S)-module is
also an S-module.

Remark 10.26.
(1) If M is an R-module, then S ⊗M is an S-module.
(2) If M is an R-algebra, then S ⊗M is an S-algebra.
(3) If M is an R-Hopf algebra, then S ⊗M is an S-Hopf algebra.
(4) If f : M → N is an R-module homomorphism, then idS ⊗f : S⊗M → S⊗N

is an S-module homomorphism.

We wish to find information about the opposite situation. When is an S-module
A isomorphic to S ⊗ M , for an R-module M? (In this situation, we say that A
descends.) Morita theory gives answers to this kind of questions.

Lemma 10.27. Let S be H-Galois, faithful as R-module. Let A be an E =
EndR(S)-module. Then the map

S ⊗AH → A

s⊗ a 󰀁→ sa

is an E-module isomorphism.

Proof. See [Chi00, Lemma 2.13]. The result follows from the isomorphism

A ∼= S ⊗R HomE(S,E)⊗E A,

which is implied by Morita theory; see [CR81, section 3D].
In the statement, if A is a left E-module, then A is also a left H-module, and so

writing AH makes sense. Indeed, a left E-module is also a left S#H-module, and
since S is faithful and H is flat, we deduce that the R-module map

H → S#H

h 󰀁→ 1#h

is injective. Also, a simple verification shows that this map is a ring homomorphism,
and so we conclude that we can see H as a subring of S#H, and so A is also an
H-module. □

Consider now R = K a field, and let L/K be a finite Galois extension of fields
with Galois group G. Let us write D(L,G) for L#K[G]. This is just L[G] as
L-module, with multiplication given by

(xσσ)(xτ τ) = xσσ(xτ )στ.

Since D(L,G) ∼= EndK(L) as rings, we want to analyse the category of left D(L,G)-
modules. It turns out that there is an easy description.
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Proposition 10.28. Let A be an S-module, and let G act on A.
(1) A is a D(S,G)-module if and only if the S-scalar multiplication on A is

G-equivariant, where G acts on S ⊗S A diagonally.
(2) If f : B → C is S-linear and B and C are left D(S,G)-modules, then f is

a D(S,G)-module homomorphism if and only if f is G-equivariant.

Proof. This follows from long but straightforward observations. □

In particular, applying Lemma 10.27, we find what follows.

Corollary 10.29. Let L/K be a finite Galois extension of fields with Galois group
G. Then the category KM of the K-vector spaces and the category EM of left E =
EndK(L)-modules are equivalent: the base change functor L⊗− sends M ∈ KM to
L⊗M , and f : M → N to id⊗f : L⊗M → L⊗M ; the fixed module functor (−)G

sends A ∈ EM to AG, and f : A → B to f|AG : AG → BG. Finally, if M ∈ KM,
then there is a K-linear bijection

M → (L⊗M)G

m 󰀁→ 1⊗m,

where G acts on the first factor of L⊗M . Conversely, if A ∈ EM, then there is a
left E-module isomorphism

L⊗AG → A

l ⊗ a 󰀁→ la.

In particular, we find that if A is an L-vector space with an action of G such
that the scalar multiplication is G-equivariant (we say that the G-action is compat-
ible), then A is a D(L,G)-module, so an EndK(L)-module, and by Corollary 10.29,
A ∼= L⊗ AG as EndK(L)-modules, for the K-vector space AG: this means that A
descends.

We can also do something more.

Lemma 10.30. Let A and B be a left E-modules. Then the K-module homomor-
phism

AG ⊗BG → (A⊗L B)G

a⊗ a′ 󰀁→ a⊗ a′

is a bijection.

Proof. It is clear that the image of this map is in (A⊗L B)G. Now note that

L⊗ (AG ⊗BG) ∼= (L⊗AG)⊗L (L⊗BG) ∼= A⊗L B ∼= L⊗ (A⊗L B)G,

via
x⊗ (a⊗ b) 󰀁→ (x⊗ a)⊗ (1⊗ b) 󰀁→ (xa⊗ b) 󰀁→ x⊗ (a⊗ b).

We may conclude since L is faithfully flat as K-module. □

This implies that if a property of an L-module A with compatible action of G
is defined by a commutative diagram where the arrows are D(L,G)-module homo-
morphisms (that is, G-equivariant L-module homomorphisms), then AG presents
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the same property as K-module. For example, if A is an L-algebra, there is a
commutative diagram

A⊗L A⊗L A A⊗L A

A⊗L A A

µ⊗id

id⊗µ µ

µ

and if the arrows are G-equivariant, then this yields the commutative diagram

(A⊗L A⊗L A)G (A⊗L A)G

(A⊗L A)G AG

which by Lemma 10.30 implies the desired diagram for AG. In this way, we derive
the following fundamental fact.

Proposition 10.31. Let L/K be a finite Galois extension of fields with Galois
group G. Let A,H be L-vector spaces with compatible actions of G.

(1) If A is an L-algebra and the maps defining the structure of L as algebra are
G-equivariant, then AG is a K-algebra.

(2) If H is an L-Hopf algebra and the maps defining the structure of H as Hopf
algebra are G-equivariant, then HG is a K-Hopf algebra.

(3) If H is an L-Hopf algebra, A is a left H-module algebra, the maps defining
the structures of H and A are G-equivariant, and the action of H on A is
G-equivariant, then AG is a left HG-module algebra.

Remark 10.32. Note that the isomorphisms given in Corollary 10.29 and in Lemma 10.30
respect also additional structures. For example, if H is an L-Hopf algebra and a
G-module with suitable action, then LG is a K-Hopf algebra, and L⊗HG ∼= H as
L-Hopf algebras.

We can summarise the previous discussion as follows, combining it with base
change.

Proposition 10.33. Let L/K be a finite Galois extension with Galois group G.

(1) If a finite commutative K-algebra M is H-Galois, for a finite cocommuta-
tive R-Hopf algebra H, then L⊗M is L⊗H-Galois.

(2) Suppose A is a finite commutative L-algebra and H is a finite cocommu-
tative L-Hopf algebra such that A is H-Galois. Suppose that G acts on A
and H such that all the structures are given by G-equivariant maps. Then
AG is HG-Galois.

11. Greither–Pareigis theorem and Byott’s translation

In this section, we study Hopf–Galois extensions of fields. We fix a field K. As
usual, unadorned tensors denote tensor over K.

Recall that if L/K is a finite extension of fields and H is a finite cocommutative
K-Hopf algebra, then L is an H-Galois extension of K (or simply, L/K is H-Galois)
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if L is an H-module algebra and the K-linear map

j : L⊗H → EndK(L)

x⊗ h 󰀁→ (y 󰀁→ x(h · y))

is an isomorphism.

Definition 11.1. Let L/K be a finite extension of fields. A Hopf–Galois structure
on L/K consists on a finite cocommutative K-Hopf algebra H, together with an
action of H on L, such that L/K is H-Galois.

A groundbreaking result by Greither and Pareigis (see [GP87, Theorem 3.1])
allows us to find all the Hopf–Galois structures on separable finite field extensions
using group theory. Our main goal is to state and prove this theorem.

11.1. Greither–Pareigis theorem. For a finite set X, write Perm(X) for the
group of bijective maps on X.

Definition 11.2. A subgroup N ≤ Perm(X) is regular if two, and hence all of the
following three conditions hold:

(1) |N | = |X|.
(2) N acts on X transitively.
(3) For all x ∈ X, the stabiliser of x in N is trivial.

The next result is almost immediate from the definition.

Lemma 11.3. A subgroup N ≤ Perm(x) is regular if and only if for some x ∈ X,
and so for all x ∈ X, the map from N to G sending η to η(x) is bijective.

Let L/K be a separable finite field extension with normal closure E, and consider
G = Gal(E/K), G′ = Gal(E/L), and X = G/G′. Write Λ for the left translation
map:

Λ : G → Perm(X)

τ 󰀁→ (σ 󰀁→ τσ).

This is an injective map; see [Chi00, Lemma 6.6].

Theorem 11.4 (Greither–Pareigis). There is a bijection between Hopf–Galois struc-
tures on L/K and regular subgroups of Perm(X) normalised by Λ(G).

We follow the discussion in [Chi00, section 6] for the proof. Since we are inter-
ested in Galois module theory, we will specialise the proof in the Galois case.

11.1.1. The space GL. Let G be a finite group, and let L be a field. Consider the
L-vector space GL of the maps from G to L. The space GL is also an L-algebra,
with point-wise multiplication and identity sending all the elements of the group to
1L. An L-basis for GL is given by {uσ | σ ∈ G}, where for all σ, τ ∈ G,

uσ(τ) = δσ,τ .

Note that this is a basis of pairwise orthogonal idempotents, so 1GL =
󰁓

σ∈G uσ.
Moreover, every idempotentof GL has the form

󰁓
σ∈ 󰁨G uσ, for a subset 󰁨G of G. This

immediately implies that the uσ are primitive: they cannot be written as sums of
nonzero orthogonal idempotents.
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Remark 11.5. Since the operation is point-wise, the natural E-linear bijection Ln ∼=
GL, with n = |G|, is actually an L-algebra isomorphism.

Lemma 11.6. There is an L-linear bijection

GL ∼= HomL(L[G], L).

Proof. This is immediate, since every L-linear map from L[G] to L is uniquely
determined by its values on the elements of G. □

In particular, GL is also a G-module: if σ, τ ∈ G and f ∈ GL, then

(σ · f)(τ) = σ(f(σ−1τ)).

The space GL is important since the we may nicely describe the L-Hopf algebras
H such that GL is H-Galois.

Theorem 11.7. If H is a finite cocommutative L-Hopf algebra such that GL is H-
Galois, then H = L[N ], where N is (identified with) a regular subgroup of Perm(G).

Conversely, if N is a regular subgroup of Perm(G), then GL is L[N ]-Galois.

Proof. Suppose GL is H-Galois over L. Let n = |G|. We have the following chain
of L-algebra isomorphisms:

Ln2 (1)∼= GL⊗L GL
(2)∼= GL⊗L H∗

(3)∼= (H∗)n.

Here
(1) follows by Remark 11.5:

Ln2 ∼= Ln ⊗L Ln ∼= GL⊗L GL;

(2) holds since GL is H-Galois;
(3) follows again by Remark 11.5: GL ∼= Ln as L-algebras.

In particular,
Ln2 ∼= (H∗)n

as L-algebras. We claim that H∗ is semisimple.
(1) Ln2 ∼= (H∗)n is a semisimple artinian ring, so its radical Rad((H∗)n) is

zero; see [CR81, Theorem 5.18].
(2) Since the ideals of (H∗)n are direct products of ideals of H∗, Rad((H∗)n) =

Rad(H∗)n, so also Rad(H∗) = 0.
(3) H∗ is artinian: every ideal is also an L-vector space, so a descending chain

of ideals eventually stops.
(4) Again by [CR81, Theorem 5.18], H∗ is semisimple.

In particular, from Wedderburn–Artin theorem (see, for example, [CR81, Theorem
3.22]), we deduce that

H∗ ∼= Ln

as L-algebras. Since a basis of the dual of Ln is given by the projections pi on the
ith coordinate, we find that a basis of H = H∗∗ is {ηi}ni=1, where ηi : H → L is
given by

H = H∗∗ ∼= Ln pi−→ L.

As every ηi is an L-algebra homomorphism, by Remark 9.36, ηi is grouplike. Let
N = {ηi}ni=1. Since N is a basis consisting of grouplike elements, by Corollary 9.38,
H = L[N ] is a group ring.
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Now we need to identify N with a subgroup of Perm(G). The idea is the follow-
ing: if we show that for all η ∈ N and τ ∈ G, there exists a unique σ ∈ G such that
η · uτ = uσ, then we can set η(τ) = σ.

An immediate computation shows that the η · uτ , for τ ∈ G, are pairwise or-
thogonal idempotents of GL. We claim that these are also primitive. First of all
we show that they are non-zero: suppose that η · uτ = 0; then

uτ = 1N · uτ = (η−1η) · uτ = η−1 · (η · uτ ) = η−1 · 0 = 0,

contradiction. Hence η · uτ ∕= 0. Moreover, since GL is an H-module algebra and
η is grouplike, η · 1GL = ε(η) · 1GL = 1GL, and so

1GL = η · 1GL = η ·
󰀣
󰁛

τ∈G

uτ

󰀤
=

󰁛

τ∈G

η · uτ .

Every η · uτ is idempotent, so it is a sum of primitive idempotents of GL, and by
1GL =

󰁓
τ∈G η · uτ , we deduce that each primitive idempotent may appear as a

summand of η · uτ for exactly one τ . Finally, since
󰁓

τ∈G η · uτ is a sum of |G|
nonzero terms, and it is also equal to

󰁓
τ∈G uτ , a sum of primitive idempotents, we

conclude that for every τ ∈ G, there exists a unique σ ∈ G such that η · uτ = uσ.
This implies that we can see N as subgroup of Perm(G), via η(τ) = σ.

We need to show that N is regular. Note that |N | = |G|, since L[N ] = H and
GL is H-Galois. Now suppose that the action of N on G is not transitive: we may
find τ ∈ G with N · uτ = {uσ | σ ∈ 󰁨G}, with 󰁨G proper subset of G. If π ∈ G is not
in 󰁨G, then define eτ,π ∈ EndL(GL) by eτ,π(uσ) = δτ,σuπ. Since

j : GL⊗L L[N ] → EndL(GL)

is an isomorphism, eτ,π should be in the image under j; but
󰁛

ξ∈G,η∈N

aξ,ηuξ(η · uτ ) ∈
󰁛

σ∈ 󰁨G

Luσ,

and uπ /∈
󰁓

σ∈G Luσ, contradiction
Conversely, suppose N is a regular subgroup of Perm(G), and define eτ,π as

before. Then {eτ,π | τ,π ∈ G} is an L-basis of EndL(GL). Since N is regular, for
all τ,π ∈ G, there exists η such that η(τ) = π; define the H = L[N ]-module algebra
action on GL via

η · uτ = uπ.

Then the map j : GL⊗L L[N ] → EndL(GL) is surjective:

j(uπ ⊗ η) = eτ,π.

Since |G| = |N |, j is a bijection, and so the assertion follows. □

11.1.2. The main result. We are almost in the right position to prove Greither–
Pareigis theorem for Galois extensions.

Let L/K is a finite Galois extension of fields with Galois group G. Then there
is an L-linear isomorphism

γ : L⊗ L → HomL(L[G], L) ∼= GL.

Also L ⊗ L is a G-module, with action on the first factor. In particular, with a
straightforward verification, we have the following result.
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Proposition 11.8. The map

L⊗ L → GL

x⊗ y 󰀁→ (σ 󰀁→ xσ(y))

is an L-algebra G-equivariant isomorphism.

Write

Λ : G → Perm(G)

τ 󰀁→ (σ 󰀁→ τσ)

for the left regular representation.

Remark 11.9. In the literature, the left regular representation is denoted by λ,
which here is already taken by the antipode of a Hopf algebra.

Theorem 11.10 (Greither–Pareigis, special case). There is a bijection between
Hopf–Galois structures on L/K and regular subgroups of Perm(G) normalised by
Λ(G).

Proof. Suppose that L/K is H-Galois. Since L is a free (and so flat) K-vector
space, by base change L⊗ L is L⊗H-Galois. The action

(11.1) (L⊗H)⊗L (L⊗ L) → L⊗ L

can easily be shown to be G-equivariant (G acts on the first factors on L⊗H and
L⊗ L, and diagonally on (L⊗H)⊗L (L⊗ L)). By Proposition 11.8, L⊗ L ∼= GL.
This means that GL is L⊗H-Galois, and so, by Theorem 11.7, L⊗H is a group
ring L[N ], where N is the group of grouplike elements of L⊗H, and N is identified
with a regular subgroup of Perm(G). In particular, we find an action

(11.2) L[N ]⊗L GL → GL.

Since (11.1) is G-equivariant, G acts on L[N ] = L ⊗ H such that (11.2) is G-
equivariant. We want now to explicitly describe the action of G on N , to deduce
that N is normalised by Λ(G).

Write the usual basis {uτ | τ ∈ G} of GL. Recall that G acts of GL ad follows:
if π,σ, τ ∈ G, then

(σ · uτ )(π) = σ(uτ (σ
−1π)) = uστ (π) = uΛ(σ)(τ)(π),

that is,
σ · uτ = uΛ(σ)(τ).

Since the G-action on L⊗H respects the Hopf algebra structure, in particular, it
respects the comultiplication, so G sends grouplike elements in grouplike elements:
G acts on N . As (11.2) is G-equivariant, we find that, for all η ∈ N and σ, τ ∈ G,

σ · (η · uτ ) = (σ · η) · (σ · uτ ).

(Note that here we are using · for the G-action on L[N ] and GL, and also for the
L[N ]-action on GL.) Now

σ · (η · uτ ) = σ · uη(τ) = uΛ(σ)(η(τ))

and
(σ · η) · (σ · uτ ) = u(σ·η)(Λ(σ)(τ)),

hence
uΛ(σ)(η(τ)) = u(σ·η)(Λ(σ)(τ)),
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that is,
Λ(σ)(η(τ)) = (σ · η)(Λ(σ)(τ)),

or
σ · η = Λ(σ)ηΛ(σ−1) :

G acts on N via conjugation in Perm(G), after the identification G ↔ Λ(G), and
so N is normalised by Λ(G). In particular, if x ∈ L, η ∈ N , and σ ∈ G, then G
acts on L[N ] by

σ · (xη) = σ(x)(Λ(σ)ηΛ(σ−1)).

Conversely, let N be a regular subgroup of Perm(G) normalised by Λ(G). By
Theorem 11.7, GL is L[N ]-Galois, and the action

α : L[N ]⊗L GL → GL

is L-linear. We wish to apply Morita theory. We collect a few facts here, skipping
the details (see [Chi00, Theorem 6.8]), where we use Proposition 10.28.

(1) Both G-actions on L[N ] and GL are compatible, hence both L[N ] and GL
are left D(L,G)-modules.

(2) α is G-equivariant, hence α is a left D(L,G)-module homomorphism.
(3) The G-action on L[N ] respects the Hopf algebra structure.
(4) The G-action on GL respects the algebra structure, and also the L[N ]-

module algebra structure.

This means that we may apply Morita theory: by Proposition 10.33, (GL)G is
L[N ]G-Galois. Finally, as the map

L → (GL)G

x 󰀁→
󰁛

τ∈G

τ(x)uτ

is a K-algebra isomorphism, we may conclude that L/K is L[N ]G-Galois over K,
where the L[N ]G-action on L is induced by the L[N ]G-action on (GL)L.

We still need to check that in this way we obtain a bijective correspondence.
Suppose N is a regular subgroup of Perm(G) normalised by Λ(G). Then GL is
L[N ]-Galois over L. This implies that L is L[N ]G-Galois, with the action induced by
the isomorphism L ∼= (GL)G. Thus GL ∼= L⊗(GL)G ∼= L⊗L is L⊗L[N ]G ∼= L[N ]-
Galois, and it is immediate to see that this action is the one we have started with.

Conversely, if L/K is H-Galois, then GL is L⊗H-Galois over L, where the action
is induced by GL ∼= L⊗L. In particular, L⊗H ∼= L[N ] for some regular subgroups
of Perm(G) normalised by Λ(G). This implies that L/K is L[N ]G-Galois. By
Morita theory, there is an isomorphism of K-Hopf algebras H ∼= (L ⊗H)G, so we
derive that L is L[N ]G ∼= (L⊗H)G ∼= H-Galois, and as before, carefully checking,
step by step, we could see that this action is the one we have started with (for more
details, see [GP87, Lemma 3.3]). This concludes the proof. □

Remark 11.11. Let L/K be a finite Galois extension of fields with Galois group G.
If N is a regular subgroup of Perm(G) normalised by Λ(G), then L/K is L[N ]G-
Galois. We may describe very explicitly the L[N ]G-action on L. As shown in the
proof, this action follows from the isomorphism L ∼= (GL)G. If

󰁓
η∈N aηη ∈ L[N ]G
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and
󰁓

σ∈G bσuσ ∈ (GL)G, then
󰀳

󰁃
󰁛

η∈N

aηη

󰀴

󰁄 ·
󰀣
󰁛

σ∈G

bσuσ

󰀤
=

󰁛

η∈N

󰁛

σ∈G

aηbσuη(σ).

Let x ∈ L, and write 1 = 1G. We claim that the L[N ]G-action we obtain on L is
given by 󰀳

󰁃
󰁛

η∈N

aηη

󰀴

󰁄 · x =
󰁛

η∈N

aη(η
−1(1))(x).

Since the isomorphism L ∼= (GL)G is given by x 󰀁→
󰁓

σ∈G σ(x)uσ, we need to show
that

(11.3)
󰁛

η∈N

󰁛

σ∈G

aησ(x)uη(σ) =
󰁛

σ∈G

σ

󰀳

󰁃
󰁛

η∈N

aη(η
−1(1))(x)

󰀴

󰁄uσ.

Fix σ ∈ G. Since
󰁓

η∈N aηη ∈ L[N ]G, then

󰁛

η∈N

σ(aη)Λ(σ)ηΛ(σ
−1) = σ ·

󰀳

󰁃
󰁛

η∈N

aηη

󰀴

󰁄 =
󰁛

η∈N

aηη;

thus for all η ∈ N , there exists a unique ησ, such that Λ(σ)ησΛ(σ
−1) = η and

σ(aησ ) = aη. In particular,

η−1Λ(σ) = Λ(σ)η−1
σ ∈ N.

After computing on 1 and then on x, we find

aηη
−1(σ)(x) = σ(aησ

)σ(η−1
σ (1)(x)).

This works for all η ∈ N and σ ∈ G, so

󰁛

σ∈G

󰀳

󰁃
󰁛

η∈N

aηη
−1(σ)(x)

󰀴

󰁄uσ =
󰁛

σ∈G

󰀳

󰁃
󰁛

η∈N

σ(aησ
)σ(η−1

σ (1)(x))

󰀴

󰁄uσ.

Consider the left-hand side. Since, for all η ∈ N , η−1 is a bijection, we find that

󰁛

σ∈G

󰀳

󰁃
󰁛

η∈N

aηη
−1(σ)(x)

󰀴

󰁄uσ =
󰁛

η∈N

aη

󰀣
󰁛

σ∈G

η−1(σ)(x)uσ

󰀤

=
󰁛

η∈N

aη

󰀣
󰁛

σ∈G

σ(x)uη(σ)

󰀤
.

As the right-hand side is

󰁛

σ∈G

󰀳

󰁃
󰁛

η∈N

σ(aησ
)σ(η−1

σ (1)(x))

󰀴

󰁄uσ =
󰁛

σ∈G

󰀳

󰁃
󰁛

η∈N

σ(aη)σ(η
−1(1)(x))

󰀴

󰁄uσ

=
󰁛

σ∈G

σ

󰀳

󰁃
󰁛

η∈N

aη(η
−1(1))(x)

󰀴

󰁄uσ,

we find that (11.3) holds.
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11.1.3. Examples: Galois extensions. Let L/K be a finite Galois extension of fields
with Galois group G. Two standard regular subgroups of Perm(G) normalised by
Λ(G) are Λ(G) itself and P (G), where P is the right regular representation:

P : G 󰀁→ Perm(G)

τ 󰀁→ (σ 󰀁→ στ−1).

Note that the action of Λ(G) on P (G) via conjugation is trivial, as the two sub-
groups commute.

Lemma 11.12. For all finite groups G, Λ(G) = P (G) if and only if G is abelian.

Proof. If G is abelian, the result is clear.
Conversely, suppose στ ∕= τσ. Note that if P (σ) = Λ(π) for π ∈ G, then

computing in 1 we find π = σ−1. This implies that P (σ) /∈ Λ(G), because P (σ) ∕=
Λ(σ−1):

P (σ)(τ) = τσ−1 ∕= σ−1τ = Λ(σ−1)τ. □

Corollary 11.13. Let L/K be a finite Galois extension of fields with nonabelian
Galois group G. Then L/K admits at least two different Hopf–Galois structures.

The structure corresponding to Λ(G) is the standard nonclassical structure.

Proposition 11.14. Let L/K be a finite Galois extension of fields with Galois
group G. Then P (G) ≤ Perm(G) corresponds to the classical action of G on L.

Proof. Since Λ(G) and P (G) commute, L[P (G)]G = K[P (G)]. If
󰁛

σ∈G

kσP (σ) ∈ K[P (G)]

and x ∈ L, then
󰀣
󰁛

σ∈G

kσP (σ)

󰀤
· x =

󰁛

σ∈G

kσ(P (σ−1)(1))(x) =
󰁛

σ∈G

kσσ(x). □

11.1.4. Examples: separable extensions. Let K = Q and L = Q( 3
√
2). This is a

separable extension which is not Galois, and the normal closure is E = Q( 3
√
2, ζ3).

It is well known that G = Gal(E/K) = S3 and G′ = Gal(E/L) = C2. In particular,
|X| = 3, where X = G/G′. Consider the map

Λ : S3 → Perm(X) = Perm(G/G′) ∼= S3.

Then the subgroups of Perm(G) normalised by Λ(G) are the precisely the normal
subgroups of S3. The only normal subgroup of S3 with the same order of X is A3.
Since we can show that A3 is regular, it yields a Hopf–Galois structure on L/K.
This structure is described in details in [GP87].

Suppose now that L/K is separable extension of degree 5 such that, if E is the
normal closure, then Gal(E/K) = S5. Since no normal subgroups of S5 have order
5, we deduce that L/K does not admit Hopf–Galois structures.
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11.2. Byott’s translation. While useful is plenty of situations, the result by Gre-
ither and Pareigis presents a difficulty: the order of Sn grows really fast with n. To
deal with this issue, it is effective to reverse the relationship between G and N , as
explicitly described in [Byo96]. We just give a hint about this construction.

Suppose that L/K is Galois with Group G. If N ≤ Perm(G) is a regular sub-
group normalised by Λ(G), then the map

b : N 󰀁→ G

η 󰀁→ η(1)

is bijective and yields a group isomorphism

ϕ : Perm(G) 󰀁→ Perm(N)

π 󰀁→ b−1 ◦ π ◦ b.
Now N ≤ Perm(G) is mapped to Λ(N) in Perm(N) under ϕ, and G is mapped to
some G0 ≤ Perm(N) isomorphic to G. Since Λ(G) normalised N in Perm(G), G0

normalises Λ(N) in Perm(G), that is, G0 is contained in the holomorph of N .

Definition 11.15. Let N be a finite group. The holomorph of N , Hol(N), is the
normaliser of Λ(N) in Perm(N).

The following description of the holomorph is well known.

Proposition 11.16. Let N be a finite group. Then

Hol(N) = P (N)⋊Aut(N).

Proof. See [Chi00, Proposition 7.2]. □
We only state the Byott’s translation [Byo96], a proof of which may be found

in [Chi00, section 7]. It is really a useful result, since Hol(G) is smaller than
Perm(G) and easier to describe.

Theorem 11.17 (Byott). Let G and N be finite groups of the same order. Then
there is a bijection between

N = {α : N → Perm(G) | α is injective and α(N) is regular}
and

G = {β : G → Perm(N) | β is injective and β(G) is regular}.
Under this bijection, if α,α′ ∈ N correspond to β,β′ ∈ G, then

(1) α(N) = α′(N) if and only if β(G) and β′(G) are conjugate by an element
of Aut(G);

(2) α(N) is normalised by Λ(G) if and only if β(G) is contained in Hol(N).

12. On the algebra structure of Hopf algebras occurring in
Hopf–Galois theory

In this section, we follow [Gre21], where all the details we will skip are given (see
also [KO74]).

Let us fix a field K with characteristic zero. As usual, unadorned tensors are over
K. In the sequel, we refer to structures over K. These are K-algebras, K-Hopf
algebras, or just K-vector spaces. In particular, morphisms are tacitly assumed
to be in the appropriate category: for example, in this section, if A is a K-Hopf
algebra, then AutK(A) denotes the K-Hopf algebra automorphisms of A.
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Consider a finite Galois extension of fields L/K with Galois group G.

Definition 12.1. Let A be a structure over K. A second structure B is an L-form
of A if

L⊗A ∼= L⊗B.

We are interested in forms up to K-isomorphism.

Example 12.2.
(1) If A is an n-dimensional K-vector space, then every L-form of A is again

an n-dimensional K-vector space: the dimension is invariant under base
change. In particular, finite-dimensional vector spaces do not have nontriv-
ial forms.

(2) If H is a K-Hopf algebra and M/K is H-Galois, then

M ⊗M ∼= M ⊗H∗

as M -algebras. This means that M is an M -form of H∗.

We wish to describe a general machinery to determine the set of all L-forms of
a structure A, modulo K-isomorphism. We denote this set by FormsL/K(A).

Definition 12.3. Let G act on a group X. The first cohomology set is the set
H1(G,X) of 1-cocycles G → X, modulo an appropriate equivalent relation.

Remark 12.4. Unless X is abelian, H1(G,X) is just a pointed set, not necessarily
a group.

Theorem 12.5. Let A be a structure over K. Then there is a bijection

FormsL/K(A) → H1(G,AutL(L⊗A)),

where the trivial form A corresponds to the distinguished element.

Proof. See [Gre21, Proposition 1.9]. We just explain how the forms arise from a
given cocycle. Suppose ϑ = (ϑg)g∈G is a 1-cocycle of automorphisms of L ⊗ A.
Consider

βg = ϑg ◦ (g ⊗ idA) ∈ AutL(L⊗A).

It can be shown that the cocycle condition on ϑ implies that, for all g, h ∈ G,
βgh = βgβh, so G acts semilinearly on L ⊗ A. Then the form B is the common
fixed set of all βg. □

Example 12.6.
(1) Let V an n-dimensional K-vector space, so we may assume V = Kn. There-

fore
AutL(L⊗K V ) = GLn(L)

Since, by a generalisation of Hilbert’s theorem 90, H1(G,GLn(L)) is trivial,
we deduce that all the forms in the category of finite-dimensional vector
spaces are trivial, as observed before.

(2) Suppose L = K(i), with i /∈ K. Write G = {1, τ}. Let A = K[N ], where
N = {1, η, η2, η3} is the cyclic group of order 4. Define a 1-cocycle of L-
automorphisms of L[N ] as follows: ϑ1 = id, ϑτ : η → η−1 = η3. To find the
associated form, we need to look for elements x ∈ L⊕Lη⊕Lη2 ⊕Lη3 such
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that if we apply ϑτ and then τ on the coefficients we find again x. On can
check that B = K[c, s], where

c =
η + η3

2
; s =

η − η3

2i
.

This Hopf algebra B shows up in Hopf–Galois situation: let M = K(w),
where w4 = u ∈ K× and [M : K] = 4. There is an action making M into a
B-Hopf–Galois extension. For example, c · w = 0, s · w = w, c · w2 = −w2,
and s · w2 = 0.

(3) Let A = K[N ], with N = G. Note that G acts on L[N ] by inner automor-
phisms: ϑg(η) = gηg−1. This 1-cocycle describes a form B. We will see
that as soon as N is not abelian, B is not isomorphic to K[N ] as K-Hopf
algebra. It is called the anticlassical Hopf form.

As R. Underwood observed, if K = Q and M/Q is a Galois extension of fields
with Galois group N = S3, then, as in the previous example, the anticlassical M -
form B of the group ring Q[S3] is not trivial as Q-Hopf algebra, but it is trivial in
the category of Q-algebras. We try to see why this happens and if this situation
can be generalised.

Fix a field L and a finite group N . Clearly, every automorphism ν of N induces
an L-Hopf algebra automorphism of AL = L[N ], and it can be easily shown that
also the converse is true: every L-Hopf algebra automorphism of AL = L[N ] arises
in this way.

Consider the 1-cocycles G → AutL(AL) = Aut(N). We say that the 1-cocycles
(ϑg)g∈G and (ϑ′

g)g∈G are cohomologous if there exists ν ∈ Aut(N) such that for all
g ∈ G,

ϑ′
g = νϑgν

−1.

By this definition, it follows that the trivial cocycle ϑg = idN is only cohomol-
ogous to itself. Since this precisely the relation which yields the definition of
H1(G,AutL(L[N ])), we deduce that every nontrivial cocycle defines a nontrivial
Hopf form. If N is not abelian, this applies to the anticlassical Hopf form of K[N ],
which then is not isomorphic to K[N ] as K-Hopf algebras. But we shall show that
it is isomorphic to K[N ] as K-algebras. We need the following ingredients.

Recall that an automorphism of a group N is inner if it is given as conjugation
C(η) for some η ∈ N . Write Inn(N) for the group of the inner automorphisms.
There is an injective map

C : N → Inn(N),

whose kernel is the center of N . For example, for all n ∕= 6, Sn has only inner
automorphisms. Clearly if N is abelian, then Inn(N) = 1.

Consider again a finite Galois extension of fields L/K with Galois group G.

Definition 12.7. A cocycle ϑ : G → Aut(N) = AutL(L[N ]) is
(1) inner if every ϑg is in Inn(N), that is, θ : G → Inn(N);
(2) liftable if there exists a homomorphism Θ : G → N such that for all g ∈ G,

ϑg = C(Θ(g)).

Clearly liftable cocycle are inner. Since it can be shown that these notions also
make sense for cohomology classes, we can talk about inner forms and liftable
forms.
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Remark 12.8. If the group N has trivial center, then C identifies N with Inn(N),
so inner and liftable are the same.

Theorem 12.9. Every liftable form of the K-Hopf algebra K[N ] is isomorphic to
K[N ] as K-algebras.

Note that this applies to the anticlassical form, which is liftable: just take Θ = id,
which makes sense since G = N in that case. Before the proof, we need an important
result. It is another generalisation of Hilbert’s theorem 90.

Proposition 12.10. If A is a simple finite-dimensional K-algebra, then

H1(G, (L⊗A)×)

is trivial.

Proof. See [Gre21, Lemma 2.5]. □
Proof of Theorem 12.9. Write A = K[N ] and AL = L[N ]. Assume that we have a
liftable 1-cocycle ϑ = C ◦Θ. Since A is semisimple (Example 2.18), it decomposes,
via Wedderburn’s theorem, as finite product of simple algebras (these are matrix
rings over skew fields, finite-dimensional over K). We can show that every auto-
morphism ϑg respects this decomposition, so we assume, for simplicity, that A is
a simple algebra. (Note that this is never true, as A has always the augmentation
ideal given by the counity ε.)

The goal is to show that the liftable 1-cocycle ϑ is trivial if considered as cocycle
G → AutL(AL), where we forget the Hopf algebra structure of AL.

So consider the L-algebra homomorphism c : A×
L → AutL(AL), which sends x

to conjugation by x. Then for all g ∈ G, ϑg = c(Θ(g)). Since Θ : G → N ⊆ A×
L

is again a 1-cocycle, by Proposition 12.10, Θ is equivalent to the trivial cocycle
G → A×

L ; therefore if we apply c we find that ϑ is equivalent to the trivial cocycle
G → AutL(AL). □

We conclude this section analysing situations in which Theorem 12.9 does not
hold: if a form is not inner or is inner but not liftable.

If N is abelian, then every nontrivial 1-cocycle is not inner.

Example 12.11. In Example 12.6(2), we have considered N cyclic of order 4 and
G = Gal(K(i)/K) of order 2. The nontrivial element σ ∈ G gives the automorphism
ϑσ, which coincides to the inversion on N . One can show that K[N ] ∼= K×K×K[i],
while the form B is a product of four copies of K: the main theorem does not hold.

We shall now find an example of inner form which is not liftable. Consider the
dihedral group of order 8 and N = D4, which has center of order 2. Write s and t
for the generators: s has order 4, t has order 2, and tst = s3 = s−1. As well know
by representation theory, we can decompose K[D4] as

K ×K ×K ×K ×Mat2(K),

where K ×K ×K ×K can be identified with K[Dab
4 ] = K[C2 ×C2]. One can also

show that every inner cocycle leads to a form B whose “abelian part” is again K4.
So what really matters is what happens to the nonabelian part. The corresponding
factor B′ of B will be also a central simple K-algebra of dimension 4, and the
question is whether it is a matrix algebra or a skew field. Let now G = Q8, with
presentation

〈σ, τ | σ4 = 1, τ2 = σ2, τστ = σ3〉.
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Define ϑ : Q8 → Inn(D4) by ϑσ = C(s) and ϑτ = C(t). Then, intuitively, Q8 and
D4 are in a way similar enough for ϑ to be a group homomorphism, but not similar
enough for ϑ to be liftable through C : N → Inn(N). To be more precise, denote
respectively by K(

√
a) and K(

√
b) fixed fields of σ and τ , which are quadratic over

K.

Theorem 12.12. The L-form B′ of Mat2(K) given by the cocycle ϑ is the quater-
nion algebra

B′ = (−a, b)K .

Proof. See [Gre21, Theorem 2.6]. □

In this way, with appropriate choices of K, a, and b, one can produce examples of
B′ being a matrix algebra (and so B is a trivial form in the category of K-algebras)
and examples of B′ being a skew-field (and so B is not trivial even as a K-algebra).
For example, one can check that the latter situation happens when K = Q, a = 3,
and b = 2.

13. Induced Hopf–Galois extensions

The main references for this section are [CRV16a] and [GMR20]. We begin with
a group-theoretical formulation of Hopf–Galois extensions.

Let G be a group, and let G′ be a core-free subgroup, that is, a subgroup for
which 󰁟

g∈G

gG′g−1 = 1.

In particular, G′ is not normal (except for the trivial case G′ = 1). Write ΛG,G′ : G →
Perm(G/G′) for the left regular representation on left cosets.

Definition 13.1. A Hopf–Galois structure for (G,G′) is a regular subgroup N of
Perm(G/G′) normalised by ΛG,G′ .

Note the analogy with Theorem 11.4, where L/K is a finite separable field ex-
tension, E/K is the normal closure, G = Gal(E/K), and G′ = Gal(E/L).

Definition 13.2. A Hopf–Galois structure N for (G,G′) is almost classically Galois
if N ⊆ ΛG,G′(G).

This is equivalent to ask that G′ has a normal complement J ; see [GP87, Propo-
sition 4.1]. Explicitly, if J is a normal complement of G′, then N = ΛG,G′(J) ⊆
ΛG,G′(G) is almost classically Galois.

Remark 13.3. Note that a normal complement is not necessarily unique: in the
dihedral group G = D16 = 〈r, s | r8 = s2 = 1, sts = r−1〉, both J1 = 〈r〉 ∼= Z8 and
J2 = 〈r2, rs〉 ∼= D8 are normal complement of G′ = 〈s〉.

Almost classically Galois extensions for fields (defined compatibly with Defi-
nition 13.2) are interesting to study for the Hopf–Galois correspondence, given
by [CS69, Theorem 7.6] and here reported in the formulation of [GP87, Theorem
5.1]. Let L/K be a finite separable H-Galois extension, and for a K-sub Hopf
algebra W of H, write LW = {x ∈ L | w ·x = ε(w)x, for all w ∈ W}, the fixed field
of W .
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Theorem 13.4. The map

{K-sub-Hopf algebras of H} → {Intermediate fields of L/K}
W 󰀁→ LW

is injective and inclusion-reversing.

Indeed, in [GP87, Theorem 5.2] it is proved that if L/K is almost classically
Galois, then there exists a Hopf–Galois structure such that the correspondence in
Theorem 13.4 is surjective; namely, it is the one yield by the centraliser N ′ of N in
Perm(G/G′).

Remark 13.5. Note that Theorem 13.4 can be restated using more explicitly group
theory: see [CRV16b, Theorem 2.3]. We also refer to this paper for some results
concerning almost classically Galois structures.

Now consider the following situation: E/K is a finite separable field extension
with normal closure L/K, G = Gal(L/K), and G′ = Gal(E/K). Then G′ is core-
free, and we may consider Hopf–Galois structures for (G,G′) (or for E/K), for
(G, 1) (or for L/K), and for (G′, 1) (or for L/E). Are these structures related?

Suppose that G′ has a normal complement J , so G = J ⋊ G′. Then one can
show that the map

l : Perm(G/G′)× Perm(G′) = Perm(J)× Perm(G′) → Perm(G),

defined by l(σ, τ)(g) = σ(x)τ(y), where g = xy is the factorisation of g ∈ G = J⋊G′,
in an injective homomorphism, and one can see that the following result holds;
see [CRV16a, Theorem 3].

Theorem 13.6. If N1 is a Hopf–Galois structure for (G,G′) and N2 is a Hopf–
Galois structure for (G′, 1), then N = l(N1 × N2) is a Hopf Galois structure for
(G, 1).

This Hopf–Galois structure is called induced.

Corollary 13.7. If G = J⋊G′ is a finite group, with G′ a core-free subgroup, then
(G, 1) has a Hopf–Galois structure of type J ×G′.

Proof. Just apply Theorem 13.6 the almost classically Galois structure for (G,G′),
given by J and the classical for (G′, 1). □

Example 13.8. Combining Remark 13.3 and Corollary 13.7, we find that D16 has
Hopf–Galois structures of type Z8 × Z2 and D8 × Z2.

More examples can be found in [CRV16a, section 3].

Note that it is more natural to consider Hopf–Galois structures for LJ/K instead
of L/E:

L

E LJ

K

G

G′ J

G′



88 F. FERRI AND L. STEFANELLO

If N1 is a regular subgroup of Perm(J) normalised by ΛG,G′ (so H1 = L[N1]
G gives

a Hopf–Galois structure on E/K) and N2 is a regular subgroup of Perm(G/J)

normalised by ΛG′(G′) (so H2 = LJ [N2]
G′

gives a Hopf–Galois structure on E/K),
then the induced Hopf–Galois structure for L/K is given by H = H1 ⊗K H2;
see [GMR20, Propositions 5.3 and 5.5].

Moreover, if we write ρH1
: H1 → EndK(E) for the representation given by the

action of H1 on E, and ρH2
: H2 → EndK(LJ) for the representation given by

the action of H2 on LJ , then ρH : H → EndK(L) is precisely ρH = ρH1 ⊗ ρH2 ;
see [GMR20, Proposition 5.8]. In particular for a suitable choice of basis, matrices
of ρH are Kronecker products of matrices of ρH1 and ρH2 .

We summarise all of this in the following result, which is [GMR20, Theorem 1.3]
and makes use, in his statement, of [GMR20, Proposition 5.3].

Theorem 13.9. Let L/K be a finite Galois extension with Galois group G = J⋊G′,
let E = LG′

, and let F = LJ . Then the following facts hold:
(1) E/K and F/K are Hopf–Galois extensions.
(2) L = EF and E ∩ F = K.
(3) E/K and F/K are linearly disjoint.

Let E/K be H1-Galois, and let L/E be H2-Galois. We consider the corresponding
induced Hopf–Galois structure of L/K. Let H be its associated Hopf algebra.

(4) H = H1 ⊗K H, where H is the Hopf Galois structure of F/K such that
H ⊗K E = H2.

(5) The Hopf-action of H on L is the Kronecker product of the Hopf-actions of
H1 and E and of H on F .

Remark 13.10. A comparison with [GMR20, Proposition 1.2] shows that induced
structures mimic the classical direct products.

We conclude this section with a result regarding the arithmetic of Dedekind
domains. Let O be a Dedekind domain with field of fractions K, let L/K be a
finite separable extension of fields, and let OL be the integral closure of O in L. If
L/K is H-Galois, then we may define the associated order of OL in H:

AH = {h ∈ G | h · OL ⊆ OL}.
It is not difficult to see that AH shares the nice properties of the classical associated
order defined in the classical Galois setting. We discuss more about the associated
order in the section 14.

We can conclude this section with [GMR20, Theorem 1.5].

Theorem 13.11. Let O be a principal ideal domain with field of fractions K,
let L/K be a finite separable Hopf–Galois extension, and let OL be the integral
closure of O in L. Assume that the structure is induced and its Hopf algebra is
H = H1 ⊗K H. If E/K and F/K are arithmetically disjoint, then the following
statements hold:

(1) AH = AH1 ⊗OK
AH .

(2) If OE is AH1-free and OF is AH-free, then OL is AH-free. Moreover, an
AH-generator of OL is the product of an AH1-generator of OE and an AH-
generator of OF .

Remark 13.12. Theorem 13.11 is a generalisation of Lemma 2.30 in the Hopf–Galois
setting, when the structure is induced.
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14. Hopf–Galois module theory

Here we mainly follow [Chi00, Chapters 1 and 3].

14.1. First notions.

14.1.1. Integrals. Fix a commutative ring R and an R-Hopf algebra H.

Definition 14.1. An element θ ∈ H is
(1) a left integral if for all h ∈ H, hθ = ε(h)θ;
(2) a right integral if for all h ∈ H, θh = θε(h).

If M is a left H-module, then we consider

MH = {m ∈ M | h ·m = ε(h)m, for all h ∈ H},

again a left H-module. Clearly we may see H as left H-module via multiplication.
In this case, HH coincides with the set of left integrals, which we denote by

󰁕 l

H
.

Lemma 14.2.
󰁕 l

H
is a two-sided ideal of H.

Proof. If θ ∈
󰁕 l

H
and x, y ∈ H, then

y(xθ) = (yx)θ = ε(yx)θ = ε(y)(ε(x)θ) = ε(y)(xθ)

and
y(θx) = (yθ)x = (ε(y)θ)x = ε(y)(θx). □

Example 14.3. Let G be a finite group.
(1) If H = R[G], then

θ =
󰁛

σ∈G

σ

is a left and right integral and every other left or right integral is an R-
multiple of θ (for the easy verification, see [Und15, Proposition 3.2.4]).

(2) If H = R[G]∗ with basis {eσ | σ ∈ G} as in Example 9.33, then e1 is a left
and right integral. It is enough to check the defining property on a basis,
so let σ ∈ G. Then eσe1 = δσ,1e1 = ε(eσ)e1 and e1eσ = e1δσ,1 = e1ε(eσ).

Definition 14.4. We say that H is unimodular if the module of left integrals
coincide with the module of right integrals.

Example 14.5.
(1) If H is commutative, then H is unimodular.
(2) If H = R[G] for a finite group G, then H is unimodular.

We shall use the integrals to better understand the action of a finite Hopf algebra
over its dual. Recall that if H is finite, then H∗ is a left H-module algebra:

h · f =
󰁛

(f)

f(1)〈h, f(2)〉,

for h ∈ H and f ∈ H∗. For example, if H = R[G] for a finite group G and σ, τ ∈ G,
then

σ · eτ =
󰁛

ρ∈G

eρ〈σ, eρ−1τ 〉 = eτσ−1 .
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In particular, for all σ ∈ G, we have eσ = σ−1 · e1, and we find that

R[G]∗ = R[G] · e1,

with e1 left integral.
Conversely, R[G] is a left R[G]∗-module algebra:

eσ · τ = δσ,τ τ.

In a similar way, we find that

R[G] = R[G]∗ ·
󰁛

σ∈G

σ,

with
󰁓

σ∈G σ left integral.
We can generalise this fact as follows.

Theorem 14.6 (Larson–Sweedler). If H is finite, then there exixts an H-module
isomorphism

H ⊗R

󰁝 l

H∗

∼= H∗.

Proof. See [Swe69, Theorem 5.1.3]. Explicitly, the isomorphism associates the ele-
ment h · θ to a pure tensor h⊗ θ. □

Corollary 14.7. If H is finite, then
󰁕 l

H∗ is a projective R-module. If in addition
R is a principal ideal domain or a local ring, then

󰁕 l

H∗ is a free R-module of rank
one.

Proof. Consider the counity εH : H → R. If r ∈ R, then

εH(ιH(r)) = rεH(1H) = r.

This implies that εH ◦ ιH = idR, so the sequence of R-modules

0 → ker(εH) → H
εH−−→ R → 0.

is exact and split. We find that R is a direct summand of H, and by Theorem 14.6,󰁕 l

H∗
∼= R ⊗R

󰁕 l

H∗ is a direct summand of H∗. Since H∗ is projective, we conclude
that also

󰁕 l

H∗ is projective.
If in addition R is a principal ideal domain or a local ring, then every projective

R-module is free. Since the R-ranks of H and H∗ coincide, we conclude that
󰁕 l

H∗

is a free R-module of rank one. □

Note that if
󰁕 l

H∗ is free and θ is a generator, then, by Theorem 14.6, H∗ is a
free left H-module of rank one, with generator θ, the isomorphism given by the
H-module map

H 󰀁→ H∗

h 󰀁→ h · θ.

We conclude with a standard application of Sweedler notation.

Lemma 14.8. Let θ be a left integral of H. Then for all h ∈ H,

(h⊗ 1)((id⊗λ)∆(θ)) = ((id⊗λ)∆(θ))(1⊗ h).
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Proof. For all h ∈ H,

(h⊗ 1)((id⊗λ)∆(θ)) =
󰁛

(θ)

hθ(1) ⊗ λ(θ(2))

(by counitary) =
󰁛

(θ),(h)

h(1)ε(h(2))θ(1) ⊗ λ(θ(2))

(by linearity) =
󰁛

(θ),(h)

h(1)θ(1) ⊗ λ(θ(2))ε(h(2))

(by antipode property) =
󰁛

(θ),(h)

h(1)θ(1) ⊗ λ(θ(2))λ(h(2))h(3)

(λ is antihomomorphism) =
󰁛

(θ),(h)

h(1)θ(1) ⊗ λ(h(2)θ(2))h(3)

(∆ is a homomorphism and by coassociativity) =
󰁛

(h)

((id⊗λ)∆(h(1)θ))(1⊗ h(2))

(θ is a left integral) =
󰁛

(h)

((id⊗λ)∆(ε(h(1))θ))(1⊗ h(2))

(by linearity) =
󰁛

(h)

((id⊗λ)∆(θ))(1⊗ ε(h(1))h(2))

(by counitary) = ((id⊗λ)∆(θ))(1⊗ h). □

Corollary 14.9. Let H = R[G], where G is a finite group. Then for all σ ∈ G,
󰁛

τ

στ ⊗ τ−1 =
󰁛

τ

τ ⊗ τ−1σ.

Proof. Just apply Lemma 14.8 with the left integral θ =
󰁓

τ τ . □

14.1.2. Hopf orders. Let O be a Dedekind domain with field of fractions K, and
suppose that the characteristic of K is zero. Let A be a finite K-Hopf algebra, and
let H be a finite O-submodule of A for which KH = A.

Lemma 14.10. The O-linear map

ϕ : H ⊗O H → A⊗K A

a⊗ b 󰀁→ a⊗ b

is injective.

Proof. Suppose first that H is free as O-module. Since KH = A, an O-basis of H
is also a K-basis of A, and so the result immediately follows.

In general, we can tensor with the direct sum
󰁏

m Om over all maximal ideals
of R, a faithfully flat O-module, and work again in a setting where we have free
modules. □

If we identify H ⊗O H with a subset of A⊗K A, it makes sense to ask if H is an
O-Hopf algebra with the structure induced by A, that is, if the following hold:

• µ : A⊗K A → A restricts to µ : H ⊗O H → H.
• ι : K → A restricts to ι : O → H.
• ∆ : A → A⊗K A restricts to ∆ : H → H ⊗O H.
• ε : A → K restricts to ε : H → O.
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• λ : A → A restricts to λ : H → H.

Definition 14.11. An O-Hopf order in A is an O-order H in A which is an O-Hopf
algebra with the operations induced by A.

Example 14.12. If G is a finite group and A = K[G], then H = O[G] is an O-Hopf
order in A. In fact, H is the minimal O-Hopf order in A, as we now shall see.

Proposition 14.13. Let H be an O-Hopf order in K[G]. Then O[G] ⊆ H.

Proof. Since H is an O-Hopf order in K[G], the dual H∗ is an O-Hopf order
in K[G]∗ =

󰁓
σ∈G Keσ, a commutative O-algebra with unique maximal order󰁓

σ∈G Oeσ. We deduce that H∗ ⊆
󰁓

σ∈G Oeσ, so O[G] ⊆ H. □

When A = K[G], in order to show that an O-order is an O-Hopf order is enough
to show that the comultiplication restricts correctly.

Proposition 14.14. If G is a finite group, H is an O-order in K[G], and ∆(H) ⊆
H ⊗O H, then H is an O-Hopf order in K[G].

Proof. See [Tru09, Proposition 2.3.12]. □

14.1.3. Associated orders in Hopf algebras. Let L/K be an extension of number
fields or p-adic fields, and let A be a finite K-Hopf algebra such that L/K is A-
Galois. We may define an associated order in this setting.

Definition 14.15. The associated order of OL in A is

AA = {α ∈ A | α · OL ⊆ OL}.

As in the classical case, AA is an OK-order in A, but AA is not necessarily an
OK-Hopf order (see [Chi87, section 5]). Moreover, if OL is free over A, then it is
free of rank one, and the following result holds.

Proposition 14.16. Suppose that OL is free over an OK-order Γ in A. Then
Γ = AA.

Proof. This works exactly as Proposition 2.12, since also in this case L is free of
rank one over H (Theorem 10.23). □

14.1.4. H-tame extensions. Here we generalise the notion of tamely ramified ex-
tension for H-Galois extensions.

If L/K is an extension of p-adic fields, then L/K is tamely ramified if and only
if the trace map Tr: OL → OK is surjective (Theorem 1.30). Since Tr(a) = θ · a,
where θ =

󰁓
σ∈G σ is a generator of the two-sided ideal

󰁕 l

K[G]
, we deduce that L/K

is tamely ramified if and only if
󰁕 l

K[G]
·OL = OK . With this is mind, we can give

the following definition. Fix a commutative local ring R and a finite cocommutative
R-Hopf algebra H. The following discussion can also be generalise to rings which
are not necessarily local.

Definition 14.17. Let S be a finite R-algebra which is a left H-module algebra.
Suppose SH = ιS(R). We say that S is H-tame if the following hold:

(1) rankR(S) = rankR(H).
(2) S is a faithful H-module.
(3)

󰁕 l

H
·S = SH = ιS(R).
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Condition (3) means that
󰁕 l

H
·S is as large as possibile, because of the next result.

Proposition 14.18. Let S be a left H-module algebra. Then
󰁕 l

H
·S ⊆ SH .

Proof. Let ξ =
󰁓n

i=1 θi · si ∈
󰁕 l

H
·S, where for all i, θi ∈

󰁕 l

H
and si ∈ S. Then, for

all h ∈ H,

h · ξ = h ·
󰀣
󰁛

i

θi · si

󰀤
=

󰁛

i

(hθi) · si =
󰁛

i

(ε(h)θi) · si = ε(h)ξ. □

14.2. Linking notions. We study the relation between the notions of H-free, H-
tame, and H-Galois.

14.2.1. Maximal order implies freeness.

Proposition 14.19. Let K be a p-adic field, and let A be a commutative separable
K-algebra. Let M be the maximal OK-order in A, and let S be a finite OK-module
which is also an M-module. If S ⊗OK

K is A-free of rank one, then S is M-free of
rank one.

Proof. See [Tru09, Proposition 2.55]. □

In particular, if L/K is an A-Galois extension of p-adic fields, where A is a
commutative (and so necessarily separable, by [Tru09, Proposition 2.3.9]) K-Hopf
algebra and AA is the maximal order in A, then L is A-free of rank one (Theo-
rem 10.23), and so OL is AA-free.

14.2.2. Tameness implies freeness.

Theorem 14.20. Let R be a commutative local ring, let H be a finite cocommu-
tative R-Hopf algebra, and let S be a finite R-algebra which is a left H-module
algebra. If S is H-tame, then S is H-projective.

Proof. Since R is local, by 14.7,
󰁕 l

H
is R-free of rank one. Let θ be a generator.

Since S is H-tame, θ · S = ιS(R), so we can find z ∈ S such that θ · z = 1S . Since
S is R-projective, H ⊗R S is H-projective, where the action is given on the first
factor. Therefore, in order to conclude, it is enough to show that S is isomorphic
to a direct summand of H ⊗R S.

Consider the H-multiplication α : H ⊗R S → S, clearly a left H-module homo-
morphism. Since this map is surjective, we have an exact sequence

0 → ker(α) → H ⊗R S
α−→ S → 0,

and if the sequence splits, then H⊗RS ∼= ker(α)⊕S as left H-modules (see [Rot09,
Proposition 2.28]); this isomorphism would imply the assertion. Define β : S →
H ⊗R S by

β(s) =
󰁛

(θ)

θ(1) ⊗ z(λ(θ(2)) · s).
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The map β is an H-module homomorphism: if h ∈ H and s ∈ S, then

h · (β(s)) = h ·

󰀳

󰁃
󰁛

(θ)

θ(1) ⊗ z(λ(θ(2)) · s)

󰀴

󰁄

=
󰁛

(θ)

hθ(1) ⊗ z(λ(θ(2)) · s)

= (1H ⊗ z)

󰀳

󰁃
󰁛

(θ)

hθ(1) ⊗ λ(θ(2))

󰀴

󰁄 · (1H ⊗ s)

(by Proposition 14.8) = (1H ⊗ z)

󰀳

󰁃
󰁛

(θ)

θ(1) ⊗ λ(θ(2))h

󰀴

󰁄 · (1H ⊗ s)

=
󰁛

(θ)

θ(1) ⊗ z(λ(θ(2)) · (h · s)) = β(h · s).

The only thing left to show is that for all s ∈ S, α(β(s)) = s:

α(β(s)) =
󰁛

(θ)

θ(1) · (z(λ(θ(2)) · s))

(S is a left H-module algebra) =
󰁛

(θ)

(θ(1) · z)((θ(2)λ(θ(3))) · s)

(by antipode property) =
󰁛

(θ)

(θ(1) · z)(ε(θ(2))s)

(by linearity) =
󰁛

(θ)

((θ(1)ε(θ(2))) · z)(s)

(by counitary) = (θ · z)s = s. □

We need now an intermediate result, which can be found in [Sch77].

Theorem 14.21 (Schneider). Let R be a local domain with field of fractions K
of characteristic zero. Let H be a finite cocommutative R-Hopf algebra, and let P
and Q be finitely generated projective left H-modules. If K ⊗R P ∼= K ⊗R Q as left
K ⊗R H-modules, then P ∼= Q as left H-modules.

Proposition 14.22. Let K be a p-adic field, and let A be a finite cocommutative
K-Hopf algebra. Let S be an OK-order in an A-Galois extension L of K. If H is
an OK-Hopf order in A and S is H-projective, then S is H-free of rank one.

Proof. This is an immediate application of Theorems 14.21 and 10.23. □

Putting all together, we find the desired result.

Corollary 14.23. Let L/K be an A-Galois extension of p-adic fields. Let H be
an OK-Hopf order in A such that S is H-tame. Then S is H-free. In particular,
H = AA.

14.2.3. Hopf order implies freeness.

Theorem 14.24. Let L/K be an A-Galois extension of p-adic fields. If AA is an
OK-Hopf order in A, then OL is AA-tame and so AA-free.
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Proof. The only condition in Definition 14.17 we need to check is (3).
Since OK is local,

󰁕 l

AA
is OK-free of rank one by Corollary 14.7. Let θ be a

generator. As L is A-Galois, LA = K by Proposition 10.17, and this easily implies
that OAA

L = OK . By Proposition 14.18, we find θ · OL ⊆ OAA

L = OK .
For the other inclusion, let π be an uniformiser of OK . Since θ · OL is an ideal

of OK , there exists i ≥ 0 such that θ · OL = πiOK . Therefore (θ/πi) · OL = OK ,
and so θ/πi ∈ AA. Finally, since θ/πi is an integral and θ is a generator of

󰁕 l

AA
as

R-module, we find that i = 0, that is, θ · OL = OK . □

14.2.4. Galois implies tameness. Let R be a commutative local ring, and let H be
a finite cocommutative R-Hopf algebra. Let S be an H-Galois extension, and let
E = EndR(S).

Proposition 14.25. If M is a left E-module, then

MH ∼=
󰁝 l

H

·M

as R-modules. In particular, M ∼= S ⊗R

󰁕 l

H
·M as left E-modules.

Proof. See [Chi00, Proposition 14.3]. This is an application of Morita theory, dis-
cussed also in Lemma 10.27. □

Proposition 14.26. Let S be an H-Galois extension of R. Then S is H-tame.

Proof. Conditions (1) and (2) of Definition 14.17 follow from the isomorphisms in
Proposition 10.20.

If we apply Proposition 14.25 for M = S, we immediately deduce condition (3).
□

14.2.5. Freeness implies tameness. Let R be a commutative local ring, and let H
be a finite cocommutative R-Hopf algebra.

Corollary 14.27. Let S be an H-module algebra with SH = ιS(R). If S ∼= H∗ as
H-modules, then S is H-tame.

Proof. Since H∗ is a faithful H-module, so it is S, and rankR(H) = rankR(H
∗) =

rankR(S).
We need to check that

󰁕 l

H
·S = R. Since H∗ is H-Galois,

󰁕 l

H
·H∗ = R (Proposi-

tion 14.26), and since
󰁕 l

H
·S is mapped to

󰁕 l

H
·H∗ under the isomorphism S ∼= H∗,

we derive our assertion. □

Since R is local, H ∼= H∗ as H-modules, and so we derive the next result.

Corollary 14.28. Suppose that R is local, and let S be an H-module algebra with
SH = ιS(R). If S is H-free, then S is H-tame.

14.2.6. Equivalence between notions. If also the Hopf algebra is local, then all the
notions are equivalent.

Theorem 14.29. Let R be a commutative local ring, let H be a local cocommutative
R-Hopf algebra, and let S be a finite R-algebra which is also a faithful R-module
algebra. Then the following are equivalent:

• S is H-tame.
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• S is H-free.
• S is H-Galois.

Proof. See [Chi00, Theorem 14.7]. Explicitly, if
󰁕 l

H
= Rθ and t ∈ S is an element

such that θ · t = 1, then t is an H-generator of S. □

15. Hopf orders as associated orders

In this section, we mainly follow [Byo95], [Byo97], and [Chi00, Chapters 8, 11,
and 12].

15.1. The set-up. We recall the main result of Section 14.

Theorem 15.1. Let L/K be an H-Galois extension of p-adic fields, where H is
a cocommutative K-Hopf algebra. If the associated order AH of OL in H is an
OK-Hopf order, then OL is AH-tame and so AH-free. If in addition AH is a local
ring, then OL is AH-Galois.

15.2. Hopf orders in K[Cp]. Let K be a p-adic field with normalised valuation
vK , and let pK be the maximal ideal of OK . Let πK be an uniformiser of K, so
vK(πK) = 1, and write e = eK/Qp

for the ramification index: pOK = πe
KOK . Let

G = Cp be a cyclic group of order p with generator σ, and write X = σ−1 ∈ OK [G].
As OK [X] = OK [G] (Lemma 7.10), we get that OK [X] is an OK-Hopf order in

K[G]. This can be also shown directly: since (X + 1)p = σp = 1, we find that

Xp + pXp−1 +

󰀕
p

2

󰀖
Xp−2 + · · ·+ pX = 0;

thus OK [X] is finitely generated over OK . Clearly, KOK [X] = K[G]. Moreover,

∆(X) = ∆(σ − 1) = ∆(σ)−∆(1) = σ ⊗ σ − 1⊗ 1

= X ⊗ 1 + 1⊗X +X ⊗X ∈ OK [X]⊗OK
OK [X]

and so by Proposition 14.14 we conclude that OK [X] is an OK-Hopf order in K[G].
Now we generalise this construction. For i ∈ Z, write Xi = π−iX and Hi =

OK [Xi]. For which i is Hi a Hopf order? For Hi to be a finitely generated OK-
module, we need Xi to satisfy a monic equation over OK . Since KOK [Xi] = K[G]
and, as before,

Xp
i + pπ−iXp−1

i +

󰀕
p

2

󰀖
π−2iXp−2

i + · · ·+ pπ−(p−1)iXi = 0,

we deduce that if pπ−(p−1)i ∈ OK , that is, if i ≤ e/(p− 1), then Hi is an OK-order
in K[G] with basis {Xj

i }
p
j=1.

For Hi to be an OK-Hopf order we also need ∆(Xi) ∈ Hi ⊗OK
Hi. Since

∆(Xi) = Xi ⊗ 1 + 1⊗Xi + πiXi ⊗Xi,

we find that ∆(Xi) ∈ Hi ⊗OK
Hi if and only if i ≥ 0, and so we get a family of

Hopf orders Hi ⊆ K[G] for 0 ≤ i ≤ ⌊e/(p − 1)⌋. One can show that Hi is a local
ring unless i = e/(p− 1) and these are the only Hopf orders in K[Cp]; see [Und11,
Chapter 7].

Now we study when these Hopf orders occur as associated orders.
Let L/K be a Galois extension of degree p with Galois group G and ramification

jump t: if pL is the prime of OL, then

t = max{j | (σ − 1) · OL ⊆ pj+1
L }.
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Recall Proposition 7.4: 1 ≤ t ≤ ep/(p − 1), and p ∤ t unless (p − 1) | e and
t = ep/(p − 1). If t = −1, then L/K is unramified. If t > 0, then L/K is totally
(and wildly) ramified. Note that t ∕= 0, as G0 = G1 (Corollary 2.4). By [Byo97,
Proposition 3.1], if t > 0, then for all ρ ∈ L×,

vL((σ − 1) · ρ)
󰀫
= vL(ρ) + t if p ∤ vL(ρ),
> vL(ρ) + t if p | vL(ρ).

Combining [Byo95, section 7] and [BF72], we find that there are four cases to
consider:

• Suppose t > 0 and t ≡ −1 (mod p), say t = pi − 1 with 1 ≤ i ≤ e/p − 1.
Pick ρ ∈ L such that vL(ρ) = p − 1. If 0 ≤ s ≤ p − 1, then, by an easy
computation,

vL(X
s
i · ρ) = p− 1− s

and
vL(X

p
i · ρ) ≥ 0.

Since L/K is totally ramified, we deduce that the elements Xs
i · ρ for 0 ≤

s ≤ p − 1 form an OK-basis of OL, that is, OL is a free Hi-module with
generator ρ. Also, OL is Hi-Galois.

• Suppose t = −1. Then L/K is unramified, and OL is free over H0 = OK [G]
and H0-Galois.

• Suppose t = pi− a with 2 ≤ a ≤ p− 1. Then

Hi−1 ⊊ AL/K ⊊ Hi,

and so AL/K is not an OK-Hopf order in K[G]. Moreover, OL is free over
AL/K if and only if p− a divides p− 1, unless t+ 1 ≥ ep/(p− 1).

• Suppose t = pe/(p − 1). Then we can apply Theorem 7.6: ζp ∈ K and
L = K(α) with α = p

√
π, for some choice of an uniformiser π. Then OL is

free over Hi for i = e/(p− 1), with generator

1 + α+ α2 + · · ·+ αp−1.

In this case Hi is the maximal order, and it is not a local ring. In particular,
OL is Hi-tame, and so Hi-free, but not Hi-Galois.

Summarising, OL is H-Galois for some Hopf order H if and only if t ≡ −1
(mod p). The only other case where the associated order is a Hopf order is when
t = ep/(p− 1); see [Byo95, Lemma 7.1].

15.3. A weak congruence for the ramification jumps. Let us now consider a
totally ramified Galois extension L/K of degree pn with Galois group G. We list
the ramification jumps “with multiplicity”: t1 ≤ t2 ≤ · · · ≤ tn, where

ti = max{j | |Gj | > pn−i}.
In particular, by Hilbert’s formula (Proposition 4.4), the inverse different

D−1
L/K = {x ∈ L | TrL/K(xOL) ⊆ OK}

equals p−w
L , where

w = (pn − 1)(t1 + 1) +

n−1󰁛

i=1

(ti+1 − ti)(p
n−i − 1) ≡ −(tn + 1) (mod p).
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Theorem 15.2. Suppose AL/K is a local OK-Hopf order in K[G]. Then for all
1 ≤ i ≤ n,

ti ≡ −1 (mod pi).

Proof. We proceed by induction on n, where the base case n = 1 has been already
performed.

Let N be a normal subgroup of G of order p contained in Gtn , and let F = LN .
With this choice of N , L/F has ramification jump tn and F/K has ramification
jumps t1, . . . , tn−1. Attached to the exact sequence of groups

1 → N → G → G/N → 1

we have an exact sequence of OK-Hopf orders, in the sense of [Chi00, sections 4
and 5]:

OK → H1 → H → H → OK ,

where H1 = H∩K[N ] and H is the image of H in K[G/N ] (in particular, see [Chi00,
Propositions 4.14 and 5.3]). Then H1 and H are still local by [Chi00, Proposition
29.1], and OL and OF are tame for the Hopf orders OF ⊗OK

H1 = AL/F and
H = AF/K , respectively; see [Chi00, Theorem 28.1].

Applying the induction hypothesis to F/K, we get ti ≡ −1 (mod pi) for all
1 ≤ i ≤ n− 1.

Applying the induction hypothesis to L/F , we get tn ≡ −1 (mod p), say tn =
pm− 1. We need to strengthen this congruence.

By [Byo95, Corollary 1.5],
󰁝 l

H1

= a−1
󰁛

σ∈N

σ,

where a is an ideal of OK . We deduce that
󰁝 l

AL/F

= a−1OF

󰁛

σ∈N

σ,

and by [Byo95, Proposition 3.2], TrL/K(OL) = aOK . On the other side, since
D−1

L/F = p−w
L with w = (p− 1)(tn + 1) = (p− 1)pm, we get

p
(p−1)m
F = TrL/K(OF ) = aOF .

As F/K is totally ramified of degree pn−1, we deduce that

(p− 1)m ≡ 0 (mod pn−1),

that is, pn−1 | m, so
tn = pm− 1 ≡ −1 (mod pn). □

Corollary 15.3. Suppose that AL/K is a local OK-Hopf order in K[G]. Then
D−1

L/K = a−1OL for an OK-ideal a.

Proof. We have D−1
L/K = p−w

L , where

w = (pn − 1)(t1 + 1) +

n−1󰁛

i=1

(ti+1 − ti)(p
n−i − 1) ≡ −(tn + 1) ≡ 0 (mod p),
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since ti ≡ −1 (mod pi), for every i. In particular,

D−1
L/K = p

−w/pn

K . □

Remark 15.4. Corollary 15.3 implies that if AL/K is a local OK-Hopf order in K[G],
then D−1

L/K and OL have the same associated order AL/K , and both are free over
it.

15.4. A strong congruence for the ramification breaks.

Theorem 15.5. Let L/K be a totally ramified abelian extension of degree pn with
D−1

L/K = a−1OL, where a is an OK-ideal. Suppose that D−1
L/K is free over its

associated order A = AL/K in K[G] and A is a local ring. Then for all 1 ≤ i ≤ n,
the ramification jumps ti of L/K satisfy

ti ≡ −1 (mod pn).

Proof. Write M for the unique maximal ideal of A, and let D−1 = D−1
L/K be free

over A with generator y. For all α ∈ A,

A · (α · y) = D−1 ⇐⇒ α /∈ M.

Write {yj}p
n

j=1 for an OK-basis of D−1, so for all 1 ≤ j ≤ pn, we have that yj = αj ·y
and {αj}p

n

j=1 is an OK-basis of A. Since M is strictly contained in A, there is j

with αj /∈ M; thus A · yj = D−1.
Assume, by contradiction, ti ∕≡ −1 (mod pn) for some i. We construct a basis

{yj}p
n

j=1 for D−1 over OK so that none of the yj satisfy A · yj = D−1.
To show that A ·yj ∕= D−1, it is enough to find βj ∈ A such that βj ·yj ∈ πKD−1,

but βj /∈ πKA; see [Byo97, Lemma 2.2].
Write D−1 = p−w

L , with w ≡ 0 (mod pn). Then

TrL/K(D−1) = OK , TrL/K(p−1
L D−1) = p−1

K ,

so
TrL/K(πKD−1) = pK , TrL/K(πKp−1

L D−1) = OK .

This means that if we choose z ∈ πKpLD−1 with TrL/K(z) = 1, then vL(z) =
pn − w − 1. Now choose z1 = z, z2, . . . , zpn with vL(zj) = pn − w − j. Then the
zj form an OK-basis of D−1. We adjust this to get a nicer basis: y1 = z and for
2 ≤ j ≤ pn,

yj = zj − TrL/K(zj)z1.

Then TrL/K(yj) = 0 for 2 ≤ j ≤ pn, and still vL(yj) = pn − w − j.
Recall that we need to find, for all 2 ≤ j ≤ pn, βj ∈ A\πKA with βj ·yj ∈ πKD−1.

For 2 ≤ j ≤ pn, we take
βj = β = π

−w/pn

K

󰁛

σ∈G

σ.

Then
β · yj = π

−w/pn

K TrL/K(yj) = 0 ∈ πKD−1,

and since D−1 = π
−w/pn

K OL, we deduce that β ∈ A but β /∈ πKA.
It remains to find β1. Recall that ti ∕≡ −1 (mod pn). Write ti = pnm + a,

with 1 ≤ a ≤ pn − 2. (Note that ti ∕≡ 0 (mod pn), as ti ≡ −1 (mod pi).) Take
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β1 = π−m
K (σ − 1), with σ ∈ Gti \ Gti+1. By Proposition [Byo97, Proposition 3.1],

for all y ∈ L×,

vL(β1 · y)
󰀫
= vL(y) + a if p ∤ vL(y),
> vL(y) + a if p | vL(y),

and so β1 ∈ A. Since

vL(β1 · y1) ≥ vL(y1) + a = pn − w − 1 + a ≥ pn − w,

we derive β1 · y1 ∈ πD−1. On the other hand,

vL(β1 · ypn−1) = (pn − w − (pn − 1)) + a ≤ pn − w − 1,

so β1 · ypn−1 /∈ πKD−1, and β1 /∈ πKAL/K . □
We summarise what we have done so far. Let L/K be a totally ramified Galois

extension of p-adic fields of degree pn with Galois group G such that AL/K is an
OK-Hopf order in K[G]. Then OL is free over AL/K . If in addition AL/K is a
local ring, then OL is AL/K-Galois, D−1 = a−1OL for an OK-ideal a, and the
ramification jumps of L/K satisfy

ti ≡ −1 (mod pn).

15.5. Formal groups and Hopf orders. We deal now with a way of creating
Hopf orders. Let K be a p-adic field.

Definition 15.6. A (one-dimensional) formal group over OK is a power series
F (X,Y ) ∈ OK [[X,Y ]] such that the following hold:

(1) F (X,Y ) ≡ X + Y (mod deg ≥ 2).
(2) F (F (X,Y ), Z) = F (X,F (Y, Z)).
(3) F (X, 0) = X, F (0, Y ) = Y .
(4) F (X,Y ) = F (Y,X).
(5) There exists a series i(X) ∈ OK [[X]] with i(0) = 0 such that

F (X, i(X)) = 0.

Remark 15.7. We may write F (F (X,Y ), Z) in Definition 15.6(2) because F (X,Y )
has no constant term.

If E is an algebraic extension of K (not necessarily finite) and pE is the maximal
ideal of the valuation ring of E, then (pE ,+F ) is an abelian group, where, for all
x, y ∈ pE ,

x+F y = F (x, y).

This makes sense as K(x, y) is again a p-adic field, so it is complete and the series
defining x+F y converges. The identity is 0 and the inverse of x is i(x).

Example 15.8. Let E be an algebraic extension of K.
• The additive formal group

F (X,Y ) = X + Y

gives the usual addition on pE .
• The multiplicative formal group is

F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1.

The group (pE ,+F ) is isomorphic to 1+pE ⊆ O×
E with the usual operation,

via the map x 󰀁→ 1 + x.
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Definition 15.9. Let F and F ′ be formal groups over OK . A homomorphism
f : F → F ′ is a power series f(X) ∈ OK [[X]] without constant term such that

f(F (X,Y )) = F ′(f(X), f(Y )).

If F = F ′, then f is an endomorphism.

Note that a homomorphism f : F → F ′ yields a group homomorphism

f : (pE ,+F ) → (pE ,+F ′)

for all algebraic extensions E of K, and we can talk about the kernel ker(f) of f .
The connection between formal groups and Hopf algebras is given by the follow-

ing result.

Proposition 15.10. Let F (X,Y ) be a formal group over OK . Then F induces a
“formal” OK-Hopf algebra structure on OK [[T ]].

Proof. See [Chi00, Proposition 34.1]. We just give some details. Let U = T ⊗ 1
and V = 1⊗ T . Write OK [[U ]]⊗̂OK

OK [[V ]] for the completed tensor product: it is
the completion of OK [[U ]]⊗OK

OK [[V ]] with respect to the I-adic topology, where

I = 〈U〉 ⊗OK
OK [[V ]] +OK [[U ]]⊗OK

〈V 〉.
Now define the following continuous algebra maps:

∆ : OK [[T ]] → OK [[U, V ]] = OK [[U ]]⊗̂OK
OK [[V ]]

T 󰀁→ F (U, V ),

ε : OK [[T ]] → OK

T 󰀁→ 0,

and

λ : OK [[T ]] → OK [[T ]]

T 󰀁→ i(T ).

Then these maps satisfy the usual Hopf algebra axioms. □
Definition 15.11. Let f : F → F ′ be a homomorphism of formal groups, and let
Hf = OK [[X]]/(f). Then f is an isogeny if Hf is a finite OK-module.

Proposition 15.12. If f : F → F ′ is an isogeny, then Hf is an OK-Hopf algebra
with operations induced from those on OK [[X]] by F .

Proof. See [Chi00, Proposition 34.3]. □
In particular, let f(X) = a1X + a2X

2 + · · · : F → F ′ be a homomorphism of
formal groups such that there exists d ≥ 2 with aj ∈ pK for all 1 ≤ j ≤ d− 1, and
ad /∈ pK . By Weierstrass preparation theorem (see [Lan02, Chapter IV, Theorem
9.2]), f(X) = f0(X)u(X), where f0(X) is a monic polynomial of degree d with
f0(X) ≡ Xd (mod pK), and u(X) ∈ OK [[X]]×. This implies that f is an isogeny
(see [Chi00, Proposition 35.6]), and Hf = OK [[X]]/(f) is an OK-Hopf algebra of
rank d.

Now let c ∈ pK , and write S = OK [[T ]]/(f(T )− c). There is a well defined map

S → S ⊗OK
H

T 󰀁→ F (T ⊗ 1, 1⊗X).
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This makes S into a Galois H-object (see [Chi00, proposition 39.1]) and so into a
Galois H∗-extension, where H∗ is the dual of H. If vK(c) = 1, then we can use
again Weierstrass preparation theorem to find that f(T ) − c = f0(T )u(T ), where
f0(T ) is an Eisenstein polynomial of degree d and S = OL for some totally ramified
extension L/K of degree d. Summarising, we have created an extension L/K for
which OL is free over H∗, a commutative and cocommutative OK-Hopf order in
K ⊗OK

H∗, and the key point one can note is that K ⊗OK
H∗ is a group algebra

(and so we are in the classical case) if and only if ker(f) ⊆ K.
Consider, for example, F (X,Y ) = X + Y + XY , and the (shifted) pn-power

endomorphism f : F → F defined by

f(X) = (1 +X)p
n

− 1 = pnX + · · ·+Xpn

.

Then H∗ ⊆ K[Cp] if and only if ζpn ∈ K. If vK(c) = 1, then S = OK [ pn
√
c], which

is the valuation ring of L = Qp( pn
√
c), and is free over the Hopf order H∗.

If we start with K = Qp(ζp) and we take c = ζp − 1, we find L = Qp(ζpn+1),
which is a Galois extension of K in the classical sense, but if n > 1, then H∗ gives
a nonclassical structure.

15.6. Lubin–Tate formal groups. For this final part, we change the notation: let
k be a p-adic field with residue field of order q = pf , and let π = πk be a uniformiser
of k. Write p for the maximal ideal in the valuation ring of the algebraic closure of
k. We follow the discussion of [Byo97, sections 5 and 6]; see also [Chi00, Section
40], where more details are given.

Let f(X) ∈ OK [[X]] such that

f(X) ≡ πX (mod deg ≥ 2)

and
f(X) ≡ Xq (mod π).

For example, if k = Qp and π = p, we may take

f(X) = (1 +X)p − 1 = pX + · · ·+Xp.

Then there is a unique formal group F (X,Y ) over Ok such that f(X) is an
endomorphism of F ; see [Chi00, Theorem 36.2]. In fact, the ring of endomorphisms
of F (with operations defined in the natural way) is canonically isomorphic to Ok.
If we write [a] for the image of a ∈ Ok under this isomorphism, then [π] = f(X).

For all n ≥ 1, consider the torsion points

Fn = ker[πn] = {x ∈ p | [πn](x) = 0}.

Then Fn is an Ok-module, where addition is via F , and where a ∈ Ok acts via [a].
For all n ≥ 1, let kn = k(Fn), with valuation ring Okn . Then kn/k is a totally
ramified Galois extension of degree qn−1(q − 1), with Galois group

Gal(kn/k) ∼=
O×

k

1 + pnk
.

Moreover, if ωn ∈ Fn \ Fn−1, then wn is a uniformiser for kn.
Now let K = km and L = km+n, for n,m ≥ 1. Then L/K is a totally ramified

abelian extension of degree qn with Galois group G ∼= (1 + pmk )/(1 + pm+n
k ).

Theorem 15.13. If n > m and k ∕= Qp, then OL is not free over AL/K .
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Proof. This is [Byo97, Theorem 5.1]. We just sketch the proof.
The ramification jumps (with multiplicity) can be computed as follows:

t1 = · · · = tf = qm − 1,

tf+1 = · · · = t2f = qm+1 − 1,

...

t(n−1)f+1 = · · · = tnf = qm+n−1 − 1.

In particular, t1 = qm − 1 ∕≡ −1 (mod qn), and since we can prove that AL/K is
local if and only if k ∕= Qp, we conclude by Theorem 15.5 that OL is not free over
its associated order AL/K in K[G], provided k ∕= Qp. □

On the other side, since L = K(ωm+n), where ωm+n is a root of

[πn](X)− ωm = 0

with ωm a uniformiser for OK , the formal group construction gives an OK-Hopf
order H∗ so that OL is a free H∗-module of rank one (note that Fm ∕⊆ K, so we
are in a nonclassical setting).

16. An assortment of associated orders in Hopf–Galois extensions

16.1. Standing assumptions. Fix a finite separable extension L/K. For the most
part of this section, L/K is a Galois extension of number fields or p-adic fields.

Let E be the Galois closure of L/K, and write G = Gal(E/K), GL = Gal(E/L),
and X = G/GL. As in Section 11, if Λ : G → Perm(G) denotes the left translation
map, then regular subgroup of Perm(X) normalised by Λ(G) yield Hopf–Galois
structures on L/K: the Hopf algebra giving the structure is E[N ]G. In what
follows, we call G-stable the subgroups of Perm(X) normalised by Λ(G).

Denote by A = AN the associated order of OL in E[N ]G.

Remark 16.1. Many of the results in this section remain valid if OL is replaced
with any fractional ideal of L.

16.2. Generalised normal basis generator. Here we mainly follow [Tru18].
Recall that a Hopf–Galois analogue of the normal basis theorem holds: if L is

H-Galois, then L is a free H-module of rank one (Theorem 10.23). In particu-
lar, [Tru18, Lemma 3.2] gives an explicit way to find a generator, as follows.

Lemma 16.2. An element x ∈ L is a free generator of L as an E[N ]G-module if
and only if the matrix TN (x) = (η(g)[x])η∈N,g∈X is nonsingular.

Corollary 16.3. If M and N are isomorphic G-stable regular subgroups of Perm(X),
then E[M ]G and E[N ]G have the same generalised normal basis generators.

Proof. By a well-known result in group theory, if two regular G-stable subgroup
of Perm(X) are isomorphic, then the isomorphism is a conjugation. So let π ∈
Perm(X) such that M = πNπ−1. For x ∈ L we have

TM (x) = (πηπ−1(g)[x]),

which differs from TN (x) by permutations of the rows and columns. □
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Example 16.4. Suppose L/K is Galois with nonabelian Galois group G. Consider
the regular G-stable subgroups P (G) and Λ(G) (recall that P : G → Perm(G)
denotes the right translation map). Clearly, ρ(G) and Λ(G) are isomorphic (both
are isomorphic to G). Explicitly, an isomorphism is given by conjugation by π,
where for all g ∈ G, π(g) = g−1. Indeed, for all g, h ∈ G,

πΛ(g)π−1[h] = π[gh−1] = hg−1 = ρ(g)[h].

We deduce that K[G] and L[Λ(G)]G have the same generalised normal basis gen-
erators.

16.3. Opposite Hopf–Galois structures. We follow again [Tru18].
Denote by N ′ the centraliser in Perm(G) of N . It is again regular G-stable

subgroup of Perm(G), as observed in [GP87]. We always have N ∼= N ′, but the
equality holds if and only if N is abelian. Moreover, (N ′)′ = N . We call the
structure corresponding to N and N ′ opposites of one another, and we write A′ =
AN ′ .

Example 16.5. If L/K is Galois with Galois group G, the structures given by K[G]
and L[Λ(G)]G are opposites of one another, as ρ(G) is the centraliser in Perm(G)
of Λ(G).

The following result is [Tru18, Proposition 2.4].

Proposition 16.6. If h ∈ E[N ]G and h′ ∈ E[N ′]G, then for all x ∈ L,

h · (h′ · x) = h′ · (h · x)

Theorem 16.7 (Truman). Let L/K be an extension of number fields or p-adic
fields. Then OL is a free A-module if and only if OL is a free A′-module.

Proof. Suppose that OL is a free A-module with generator x. Thus x is a free
generator of L as an E[N ]G-module, and by Corollary 16.3, as an E[N ′]G-module.
For all a ∈ A, define za ∈ E[N ′]G by za · x = a · x. We claim that

A′ = {za | a ∈ A}.

If y = b · x ∈ OL with b ∈ A, then

za · y = za · (b · x) = b · (za · x) ∈ OL,

so za ∈ A.
The other inclusion follows immediately by E[N ]G-freeness of L. Since clearly

OL = {za | a ∈ A} · x, we derive our claim. □

Corollary 16.8. Let L/K be a weakly ramified Galois extension of p-adic fields.
Then OL is free over its associated order in L[Λ(G)]G.

If the characteristic of K does not divide the degree of the extension, then A is a
maximal order in E[N ]G if and only if A′ is a maximal order in E[Nopp]G ( [Tru18,
Proposition 4.3]). But as Example 16.15 shows, it is possible for A to be a Hopf
order in E[N ]G without A′ being a Hopf order in E[N ′]G.



GALOIS AND HOPF GALOIS 105

16.4. A subextension technique. Now suppose that L/K is Galois with Galois
group G.

If Q is a G-stable subgroup of N , then L[Q]G is a K-Hopf-subalgebra of L[N ]G;
see [CRV16b, Proposition 2.2]. We can form the corresponding “fixed field”:

LQ = {x ∈ L | h · x = ε(h)x for all h ∈ L[Q]H}.
It follows that [L : LQ] = dimK(L[Q]G) = |Q|. The details of the next result are
described in [KKTU19]; see in particular [KKTU19, Theorem 2.10].

Theorem 16.9. If Q is normal in N , then L[N/Q]G gives a Hopf–Galois structure
on LQ/K.

Example 16.10. Let L be the splitting field of x3 − 2 over Q. It is well known
that L/Q is Galois with G ∼= D6, the dihedral group with 6 elements. Let N be a
G-stable regular subgroup of Perm(G) isomorphic to C6. Then L/Q is Hopf–Galois
for L[N ]G. If Q is the unique subgroup of N of order 2, then Q is normal and
G-stable; therefore, by Theorem 16.9, LQ/Q is L[N/P ]G-Galois. Note that LQ/Q
is not Galois.

In this way, one can obtain a slight generalisation of the results of section 13, as
follows.

Lemma 16.11. Suppose N = M ×Q for G-stable subgroups M and Q of N . Then
• LQ/K is Hopf–Galois for L[M ]G;
• LM/K is Hopf–Galois for L[Q]G.

Suppose in addition that
• LQ/K and LM/K are arithmetically disjoint;
• OLM is free over its associated order in L[Q]G;
• OLp is free over its associated order in L[M ]G.

Then OL is free over its associated order in L[N ]G.

16.5. Tamely ramified extensions. Here we follow [Tru11].
If L/K is a tamely ramified extension of p-adic fields, then AL/K = OK [G] and

OL is free over AL/K . But there are interesting questions to deal with, also in
this “simplified” setting. For example, is OL free over its associated order in all
Hopf–Galois structures? What about tamely ramified extensions of number fields?
What if L/K is non-normal?

With the previous notation, the order OE [N ]G in E[N ]G is a formal analogue
of OK [G] in K[G]. Note that OE [N ]G ⊆ A, as immediately follows by the explicit
description of the Hopf-action in Remark 11.11 (generalised to the separable case).

As in the classical setting, if L/K is wildly ramified, then OE [N ]G ⊊ A. Indeed,
we have θ =

󰁓
η∈N η ∈ OE [N ]G, and θ ·x = TrL/K(x) for all x ∈ OL, so π−1

K θ ∈ A.
However, we ofter have equality in the tamely ramified case.

Theorem 16.12. Let L/K be a tamely ramified Galois extension of p-adic fields,
and let N be an abelian G-stable regular subgroup of Perm(G). Then A = OL[N ]G

and OL is a free A-module.

Before the proof, we analyse two particular situations.

Theorem 16.13. Let L/K be an unramified Galois extension of p-adic fields, and
let N be an abelian G-stable regular subgroup of Perm(G). Then A = OL[N ]G, A
is a OK-Hopf order in L[N ]G, and OL is a free A-module.



106 F. FERRI AND L. STEFANELLO

Proof. If L/K is unramified, then OL/OK is a Galois extension of rings with group
G. In particular, we can apply Galois descent: since OL[N ] is an OL-Hopf order
in L[N ], we find that OL[N ]G is an OK-Hopf order in L[N ]G. Now consider the
element θ =

󰁓
η∈N η, a left integral of OL[N ]G. For all x ∈ OL, θ · x = TrL/K(x),

and since L/K is unramified, we can find x ∈ OL such that θ · x = 1. This implies
that OL is an OL[N ]G-tame extension of OK , so the assertion follows. □

Theorem 16.14. Let L/K be an extension of p-adic fields, and let N be an abelian
G-stable regular subgroup of Perm(X). Then A = OE [N ]G, A is the maximal OK-
order in E[N ]G, and OL is a free A-module.

Proof. Note that |N | = |X| = [L : K], so p ∤ |N |. Since N is abelian, we derive
that OE [N ] is the maximal order in E[N ]. Let M be the maximal OK-order in
E[N ]G. If z ∈ M, then z is an element of E[N ] which is clearly fixed by G, so
z ∈ OE [N ]G. We deduce that OE [N ]G = M, and since OE [N ]G ⊆ A, we conclude
that OE [N ]G = A, and by Theorem 5.12, OL is free over A. □

Now we can prove the main result.

Proof of Theorem 16.12. Write N = M × Q, with |M | = m, |Q| = pr, and p ∤ m.
Then M ans N are normal G-stable subgroups, and so we can apply 16.9 to find that
LQ/K is Hopf–Galois for L[M ]G and that LM/K is Hopf–Galois for L[Q]G. Since
L/K is tamely ramified, LM/K is unramified. Therefore LM/K and LQ/K are
arithmetically disjoint. Since LM/K is unramified, OLM is a free OL[Q]G-module.
Since p ∤ [LQ : K] and M is abelian, OLQ is a free OL[M ]G-module. We conclude
that OL is a free OL[N ]G-module by Lemma 16.11. □

Example 16.15. Let p ≡ 2 (mod 3) be a rational prime, and let L be the splitting
field over Qp. Then L/Qp is a tamely ramified Galois extension with Galois group
G ∼= D6. Let N be a G-stable regular subgroup of Perm(G) isomorphic to C6.
Then OL is free over A = OL[N ]G.

Note that OL is also free over its associated order AL/Qp
in Qp[G], which is

Zp[G], and so also over its associated order in L[Λ(G)]G. But it can be shown that
the associated order L[Λ(G)]G strictly contains OL[Λ(G)]G; thus we need to assume
that the subgroup N is abelian.

Conjecture 16.16 (Truman). If L/K is a tamely ramified extension of p-adic
fields, then OL is free over its associated order in all the Hopf–Galois structures.

16.6. Extensions of number fields. Let L/K be a Galois extension of number
fields. If K has class number one, then we can study OL directly: let x1, . . . , xn be
an OK-basis of OL, and let h1, . . . , hn be a K-basis of L[N ]G. We can analyse the
action of the hi on the xj , to try to determine an OK-basis of the associated order
A. If x is a candidate generator of OL as an A-module, then we can compute the
generalised module index [OL : A · x], to see if x is actually a generator.

For example, with this method, D. Gil-Muñoz studied in this PhD thesis Galois
extensions of Q of degree 4. He obtained criteria for OL to be free over various
associated orders in terms of solubility of generalised Pell equations, showing in
particular that the naive analogue of Leopold’s theorem does not hold.

Another approach concerns locally freeness: one can study whether OL is locally
free over A, where as usual, if p is a prime of OK , we write OL,p = OK,p⊗OK

OL and
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Ap = OK,p ⊗OK
A, and we ask if OL,p is a free Ap-module. As showed in [Tru11],

the result of the previous subsection can be translated in this setting.

Proposition 16.17. Suppose that p is unramified. Then Ap = OL,p[N ]G, Ap is
an OKp

-Hopf order in Lp[N ]G, and OL,p is a free Ap-module.

Proposition 16.18. Suppose that p does not divide [L : K]OK , and let N be an
abelian G-stable regular subgroup of Perm(G). Then Ap = OL,p[N ]G, Ap is the
maximal OKp

order in Lp[N ]G, and OL,p is a free Ap-module.

In particular, the next meaningful result is [Tru11, Theorem 5.9].

Theorem 16.19. Suppose that no prime ideal of OK dividing [L : K]OK is ramified
in L, and let N be an abelian G-stable regular subgroup of Perm(G). Then A =
OL[N ]G and OL is a locally free A-module.

16.6.1. Some local to global machinery. If OL is locally free over A, then OL defines
a class in the locally free class group Cl(A). There is a description of Cl(A) via
idèles, which we sketch now. If H = L[N ]G, we write

J(H) =

󰀫
(hp)p ∈

󰁜

p

H×
p | hp ∈ A×

p for almost all p

󰀬
.

Then Cl(A) is isomorphic to a quotient of J(H) by a certain subgroup arising from
A. In particular, to obtain the class of OL in Cl(A), one can follow this procedure:

(1) Fix x ∈ L such that L = H · x.
(2) For all p, let xp be such that OL,p = Ap · xp.
(3) Define (hp)p by hp · x = xp.
(4) Study the class of (hp)p in the quotient.

This approach was employed for
• tamely ramified Cp × Cp-extensions in [Tru12, Tru16];
• tamely ramified Q8-extensions of Q in [TT19];
• tamely ramified non-normal extensions of the form L = K( p

√
a) with ζp /∈ K

in [Tru20].
• tamely ramified non-normal extensions of the form L = K( p

√
a1, . . . , p

√
ar)

with ζp /∈ K by G. Prestidge.
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