5 Limiti di una funzione

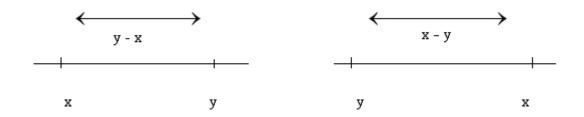
Intorni nella retta reale

Ricordiamo la definizione di valore assoluto | x | di un numero reale x:

$$\mid x \mid = \left\{ \begin{array}{ll} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{array} \right. .$$

La **distanza** tra due numeri reali x, y, cioè la lunghezza del segmento che ha questi due punti per estremi, è data da:

$$d(x, y) = |x - y|.$$



in entrambi i casi la distanza si può scrivere | x - y |

Le proprietà del valore assoluto permettono di verificare naturali proprietà della distanza:

$$d(x, y) \ge 0$$
 positività

$$d(x, y) = 0 \Leftrightarrow x = y$$
 annullamento

$$d(x, y) = d(y, x)$$
 simmetria

$$d(x, y) \le d(x, z) + d(y, z)$$
 proprietà triangolare

Verifica della proprietà triangolare :

$$|x-y| \le |x-z| + |z-y|$$

Posto a = x - z, b = z - y, possiamo riscrivere la disuguaglianza nella forma

$$|a+b| \le |a| + |b|$$
.

Dato che ambo i membri sono positivi, possiamo elevare al quadrato.

$$a^{2} + b^{2} + 2 a b \le a^{2} + b^{2} + 2 |a| |b|$$

cioè

ovvero

che è ovvia.

 $\overline{\mathsf{V}}$

Dati un punto x_0 ed un numero r > 0, si definisce **intorno** di centro x_0 e raggio r l'insieme

$$U(x_0, \varepsilon) = \{x \in R : d(x, x_0) < r\} = \{x \in R : |x - x_0| < r\}$$

cioè l'intervallo

$$(x_0-r, x_0+r)$$
.

In molti casi non è necessario indicare esplicitamente qual è il raggio dell'intorno considerato; parleremo allora genericamente di intorno U del punto. Più in generale potremmo parlare di intorno di x_0 come di un intervallo che contiene un intorno di centro il punto.

Retta reale estesa

L'insieme \overline{R} ottenuto aggiungendo ad R due nuovi elementi, indicati con - ∞ , + ∞ , prende il nome di sistema esteso (o ampliato) dei numeri reali; parleremo anche di retta reale estesa (o ampliata).

Chiameremo intorni di + ∞ o di - ∞ tutti gli insiemi della forma

$$(M, + \infty)$$
 o $(-\infty, -M)$, con $M \in \mathbf{R}^+$.

In particolare questi intorni sono sottoinsiemi della retta reale \mathbf{R} e dunque **non** contengono né + ∞ né - ∞ .

La seguente definizione sarà fondamentale nella teoria dei limiti di una funzione:

Definizione

Sia A un insieme (non vuoto) di numeri reali e sia $x_0 \in \overline{R}$. Il punto x_0 si dice **di accumulazione** per A se:

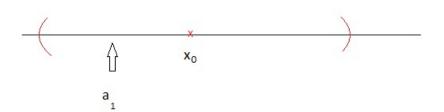
$$\forall U(x_0) \exists \overline{x} \in A \cap U(x_0) - \{x_0\}$$

cioè se in ogni intorno di x_0 cade almeno un punto di A <u>diverso</u> da x_0 .

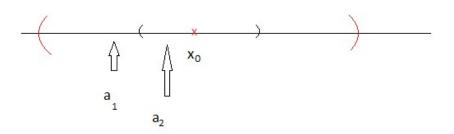
Non è difficile provare che in ogni intorno del punto di accumulazione in realtà cadono infiniti punti di A.

Vedi figure successive : le prime due per il caso x_0 reale, le seconde due per $x_0 = +\infty$.

intorno U



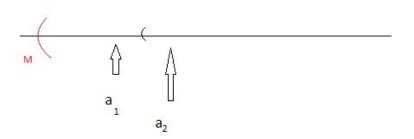
intorno U



(ii)

intorno U

intorno U



Un punto $x_0 \in \overline{\mathbb{R}}$ può dunque essere equivalentemente definito di accumulazione per A se in ogni suo intorno cadono infiniti punti di A.

Osservazione

Sottolineiamo che nella definizione di punto di accumulazione x_0 può essere un numero reale oppure $\pm \infty$, mentre A è **sempre** un insieme di numeri reali.

Nel caso in cui il punto di accumulazione x_0 sia un numero reale, può appartenere o meno ad A.

Esempio 1

Se A è un intervallo , i punti di accumulazione sono tutti i punti di A compresi gli estremi . Questo vale anche nel caso in cui gli estremi sono $\pm\infty$. Il risultato non dipende dal fatto che questi estremi appartengano o no all'intervallo.

In particolare , se A = R i punti di accumulazione sono tutti i punti della retta reale estesa.

Esempio 2

A = Q

Anche in questo caso i punti di accumulazione sono tutti i punti della retta reale estesa.

Esempio 3

A = N

L'unico punto di accumulazione è + ∞.

Esempio 4

$$A = \{1/n, n \in \mathbb{N}\} = \{1, 1/2, 1/3, 1/4,\}$$

L'unico punto di applicazione è 0

Esercizio

Provare che $+\infty$ è di accumulazione per A \leftrightarrow sup A = $+\infty$.

Limiti di una funzione: definizione generale

Il concetto di **limite** di una funzione permette di descrivere il comportamento della funzione nei punti vicini ad un assegnato x_0 nella retta reale estesa. Questo concetto è generalmente distinto dal valore della funzione nel punto x_{0} , anzi f (x_0) può anche non esistere (e sicuramente non esiste se $x_0 = \pm \infty$).

Consideriamo ad esempio la funzione

$$f(x) = \frac{x^2 - 1}{\sqrt{x - 1}}$$

definita per x > 1. Per valutare il valore della funzione in un punto qualunque del dominio, basta sostituire questo valore al posto di x nell'espressione analitica che definisce la funzione ed eseguire i relativi calcoli. Possiamo però anche chiederci qual è il comportamento della funzione "vicino al punto 1", che non sta nel dominio, ma ne è un punto di accumulazione. Altrettanto senso ha chiederci il comportamento asintotico della funzione , cioè "per valori molto grandi" di x, ovvero in un intorno di $+\infty$ - dopo aver osservato che anche $+\infty$ è di accumulazione per il dominio. Non ha invece alcun senso chiederci il comportamento ad esempio nel punto -1 (che non appartiene al dominio) o nei "punti vicini" a -1 (che non è di accumulazione per il dominio).

Siano assegnati:

una funzione f: A \rightarrow **R**

un punto $x_0 \in \overline{R}\,$ di accumulazione per A

un valore $L \in \overline{R}$.

Vogliamo definire la nozione di limite e dire che per x che tende a $x_0\,$ la funzione tende ad L , scrivendo

$$\lim_{x\to x_0} f(x) = L$$
 o anche per $x \to x_0$ $f(x) \to L$

per esprimere la seguente proprietà:

la funzione assume valori f (x) **arbitrariamente** vicini ad L per tutti i valori x che stanno nel dominio della funzione e sono **opportunamente** vicini ad x_0 , ma diversi da x_0 .

Per esprimere la nozione di vicinanza, useremo il concetto di limite nel modo che segue:

fissato **arbitrariamente** un intorno U di L, è possibile trovare di conseguenza un intorno V di x_0 tale che per tutte le x del dominio A che cadono nell'intorno V - escluso al più x_0 - i valori f (x) assunti dalla funzione cadono nell'intorno U fissato.

In simboli:

$$\forall U(L), \exists V(x_0): \forall x \in A \cap V(x_0) - \{x_0\}, f(x) \in U(L)$$

Osservazione 1

Il fatto di aver tolto dall'intersezione $A \cap V$ (x_0) il punto x_0 realizza quanto detto nella premessa: l'esistenza ed eventualmente il valore della funzione in x_0 non

svolgono alcun ruolo nella definizione di limite. Ovviamente se x_0 è $\pm \infty$ e dunque non appartiene ad A, togliere x_0 da A \cap V è del tutto superfluo (dato che in questa intersezione x_0 sicuramente non c'è). Le funzioni :

$$f(x) = x + 1$$

$$g(x) = \frac{x^2 - 1}{x - 1}$$

$$h(x) = \begin{cases} x+1 & \text{se } x \neq 1 \\ 0 & \text{se } x = 1 \end{cases}$$

hanno lo stesso comportamento per $x \rightarrow 1$.

Osservazione 2

Poiché x_0 è un punto di accumulazione per A, l'insieme A \cap V (x_0) - { x_0 } non solo non è vuoto, ma addirittura contiene infiniti punti.

Primi teoremi legati alla definizione di limite

- Unicità

Se per $x \rightarrow x_0$ una funzione ha limite, questo è unico.

$$\lim_{x\to x_0} f(x) = L$$
, $\lim_{x\to x_0} f(x) = M \implies L = M$

- Restrizioni

Sia B un sottoinsieme del dominio A di una funzione f e sia x $_0$ un punto di accumulazione per entrambi gli insiemi.

Allora:

$$\lim_{x \to x_0} f(x) = L \implies \lim_{x \to x_0} f(x) = L.$$

In altre parole, restringendo il dominio della funzione ad un insieme che ha ancora x_0 come punto di accumulazione, il limite non cambia.

Il risultato è utile per stabilire che un dato limite NON esiste. Ad esempio:

$$\lim_{x\to 0}$$
 1/x

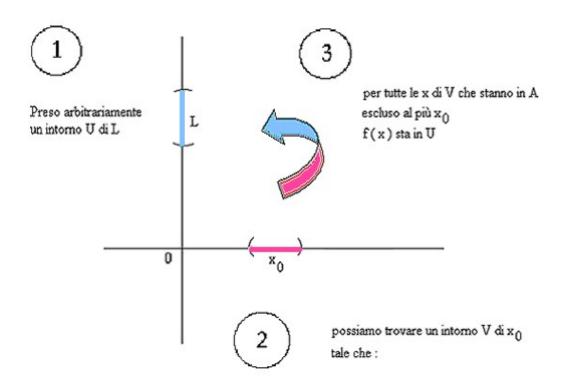
$$\lim_{x\to +\infty} \operatorname{sen} x$$

$$\lim_{x\to 0} \sin\frac{1}{x}$$

Se troviamo due restrizioni con lo stesso limite, questo in generale non basta a garantire l'esistenza del limite (ci dice soltanto che se il limite esiste, deve avere questo valore).

Un caso in cui lo stesso comportamento su due restrizioni basta a garantire l'esistenza del limite: limite destro e limite sinistro.

Limiti di una funzione: il caso x $_0 \in R$, $L \in R$ Funzioni continue in un punto



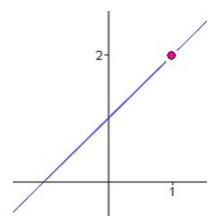
$$\forall\, \epsilon>0 \quad \exists \ \delta>0: \, \forall\, x\,{\in}\, A, \ 0<\left|\, x\,{-}\,x_{\,0}\,\right|<\delta \ \Rightarrow \ \left|\ f\,(\,x\,)\,\,{-}\,\,L\,\right|<\epsilon\,\,.$$

Fissato x $_{0,}$ il valore di δ dipende da ϵ , cioè varia al suo variare: quanto più piccolo è ϵ (cioè quanto più vicini ad L vogliamo che siano i valori f (x)), tanto più piccolo dovrà essere δ (cioè tanto più vicini ad x $_{0}$ devono essere scelti i valori di x).

Esempio 1

$$f(x) = \frac{x^2 - 1}{x - 1}$$
, $x \in R - \{1\}$

$$\lim_{x\to 1} f(x) = 2$$



La funzione non è definita per x = 1, dunque non ha senso calcolare f (1). Però 1 è punto di accumulazione per il dominio della funzione e dunque ha invece senso calcolare il limite per $x \to 1$. Facciamo vedere che questo limite vale 2, verificando che, fissato $\varepsilon > 0$, la disequazione

$$\left|\frac{x^2-1}{x-1}-2\right|<\varepsilon$$

è soddisfatta da ogni x di un opportuno intervallo $(1 - \delta, 1 + \delta)$, escluso 1.

Poiché per x ≠ 1 vale l'uguaglianza

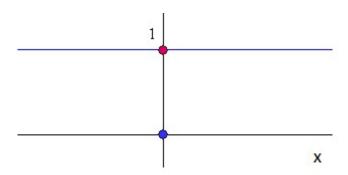
$$\frac{x^2 - 1}{x - 1} = x + 1$$

la disequazione da studiare diventa $|x-1| < \varepsilon$ cioè $1 - \varepsilon < x < 1 + \varepsilon$. Basta dunque prendere $\delta = \varepsilon$ perché la definizione di limite sia verificata. In questo esempio f (x_0) non esiste, mentre esiste il limite per $x \to x_0$.

Esempio 2

$$f(x) = \begin{cases} 1 & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

$$\lim_{x\to 0} f(x) = 1$$



La funzione è definita per x = 0 e risulta f(0) = 0; facciamo vedere che il limite per $x \to 0$ esiste e vale 1, provando che la disequazione $|f(x) - 1| < \varepsilon$ è verificata dalle x tali che $0 < |x| < \delta$, per un opportuno δ , cioè dalle x tali che $x \in \delta$.

Ma per x \neq 0, f (x) = 1 e dunque la disequazione da studiare diventa 0 < ϵ , che è sempre verificata. In altre parole, possiamo scegliere δ > 0 in maniera del tutto arbitraria (e dunque questo è un caso in cui δ non dipende da ϵ).

In questo esempio esistono sia f (x_0) che il limite per $x \to x_0$, ma i due valori sono diversi.

Esempio 3

$$f(x) = \frac{2x+7}{x+2}$$
, $x \in R - \{-2\}$

$$\lim_{x\to 1} f(x) = 3$$

La funzione è definita per x = 1 con valore 3; facciamo vedere che il suo limite per $x \rightarrow 1$ esiste e vale anch'esso 3.

Dobbiamo studiare la disequazione

$$\left| \frac{2x+7}{x+2} - 3 \right| < \epsilon \quad \Leftrightarrow \quad \left| \frac{1-x}{x+2} \right| < \epsilon \quad \Leftrightarrow \quad -\epsilon < \frac{1-x}{x+2} < \epsilon$$

Non ci interessa trovarne tutte le soluzioni, ma solo verificare che tra queste ci sono in particolare i punti di un intorno di 1, escluso al più 1 (in realtà stavolta il valore 1 è compreso, come si verifica immediatamente). Poiché ci interessa trovare le

soluzioni in un intorno di 1, possiamo dunque supporre x > -2, in modo da rendere positivo il denominatore (e anche il numeratore) e riscrivere

$$-\epsilon(x+2) < 1-x < \epsilon(x+2)$$

cioè

$$\begin{cases} -\varepsilon x - 2\varepsilon < 1 - x \\ 1 - x < \varepsilon x + 2\varepsilon \end{cases}$$

$$\begin{cases} (1 - \varepsilon) x < 1 + 2\varepsilon \\ (1 + \varepsilon) x > 1 - 2\varepsilon \end{cases}$$

Possiamo supporre ϵ < 1 (se la definizione di limite è verificata per i valori piccoli di ϵ , lo è a più forte ragione per quelli grandi).

$$\frac{1-2\varepsilon}{1+\varepsilon} < x < \frac{2-\varepsilon}{1-\varepsilon}$$

Se verifichiamo che

$$\frac{1-2\varepsilon}{1+\varepsilon}$$
 < $1<\frac{2-\varepsilon}{1-\varepsilon}$

abbiamo trovato l'insieme delle soluzioni contiene un intervallo che ha 1 come punto interno; di conseguenza l'intervallo contiene in particolare un intorno di 1, che è quanto volevamo dimostrare. La verifica è immediata. Si osservi come l'intervallo che troviamo dipende da ϵ .

Osservazione

Nella verifica di un limite:

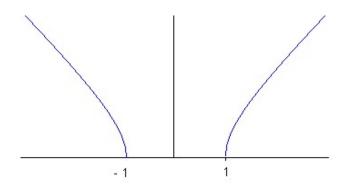
• non ci interessa trovare tutte le soluzioni della disequazione $\mid f(x) - L \mid < \epsilon$, ma solo provare che tra queste in particolare ci sono i punti di A che stanno in un intorno di x_0 , x_0 al più escluso; diremo che studiamo la disequazione localmente

- non ci interessa studiare la disequazione per tutti i valori di ϵ > 0; se questo facilita i calcoli, possiamo supporre $0 < \epsilon < \epsilon_0$ opportuno (se la disequazione è verificata localmente per valori piccoli di ϵ , a più forte ragione lo è per valori più grandi)
- dato che cerchiamo soluzioni locali, possiamo limitare fin dall'inizio i valori di x. Per esempio, se abbiamo un limite per x → 1, possiamo supporre x > 0 se questo facilita i calcoli. Sempre nel caso esaminato, non possiamo invece supporre x < 0 oppure x > 2, anche se una o l'altra di queste restrizioni fosse particolarmente comoda per i calcoli.

Esempio 4

$$f(x) = \sqrt{x^2 - 1} , x \in (-\infty, -1] \cup [1, +\infty)$$

$$\lim_{x \to 1} f(x) = 0$$



La funzione è definita per x = 1 con valore 0; facciamo vedere che anche il suo limite per $x \rightarrow 1$ vale 0.

In questo caso x può avvicinarsi a 1 solo da destra, cioè per valori più grandi di 1 (in questo caso si parla di limite da destra) ; nella definizione di limite, quando intersechiamo un intorno di 1 (che è un intervallo della forma (1- δ , 1+ δ)) con il dominio A, troviamo l'insieme [1, 1+ δ), che chiamiamo intorno destro di 1.

Dobbiamo dunque verificare che la disequazione

$$\left| \sqrt{x^2 - 1} \right| < \varepsilon \quad \Leftrightarrow \quad \sqrt{x^2 - 1} < \varepsilon$$

è soddisfatta dalle x di un intervallo (1, 1 + δ) con δ > 0 opportuno. Supponendo dunque x > 1, risolviamo:

$$\sqrt{x^2-1} < \varepsilon \iff x^2-1 < \varepsilon^2 \iff x^2 < 1+\varepsilon^2$$
;

la disequazione è verificata per

$$1 < x < \sqrt{1+\epsilon^2}$$

cioè appunto in un intorno destro di 1, con $\delta=\sqrt{1+\epsilon^2}$ -1. Anche in questo caso osserviamo la dipendenza di ô da ϵ .

Esercizi : verificare i seguenti limiti, facendo uso della definizione

$$\lim_{x \to e} \log \frac{e}{\log x} = 1$$

$$\lim_{x \to 0^{-}} e^{1/x} = 0$$

$$\lim_{x \to 0} \log \frac{1}{\sqrt{1+x}} = 0$$

$$\lim_{x \to 0} \sqrt{1+2x} - 1 = 0$$

$$\lim_{x \to 2} \frac{x^{2} - 3x + 2}{x^{2} - 4} = \frac{1}{4}$$

Definizione

Una funzione f (x) si dice **continua** in un punto x ₀ se

$$\lim_{x \to x_0} f(x) = f(x_0).$$

La definizione richiede che:

- la funzione sia definita per $x = x_0$
- esista finito il limite per $x \rightarrow x_0$
- il valore della funzione e il limite coincidano.

Un risultato fondamentale afferma che <u>le funzioni elementari (cioè quelle che hanno un'espressione analitica) sono continue in tutti i punti del loro dominio di definizione.</u>

Stante questo risultato, le verifiche fatte negli esempi 3. e 4. diventano superflue: le funzioni elementari

$$\frac{2x+7}{x+2} \quad e \quad \sqrt{x^2-1}$$

sono continue nel loro dominio, in particolare per x = 1; dunque il loro limite per $x \rightarrow 1$ coincide con il valore per x = 1.

Per la prima di queste due funzioni ha senso calcolare il limite per x che tende ad un qualunque punto della retta reale ampliata. Di tutti i possibili limiti gli unici non banali sono quelli per $x \to \pm \infty$ e per $x \to -2$; in tutti gli altri punti la funzione è continua e dunque il calcolo del limite diventa un'operazione banale quanto superflua, confondendosi con il calcolo del valore f (x_0) della funzione nel punto considerato.

Per la seconda funzione hanno senso i limiti per x che tende ad un qualunque punto di $[-\infty, -1] \cup [1, +\infty]$; gli unici limiti non banali sono quelli per $x \to \pm \infty$.

Ancora sulle funzioni elementari

Le funzioni elementari sono quelle che si possono esprimere in forma analitica. Possiamo dare una definizione più precisa nel seguente modo: si dicono elementari le funzioni

e tutte quelle che se ne possono dedurre per via algebrica, cioè mediante le operazioni di

```
somma
valore assoluto
prodotto per una costante
prodotto
rapporto
composizione
inversione.
```

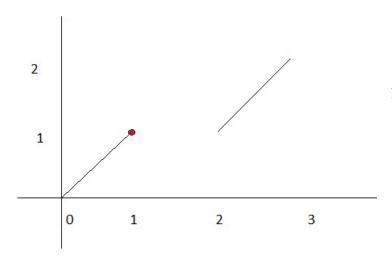
Ad esempio, sono dunque elementari le funzioni :

```
P(x) \ polinomi P(x)/Q(x) \ rapporto \ tra \ polinomi \ ovvero \ funzioni \ razionali \frac{n}{\sqrt{X}} \ radici logx a^x = e^{x \log a} log_a x cosx = sen(x + \pi/2) tgx arcsenx, \ arccosx, \ arctg x
```

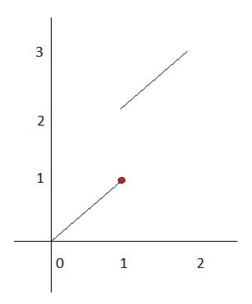
Per dimostrarne la continuità nel loro campo di esistenza :

- si dimostra direttamente per le funzioni base
- si dimostra che le operazioni algebriche conservano la continuità (nel senso che, ad esempio, la somma di funzioni continue è ancora una funzione continua)

Il discorso è un po' più delicato per quanto riguarda l'inversione; non è detto che l'inversa di una funzione continua sia anch'essa continua:



$$f(x) = \begin{cases} x & 0 \le x < 1 \\ x - 1 & 2 \le x \le 3 \end{cases}$$



$$f^{-1}(y) = \begin{cases} y & 0 \le y < 1 \\ y+1 & 1 \le x \le 2 \end{cases}$$

La funzione f è continua in tutti i punti del CE (che non è un intervallo) ; l'inversa è discontinua nel punto 1.

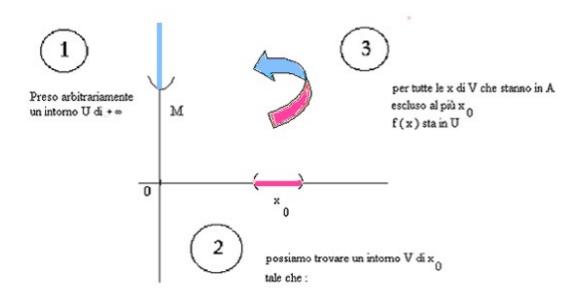
Si dimostra però che per una funzione continua in tutti i punti di un intervallo e invertibile, l'inversa è continua nel suo CE che è anch'esso un intervallo.

Così ad esempio, la funzione arcsenx è continua in tutto il CE che è [-1 , 1] , in quanto inverte la funzione senx ristretta all'intervallo [- π /2 , π /2] .

Limiti di una funzione: il caso x $_0 \in R$, L = $\pm \infty$ Asintoti verticali

Esaminiamo per primo il caso $L = + \infty$.

Preso un qualunque intorno di $+\infty$ sull'asse delle y (cioè una qualunque semiretta (M, $+\infty$)), in corrispondenza deve esistere un intorno di x_0 sull'asse delle x (cioè un intervallo (x_0 - δ , x_0 + δ) tale che per tutte le x del dominio che stanno in questo intervallo - escluso al più x_0 - i valori della funzione cadono nella semiretta scelta, cioè f(x) diventa più grande di M.



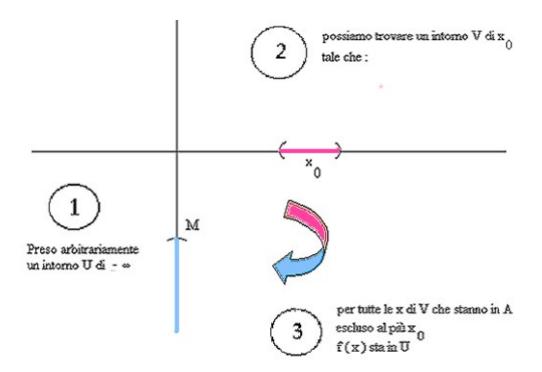
In simboli:

$$\forall\,M>0$$
 , $\exists\,\,\delta>0$: $\forall\,x\in A$ $0<\left|\,x-x_{_0}\,\right|<\delta$ \Rightarrow $f\left(\,x\,\right)>M$

Abbiamo preso M>0 perché se la proposizione è verificata a partire dalle semirette $(M, +\infty)$ con M>0, a più forte ragione è verificata a partire dalle altre.

In maniera analoga si interpreta il caso $L = -\infty$.

Preso un qualunque intorno di - ∞ sull'asse delle y, cioè una qualunque semiretta (- ∞ , M), in corrispondenza deve esistere un intorno di x $_0$ sull'asse delle x , cioè un intervallo (x $_0$ - δ , x $_0$ + δ), tale che per tutte le x del dominio che stanno in questo intervallo - escluso al più x $_0$ - i valori della funzione cadono nella semiretta scelta (cioè i valori f (x) diventano più piccoli di M).



In simboli:

$$\forall\,M>0\ ,\ \exists\,\,\delta>0\ :\ \forall\,x\,{\in}\,A\quad \, 0<\big|\,x\,{-}\,x_{_0}\,\big|<\delta\ \Rightarrow\ f\,(\,x\,)<{-}\,M$$

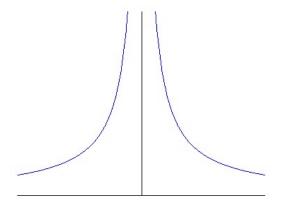
(Basta considerare le semirette ($-\infty$, -M) con M positivo).

In entrambi i casi diremo che la retta verticale di equazione $x = x_0$ è un asintoto per la funzione (asintoto verticale).

Esempio 1

$$f(x) = \frac{1}{|x|}, x \in R - \{0\}$$

$$\lim_{x\to 0} f(x) = +\infty$$



Dobbiamo verificare che, fissato M > 0, la disequazione 1 / | x | > M è soddisfatta dalle x tali che 0 < $| x | < \delta$ per un opportuno $\delta > 0$. Poiché la disequazione proposta si può riscrivere nella forma | x | < 1 / M, basterà prendere $\delta = 1$ / M.

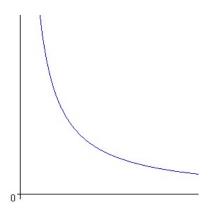
Esempio 2

$$f(x) = \frac{1}{x}$$
, $x \in (0, +\infty)$

$$\lim_{x \to 0} f(x) = +\infty$$

Comunemente si scrive:

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty.$$

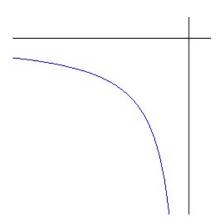


Dobbiamo verificare che, fissato M > 0, la disequazione 1 / x > M è soddisfatta dalle x in un intorno destro di 0, cioè tali che 0 < x < δ , per un opportuno δ > 0. Poiché la disequazione proposta si può riscrivere nella forma x < 1 / M, basterà prendere δ = 1 / M.

Esempio 3

$$f(x) = \frac{1}{x}$$
, $x \in (-\infty, 0)$

$$\lim_{x\to 0} f(x) = -\infty.$$



Comunemente si scrive:

$$\lim_{x\to 0^{-}}\frac{1}{x}=-\infty.$$

Dobbiamo verificare che, fissato M > 0, la disequazione 1 / x < - M è soddisfatta in un intorno sinistro di 0, cioè dalle x tali che - δ < x < 0, per un opportuno δ > 0. Poiché la disequazione proposta si può riscrivere nella forma x > - 1 / M, basterà prendere δ = 1 / M.

Esempio 4

$$f(x) = \log_a x$$
 , $x \in (0, +\infty)$

$$\lim_{x\to 0} f(x) = \begin{cases} -\infty & \text{se } a > 1 \\ +\infty & \text{se } 0 < a < 1 \end{cases}$$

Verifichiamo il caso a > 1.

Fissato M > 0, dobbiamo far vedere che la disequazione $\log_a x < -M$ è soddisfatta dalle x tali che 0 < x < δ , per un opportuno δ > 0. Ma la disequazione si può riscrivere nella forma $x < a^{-M}$ e dunque basta prendere $\delta = a^{-M}$.

Esercizi

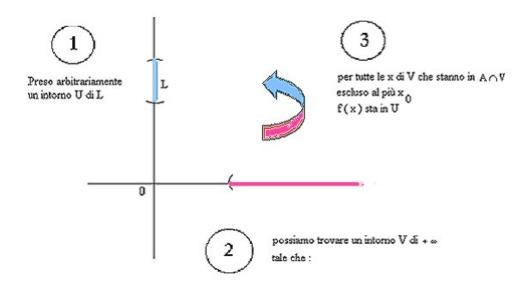
$$\lim_{x\to 0} \frac{2-x}{x^2} = +\infty$$

$$\lim_{x \to 0} \frac{1}{\sin^2 x} = +\infty$$

3.4 Limiti di una funzione: il caso $x_0 = \pm \infty$, $L \in R$ Asintoti orizzontali

Esaminiamo per primo il caso $x_0 = +\infty$.

Preso un qualunque intorno di L sull'asse delle y (cioè un qualunque intervallo ($L - \varepsilon$, $L + \varepsilon$)), in corrispondenza deve esistere un intorno di $+ \infty$ sull'asse delle x (cioè una semiretta (M, $+\infty$)) tale che per tutte le x del dominio che stanno in questa semiretta, i valori f (x) della funzione cadono nell'intervallo scelto.



In simboli:

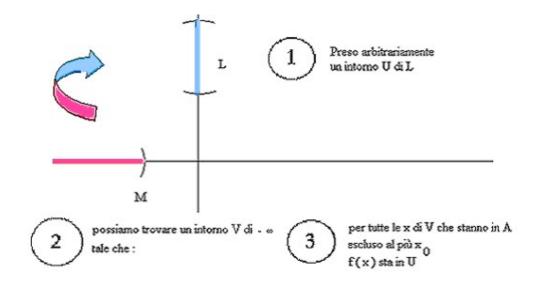
$$\forall \epsilon > 0 \quad \exists M > 0 : \forall x \in A, x > M \Rightarrow |f(x) - L| < \epsilon$$

cioè

$$\forall \, \epsilon > 0 \quad \exists \, M > 0 : \, \forall \, x \in A , \, x > M \quad \Rightarrow \quad L - \epsilon < f(x) < L + \epsilon$$

Il caso x $_0$ = - ∞ si interpreta in modo analogo.

Preso un qualunque intorno di L sull'asse delle y (cioè un qualunque intervallo (L - ϵ , L + ϵ)), in corrispondenza deve esistere un intorno di - ∞ sull'asse delle x (cioè una semiretta (- ∞ , M)) tale che per tutte le x del dominio che stanno in questa semiretta, i valori f (x) della funzione cadono nell'intervallo scelto.



In simboli:

$$\forall \, \epsilon > 0 \quad \exists \ M > 0 : \ \forall \, x \in A , \ x < -M \Rightarrow \big| f(x) - L \big| < \epsilon$$

cioè

$$\forall \epsilon > 0 \quad \exists M > 0 : \forall x \in A, x < -M \implies L - \epsilon < f(x) < L + \epsilon$$

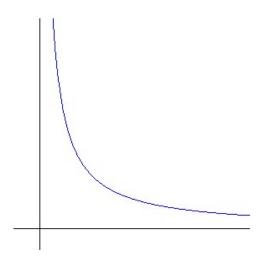
In entrambi i casi diremo che la retta orizzontale di equazione y = L è un asintoto per la funzione (asintoto orizzontale).

Esempio 1

$$f(x) = 1/x, x \in \mathbf{R} - \{0\}$$

$$\lim_{x\to +\infty} f(x) = 0$$

Fissato $\varepsilon > 0$, dobbiamo far vedere che la disequazione $|1/x| < \varepsilon$ è verificata per ogni x > M, per M > 0 opportuno. Poiché possiamo supporre x > 0, la disequazione diventa $1/x < \varepsilon$, cioè $x > 1/\varepsilon$. Basta dunque prendere $M = 1/\varepsilon$.



Osservazione

Il limite precedente assicura che la retta di equazione y = 0 (asse delle x) è asintoto orizzontale per la funzione f(x) = 1/x quando $x \rightarrow +\infty$.

Questo risultato è coerente con il fatto che il grafico della funzione è un'iperbole equilatera riferita agli assi; sappiamo anche che $x \rightarrow + \infty$ l'iperbole si avvicina arbitrariamente all'asintoto, rimanendone al di sopra. Dal punto di vista algebrico, nella verifica del limite risulta $0 < 1 / x < \varepsilon$ per x > M. Questa precisazione nel comportamento della funzione può essere indicata con la notazione:

$$\lim_{x\to +\infty} 1/x = 0^+$$

(parleremo di limite per eccesso).

La retta y = 0 è asintoto per la funzione anche per x \rightarrow - ∞ , ma stavolta il grafico della funzione si avvicina alla retta rimanendole al di sotto. Scriveremo allora

$$\lim_{x\to -\infty} 1/x = 0^-$$

(e parleremo di limite per difetto).

Esempio 2

$$\lim_{x \to -\infty} a^x = 0^+ \quad \text{se } a > 1$$

$$\lim_{x \to +\infty} a^x = 0^+ \quad \text{se } 0 < a < 1$$

Verifichiamo il primo limite; per l'altro si procede in modo analogo.

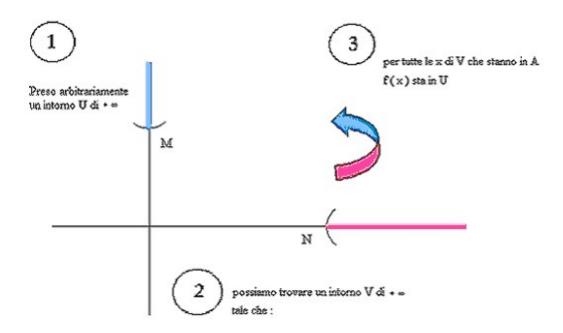
Occorre far vedere che risulta $a^x < \epsilon$ per x < - M opportuno.

Poiché la disequazione equivale ad $x < log_a \; \epsilon$, basta prendere M = $\; log_a \; \epsilon$.

Limiti di una funzione: il caso $x_0 = \pm \infty$, $L = \pm \infty$

Esaminiamo per primo il caso $x_0 = +\infty$, $L = +\infty$.

Preso un qualunque intorno di $+\infty$ sull'asse delle y (cioè una qualunque semiretta della forma (M, $+\infty$)), in corrispondenza deve esistere un intorno di $+\infty$ sull'asse delle x (cioè una semiretta (N, $+\infty$)) tale che per tutte le x del dominio maggiori di N la funzione assume valori f (x) maggiori di M.



In simboli:

$$\forall M > 0$$
, $\exists N > 0$: $\forall x \in A, x > N \Rightarrow f(x) > M$

In maniera analoga si interpretano gli altri casi:

•
$$x_0 = +\infty$$
 , $L = -\infty$
$$\forall M > 0 , \exists N > 0 : \forall x \in A, x > N \Rightarrow f(x) < -M$$

•
$$x_0 = -\infty$$
 , $L = +\infty$
$$\forall M > 0 , \exists N > 0 : \forall x \in A , x < -N \Rightarrow f(x) > M$$

•
$$x_0 = -\infty$$
 , $L = -\infty$
$$\forall M > 0 , \exists N > 0 : \forall x \in A , x < -N \Rightarrow f(x) < -M$$

L'interpretazione geometrica sulla falsariga del caso trattato è lasciata per esercizio.

Esempio 1

$$\lim_{x \to +\infty} \log_a x = \begin{cases} +\infty & \text{se } a > 1 \\ -\infty & \text{se } 0 < a < 1 \end{cases}$$

Nel caso a > 1 dobbiamo far vedere che, fissato M > 0, risulta $\log_a x > M$ per tutte le x > N, per un opportuno N > 0.

Poiché la disequazione si può riscrivere nella forma equivalente $x > a^{M}$, basta prendere $N = a^{M}$.

Nel caso 0 < a < 1 dobbiamo far vedere che, fissato M > 0, risulta $\log_a x < -M$ per tutte le x > N, per un opportuno N > 0.

Riscritta la disequazione nella forma equivalente $x > a^{-M}$, basta prendere $N = a^{-M}$.

Esempio 2

$$\lim_{x \to +\infty} a^x = +\infty$$
 se $a > 1$
 $\lim_{x \to -\infty} a^x = +\infty$ se $0 < a < 1$

Nel caso a > 1 dobbiamo far vedere che, fissato M > 0, risulta a $^{\times} > M$ per tutte le x > N, per un opportuno N > 0.

Poiché la disequazione si può riscrivere nella forma equivalente $x > log_a M$, basta prendere $N = log_a M$.

Nel caso 0 < a < 1 dobbiamo invece far vedere che, fissato M > 0, risulta $a^{\times} > M$ per tutte le x < -N, per un opportuno N > 0.

Riscritta la disequazione nella forma equivalente $x < log_a M$, basta prendere $N = -log_a M$.

Esempio 3

$$\lim_{x \to \pm \infty} \sqrt{x^2 - 2x - 1} = +\infty$$

La funzione è definita in A = $(-\infty, 1-\sqrt{2}] \cup [1+\sqrt{2}, +\infty)$ e dunque entrambi i limiti hanno senso.

Per verificare i risultati, dobbiamo far vedere che, fissato M > 0, la disequazione

$$\sqrt{x^2 - 2x - 1} > M \iff x^2 - 2x - 1 > M^2 \iff x^2 - 2x - 1 - M^2 > 0$$

è verificata sia in un intorno di + ∞ che in un intorno di - ∞. Infatti l'insieme delle soluzioni è dato da

$$(-\infty, 1-\sqrt{M^2+2}) \cup (1+\sqrt{M^2+2}, +\infty).$$

Teoremi sui limiti

- Unicità
- Restrizioni
- Permanenza del segno

Se per $x \to x_0$ il limite di una funzione è diverso da 0, la funzione ha localmente lo stesso segno del limite (escluso al più nel punto x_0).

Il termine localmente significa: <u>in tutti i punti del dominio della funzione che stanno in un intorno del punto considerato.</u>

$$\lim_{x \to x_0} f(x) = L > 0 \implies$$

$$\Rightarrow \exists V(x_0) : \forall x \in A \cap V(x_0) - \{x_0\}, f(x) > 0.$$

Ad esempio, faremo vedere che per $x \to +\infty$ si ha $x^3 - 3$ $x^2 - 4$ $x - 1 \to +\infty$. Il teorema precedente assicura che la disequazione $x^3 - 3$ $x^2 - 4$ x - 1 > 0 è verificata <u>almeno</u> in un intorno di $+\infty$.

Passaggio al limite in una disequazione

Se per $x \to x_0$ la funzione f(x) ha limite L e se localmente risulta f(x) > 0, allora $L \ge 0$.

Alla stessa conclusione si arriva supponendo che localmente risulti $f(x) \ge 0$.

$$\left\{ \begin{array}{l} \exists \ V(x_0) : \forall \ x \in A \ \cap \ V \text{-} \left\{ x_0 \right\} \ , \ f(x) > 0 \\ \lim_{x \to x_0} \ f(x) = L \end{array} \right. \Rightarrow L \ge 0$$

Nel caso in cui sia f(x) > 0 localmente, il limite L non è necessariamente > 0 anch'esso, potendo invece essere = 0.

Ad esempio, f(x) = 1/x definita per x > 0; il limite per $x \rightarrow +\infty$ vale 0.

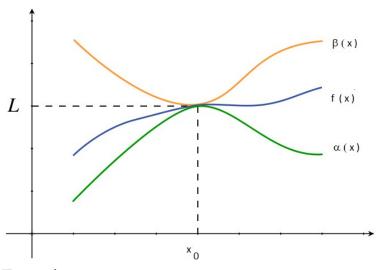
• Confronto

Date tre funzioni $f(x), \alpha(x), \beta(x)$ tali che

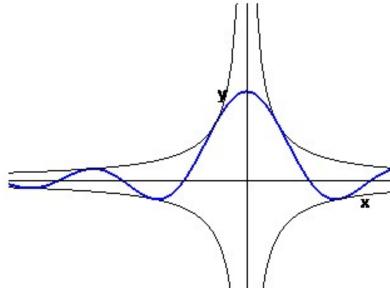
- (i) <u>localmente</u> $\alpha(x) \le f(x) \le \beta(x)$
- (ii) per $x \rightarrow x_0$ risulta $\alpha(x)$, $\beta(x) \rightarrow L \in R$;

allora per $x \rightarrow x_0$ risulta anche $f(x) \rightarrow L$.

In altre parole, se nell'intorno di un punto x_0 (escluso al più il punto) riusciamo a minorare e a maggiorare la funzione f(x) con due funzioni che per $x \to x_0$ hanno lo stesso limite L, allora per $x \to x_0$ anche f(x) ha limite L.

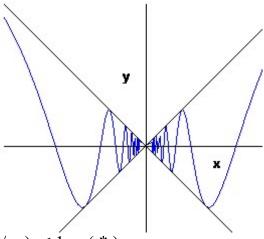


Esempio Proviamo che $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$.



- $-1 \le \operatorname{senx} \le 1$ (*)
- poiché il limite è fatto per $x \to +\infty$, possiamo supporre x > 0
- dividendo per x i termini in (*) si ottiene -1 / $x \le senx / x \le 1 / x$
- poiché $\lim_{x \to +\infty} \pm 1/x = 0$, il risultato segue per confronto.

Analogamente $\lim_{x\to 0} x \operatorname{sen}(1/x) = 0$.



- $-1 \le \text{sen}(1/x) \le 1$ (*)
- la funzione è pari: possiamo considerare solo il limite per $x \to 0^+$, supponendo dunque x > 0
- moltiplicando per x i termini in (*), si ottiene $x \le x$ sen $(1/x) \le x$
- poiché $\lim_{x\to 0} \pm x = 0$, il risultato segue per confronto.

Osservazione

Il calcolo precedente si può generalizzare dicendo che il prodotto di una funzione infinitesima per una (localmente) limitata è infinitesimo. Se:

- (i) per $x \rightarrow x_0$ risulta $f(x) \rightarrow 0$
- (ii) g(x) è limitata in un intorno di x_0

allora per $x \rightarrow x_0$ risulta anche $f(x) g(x) \rightarrow 0$.

Osservazione

Differenza tra funzione limitata e funzione dotata di limite.

• Confronto (II versione)

Date due funzioni f(x), $\alpha(x)$ tali che

- (i) $\underline{\text{localmente}} f(x) \ge \alpha(x)$
- (ii) per $x \to x_0$ risulta $\alpha(x) \to +\infty$; allora per $x \to x_0$ risulta anche $f(x) \to +\infty$.

Date due funzioni f(x), $\beta(x)$ tali che

- (i) $\underline{\text{localmente}} f(x) \leq \beta(x)$
- (ii) $\overline{\text{per } x \to x_0}$ risulta $\beta(x) \to -\infty$; allora $\overline{\text{per } x \to x_0}$ risulta anche $f(x) \to -\infty$.