Istituzioni di Matematiche I

Prova scritta parziale n.2 del 17.1.08 - Calcolo integrale

Soluzioni

1.

La funzione $f(t) = t(t-1)/\log t$ è definita per t > 0, $t \ne 1$; nel suo C.E. è sempre positiva Per $t \to 0$ $f(t) \to 0$, quindi f è integrabile in un intorno di 0.

Per $t \to 1$ $f(t) \to 1$, quindi f è integrabile in un intorno di 1.

Per $t \to +\infty$ f (t) $\to +\infty$, quindi f non è integrabile in nessun intorno di $+\infty$.

La funzione F (x) è definita per $x \ge 0$; è positiva per x > 1 , negativa per 0 < x < 1 , nulla per x = 0 e per x = 1.

Il limite per $x \to +\infty$ si calcola con il teorema della media integrale :

$$F(x) = \frac{\left(x - \sqrt{x}\right) \xi(\xi - 1)}{\log \xi} \approx \frac{x \xi^2}{\log \xi} > \frac{x^2}{\log x} \rightarrow +\infty$$

(senza asintoto).

Per ottenere il segno della derivata

$$F'(x) = \frac{x^2 - x - \sqrt{x} + 1}{\log x} = \frac{(\sqrt{x} - 1)}{\log x} (x \sqrt{x} + x - 1) =$$

$$= \frac{(\sqrt{x} - 1)}{\log x} \varphi(x)$$

(per $x \neq 0$, $x \neq 1$) occorre studiare graficamente il segno di ϕ (x) (quello del rapporto è positivo). Si ottiene che esiste α ϵ (0, 1) tale che ϕ (x) è negativa per $0 < x < \alpha$, positiva per $x > \alpha$.

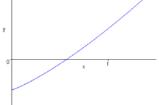
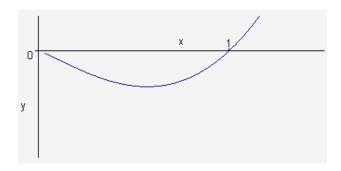


Grafico di F (x)



C.E.
$$x \neq 0$$
, $y \in \mathbf{R}$

y = 0 è soluzione costante

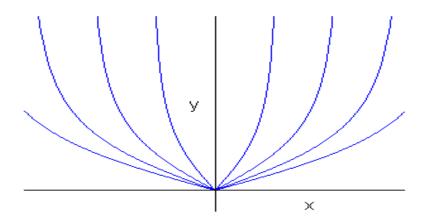
Per trovare le soluzioni non costanti , dobbiamo dividere il caso y>0 da quello y<0 . Però, osservato che se y (x) è una soluzione anche - y (x) lo è, possiamo limitarci a studiare le soluzioni positive .

Separando le variabili e integrando si trova

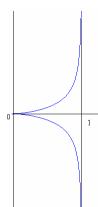
$$\int_{y_0}^{y} \frac{ds}{s (1 + s^2)} = \int_{x_0}^{x} \frac{ds}{s} \implies \log \frac{y}{\sqrt{1 + y^2}} = \log |x| + \log c$$

da cui (indicando con k una costante positiva) si ottiene :

$$y(x) = \frac{k|x|}{\sqrt{1-k^2 x^2}}, -1/k < x < 1/k$$



3.



$$A = 2 \int_{0}^{1} x \sqrt{\frac{x}{1-x}} dx$$

L'integrale esiste perché per $x \rightarrow 1$ f (x) è un infinito di ordine $\frac{1}{2}$.

Per calcolare l'integrale si pone

$$\sqrt{\frac{x}{1-x}} = t$$

e dunque $x = \frac{t^2}{1+t^2}$, $dx = \frac{2t}{(1+t^2)^2} dt$. In questo modo si ottiene :

$$4\int_{0}^{+\infty} \frac{t^4}{(1+t^2)^3} dt.$$

Tenendo conto che la funzione integrando è pari, la scomposizione di Hermite è della forma

$$\frac{A}{1+t^2} + \left(\frac{Bt + Ct^3}{(1+t^2)^2} \right)'.$$

Svolgendo i calcoli, si ottiene A = 3/2, B = -3/2, C = -5/2. Una primitiva della funzione è dunque

$$\frac{3}{2}$$
 arctg t - $\frac{t(3+5t^2)}{2(1+t^2)^2}$.

L'area vale $3 \pi / 4$.

4.

$$\left(\begin{array}{c|c}a\end{array}\right) \quad \left|\begin{array}{c}a_{n+1}\\a_{n}\end{array}\right| \quad \rightarrow \quad \left|\begin{array}{c|c}x\end{array}\right| \quad \frac{a_{n+1}}{a_{n}} \quad \left|\begin{array}{c|c}=\frac{\left|\begin{array}{c|c}x\right|^{n+1} & n & \log\left(\begin{array}{c}n+1\end{array}\right)}{\left|\begin{array}{c|c}x\right|^{n} & (n+1) & \log n\end{array}} \quad \rightarrow \quad \left|\begin{array}{c|c}x\right| \\ \end{array}$$

Se |x| < 1, la serie converge, se |x| > 1 la serie non converge.

Se
$$x = 1$$
, $a_n = \frac{\log n}{n} > \frac{1}{n}$ la serie diverge

Se x = -1, $a_n = (-1)^n \frac{\log n}{n}$ la serie converge per il teorema di Leibniz.

(b)
$$\left| \frac{a_{n+1}}{a_n} \right| = |x| \frac{1 + x^{2n}}{1 + x^{2n+2}}$$

Per |x| > 1 il rapporto tende a 1/|x| < 1 e quindi la serie converge. Per |x| < 1 tende a |x| e quindi anche in questo caso la serie converge .

Per x = 1 la serie , di termine generale $\frac{1}{2}$, diverge ; per x = -1 la serie , di termine generale $(-1)^n/2$, è indeterminata.