1.

$$\bullet \quad a_{n+1} \leq a_n \iff \frac{a_n}{4 - a_n} \leq a_n \iff \frac{a_n \left(a_n - 3\right)}{4 - a_n} \leq 0 \iff 0 < a_n \leq 3 \text{ oppure } a_n > 4$$

- Per induzione si prova che è $0 < a_n < 3 \quad \forall n$.
- In conclusione:

la successione è decrescente e limitata e dunque ammette limite reale L con $0 \le L < 1$.

- Per calcolare il valore di L , passando al limite nella relazione ricorsiva e tenendo conto dell'intervallo in cui si trova L , si ricava che deve essere L=0 .
- Max $a_n = \sup a_n = 1$, min a_n non esiste, inf $a_n = 0$.

2.

$$\log (1 + \sqrt{x} + x) \approx \sqrt{x}$$
, $\sin \sqrt{x/(x^2 + 1)} \approx \sqrt{x}$
Il limite vale 1

3.

Per il C.E.

$$\begin{cases} x+1 \ge 0 \\ \sqrt{x+1} > 2x \Leftrightarrow -1 \le x < 0 \text{ oppure } \begin{cases} x \ge 0 \\ x+1 > 4x^2 \end{cases} \Leftrightarrow -1 \le x < 0 \text{ oppure } \begin{cases} x \ge 0 \\ \frac{1-\sqrt{17}}{8} < x < \frac{1+\sqrt{17}}{8} \end{cases}$$

In conclusione, il C.E. è l'insieme $[-1, (1+\sqrt{17})/8)$.

Per il segno, risulta $f(x) \ge 0$ per :

$$\begin{cases} -1 \le x < (1+\sqrt{17})/8 & \Leftrightarrow -1 \le x < -1/2 \text{ oppure } \begin{cases} -1/2 \le x < (1+\sqrt{17})/8 & \Leftrightarrow \\ 4x^2 + 3x \le 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow -1 \le x < -1/2 \text{ oppure } \begin{cases} -1/2 \le x < (1+\sqrt{17})/8 \\ -3/4 \le x \le 0 \end{cases}$$

In conclusione, $f(x) \ge 0$ per $-1 \le x \le 0$; in particular f(x) = 0 per x = 0.

4.

Scritto z nella forma r exp (i θ), si ha i z 2 = r 2 exp (i (2 θ + π / 2)), $^-$ z = r exp (i ($^ \theta$ + π)). Da r 2 = r segue z = 0 oppure r = 1. Nel secondo caso deve essere anche 2 θ + π / 2 = π - θ + 2 k π , cioè θ = π / 6 + 2 k π / 3 (k = 0 , 1 , 2). In forma algebrica le soluzioni sono :

$$0 \ , \ \frac{\sqrt{3}+i}{2} \ , \ \frac{-\sqrt{3}+i}{2} \ , \ -i .$$

5.

Per n = 1 l'identità è verificata, in quanto ambo i membri valgono 1 / 4.

Supponiamola verificata per n e verifichiamola per n + 1: a primo membro sostituiamo la somma fino all'indice n con il valore dato per ipotesi e a questo aggiungiamo il termine n+1 – esimo:

$$n^2 \left(\frac{1}{2}\right)^{n+1} + (n+1)^2 \left(\frac{1}{2}\right)^{n+2} - n^2 \left(\frac{1}{2}\right)^{n+1}$$

1.

$$\bullet \quad a_{n+1} \le a_n \iff \frac{2\,a_n}{3-5\,a_n} \le a_n \iff \frac{a_n\,(\,5\,a_n\,-1\,)}{3-5\,a_n} \le 0 \iff 0 < a_n \le 1/5 \text{ oppure } a_n > 3/5$$

- Per induzione si prova che è $0 < a_n < 1/5 \quad \forall n$.
- In conclusione:

la successione è decrescente e limitata e dunque ammette limite reale L con $0 \le L < 1 / 10$.

- ullet Per calcolare il valore di L , passando al limite nella relazione ricorsiva e tenendo conto dell'intervallo in cui si trova L , si ricava che deve essere L=0 .
- Max $a_n = \sup a_n = 1/10$, min a_n non esiste, inf $a_n = 0$.

2.

$$\log(1+x^2) \approx x^2$$
, $1-\cos(\sin^2 x) \approx 1-\cos(x^2) \approx x^4/2$
Il limite vale 0.

3.

Per il C.E.

$$\begin{cases} x+1 \ge 0 \\ 2\sqrt{x+1} > 4x+1 \end{cases} \Leftrightarrow -1 \le x < -1/4 \text{ opp.} \begin{cases} x \ge -1/4 \\ 4(x+1) > (4x+1)^2 \end{cases} \Leftrightarrow \\ \Leftrightarrow -1 \le x < -1/4 \text{ opp.} \begin{cases} x \ge -1/4 \\ \frac{-1-\sqrt{13}}{8} < x < \frac{-1+\sqrt{13}}{8} \end{cases}$$

In conclusione, il C.E. è l'insieme $[-1, (-1+\sqrt{13})/8)$.

Per il segno, risulta $f(x) \ge 0$ per :

$$\begin{cases} -1 \le x < (-1 + \sqrt{13})/8 & \Leftrightarrow -1 \le x < -1/2 \text{ oppure } \begin{cases} -1/2 \le x < (-1 + \sqrt{13})/8 \\ 4x^2 + 3x \le 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow -1 \le x < -1/2 \text{ oppure } \begin{cases} -1/2 \le x < (-1 + \sqrt{13})/8 \\ -3/4 \le x \le 0 \end{cases}$$

In conclusione, $f(x) \ge 0$ per $-1 \le x \le 0$; in particular f(x) = 0 per x = 0.

4.

Scritto z nella forma r exp (i θ) , si ha $z^2 = r^2 e^{-2i\,\theta}$, i z = r exp (i ($\theta + \pi/2$)) . Da r $^2 = r$ segue z = 0 oppure r = 1 . Nel secondo caso deve essere anche $\theta + \pi/2 = -2\,\theta + 2\,k\,\pi$, cioè $\theta = -\pi/6 + 2\,k\,\pi/3$ (k = 0 , 1 , 2) . In forma algebrica le soluzioni sono :

$$0 \ , \ \frac{\sqrt{3}-i}{2} \ , \ \frac{-\sqrt{3}-i}{2} \ , \ i.$$

5.

Per n = 1 l'identità è verificata, in quanto ambo i membri valgono 1/4.

Supponiamola verificata per n e verifichiamola per n + 1: a primo membro sostituiamo la somma fino all'indice n con il valore dato per ipotesi e a questo aggiungiamo il termine n+1 – esimo:

$$n^{2}\left(\frac{2}{3}\right)^{n+1} + (n+1)^{2}\left(\frac{2}{3}\right)^{n+2} - n^{2}\left(\frac{2}{3}\right)^{n+1}$$

$$\bullet \quad a_{n+1} \le a_n \iff \frac{5 \, a_n}{8 - 3 \, a_n} \le a_n \iff \frac{a_n \, (\, 3 \, a_n - 3\,)}{8 - 3 \, a_n} \le 0 \iff 0 < a_n \le 1 \text{ oppure } a_n > 8 \, / \, 3$$

- Per induzione si prova che è $0 < a_n < 1 \quad \forall n$.
- In conclusione:

la successione è decrescente e limitata e dunque ammette limite reale L con $0 \le L < 1/2$.

- Per calcolare il valore di L, passando al limite nella relazione ricorsiva e tenendo conto dell'intervallo in cui si trova L, si ricava che deve essere L = 0.
- Max $a_n = \sup a_n = 1/2$, min a_n non esiste, inf $a_n = 0$.

2.

$$sen(1-cos 2x) \approx 1-cos 2x \approx 2x^2$$
, $exp(3x^2)-1 \approx 3x^2$
Il limite vale 2/3.

3.

Per il C.E.

$$\begin{cases} x+5 \ge 0 \\ 3\sqrt{x+5} > x+2 \Leftrightarrow -5 \le x < -2 \text{ oppure } \begin{cases} x \ge -2 \\ 9x+45 > x^2+4x+4 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow -5 \le x < -2 \text{ oppure } \begin{cases} x \ge -2 \\ \frac{5-3\sqrt{21}}{2} < x < \frac{5+3\sqrt{21}}{2} \end{cases}$$

In conclusione, il C.E. è l'insieme $[-5, (5+3\sqrt{21})/2)$. Per il segno, risulta $f(x) \ge 0$ per :

$$\begin{cases}
-5 \le x < (5+3\sqrt{21})/2 \\
3\sqrt{x+5} \ge 3+x
\end{cases} \Leftrightarrow -5 \le x < -3 \text{ oppure } \begin{cases}
-3 \le x < (5+3\sqrt{21})/2 \\
x^2 - 3x - 36 \le 0
\end{cases} \Leftrightarrow$$

$$\begin{cases}
-5 \le x < (5+3\sqrt{21})/2 & \Leftrightarrow -5 \le x < -3 \text{ oppure } \begin{cases}
-3 \le x < (5+3\sqrt{21})/2 \\
x^2 - 3x - 36 \le 0
\end{cases} \Leftrightarrow -5 \le x < -3 \text{ oppure } \begin{cases}
-3 \le x < (5+3\sqrt{21})/2 \\
x^2 - 3x - 36 \le 0
\end{cases}$$

In conclusione, $f(x) \ge 0$ per $-5 \le x \le \frac{3+3\sqrt{17}}{2}$; in particular f(x) = 0 per x = 0.

Scritto z nella forma r exp (i θ) , si ha 2 z = 2 r exp (i θ) , - i z^2 = r 2 exp (i (- 2 θ - π / 2)) . Da r 2 = 2 r segue z = 0 oppure r = 2 . Nel secondo caso deve essere anche θ = - π / 2 - 2 θ + 2 k π , cioè θ = - π / 6 + 2 k π / 3 (k = 0 , 1 , 2) . In forma algebrica le soluzioni sono :

$$0 \ , \ \sqrt{3}-i \ , \ -\sqrt{3}-i \ , \ 2i.$$

5.

Per n = 1 l'identità è verificata, in quanto ambo i membri valgono 1 / 4.

Supponiamola verificata per n e verifichiamola per n + 1 : a primo membro sostituiamo la somma fino all'indice n con il valore dato per ipotesi e a questo aggiungiamo il termine n+1 – esimo :

$$n^{2} \left(\frac{3}{5}\right)^{n+1} + (n+1)^{2} \left(\frac{3}{5}\right)^{n+2} - n^{2} \left(\frac{3}{5}\right)^{n+1}$$

•
$$a_{n+1} \le a_n \Leftrightarrow \frac{6a_n}{10-2a_n} \le a_n \Leftrightarrow \frac{a_n(2a_n-4)}{10-2a_n} \le 0 \Leftrightarrow 0 < a_n \le 2 \text{ oppure } a_n > 5$$

- Per induzione si prova che è $0 < a_n < 2 \quad \forall n$.
- In conclusione: la successione è decrescente e limitata e dunque ammette limite reale L con $0 \le L < 1$.
- Per calcolare il valore di L , passando al limite nella relazione ricorsiva e tenendo conto dell'intervallo in cui si trova L, si ricava che deve essere L = 0.
- Max $a_n = \sup a_n = 1$, min a_n non esiste, inf $a_n = 0$.

$$\log (1 + \sqrt{1 - \cos x}) \approx \sqrt{1 - \cos x} \approx |x|/\sqrt{2}$$
, $1 - \exp (\sin 3x) \approx -\sin 3x \approx -3x$
Il limite vale $-1/(3\sqrt{2})$.

3.

Per il C.E.

$$\begin{cases} x+2 \ge 0 \\ 5\sqrt{x+2} > 3x+4 \end{cases} \Leftrightarrow -2 \le x < -4/3 \text{ oppure } \begin{cases} x \ge -4/3 \\ 25(x+2) > 9x^2 + 24x + 16 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow -2 \le x < -4/3 \text{ oppure } \begin{cases} x \ge -4/3 \\ -\frac{17}{9} < x < 2 \end{cases}$$

$$\Leftrightarrow -2 \le x < -4/3 \text{ oppure } \begin{cases} x \ge -4/3 \\ -\frac{17}{9} < x < 1 \end{cases}$$

In conclusione, il C.E. è l'insieme [-2, 2).

Per il segno, risulta $f(x) \ge 0$ per :

$$\begin{cases}
-2 \le x < 2 \\
5\sqrt{x+2} \ge 5+3x
\end{cases} \Leftrightarrow -2 \le x < -5/3 \text{ oppure } \begin{cases}
-5/3 \le x < 2 \\
9x^2 + 5x - 25 \le 0
\end{cases} \Leftrightarrow$$

$$\Leftrightarrow -2 \le x < -5/3 \text{ oppure } \begin{cases} -5/3 \le x < 2\\ (-5-5\sqrt{37})/18 \le x \le (-5+5\sqrt{37})/18 \end{cases}$$

In conclusione, $f(x) \ge 0$ per $-2 \le x \le (-5+5\sqrt{37})/18$; in particular f(x) = 0 per x = 0.

4.

Scritto z nella forma r exp (i θ), si ha 3 i $z^2 = 3$ r 2 exp (i ($-2\theta + \pi/2$)), 2 z = 2 r exp (i θ). Da 3 r $^2 = 2$ r segue z = 0 oppure r = 2/3. Nel secondo caso deve essere anche $\theta = -2\theta + \pi/2 + 2\pi$ π , cioè $\theta = \pi/6 + 2 k \pi/3 (k=0,1,2)$. In forma algebrica le soluzioni sono :

$$0 \ , \ \frac{\sqrt{3}+i}{3} \ , \ \frac{-\sqrt{3}+i}{3} \ , \ -\frac{2}{3}i.$$

5.

Per n = 1 l'identità è verificata, in quanto ambo i membri valgono 1 / 4.

Supponiamola verificata per n e verifichiamola per n + 1 : a primo membro sostituiamo la somma fino all'indice n con il valore dato per ipotesi e a questo aggiungiamo il termine n+1 – esimo :

$$n^{2} \left(\frac{4}{3}\right)^{n+1} + (n+1)^{2} \left(\frac{4}{3}\right)^{n+2} - n^{2} \left(\frac{4}{3}\right)^{n+1}$$