Serie numeriche ed equazioni differenziali : esercizi proposti

1. Studiare la convergenza delle seguenti serie :

1.
$$\sum_{n=2}^{\infty} (-1)^n \frac{n \log n}{n^2 + 1}$$

2.
$$\sum_{n=2}^{\infty} \frac{1 + \log n}{\sqrt{1 + n^3}}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{(n+1)^{3/2}-1}$$

4.
$$\sum_{n=1}^{\infty} \log \frac{n^2 + e^{-n}}{n^2 + 1}$$

5.
$$\sum_{n=1}^{\infty} \frac{\text{sen } n}{2^n + 2^{-n}}$$

6.
$$\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)$$

7.
$$\sum_{n=1}^{\infty} \frac{n(1 - \cos(1/n))}{\sqrt{n+1}}$$

8.
$$\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$$

9.
$$\sum_{n=2}^{\infty} \frac{1}{\log(n!)}$$

10.
$$\sum_{n=2}^{\infty} \frac{n \cos(n \pi)}{1 + n^2}$$

Studiare la convergenza delle seguenti serie al variare del parametro reale x :

1.
$$\sum_{n=1}^{\infty} \frac{x^n}{1 + n x^{2n}}$$

$$2. \qquad \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n+n^3}}$$

3.
$$\sum_{n=1}^{\infty} \frac{\log (nx)}{\sqrt{n + n^2 x^2}}$$

4.
$$\sum_{n=1}^{\infty} \frac{n^{x} + n^{2} + 1}{n^{3} + n + 2}$$

5.
$$\sum_{n=1}^{\infty} \frac{\log n}{n^2 + 1} x^n$$

6.
$$\sum_{n=1}^{\infty} \frac{x}{n} e^{-nx}$$

7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n (\log(x^2-1))^n} \qquad 8. \qquad \sum_{n=0}^{\infty} \frac{(-1)^n n + \sqrt{n}}{n^x}$$

8.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n + \sqrt{n}}{n^x}$$

Risolvere le equazioni o i sistemi differenziali lineari seguenti (e, quando richiesto, imporre le condizioni iniziali indicate) :

1.
$$y'' + 4y = sen x$$

$$2. y" + y = \cos x$$

3.
$$y'' + 4y' + wy = xe^x$$

$$y'' + 4y' + wy = xe^{x}$$
 4. $2y''' - y'' - y = sen x$

5.
$$y'' + y' = x \operatorname{sen} x$$
, $y(0) = 0$, $y'(0) = 1$

6.
$$y'' + 4y = e^{2x} (1 + x)$$
, $y(0) = 0$, $y'(0) = 1$

7.
$$y' = y - 2z + sen x$$
, $z' = 2y + z$, $y(0) = z(0) = 0$

8.
$$y' + y / \sqrt{x} = \sqrt{x}$$

Risolvere le seguenti equazioni a variabili separate (e, quando richiesto, 4. imporre la condizione iniziale indicata) ; precisare l'intervallo in cui sono definite le soluzioni e tracciare il grafico di alcune di esse :

1.
$$y' = e^{y}$$

2.
$$y' = (1+2x)(1+y^2)$$
, $y(0) = 1$

3.
$$y' = \sqrt{(y/x)}, x > 0$$

$$y' = \sqrt{(y/x)}$$
, $x > 0$ 4. $y' = x \cos y / (1 + \sin y)$, $|y| < \pi / 2$

5. Una palla è lasciata cadere verticalmente al suolo da un'altezza di 1 metro; ad ogni rimbalzo perde il 10 % della sua energia e quindi risale ad un'altezza pari ai 9/10 di quella iniziale. Con l'ipotesi fatta sull'energia, la palla rimbalza infinite volte: trovare lo spazio complessivo percorso.

Trovare il tempo necessario alla palla per fermarsi, ricordando che per cadere da una altezza di h metri la palla impiega $\sqrt{2 \text{ h/g}}$ secondi (dove g è l'accelerazione di gravità pari a circa 9,8 m/s²) e che lo stesso tempo era stato impiegato per la risalita precedente.

Osservare che, pur compiendo infiniti rimbalzi, sia il tempo richiesto perché si fermi sia lo spazio percorso sono finiti: a questo punto qualcuno potrebbe ricordarsi dell'antico filosofo Zenone e del suo paradosso su Achille e la tartaruga

- 6. Dire quali delle seguenti affermazioni sono vere :
 - 1. ogni serie assolutamente convergente è convergente
 - 2. ogni serie convergente è assolutamente convergente
 - 3. una serie a segno costante non può essere indeterminata
 - 4. una serie convergente ha il termine generale infinitesimo
 - 5. ogni serie con termine generale infinitesimo è convergente
 - 6. ogni serie a segno alterno è convergente