[1]

1.

C.E. Deve essere $\left| x^2 - 1 \right| - x + 2 > 0$, cioè $\left| x^2 - 1 \right| > x - 2$.

Se x < 2 , la disequazione è sicuramente verificata (primo membro positivo, secondo membro negativo)

Se $x \ge 2$, equivale a $x^2 - x + 1 > 0$, che è sempre verificata ($\Delta < 0$).

In conclusione : C.E. = \mathbf{R}

SGN La funzione è positiva o nulla se $|x^2 - 1| \ge x - 1$.

Se x < 1, la disequazione è verificata in senso stretto.

Se x = 1, è verificata come uguaglianza.

Se x > 1, equivale a $x^2 - 1 \ge x - 1$, cioè a $x \ge 1$.

In conclusione, la funzione è sempre positiva, eccetto che per x = 1 per cui si annulla.

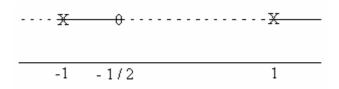
LIM Per $x \to \pm \infty$ f(x) $\approx 2 \log |x| \to +\infty$, senza asintoto (f(x)/x $\to 0$).

DRV $f'(x) = \frac{2 x \operatorname{sgn}(x^2 - 1) - 1}{|x^2 - 1| - x + 2}$

La derivata non è definita per $x = \pm 1$ (punti angolosi).

Il segno dipende solo dal numeratore, dato che il denominatore sappiamo che è sempre positivo.

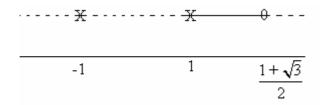
Distinguendo i valori (1 o -1) di sgn ($x^2 - 1$), si stabilisce che il segno della derivata è quello sotto riportato:



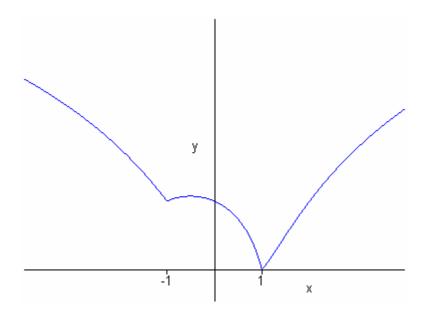
$$f''(x) = \frac{2 \operatorname{sgn}(x^2 - 1)(|x^2 - 1| - x + 2) - (2 x \operatorname{sgn}(x^2 - 1) - 1)^2}{(|x^2 - 1| - x + 2)^2}$$

Svolgendo i calcoli, si trova che il segno della derivata seconda è quello dell'espressione

 $2 \operatorname{sgn}(x^2 - 1)(2 + x) - 2x^2 - 3$:



GRAFICO



2.

Posto t = 3 - x, ci riconduciamo a calcolare il limite per $t \rightarrow 0^+$ della funzione

$$\frac{\log (1+t) - e^t + 1}{\frac{\pi}{3} \operatorname{sen} t - \operatorname{sen} \left(\pi - \frac{\pi t}{3}\right)} = \frac{\log (1+t) - e^t + 1}{\frac{\pi}{3} \operatorname{sen} t - \operatorname{sen} \frac{\pi t}{3}}$$

Essendo:

$$\log (1+t) = t - t^{2}/2 + o(t^{2}) \qquad e^{t} = 1 + t + t^{2}/2 + o(t^{2})$$

$$\operatorname{sen} t = t - t^{3}/6 + o(t^{3}) \qquad \operatorname{sen} \frac{\pi t}{3} = \frac{\pi t}{3} - \frac{\pi^{3} t^{3}}{162} + o(t^{3})$$

il numeratore si approssima con $-t^2$, il denominatore con π^3 t^3 / 81, la funzione con - 81 / (π^3 t) e dunque il limite vale $-\infty$.

3.

La funzione integrando è discontinua in x=1; trattandosi di una discontinuità di I specie, non influisce sull'esistenza dell'integrale.

Calcoliamo le primitive, integrando per parti:

x arctg
$$\frac{x+1}{x-1} + \int \frac{x}{x^2+1} dx = x \arctan \frac{x+1}{x-1} + \frac{1}{2} \log(x^2+1) + c$$
.

Si osserva che queste primitive contengono ancora il punto x=1 di discontinuità : è dunque sbagliato calcolare l'integrale a partire dai soli valori delle primitive agli estremi dell'intervallo di integrazione. Scriviamo l'integrale come somma dell'integrale tra 0 e 1 con quello tra 1 e 2 (in entrambi i casi non si deve calcolare il valore per x=1, ma il limite – in un caso da sinistra, nell'altro da destra) :

valore per
$$x = 2$$
 2 arctg $3 + \frac{1}{2} \log 5$ valore per $x = 0$ 0

limite da sinistra
$$-\pi/2 + \frac{1}{2} \log 2$$
 limite da destra $\pi/2 + \frac{1}{2} \log 2$.

L'integrale vale 2 arctg $3 + \frac{1}{2} \log 5 - \pi$.

4.

Radici del polinomio caratteristico:

In corrispondenza si hanno rispettivamente le soluzioni :

$$\begin{split} & e^{-x} \left(\ A \ e^{\sqrt{1-k} \ x} \ + B \ e^{\sqrt{1-k} \ x} \ \right) \\ & e^{-x} \left(\ A + B \ x \ \right) \\ & e^{-x} \left(\ A \cos \sqrt{k-1} \ x \ + \ B \sin \sqrt{k-1} \ x \ \right). \end{split}$$

Imponendo le condizioni date, nei primi due casi si trova A = B = 0.

Nel terzo caso si trova A=0, B sen $(\sqrt{k-1} \pi/2)=0$. La seconda equazione ammette soluzioni diverse da B=0 se $\sqrt{k-1} \pi/2=n\pi$, cioè se k=1+4 n² con n naturale. In tal caso si trovano le soluzioni B e -x sen 2 n x .

[2]

1.

C.E. Deve essere $|x^2 - 2x| + 5 - 2x > 0$, cioè $|x^2 - 2x| > 2x - 5$.

Se $x < 5 \ / \ 2$, la disequazione è sicuramente verificata (primo membro positivo, secondo membro negativo)

Se $x \ge 5/2$, equivale a $x^2 - 4x + 5 > 0$, che è sempre verificata ($\Delta < 0$).

In conclusione : C.E. = \mathbf{R}

SGN La funzione è positiva o nulla se $|x^2 - 2x| \ge 2x - 4$.

Se x < 2, la disequazione è verificata in senso stretto.

Se x = 2, è verificata come uguaglianza.

Se x > 2, equivale a $x^2 - 2x \ge 2$ x - 4, che è verificata in senso stretto.

In conclusione, la funzione è sempre positiva, eccetto che per x = 2 per cui si annulla.

LIM Per $x \to \pm \infty$ f(x) $\approx 2 \log |x| \to \pm \infty$, senza asintoto (f(x)/x $\to 0$).

DRV
$$f'(x) = 2 \frac{(x-1) \operatorname{sgn}(x^2 - 2x) - 1}{|x^2 - 2x| - 2x + 5}$$

La derivata non è definita per x = 0 ed x = 2 (punti angolosi).

Il segno dipende solo dal numeratore, dato che il denominatore sappiamo che è sempre positivo.

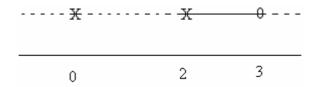
Distinguendo i valori (1 o -1) di sgn ($x^2 - 2x$), si stabilisce che il segno della derivata è quello sotto riportato:

$$f''(x) =$$

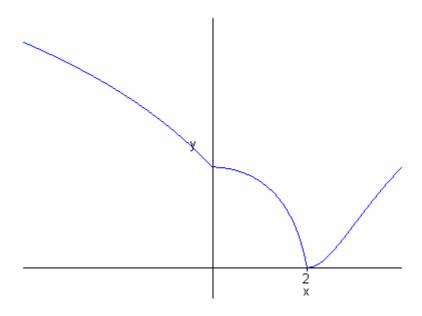
$$= 2 \frac{\operatorname{sgn}(x^2 - 2x)(|x^2 - 2x| - 2x + 5) - 2((x - 1)\operatorname{sgn}(x^2 - 2x) - 1)^2}{(|x^2 - 2x| - 2x + 5)^2}$$

Svolgendo i calcoli, si trova che il segno della derivata seconda è quello dell'espressione

$$sgn(x^2-2x)(1+2x) - x^2 + 2x - 4$$
:



GRAFICO



2.

Essendo:

$$5 \log (1+2x) = 10x - 10 x^{2} + o(x^{2}) \qquad 2 \log (1+5x) = 10 x - 25 x^{2} + o(x^{2})$$

$$4 \cos 2 x = 4 - 8 x^{2} + 8 x^{4/3} + o(x^{4}) \qquad \cos 4 x = 1 - 8 x^{2} + 32 x^{4/3} + o(x^{4})$$

il numeratore si approssima con 225 x^4 , il denominatore con - 8 x^4 / 3 ; il limite vale -675 / 8 .

3.

La funzione integrando è discontinua in x = -2; trattandosi di una discontinuità di I specie, non influisce sull'esistenza dell'integrale.

Calcoliamo le primitive, integrando per parti:

x arctg
$$\frac{x-2}{x+2}$$
 - $\int \frac{2x}{x^2+4} dx = x \arctan \frac{x-2}{x+2} - \log(x^2+4) + c$.

Si osserva che queste primitive contengono ancora il punto x=-2 di discontinuità : è dunque sbagliato calcolare l'integrale a partire dai soli valori delle primitive agli estremi dell'intervallo di integrazione. Scriviamo l'integrale come somma dell'integrale tra -3 e -2 con quello tra -2 e 0 (in entrambi i casi non si deve calcolare il valore per x=-2, ma il limite – in un caso da sinistra, nell'altro da destra) :

valore per
$$x = 0$$
 - log 4

valore per
$$x = -3$$
 $-3 \arctan 5 - \log 13$

limite da sinistra
$$-\pi - \log 8$$

limite da destra $\pi - \log 8$.

L'integrale vale 3 arctg 5 + log 13/4 - π .

4.

Radici del polinomio caratteristico:

$$se 0 < k < 1/4$$

$$\left(1 \pm \sqrt{1-4 \, k}\right) / 2$$

$$se k = 1/4$$

$$\frac{1}{2} \text{ (radice doppia)}$$

$$se k > 1/4$$

$$\left(1 \pm i \sqrt{4 \, k-1}\right) / 2$$

In corrispondenza si hanno rispettivamente le soluzioni :

$$e^{x/2} \left(A e^{\sqrt{1-4k} x/2} + B e^{-\sqrt{1-4k} x/2} \right)$$

$$e^{x/2} \left(A + B x \right)$$

$$e^{x/2} \left(A \cos \sqrt{4k-1} x/2 + B \sin \sqrt{4k-1} x/2 \right).$$

Imponendo le condizioni date, nei primi due casi si trova A = B = 0.

Nel terzo caso si trova A=0, B sen $(\sqrt{4\,k-1}\ \pi/4)=0$. La seconda equazione ammette soluzioni diverse da B=0 se $\sqrt{4\,k-1}\ \pi/4=n\,\pi$, cioè se $k=4\,n^2+\frac{1}{4}$ con n naturale. In tal caso si trovano le soluzioni B e $^{x/2}$ sen 2 n x.