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The classical structure

Let L/K be a finite Galois extension with Galois group G .

The group algebra

K [G ] =

󰀫
󰁛

σ∈G
kσσ | kσ ∈ K

󰀬

acts naturally on L:

󰀣
󰁛

σ∈G
kσσ

󰀤
· x =

󰁛

σ∈G
kσσ(x).

Fact
The group algebra K [G ] is a K-Hopf algebra.
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Hopf–Galois structures

Definition ([Chase and Sweedler, 1969])

A Hopf–Galois structure (H, 󰂏) on L/K consists of

• a K -Hopf algebra H;

• an action 󰂏 of H on L that “mimics” the action · of K [G ].

We may have more Hopf–Galois structures on L/K , other than the
classical structure (K [G ], ·).
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Motivation

In [Byott, 2002], it is shown that in some cases, successful results
in Galois module theory may be found only employing Hopf–Galois
structures different from the classical one:
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Known descriptions

Problem
Find an effective description of Hopf–Galois structures.

• Group theoretic description in [Greither and Pareigis, 1987].

• Connection with skew braces in the appendix of Byott and
Vendramin in [Smoktunowicz and Vendramin, 2018].

Both give very few results in the study of the Hopf–Galois
correspondence.
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Skew braces

Definition ([Guarnieri and Vendramin, 2017])

A skew brace is a triple (A,+, ◦), where (A,+), (A, ◦) are groups,
and

a ◦ (b + c) = (a ◦ b)− a+ (a ◦ c).

• Given a group (A, ◦), (A, ◦, ◦) is a trivial skew brace.

• Given a skew brace (A,+, ◦), (A, ◦) acts on (A,+):

λ : (A, ◦) → Aut(A,+), a 󰀁→ λa : b → −a+ (a ◦ b).

• The left ideals of (A,+, ◦) are the subgroups B of (A,+) and
(A, ◦) such that λa(B) ⊆ B for all a ∈ A.
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A new version of the connection

Let L/K be a finite Galois extension with Galois group (G , ◦).

Theorem ([LS and Trappeniers, 2023])

There exists a bijection between

• Hopf–Galois structures on L/K;

• operations + such that (G ,+, ◦) is a skew brace.

Explicitly, (G ,+, ◦) ↔ H = L[G ,+](G ,◦), where (G , ◦) acts on L
via Galois action and on (G ,+) via the map λ of (G ,+, ◦).

Moreover, L[G ,+](G ,◦) acts on L as follows:

󰀳

󰁃
󰁛

g∈G
ℓgg

󰀴

󰁄 󰂏 x =
󰁛

g∈G
ℓgg(x).

Example

The classical structure is associated with the trivial skew brace.
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An example of skew brace...

Let L/K be a Galois extension with Galois group (G , ◦) ∼= C2n,
where n ≥ 3 is odd, written as

G = {σiτ j | i = 0, . . . , n − 1 and j = 0, 1}.

Define
σiτ j + σaτb = σi+(−1)jaτ j+b.

Then (G ,+, ◦) is a skew brace, with (G ,+) dihedral of order 2n.

It is easy to check that

λστ : G → G , g → g ′,

where g ′ denotes the inverse of g with respect to (G , ◦).
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... and its associated Hopf–Galois structure

Therefore
󰁓

g∈G ℓgg ∈ L[G ,+] is in H = L[G ,+](G ,◦) if and only if

󰁛

g∈G
ℓgg =

󰁛

g∈G
στ(ℓg )g

′,

that is,

H =

󰀻
󰀿

󰀽
󰁛

g∈G
ℓgg | στ(ℓg ) = ℓg ′ for all g ∈ G

󰀼
󰁀

󰀾 ⊆ L[G ,+].

Moreover, H acts on L as follows:
󰀳

󰁃
󰁛

g∈G
ℓgg

󰀴

󰁄 󰂏 x =
󰁛

g∈G
ℓgg(x).
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The Hopf–Galois correspondence

Let L/K be a finite Galois extension with Galois group (G , ◦).
Given a Hopf–Galois structure (H, 󰂏) on L/K , there exists a map

{K -Hopf subalgebras of H} → {intermediate fields of L/K}
J 󰀁→ LJ (fixed field).

This map is called the Hopf–Galois correspondence; it is always
injective, but not necessarily surjective.

Other then the classical structure, there were two classes of known
examples in which this map is surjective, found
in [Greither and Pareigis, 1987] and [Childs, 2017].
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The Hopf–Galois correspondence via skew braces

Suppose that (H, 󰂏) is associated with the skew brace (G ,+, ◦).

Proposition ([LS and Trappeniers, 2023])

There exists a bijection

{K-Hopf subalgebras of H} ↔ {left ideals of (G ,+, ◦)}.

Corollary ([LS and Trappeniers, 2023])

The following are equivalent:

• The Hopf–Galois correspondence is surjective.

• Every subgroup of (G , ◦) is a left ideal of (G ,+, ◦).
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