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ABSTRACT. This is a compendium of Simpson’s theory about shapes of schemes and stacks.
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CHAPTER 2

The derived stack of perfect complexes

2.1. Overview

Let X be a derived stack. We are often interested in knowing when the derived stack

Perf(X) := Map(X, Perf)

is representable by a geometric derived stack locally almost of finite presentation. This can be
achieved by checking the assumptions of Artin-Lurie’s representability theorem, which we recall
below:

THEOREM 2.1.1 (Artin-Lurie Theorem, [Lur18, Theorem 18.3.0.1]). A derived stack F ∈ dSt is
geometric and locally almost of finite presentation if and only if it satisfies the following conditions:

(1) (Truncatedness) There exists n ≥ 0 such that for every affine underived scheme S, F(S) is n-
truncated.

(2) (Locally almost finitely presented) The functor F is locally almost of finite presentation, that is for
every n ≥ 0 and every cofiltered diagram S : I → dAff6n of n-truncated affine derived schemes,
the canonical map

colim
i∈I

F(Si) −→ F
(

lim
i∈I

Si

)
is an equivalence.

(3) (Deformation theory) The functor F is infinitesimally cohesive, nilcomplete and admits an even-
tually connective global cotangent complex.

(4) (Integrability) The functor F is integrable, that is for every underived local ring A which is
complete with respect to its maximal ideal m, the canonical map

F(Spec(A)) −→ F(Spf(A))

is an equivalence.

Our goal in this section is to spell out some useful criteria intrinsic on X that guarantee the
assumptions of Artin-Lurie’s theorem are satisfied for Perf(X). The most well known and well
documented example is the case where X is a smooth and proper scheme. For our purposes, this
is not enough, as we are often interested in the case of Simpson’s shapes XB, XdR, XDol and XDel.

A number of these conditions are easily checked:

• infinitesimal cohesiveness and nilcompleteness are essentially always satisfied;

• integrability enjoys some stability properties that make it easy to check it in the examples
of our interests;

• truncatedness is relatively easy to verify in terms of flat presentations.

The hardest work is required to check that Perf(X) is locally almost finitely presented and
admits a global cotangent complex. Combining ideas from [HLP14] and [PTVV13] we relate the
problem of the existence of a global cotangent complex to two properties that are easily verified
in practice: categorical quasi-compactness and finite cohomological dimension. We refer to a slight
strengthening of the combination of these two properties as categorical properness.
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2.2. Deformation theory I. Infinitesimal cohesiveness and nilcompleteness

We start discussing the easiest deformation theoretic properties of derived stacks. For later
use, we consider things in the more general setting of derived stacks with values in Cat∞.

DEFINITION 2.2.1. A categorical derived stack is a functor F : dAffop → Cat∞ which is a hyper-
complete sheaf for the étale topology. We let dStcat denote the ∞-category of categorical derived
stacks. �

The natural inclusion i : S ↪→ Cat∞ of spaces inside ∞-categories is fully faithful and com-
mutes with both limits and colimits. In particular, there is an induced fully faithful inclusion

i : dSt ↪→ dStcat .

If X ∈ dSt is a derived stack, we typically abuse of notation and see it, if needed, as a Cat∞-valued
derived stack implicitly using the above embedding. The functor i admits both a left adjoint L
and a right adjoint R, which can be characterized as follows. If F ∈ dStcat is a categorical derived
stack, then L(F) is the sheafification of the presheaf defined by

L(F)(S) := Env(F(S)) ,

where Env : Cat∞ → S denotes the enveloping groupoid. The right adjoint instead satisfies the
relation

R(F)(S) ' F(S)' ,

where (−)' : Cat∞ → S denotes the maximal ∞-groupoid functor. Observe that R(F) is automati-
cally a sheaf, with no need to sheafify. We refer to R(F) as the underlying derived stack of F.

Since Cat∞ is cartesian closed, the same goes for dStcat. In particular, given two categorical
derived stacks F, G we have an internal hom Map(F, G) ∈ dStcat. For every S ∈ dAff we have,
tautologically:

Map(F, G)(S) := MapdStcat(F× S, G) .

2.2.1. Infinitesimal cohesiveness. We start by discussing the notion of infinitesimal cohe-
siveness for categorical derived stacks.

Recall that for any S = Spec(A) ∈ dAff an affine derived scheme and any M ∈ QCoh>1(S)
be a quasi-coherent complex, we set S[M] := Spec(A ⊕ M) and we denote by d the derivation
S[M[−1]]→ S. Finally, let Sd[M] be the pushout

S[M] S

S Sd[M[−1]]

d

d0 f0

f

,

where d0 denotes the zero derivation.

DEFINITION 2.2.2. We say that a categorical derived stack F ∈ dStcat is infinitesimal cohesive
if for every S ∈ dAff, every M ∈ QCoh>1(S) and every derivation d : S[M] → S, the canonical
square

F(Sd[M[−1]]) F(S)

F(S) F(S[M])

(2.2.1)

is a pullback. �

Infinitesimally cohesive categorical derived stacks are closed under a certain number of op-
erations:
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PROPOSITION 2.2.3.

(1) If a categorical derived stack F is infinitesimally cohesive, then its underlying derived stack R(F)
is infinitesimally cohesive.

(2) The class of infinitesimally cohesive categorical derived stacks is closed under limits.

(3) Let F ∈ dSt be a derived stack and let G ∈ dStcat be a categorical derived stack. If G is
infinitesimal cohesive, the same goes for Map(F, G).

PROOF. The first statement follows from the fact that (−)' commutes with limits. Moreover,
since limits in dStcat are computed objectwise, the second statement is obvious. For (3), we first
observe that since F is a derived stack, we can write

F ' colim
S∈dAff/F

S .

The inclusion i : dSt→ dStcat commutes with both limits and colimits. Therefore, we have

Map(F, G) ' lim
S∈dAff/F

Map(S, G) .

Thanks to point (2), we can therefore reduce to the case where F itself is an affine derived scheme.
Let S ∈ dAff and choose M ∈ QCoh>1(S) and a derivation d : S[M] → S. Then F × S is again
an affine derived scheme. Let p : F× S → S be the natural projection. Then there is a canonical
equivalence

F× S[M] ' (F× S)[p∗M] ,

which induces a derivation p∗(d) : (F× S)[p∗M]→ F× S and another equivalence

F× Sd[M[−1]] ' (F× S)p∗(d)[p
∗M[−1]] .

We can therefore rewrite the diagram (2.2.1) for Map(F, G) as the square

G
(
(F× S)p∗(d)[p∗M[−1]]

)
G(F× S)

G(F× S) G
(
(F× S)[p∗M[−1]]

) ,

which is a pullback by the assumption on G. �

The following is a simple consequence of infinitesimal cohesiveness, which nevertheless is
very often useful in practice:

PROPOSITION 2.2.4. Let F ∈ dSt be an infinitesimally cohesive derived stack. Let S ∈ dAff be an
affine derived scheme and let x : S → F be a morphism. Let ΩxF := S×F S be the loop stack at x and let
δx : S→ ΩxF the diagonal morphism. Then the following statements are equivalent:

(1) the derived stack F admits a cotangent complex x∗LF at the point x;

(2) the derived stack ΩxF admits a cotangent complex δ∗xLF at the point δx.

Furthermore, if these conditions are met, there is a canonical equivalence

x∗LF ' δ∗xLF[−1]

in QCoh(S).

PROOF. To be written. �
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2.2.2. Nilcompleteness. We now turn to nilcompleteness.

DEFINITION 2.2.5. Let n ∈ N ∪ {∞} be a possibly infinite integer. We say that an affine
derived scheme X = Spec(A) is n-truncated (or n-coconnective) if:

(1) when n < ∞, the groups πm(A) are zero for m ≥ n + 1;

(2) when n = ∞, there exists n0 such that πm(A) = 0 for m ≥ n0.

We refer to ∞-truncated affine derived schemes as eventually coconnective affine derived schemes.
�

For n ∈N∪ {∞} we let dAff<n be the full subcategory of dAff spanned by (n− 1)-truncated
affine derived schemes. The étale topology on dAff induces a topology on dAff<n . We write

dSt<n := Sh( dAff<n , τét)
∧

for the category of hypercomplete étale sheaves on dAff<n . The natural inclusion functor

in : dAff<n dAff

is both continuous and cocontinuous, and therefore restriction along in induces a functor

(−)<n : dSt −→ dSt<n ,

which has both a left adjoint in! and a right adjoint in∗.

DEFINITION 2.2.6. Let F ∈ dStcat be a categorical derived stack.

(1) The n-truncation of F is the derived stack

t≤nF := in+1!( F<n+1 ) .

(2) The associated convergent derived stack of F is the derived stack

Fconv := i∞∗( F<∞ ) .

�

EXAMPLE 2.2.7. If F = Spec(A) is an affine derived scheme, then t≤nF ' Spec(τ≤n A), while
the associated convergent derived stack is F itself, Fconv ' F. 4

The terminology “associated convergent derived stack” is clarified by the following defini-
tion:

DEFINITION 2.2.8. We say that a categorical derived stack F ∈ dStcat is convergent (or nilcom-
plete) if for every S ∈ dAff the canonical map

F(S) −→ lim
n≥0

F(t≤n(S))

is an equivalence. �

We summarize the basic properties of convergent derived stacks as follows:

PROPOSITION 2.2.9.

(1) A categorical derived stack F is nilcomplete if and only if the canonical map

F −→ Fconv

is an equivalence.

(2) If a categorical derived stack F is nilcomplete, then its underlying derived stack R(F) is nilcom-
plete as well.

(3) The class of nilcomplete categorical derived stacks is closed under limits.

(4) Let F ∈ dSt be a derived stack and let G ∈ dStcat be a categorical derived stack. If G is
nilcomplete, the same goes for Map(F, G).
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PROOF. We start by point (1). Consider the commutative triangle

F Fconv

limn in∗( F<n )

The transitivity of right Kan extensions shows that the diagonal map on the right is an equiv-
alence. Unraveling the definitions, we see that F is convergent if and only if the diagonal map
on the left is an equivalence. Therefore, the conclusion follows from the 2-out-of-3 property of
equivalences.

The second statement follows from the fact that (−)' commutes with limits. Moreover, since
limits in dStcat are computed objectwise, the statement (3) is obvious. For (4), we first observe
that since F is a derived stack, we can write

F ' colim
S∈dAff/F

S .

The inclusion i : dSt→ dStcat commutes with both limits and colimits. Therefore, we have

Map(F, G) ' lim
S∈dAff/F

Map(S, G) .

Thanks to point (3), we can therefore reduce to the case where F itself is an affine derived scheme.
Consider the square

G(limn F× t≤nS) limn G(F× t≤nS)

G(limn limm t≤m(F× t≤nS)) limn limm G(t≤m(F× t≤nS))

.

The left vertical map is obviously an equivalence. Since G is nilcomplete, the right vertical map
and the bottom horizontal one are both equivalences. Therefore, the top horizontal map is an
equivalence as well. This completes the proof. �

The following is the example of fundamental interest for us:

THEOREM 2.2.10 (Lurie). The categorical stack

QCoh<−∞ : dAffop −→ Cat∞

of eventually connective quasi-coherent sheaves is infinitesimally cohesive and nilcomplete. The same goes
for the categorical substacks APerf and Perf of almost perfect complexes and perfect complexes, as well as
for the underlying derived stacks APerf := R(APerf) and Perf := R(Perf).

PROOF. Infinitesimally cohesiveness follows from [Lur18, Theorem 16.2.0.1 and Proposi-
tion 16.2.3.1-(6)]. Nilcompleteness follows from [Lur18, Propositions 19.2.1.5 and 2.7.3.2-(c)]. The
last statement is a direct consequence of Propositions 2.2.3-(1) and 2.2.9-(2). �

2.3. Deformation theory II. Categorical properness and cotangent complex

Let f : X → S ∈ dSt be a morphism of derived stacks. When the map is not representable by
geometric stacks, it is not obvious to formulate a notion of properness for f . The following are
some of the possible requirements one can put on f :

(1) the functor f∗ : QCoh(X)→ QCoh(S) preserves filtered colimits, universally in S;
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(2) for every pullback diagram

XT X

T S

g′

f ′ f

g

where g is representable by affine derived schemes, the Beck-Chevalley transformation

g∗ ◦ f∗ −→ f ′∗ ◦ g′∗

is an equivalence.

(3) the functor f∗ : QCoh(X) → QCoh(S) preserves almost perfect complexes, universally
in S.

Typically, each of these conditions requires non-trivial arguments to be verified, as the following
example shows:

EXAMPLE 2.3.1.

(1) Let S be an affine scheme and let f : X → S be a quasi-compact morphism of schemes. Then
the functor

f∗ : QCoh(X) −→ QCoh(S)

commutes with filtered colimits, universally in S. Indeed, if T → S is a map in dAff, it is
in particular quasi-compact, and therefore the base-change XT → T is again quasi-compact.
Thus, it is enough to deal with the case S = T. Denote by XZar the small Zariski site of X.
There is a canonical commutative diagram

QCoh(X) PShModC
(XZar)

QCoh(S) PShModC
(SZar)

iX

f∗ f∗
iS

.

The functors iX and iS are conservative. Since S and f are quasi-compact, the same goes for X.
Hence the small Zariski sites SZar and XZar are quasi-compact. This implies that the functors
iS and iX commutes with filtered colimits (see for example [PY18, Lemma 5.5]).

(2) Assume now that f : X → S is a quasi-compact and quasi-separated morphism of schemes.
Then [Toë12, Proposition 1.4] implies that for any pullback diagram

XT X

T S

g′

f ′ f

g

the Beck-Chevalley transformation

g∗ f∗(F ) −→ f ′∗g
′∗(F )

is an equivalence for every F ∈ QCoh(X). When X is itself affine, the statement is trivial.
In general, one needs quasi-compactness and quasi-separatedness of f to write X as a finite
colimit of affine schemes and open immersions between them. This allows to compute f∗ as
a finite limit (using for example [PY16, §8.2]). The conclusion follows because g∗ commutes
with finite limits, being a functor between stable ∞-categories.

(3) Finally, assume that f : X → S is a proper morphism of schemes. Using [Lur18, Theo-
rem 5.6.0.2], we see that the functor f∗ : QCoh(X)→ QCoh(S) restricts to a functor

f∗ : APerf(X) −→ APerf(S) .
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In the case of schemes, one can see this as a combination of Grothendieck direct image the-
orem plus the fact that f has finite cohomological dimension. Assume furthermore that f
has finite tor-amplitude (see [Lur18, Definition 6.1.1.1]). Then f∗ preserves objects of finite
tor-amplitude (see [Lur18, Proposition 6.1.3.1]), and therefore the characterization of perfect
complexes via tor-amplitude provided in [Lur17, Proposition 7.2.4.23] shows that f∗ restricts
to

f∗ : Perf(X) −→ Perf(S) .

See also [Lur18, Theorem 6.1.3.2].

4

In the above example, we used in a significant way the fact that X was a derived scheme. It is
not difficult to relax this condition a little, for example to derived algebraic spaces. Nevertheless,
to remove altogether every geometricity condition on X is challenging.

2.3.1. Categorical quasi-compactness. We start by exploring the formal consequences of
commuting with filtered colimits. The following definition is motivated by Example (1):

DEFINITION 2.3.2. Let f : X → S ∈ dSt be a morphism of derived stacks. We say that f is
categorically quasi-compact if the functor

f∗ : QCoh(X) −→ QCoh(S)

commutes with filtered colimits. �

REMARK 2.3.3. In [PTVV13, Definition 2.1], the authors introduce the notion of (strict) O-
compact morphism. A morphism of derived stacks f : X → S is said to be strictly O-compact if

f∗ : QCoh(X) −→ QCoh(S)

commutes with filtered colimits and it preserves perfect complexes. As Example (3) shows, in the
geometric case preservation of perfect complexes is a consequence of properness (which guar-
antees that almost perfect complexes are preserved) and of finite tor-amplitude (which further
guarantees that perfectness is preserved). 4

PROPOSITION 2.3.4. Let

X′ X

Y′ Y

g′

f ′ f
g

be a pullback square in dSt. Assume that f is representable by affine derived schemes. Then:

(1) the functor

f∗ : QCoh(X) −→ QCoh(Y)

is conservative and commutes with filtered colimits.

(2) For every F ∈ QCoh(X) the Beck-Chevalley transformation

g∗ f∗(F ) −→ f ′∗g
′∗(F )

is an equivalence.

REMARK 2.3.5. One can deduce the above Proposition as a special case of [HLP14, Proposi-
tion A.1.5]. In our setting, the proof can be simplified, so we include it for the convenience of the
reader. 4
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PROOF. We start by proving (1). Since f is representable by affine derived schemes, pullback
along f induces a morphism

−×Y X : dAff/Y −→ dAff/X .

Since dSt is an ∞-topos, colimits are universal and therefore we see that the canonical map

colim
U∈dAff/Y

U ×Y X −→ X

is an equivalence. Let now

V U

Y

g

v u

be a morphism in dAff/Y. It gives rise to a pullback square

V ×Y X V

U ×Y X U

g′

p

g

q

in dAff. In particular, the induced diagram

QCoh(U) QCoh(U ×Y X)

QCoh(V) QCoh(V ×Y X)

q∗

g∗ g′∗

p∗

is horizontally right adjointable. This implies that for every pullback diagram

U ×Y X U

X Y

u′

f ′

u

f

where U ∈ dAff and for every F ∈ QCoh(X), the canonical map

u∗( f∗(F )) −→ f ′∗(u
′∗(F )) (2.3.1)

is an equivalence. Since f ′ is a map between affine derived schemes, f ′∗ is conservative and com-
mutes with filtered colimits. Since the functors u∗ : QCoh(Y)→ QCoh(U) are jointly conservative
for u : U → Y in dAff/Y and they commute with colimits, the conclusion follows.

As for statement (2), we first observe that we can replace Y′ by a affine derived scheme. In
this case, the conclusion follows directly from the fact that (2.3.1) is an equivalence. �

We can now collect the fundamental properties of categorically quasi-compact morphisms:

PROPOSITION 2.3.6. Let

XT X

T S

g′

f ′ f

g

be a pullback square in dSt. Assume that f is categorically quasi-compact and g is representable by affine
derived schemes. Then:

(1) the map f ′ is categorically quasi-compact.

Assume furthermore that S is an affine derived scheme. Then:
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(2) for every F ∈ QCoh(X) and G ∈ QCoh(S), the canonical map

f∗(F )⊗ G −→ f∗(F ⊗ f ∗(G)) (2.3.2)

is an equivalence.

(3) For every F ∈ QCoh(X) the Beck-Chevalley transformation

g∗ f∗(F ) −→ f ′∗g
′∗(F )

is an equivalence.

PROOF. We start proving (1). Let F : I → QCoh(XT) be a filtered diagram. For every α ∈ I,
set Fα := F(α) and let

F := colim
α∈I
Fα .

Consider the natural map

colim
α∈I

f ′∗(Fα) −→ f ′∗(F ) .

Thanks to Proposition 2.3.4-(1) the functor g∗ is conservative. It is therefore enough to check that
the above map is an equivalence after applying g∗. Since by the same result g∗ commutes with
filtered colimits, we reduce ourselves to check that the map

colim
α∈I

g∗( f ′∗(Fα)) −→ g∗( f ′∗(Fα))

is an equivalence. Using the natural equivalence g∗ ◦ f ′∗ ' f∗ ◦ g′∗, plus the fact that g′∗ commutes
with filtered colimits (since it is again representable by affine derived schemes), we finally reduce
ourselves to the assumption that f∗ commutes with filtered colimits. This proves (1).

We now turn to statement (2). Let C be the full subcategory of QCoh(S) spanned by the objects
G for which the morphism (2.3.2) is an equivalence. Since f is strictly categorically quasi-compact,
f∗ commutes with filtered colimits. Since QCoh(X) and QCoh(S) are stable ∞-categories, it fol-
lows that f∗ commutes with arbitrary colimits. As tensor products and the functor f ∗ commute
with arbitrary colimits as well, it follows C is closed under arbitrary colimits. Since S is affine, it
is therefore enough to observe that OS belongs to C.

We finally prove point (3). Since g is representable by affine derived schemes, Proposi-
tion 2.3.4-(1) guarantees that g∗ is conservative. It is therefore enough to prove that the induced
map

g∗(g∗( f∗(F ))) −→ g∗( f ′∗(g′∗(F ))) ' f∗(g′∗(g′∗(F )))

is an equivalence. Combining Proposition 2.3.4-(1) and statement (2), we have a canonical equiv-
alences

g∗(g∗( f∗(F ))) ' f∗(F )⊗ g∗(OT) , g′∗g
′∗(F ) ' g′∗(OXT )⊗F .

On the other hand, since g is representable by affine derived schemes. Proposition 2.3.4-(2) shows
that the canonical map

f ∗(g∗(OT)) −→ g′∗( f ′∗(OT)) ' g′∗(OXT )

is an equivalence. Applying statement (2) once more, we obtain the equivalence

f∗(g′∗(OXT )⊗F ) ' f∗(F )⊗ g∗(OT) .

The conclusion follows. �
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2.3.2. Finite cohomological dimension. In practice, it is useful to have a criterion allowing
to check whether a morphism f : X → S is categorically quasi-compact. If one has a bound on
its cohomological dimension, the verification is often simpler, as we are going to discuss in this
section.

DEFINITION 2.3.7. Let f : X → S be a morphism in dSt and let n ≥ 0 be an integer. We say
that f has cohomological dimension≤ n if for every F ∈ QCoh♥(X), the quasi-coherent sheaf f∗(F )
belongs to QCoh>−n(S). We say that f has finite cohomological dimension if there exists an integer
n ≥ 0 such that f has cohomological dimension ≤ n. �

PROPOSITION 2.3.8. Let

XT X

T S

g′

f ′ f

g

be a pullback square in dSt. Assume that f has cohomological dimension ≤ n and g is representable by
affine derived schemes. Then f ′ has cohomological dimension ≤ n.

PROOF. Let now F ∈ QCoh♥(XT). Proposition 2.3.4-(1) implies that the functor g∗ is conser-
vative, while point (2) implies that g∗ is t-exact. It follows that f ′∗(F ) belongs to QCoh>−n(T) if
and only if

g∗( f ′∗(F )) ' f∗(g′∗(F ))

belongs to QCoh>−n(S). Since g is representable by affine derived schemes, the same goes for g′.
Using once again the fact that g′∗ is t-exact, the conclusion follows. �

PROPOSITION 2.3.9. Let S ∈ dAff be an affine derived scheme and let f : X → S be a morphism in
dSt. If f has finite cohomological dimension, the following statements are equivalent:

(1) The morphism f is categorically quasi-compact.

(2) The functor

f∗ : QCoh♥(X) −→ QCoh(S)

commutes with filtered colimits.

PROOF. Since the t-structure on QCoh(X) is compatible with filtered colimits, etc. �

The following two propositions relate the property of having finite cohomological dimension
to categorical quasi-compactness.

PROPOSITION 2.3.10. Let S ∈ dAff be an affine derived scheme and let f : X → S be a morphism in
dSt. Assume that there exists a simplicial stack

U• : ∆ −→ dSt/X

such that:

(1) the canonical morphism |U•| → X is an equivalence;

(2) for every [n] ∈ ∆, the canonical morphism un : Un → X is flat;

(3) there exists an integer m ≥ 0 such that for every [n] ∈ ∆n, the canonical morphism fn : Un → S
has cohomological dimension ≤ n and is categorically quasi-compact.

Then f is categorically quasi-compact. If furthermore the maps un : Un → X are universally flat relative
to S and the maps fn : Un → S have universal finite cohomological dimension ≤ m and are categorically
quasi-compact, then f is categorically quasi-compact as well.
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REMARK 2.3.11. Observe that we do not require the Un to be geometric stacks. Moreover, X
is not required to have finite cohomological dimension in itself. 4

PROOF. Let I be a filtered category and let F : I → QCoh(X) be a diagram. Write Fα := F(α)
for α ∈ I and set

F := colim
α∈I
Fα .

Using [PY16, §8.2], we have a natural identification

f∗(F ) ' lim
[n]∈∆

fn∗u∗n(F ) , (2.3.3)

and similarly for f∗(Fα). Consider the canonical comparison map

φ : colim
α

f∗(Fα) −→ f∗(F ) .

Since S is affine, it is enough to check that πi(φ) is an isomorphism for every i ∈ Z. Replacing the
diagram F by F[i], we see it is enough to prove that π0(φ) is an equivalence. Since the t-structure
on QCoh(S) is compatible with filtered colimits, we see that the canonical map

colim
α

π0( f∗(Fα)) −→ π0(colim
α

f∗(Fα))

is an equivalence. Using (2.3.3) and the fact that each fn has cohomological dimension ≤ m,
we can replace the diagram F by τ≤mF. In other words, we can assume that each Fα and F are
m-coconnective. Since each un is flat, fn∗u∗n(F ) and fn∗u∗n(Fα) are again m-coconnective. Using
[PY18, Corollary 9.4], we see that

π0

(
lim
[n]∈∆

fn∗u∗n(F )
)
−→ π0

(
lim

[n]∈∆≤m+2
fn∗u∗n(F )

)
is an equivalence, and similarly for Fα in place of F . As each fn∗ commutes with filtered colimits,
the conclusion follows because ∆≤m+2 is a finite category and filtered colimits commute with
finite limits. �

2.3.3. Morphisms of finite tor-amplitude. We start by defining the notion of finite tor-ampli-
tude for quasi-coherent sheaves on derived stacks:

DEFINITION 2.3.12. Let S ∈ dSt be a derived stack and let a ≤ b be integers. We say that a
quasi-coherent sheaf F ∈ QCoh(S) has tor-amplitude contained in [a, b] if for every map f : T → S
where T ∈ dAff is an affine derived scheme, f ∗(G) has tor-amplitude1 contained in [a, b]. We
say that a quasi-coherent sheaf F ∈ QCoh(S) has globally finite tor-amplitude if there exist integers
a ≤ b such that F has tor-amplitude contained in [a, b]. �

Obviously, we have:

LEMMA 2.3.13. Let f : X → S be a morphism of derived stacks. The functor

f ∗ : QCoh(S) −→ QCoh(X)

preserves objects of tor-amplitude contained in [a, b].

PROOF. Let g : T → X be a morphism where T ∈ dAff is an affine derived scheme. Then
g∗ ◦ f ∗ ' ( f ◦ g)∗, whence the conclusion. �

Our goal is to formulate the notion of finite tor-amplitude for a morphism of derived stacks,
not necessarily representable. We start by considering the following example:

EXAMPLE 2.3.14. Let X = Spec(B) and S = Spec(A) be two affine derived schemes and let
f : X → S be a morphism of derived schemes. The following statements are equivalent:

1We refer to [Lur17, Definition 7.2.4.21] for the notion of tor-amplitude of A-modules, where T = Spec(A).
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(1) For every discrete A-module N ∈ A-Mod♥, the pullback f ∗(N) has cohomological am-
plitude contained in [a, b].

(2) The A-module f∗(B) has tor-amplitude [a, b].

(3) If M ∈ A-Mod has tor-amplitude [a′, b′], then f∗(M) has tor-amplitude [a + a′, b + b′].

The projection formula

N ⊗ f∗(M) ' f∗( f ∗(N)⊗B M)

plus the fact that f∗ is t-exact and conservative immediately implies the equivalence (1) ⇔ (3).
The same formula applied with M = B shows that (1)⇔ (2) holds as well. 4

When moving to the non-affine setting, the equivalence between (1) and (3) no longer holds.
This produces two different ways of generalizing the notion of finite tor-amplitude for a non-
representable morphism. We will refer to the one corresponding to point formulation (1) as local
tor-amplitude, and the one corresponding to the formulation (3) as global tor-amplitude. We will see
that under suitable finiteness assumptions, these two notions still agree.

2.3.3.1. Local tor-amplitude. The following is the immediate generalization of statement (1) in
Example 2.3.14:

DEFINITION 2.3.15. Let a ≤ b be integers. We say that a morphism f : X → S of derived
stacks has local tor-amplitude contained in [a, b] if for every F ∈ QCoh♥(S), the pullback f ∗(F )
belongs to QCoh6a∩>b(X). We say that a morphism f : X → S has finite local tor-amplitude if there
exist integers a ≤ b such that f has local tor-amplitude contained in [a, b]. �

PROPOSITION 2.3.16.

(1) Morphisms of finite local tor-amplitude are stable under compositions.

(2) Let

XT X

T S

g′

f ′ f

g

be a pullback square in dSt. If g is representable by affine derived schemes and f has local tor-
amplitude contained in [a, b], then the same goes for f ′.

(3) A morphism f : X → S has local tor-amplitude contained in [0, 0] if and only if it is flat. In
other words, if and only if the pullback functor

f ∗ : QCoh(S) −→ QCoh(X)

is t-exact.

PROOF. Points (1) and (3) just follow from the definitions. As for point (2), letF ∈ QCoh♥(T).
We have to check that f ′∗(F ) belongs to QCoh6a∩>b(XT). Since g is representable by affine de-
rived schemes, Proposition 2.3.4 shows that the canonical map

f ∗g∗(F ) −→ g′∗ f ′∗(F )
is an equivalence. Applying the same proposition again, we see that g∗ and g′∗ are both t-exact.
Therefore g∗(F ) ∈ QCoh♥(S) and so f ∗g∗(F ) ∈ QCoh6a∩>b(X). As g′∗ is also conservative, the
conclusion follows. �

The property of finite local tor-amplitude comes in handy to check the truncatedness as-
sumption of Artin-Lurie representability theorem (cf. (1)):

PROPOSITION 2.3.17. Let S ∈ Aff be an affine underived scheme and let f : X → S be a morphism
in dSt. Assume that:
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(1) the morphism f has finite local tor-amplitude;

(2) there exists a flat effective epimorphism2 u : U → X, where U is a quasi-compact derived scheme.

Then for every pair of integers a ≤ b, there exist integers a′ ≤ b′ such that if F ∈ Perf(X) has tor-
amplitude contained in [a, b], then F is contained in cohomological amplitude [a′, b′]. In particular,
Perf [a,b](X) is a (b′ − a′)-category3.

PROOF. Using Proposition 2.3.16-(1), we deduce that the composition U → S has finite tor-
amplitude. In particular, the structure sheaf of U is locally bounded, and therefore every perfect
complex on U is locally bounded. Since U is quasi-compact, we deduce that every perfect com-
plex on U is bounded, uniformly in its tor-amplitude. Since u is a flat effective epimorphism, the
pullback functor

u∗ : QCoh(U) −→ QCoh(X)

is conservative and t-exact. This implies that every perfect complex on X is bounded, uniformly
in its tor-amplitude. The second statement is a trivial consequence of the first one. �

2.3.3.2. Global tor-amplitude. We now consider the natural generalization of statement (3) in
Example 2.3.14:

DEFINITION 2.3.18. We say that a morphism f : X → S in dSt has finite global tor-amplitude if
the pushforward functor

f∗ : QCoh(X)→ QCoh(S)

preserves objects of globally finite tor-amplitude. We say that f has universally finite global tor-
amplitude if for every map T → S representable by affine derived schemes, the map X ×S T → T
has finite global tor-amplitude.

We saw in Example 2.3.14 that for a map of affine derived schemes f : X → S, being of finite
local tor-amplitude is equivalent to being finite global tor-amplitude. In the non-affine setting
the equivalence typically does not hold. Nevertheless, under suitable finiteness conditions, local
finite tor-amplitude still implies

PROPOSITION 2.3.19. Let S be an affine derived scheme and let f : X → S be a morphism in dSt.
Assume that f is categorically quasi-compact, of finite cohomological dimension and of finite local tor-
amplitude. Then f has universally finite global tor-amplitude.

PROOF. Let T → S be a morphism in dAff. Combining Propositions 2.3.6-(1), 2.3.8 and 2.3.16-
(2), we deduce that the projection X ×S T → T is again categorically quasi-compact, of finite
cohomological dimension and of finite local tor-amplitude. It is therefore enough to prove the
proposition when T = S.

Let F ∈ QCoh(X) be an object of globally finite tor-amplitude. We have to prove that there
are integers a ≤ b such that for every G ∈ QCoh♥(S), the tensor product f∗(F )⊗ G is contained
in cohomological amplitude [a, b]. Since f is categorically proper, Proposition 2.3.6-(2) implies
that the canonical map

f∗(F )⊗ G −→ f∗(F ⊗ f ∗(G))
is an equivalence. Since f has finite local tor-amplitude, we see that f ∗(G) is contained in coho-
mological amplitude [a0, b0] (where a0 and b0 are independent of G). Say thatF has tor-amplitude
contained in [a1, b1]. Then F ⊗ f ∗(G) is contained in cohomological amplitude [a0 − a1, b0 + b1].
Let n be an upper bound for the cohomological dimension of f . Then f∗(F ⊗ f ∗(G)) is contained
in cohomological amplitude [a0 − a1, b0 + b1 + n]. The conclusion follows. �

2See [Lur09, § 6.2.3] for the definition of the effective epimorphism and [Lur09, Proposition 7.2.1.14] for a character-
ization of it that we use freely in the paper.

3Cf. [Lur09, §2.3.4] for the notion of n-categories. The relation between mapping spaces and truncatedness of cate-
gories is addressed in [Lur09, Proposition 2.3.4.18].
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2.3.4. Categorical properness. We start by introducing the following definition which re-
sembles [HLP14, Definition 2.4.1]:

DEFINITION 2.3.20. Let f : X → S be a morphism in dSt. We say that f has the strict coherent
pushforward property if the functor

f∗ : QCoh(X) −→ QCoh(S)

takes APerf(X) to APerf(S). We say that f has the coherent pushforward property if for every mor-
phism T → S representable by affine derived schemes, the morphism f ′ : X ×S T → T has the
strictly coherent pushforward property. Here, f ′ : X×S T → T is the base change of f . �

We are finally ready to introduce the notion of categorical properness:

DEFINITION 2.3.21. Let f : X → S be a morphism in dSt. We say that f is strictly categorically
proper if it is categorically quasi-compact, has finite cohomological dimension and the strictly
coherent pushforward property. We say that f is categorically proper if for every morphism T → S
representable by affine derived schemes, the morphism f ′ : X ×S T → T is strictly categorically
proper. �

REMARK 2.3.22.

(1) Combining Propositions 2.3.6-(1) and 2.3.8 we see that f : X → S is categorically proper
if and only if it is strictly categorically proper and for every morphism T → S rep-
resentable by affine derived schemes, pushforward along f ′ : X ×S T → T preserves
almost perfect complexes.

(2) In [HLP14], the authors developed a theory of formally proper morphisms between geo-
metric derived stacks (cf. Definition 1.1.3 of loc.cit.). It depends on another geometric
notion, which is the completion along closed immersions (cf. Definition 1.1.1 in loc.cit.). In
Theorem 2.4.3 of loc.cit., they prove that formally proper morphisms have the coherent
pushforward property. It is not clear to us how to modify Definition 1.1.1. in loc.cit. in
the non-geometric setting (we see already a problem for the de Rham shape of a derived
stack). Thus, it is not clear to us how to extend the notion of formally properness to the
non-geometric setting.

4

If a morphism is categorically proper and has finite local tor-amplitude, then it automatically
preserves perfect complexes:

PROPOSITION 2.3.23. Let S ∈ dAff be an affine derived scheme and let f : X → S be a morphism
in dSt. Assume that f is categorically proper and has finite local tor-amplitude. If F ∈ Perf(X) has
tor-amplitude contained in [a, b], then f∗(F ) belongs to Perf(S). In particular, if for every object F ∈
Perf(X) there are integers a ≤ b such that F is contained in tor-amplitude [a, b], then

f∗ : QCoh(X) −→ QCoh(S)

restricts to a functor

f∗ : Perf(X) −→ Perf(S) .

PROOF. The second half of the proposition is a trivial consequence of the first one. Let there-
fore F ∈ Perf(X) and assume that there are integers a ≤ b such that F has tor-amplitude con-
tained in [a, b]. Since f is categorically proper, f∗(F ) belongs to APerf(S) by definition. On the
other hand, Proposition 2.3.19 implies that f∗(F ) has finite tor-amplitude. Therefore, [Lur17,
Proposition 7.2.4.23-(4)] shows that f∗(F ) is perfect. The conclusion follows. �

The following lemma helps in checking that every perfect complex on X has globally finite
tor-amplitude:
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LEMMA 2.3.24. Let X ∈ dSt be a derived stack. Assume that there exists an effective epimorphism
u : U → X, where U is a quasi-compact derived scheme. Then every F ∈ Perf(X) has globally finite
tor-amplitude.

PROOF. Since U is quasi-compact, there are integers a ≤ b such that u∗(F ) has tor-amplitude
contained in [a, b]. We claim that F has tor-amplitude contained in [a, b] as well. Let S ∈ dAff
be an affine derived scheme and let f : S → X be a morphism. We have to check that f ∗(F ) has
tor-amplitude contained in [a, b]. This can be checked étale locally on S. Since u is an effective
epimorphism, we can choose an étale cover {sα : Sα → S}α∈I such that for each α ∈ I there is a
factorization

U

Sα S X

u

sα

fα

f

.

At this point, isomorphism

s∗α( f ∗(F )) ' f ∗α (u
∗(F ))

implies that f ∗(F ) has tor-amplitude contained in [a, b]. The conclusion follows. �

REMARK 2.3.25. Let S be an affine derived scheme and let f : X → S be a morphism in dSt.
Assume that f is categorically proper and has finite local tor-amplitude, and that there exists
an effective epimorphism u : U → X, where U is a quasi-compact derived scheme. Then f is
O-compact in the sense of [PTVV13, Definition 2.1]. 4

2.3.5. Plus pushforward and cotangent complex. Let S ∈ dAff be an affine derived scheme
and let f : X → S be a morphism in dSt. Throughout this section we make the following assump-
tions:

(1) the morphism f is categorically proper and has finite local tor-amplitude;

(2) there exists an effective epimorphism u : U → X, where U is a quasi-compact derived
scheme.

We start with the following construction:

CONSTRUCTION 2.3.26. Under the above assumptions (1) and (2), Lemma 2.3.24 and Propo-
sition 2.3.23 imply that f∗ : QCoh(X)→ QCoh(S) restricts to a functor

f∗ : Perf(X) −→ Perf(S) .

Since perfect complexes are dualizable, we are authorized to set

f+(F ) := ( f∗(F∨))∨ .

The natural morphism

F ⊗ f ∗ f∗(F∨) −→ F ⊗F∨ −→ OX

induces a canonical morphism

ηF : F −→ f ∗ f+(F ) ,

which is easily seen to be functorial in F ∈ Perf(X).

PROPOSITION 2.3.27. Under the assumptions (1) and (2) on f : X → S, we have:

(1) For every F ∈ Perf(X) and every G ∈ QCoh(S), the morphism ηF : F → f ∗ f+(F ) induces
an equivalence

MapQCoh(S)( f+(F ),G) −→ MapQCoh(X)(F , f ∗G) . (2.3.4)
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(2) For every pullback diagram

XT X

T S

f ′

g′ f

g

,

where T is an affine derived scheme, the diagram

Perf(XT) Perf(X)

Perf(T) Perf(S)

g′∗

f ′∗ f ∗

g∗

is vertically left adjointable.

PROOF. Proposition 2.3.6-(2) implies that the canonical map

f∗(F∨)⊗ G −→ f∗(F∨ ⊗ f ∗G)
is an equivalence. Applying MapQCoh(S)(OS,−) and using the adjunction f ∗ a f∗, we see that

MapQCoh(S)(OS, f∗(F∨)⊗ G) −→ MapQCoh(X)(OX ,F∨ ⊗ f ∗G)

is an equivalence. Using the fact that f∗(F∨) is perfect and hence dualizable, we see that the
above morphism coincides with (2.3.4). This proves point (1).

We now turn to point (2). Since f is categorically proper and T → S is a map between affine
derived schemes, we see that f ′ is again categorically proper. In particular, the previous point
shows that f ∗ and f ′∗ admit left adjoints when restricted to the ∞-categories of perfect complexes.
Let F ∈ Perf(X) and consider the induced Beck-Chevalley transformation

f ′+g′∗(F ) −→ g∗ f+(F ) .

Unraveling the definitions, we reduce to check that the map

g∗ f∗(F∨) −→ f ′∗g
′∗(F )

is an equivalence, which is true thanks to Proposition 2.3.6-(3). �

Combining all the results obtained so far, we obtain the following:

COROLLARY 2.3.28. Let S be an affine derived scheme and let f : X → S be a morphism in dSt.
Assume that:

(1) the morphism f is categorically proper and has finite local tor-amplitude;

(2) there exists an effective epimorphism u : U → X, where U is a quasi-compact derived scheme.

Then the mapping stack

PerfS(X) := MapS(X, Perf× S)

admits a global cotangent complex.

PROOF. Let T ∈ dAff/S be an affine derived scheme over S and let

x : T → MapS(X, Perf× S)

be a morphism. Consider the diagram

T ×S X X×S MapS(X, Perf× S) Perf

T MapS(X, Perf× S)

p

ev

q

x

,
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where the vertical maps are the canonical projection maps. Let E ∈ Perf(T ×S X) be the perfect
complex classified by x. Write

G := ΩxMapS(X, Perf× S)

for the loop stack of MapS(X, Perf× S) at the point x. Combining Theorem 2.2.10 with Proposi-
tion 2.2.3-(3), we see that MapS(X, Perf× S) is infinitesimally cohesive. Therefore, Proposition
2.2.4 shows that it is enough to prove that G admits a cotangent complex at the diagonal mor-
phism δx : T → G.

Let F ∈ QCoh(T). Unraveling the definitions, we see that

DerG, δx (T;F ) ' MapQCoh(T×SX)(E , E ⊗ p∗(F )) ' MapQCoh(T×SX)(E ⊗ E∨, p∗(F )) ,

where we used the fact that E is dualizable. Using Proposition 2.3.16-(2), we see that p : T×S X →
T is again categorically proper and has finite tor-amplitude. Furthermore, T ×S U → T ×S X is
again an effective epirmorphism, and T ×S U is a quasi-compact derived scheme. In conclusion,
the assumptions of Proposition 2.3.27 are satisfied. This supplies us with a natural equivalence

MapQCoh(T×SX)(E ⊗ E∨, p∗(F )) ' MapQCoh(T)(p+(E ⊗ E∨),F ) ,

which implies that the cotangent complex of G at δx exists and it is given by p+(E ⊗ E∨). In turn,
this implies that the cotangent complex of MapS(X, Perf× S) at x exists and it is given by

x∗LMapS(X,Perf×S) ' p+(E ⊗ E∨)[1] .

The fact that it is a global cotangent complex simply follows from Proposition 2.3.27-(2). �

We conclude this section stating the following obvious but useful consequence of Proposi-
tion 2.3.27:

COROLLARY 2.3.29. Let f : X → S be a morphism satisfying assumptions (1) and (2). Let

Y X

F S

g f

be a pullback square in dSt. Then:

(1) the functor

g∗ : Perf(F) −→ Perf(Y)

has a left adjoint g+ : Perf(Y)→ Perf(F).

(2) For every T ∈ dAff/F, let

YT Y

T F

p

gT g

q

be induced pullback square. Then for every F ∈ Perf(Y), the Beck-Chevalley transformation

gT+(p∗(F )) −→ q∗(g+(F ))
is an equivalence.

PROOF. Let T ∈ dAff/F and let f : S → F be the structural morphism. Then the squares in
the diagram

YT Y X

T F S

gT g
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are both pullbacks. Since the map T → S is representable by affine derived schemes, Proposi-
tion 2.3.16-(2) shows that gT is of finite local tor-amplitude. It is furthermore categorically proper,
and U ×S T → YT is again an effective epimorphism, with U ×S T a derived quasi-compact
scheme. Therefore Proposition 2.3.27-(1) shows that the functor

g∗T : Perf(T) −→ Perf(YT)

admits a left adjoint gT+, and point (2) of the same proposition shows that it is compatible with
base change along morphisms T′ → T in dAff/F. It therefore induces a well defined functor

g+ : Perf(Y× F) −→ Perf(F) ,

which is left adjoint to g∗ and satisfies base-change against maps S → F from an affine derived
scheme S ∈ dAff by construction. �

2.4. Morphisms locally almost of finite presentation

We start by recalling what it classically means for a morphism X → Y of derived stacks to
be locally almost of finite presentation. To simplify later discussions, we introduce it for general
derived prestacks. Recall that dPreSt simply denotes the category of presheaves PSh(dAff). We
have:

DEFINITION 2.4.1 (cf. [Lur18, Definition 17.4.1.1]). A morphism X → Y in dPreSt is said to be
locally almost of finite presentation if for every integer n ≥ 0 and every cofiltered diagram {Sα}α∈I
of n-truncated affine derived schemes, the square

colimα X(Sα) X
(

limα Sα

)
colimα Y(Sα) Y

(
limα Sα

)
is a pullback. We say that a morphism of derived stacks X → Y ∈ dSt is locally almost of finite
presentation if its image in PSh(dAff) is. We say that a derived stack X is locally almost of finite
presentation if the map X → Spec(k) is locally almost of finite presentation. �

The following are the basic properties of morphisms locally almost of finite presentation:

LEMMA 2.4.2.

(1) Morphisms locally almost of finite presentation are closed under pullbacks.

(2) If g : Y → Z is locally almost of finite presentation, then a morphism f : X → Y is locally almost
of finite presentation if and only if the composite g ◦ f is.

(3) Morphisms locally almost of finite presentation are closed under finite limits in Fun(∆1, dSt)
and under arbitrary colimits in Fun(∆1, PSh(dAff)).

(4) An affine derived scheme X = Spec(A) is locally almost of finite presentation if and only if
π0(A) is of finite presentation as k-algebra and the homotopy groups πi(A) are finitely generated
as π0(A)-module.

PROOF. The first two statements follow at once unraveling the definitions.For the third one,
we first observe that a derived stack X is locally almost of finite presentation if and only if for
every n ≥ 0 and every cofiltered diagram {Sα}α∈I of n-truncated affine derived schemes, the
natural map

colim
α

X(Sα) −→ X
(

lim
α

Sα

)
is an equivalence. As limits in dSt are computed objectwise and the above colimit is filtered, this
shows that the first half of (3) is satisfied. For the second half, it is enough to recall that colimits in
PSh(dAff) are computed objectwise. Finally, since the base ring k is noetherian, the last statement
is a consequence of the derived Hilbert’s basis theorem, see [Lur17, Proposition 7.2.4.31]. �
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Let us record the following useful consequence of point (3) of the above lemma:

COROLLARY 2.4.3. Let X, Y ∈ dSt be derived stacks. Assume that:

(1) X can be written as a finite colimit of affine schemes of finite tor-amplitude.

(2) Y is locally almost of finite presentation.

Then Map(X, Y) is locally almost of finite presentation.

PROOF. Thanks to Lemma 2.4.2-(3) it is enough to assume that X itself is an affine scheme lo-
cally almost of finite presentation and of finite tor-amplitude. Let {Sα}α∈I be a cofiltered diagram
of n-truncated affine derived schemes and let

S := lim
α∈I

Sα

be its limit. Since X has finite tor-amplitude, there exists m ≥ n such that Sα × X is m-truncated
for every α ∈ I. Furthermore,

S× X ' lim
α∈I

Sα × X .

Since Y is locally almost of finite presentation, we see that the canonical map

colim
α∈I

Map(Sα × X, Y) −→ Map(S× X, Y)

is an equivalence. This completes the proof. �

In virtue of the colimit part of Lemma 2.4.2-(3), it is relatively simple to guarantee that a
derived prestack is locally almost of finite presentation. Combining it with point (4), we see that
the functor

j! : PSh(dAffaft) −→ dPreSt ,

given by left Kan extension along the inclusion j : dAffaft ↪→ dAff lands in the (non full) subcat-
egory of locally almost of finite presentation derived prestacks and morphisms pf locally almost
of finite presentation between them. Unfortunately, colimits in dPreSt are not particularly useful
in situations of geometric relevance.4 For this reason, we investigate under which conditions the
hypersheafification functor preserves the locally almost of finite presentation condition.

2.4.1. Truncated derived (pre)stacks. Recall from Section 2.2.2 the canonical inclusion

in : dAff<n −→ dAff .

Equipping both sides with the étale topology, in becomes both continuous and cocontinuous.
Write

dPreSt<n := PSh(<ndAff) .

Since in is continuous, the commutative diagram

dPreSt<n dPreSt

dSt<n dSt

in!

in!

is vertically left adjointable, see [PY16, Lemma 2.14]. On the other hand, since in is cocontinuous,
we see that the above diagram is also horizontally right adjointable, see [PY16, Lemma 2.18]. In
particular, if F ∈ dPreSt is a derived prestack and

F −→ L(F)

exhibit L(F) as the hypersheafification of F, then the induced morphism

F<n −→ L(F)<n

4For instance, the Yoneda embedding dAff → dPreSt does not even respect disjoint unions.
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exhibit L(F)<n as the associated hypersheafification of F<n .
We give the following definition:

DEFINITION 2.4.4. A collection of derived prestacks {Fα}α∈I is said to be uniformly truncated
if for every n ≥ 0 there exists an integer m = mn such that the derived prestack F<n

α ∈ dPreSt<n

takes values in S≤m for every α ∈ I. We say that a derived prestack F ∈ dPreSt is truncated if the
family {F} is uniformly truncated. �

EXAMPLE 2.4.5. Every geometric derived stack is truncated. 4

LEMMA 2.4.6. Let f : X → Y be a morphism locally almost of finite presentation between truncated
derived prestacks. Then the induced morphism f : L(X) → L(Y) between the associated derived stacks is
locally almost of finite presentation.

PROOF. Let {Sα}α∈I be a cofiltered diagram of n-truncated affine derived schemes and let

S := lim
α∈I

Sα

be its limit. We have

Map(Sα, L(X)) ' colim
U•∈HCov(Sα)

lim
[`]∈∆

Map(U`, X) .

Since X is truncated, we can find an integer m = mn that only depends on n such that the canon-
ical map

lim
[`]∈∆

Map(U`, X) −→ lim
[`]∈∆≤m

Map(U`, X)

is an equivalence (cf. [PY18, Corollary 9.4]). The latter limit being finite, we can therefore com-
mute it with the filtered colimit over the hypercovers of Sα and with the filtered colimit over α.
The conclusion follows. �

COROLLARY 2.4.7. Let X ∈ dSt be a derived stack. Assume that:

(1) it can be written as a colimit

X ' colim
i

Xi

in dSt, where each Xi is a affine derived scheme locally almost of finite presentation.

(2) It is truncated.

Then X is locally almost of finite presentation.

PROOF. Combine Lemmas 2.4.2-(3) and 2.4.6. �

We now offer a variation on Corollary 2.4.3:

COROLLARY 2.4.8. Let X• : ∆op → dSt be a simplicial derived stack and let

X := |X•|
be its geometric realization. Let Y ∈ dSt be a derived stack such that:

(1) the family {Map(Xn, Y)}[n]∈∆ of derived (pre)stacks is uniformly truncated.

(2) For every [n] ∈ ∆, the mapping stack Map(Xn, Y) is locally almost of finite presentation.

Then Map(X, Y) is locally almost of finite presentation.

PROOF. Let n ≥ 0 be an integer and let {Sα}α∈I be a cofiltered family of n-truncated affine
derived schemes. Let

S := lim
α∈I

Sα
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be its limit. Let m ≥ 0 be an integer such that Map(T× X`, Y) ∈ S≤m for every n-truncated affine
derived scheme T and every [`] ∈ ∆. Consider the commutative square

colimα∈I lim[`]∈∆ Map(Sα × X`, Y) lim[`]∈∆ Map(S× X`, Y)

colimα∈I lim[`]∈∆≤m+2
Map(Sα × X`, Y) lim[`]∈∆≤m+2

Map(S× X`, Y)

.

Using [PY18, Corollary 9.4], we see that the vertical maps are equivalences. As the category
∆≤m+2 is finite and I is filtered, we can commute the limit and the colimit in the bottom left
vertex of the above diagram. At that point, the conclusion follows from assumption (2). �

2.5. Integrability and formal GAGA

Recall the notion of integrable stack:

DEFINITION 2.5.1 (cf. [Lur18, Definition 17.3.4.1]). We say that a derived stack X ∈ dSt is in-
tegrable if for every local Noetherian derived ring A which is complete with respect to its maximal
ideal m ⊂ π0(A), the inclusion Spf(A) ↪→ Spec(A) induces an equivalence

MapdSt(Spec(A), X) −→ MapdSt(Spf(A), X) .

Here Spf(A) ∈ dSt denotes the formal spectrum of A with respect to m (see [Lur18, Construc-
tion 8.1.1.10 and Theorem 8.1.5.1]). �

DEFINITION 2.5.2. We say that a derived stack X ∈ dSt satisfies the universal formal GAGA
property if the derived stack

Perf(X) := Map(X, Perf)

is integrable. �

We have the following formal properties:

PROPOSITION 2.5.3.

(1) The full subcategory of dSt spanned by integrable stacks is closed under (small) limits.

(2) The full subcategory of dSt spanned by derived stacks satisfying the universal formal GAGA
property is closed under (small) colimits.

PROOF. Point (2) is a direct consequence of point (1). For point (1), let A be a local Noetherian
derived ring which is complete with respect to its maximal ideal m ⊂ π0(A). Let X = limα Xα be
a derived stack and assume that every Xα is integrable. Consider the square

MapdSt(Spec(A), X) limα MapdSt(Spec(A), Xα)

MapdSt(Spf(A), X) limα MapdSt(Spf(A), Xα)

.

The horizontal maps are equivalences by the Yoneda lemma and the right vertical map is an
equivalence because every Xα is integrable. Therefore the left vertical map is an equivalence as
well. �

2.6. Representability

Artin-Lurie’s representability theorem implies5:

THEOREM 2.6.1. Let X ∈ dSt be a derived stack. Assume that:

5See also [HLP14, Theorem 5.1.1].
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(1) X is categorically proper;

(2) X is of local finite tor-amplitude;

(3) there exists a flat effective epimorphism U → X, where U is a quasi-compact derived scheme;

(4) X satisfies universal formal GAGA property;

(5) The derived stack Perf(X) is locally almost of finite presentation.

Then Perf(X) is locally geometric.

PROOF. We check that the assumptions of Artin-Lurie’s representability theorem 2.1.1 are
satisfied.

Since Perf is infinitesimally cohesive and nilcomplete by Theorem 2.2.10, Proposition 2.2.3-
(1) and (3), and Proposition 2.2.9-(2) and (4) imply, respectively, that Perf(X) is infinitesimally
cohesive and nilcomplete. Thanks to the assumptions (1), (2) and (3), Corollary 2.3.28 implies
that Perf(X) admits a global cotangent complex. Thus, the point (3) of the Artin-Lurie theorem
is satisfied.

Thanks to the assumptions (2) and (3), Proposition 2.3.17 guarantees that Perf(X) is trun-
cated. Thus, the point (1) of the Artin-Lurie theorem is satisfied. Assumption (4) translates to say
that Perf(X) is integrable, thus (4) of the Artin-Lurie theorem is satisfied. Since by hypothesis,
Perf(X) is locally almost of finite presentation, the conclusion follows. �

REMARK 2.6.2. Using Corollaries 2.4.3 and 2.4.8 one can often verify in practice that Perf(X)
is locally almost of finite presentation. This method works particularly well when X is a geomet-
ric stack. In later chapters, we will need an additional effort to check that this assumption is met
for XdR and XDol. 4



CHAPTER 3

Betti shape

3.1. Definition and geometrical properties

The Betti shape encodes the theory of local systems, and it can more generally be attached to
any space K ∈ S. The obvious functor π : dAff → ∗ induces an adjunction

π∗ : S� dSt : π∗ ,

where π∗ sends F ∈ dSt to F(C) and π∗ takes K ∈ S to the (étale) sheafification of the constant
presheaf associated to K. We write

KB := π∗(K) ∈ dSt ,

and we refer to KB as the Betti shape of K (or Betti stack of K).
Working over the complex numbers, there is a natural functor

(−)htop : dSchlaft −→ S

sending a (derived) C-scheme locally almost of finite presentation to the underlying homotopy
type of its analytification (cf. [Por15, §4] for the analytification in the derived setting). It is in-
sensitive to the derived structure, in the sense that the canonical map (cl X) → X induces an
equivalence ( (cl X))htop ' Xhtop. We commit abuse of notation and define

XB := (Xhtop)B ∈ dSt .

We refer to this stack as the Betti shape of X (or Betti stack of X). It is well known that if X is
quasi-compact and locally almost of finite presentation, then Xhtop is a finite space. Therefore, all
the results in what follows apply to this case. As working with Betti stacks arising from schemes
leads to no simplification, we offer a general treatment.

The basic properties of KB can be summarized as follows:

PROPOSITION 3.1.1.

(1) There is a canonical equivalence ∗B ' Spec(C).

(2) For any Spec(A) ∈ dAff, there is a symmetric monoidal equivalence of stable ∞-categories

QCoh(KB × Spec(A)) ' Fun(K, A-Mod) .

This equivalence restricts to an equivalence

Vectn(KB × Spec(A)) ' Fun(K, Vectn(A)) .

(3) Let K ∈ S be a homotopy type and let x : ∗ → K be a point. The induced map

Spec(C) ' ∗B −→ XB

is universally flat. If moreover K is connected, then this map is an effective epimorphism as well.

(4) Let K ∈ Sfin be a finite homotopy type. Then KB is universally categorically proper and univer-
sally of global tor-amplitude ≤ 0.

24
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PROOF. The functor π∗ is part of a geometric morphism of ∞-topoi and therefore commutes
with finite limits. In particular, it preserves the initial object. This proves (1). To prove point (2),
we first observe that if K = ∅ there is nothing to say. Otherwise, we write K as colimit of a tower

K0 −→ K1 −→ · · ·Kn −→ Kn+1 −→ · · · ,

where K0 is discrete and for each n ≥ 0 the map Kn → Kn+1 fits in a pushout square

äIn Sn äIn ∗

Kn Kn+1

,

Since π∗ commutes with arbitrary colimits and QCoh(−) and Fun(−, A-Mod) commute with col-
imits in their variables (compatibly with symmetric monoidal structures), we are readily reduced
to prove the statement when K = Sn is the n-sphere or K = ∗. In the latter case, the statement
follows from point (1). As for the spheres, using the fact that Sn ' Σ(Sn−1) for n ≥ 0, we further
reduce to prove the statement for K = ∅, in which case it is obvious.

We now prove (3). If K is connected, then [Lur09, Proposition 7.2.1.14] immediately shows
that the induced map Spec(C) → KB is an effective epimorphism. As for the universal flatness,
first we observe that since the n-sphere Sn is connected for n > 0, we can always factor (up to
homotopy) the map x : ∗ → K through the map K0 → K. Denote the induced map x0 : ∗ → K0.
Since K0 is discrete, we identify it to a set and we observe that the map

Fun(K0, A-Mod) ' ∏
y∈K0

A-Mod −→ A-Mod

induced by x0 corresponds to the projection on the x0-factor. In particular, it is t-exact. Proceeding
by induction, it is enough to prove that for every n ≥ 1 the map

Fun(Kn+1, A-Mod) −→ Fun(Kn, A-Mod)

is t-exact. Using once again the t-exactness of the projections from the product, we reduce our-
selves to the case where Kn → Kn+1 fits in a pushout

Sn ∗

Kn Kn+1

.

This induces to the pullback

Fun(Kn+1, A-Mod) Fun(Kn, A-Mod)

A-Mod Fun(Sn, A-Mod)

.

Using [HPV16, Lemma 3.20], it is enough to prove that the bottom and the right vertical maps are
t-exact. Choose a map ∗ → Sn. As n ≥ 1, this map is an effective epimorphism, and in particular
the induced map

Fun(Sn, A-Mod) −→ A-Mod

is conservative. It is therefore enough to prove that it is t-exact as well, for the composite

Fun(Kn, A-Mod) −→ Fun(Sn, A-Mod) −→ A-Mod

is flat by inductive hypothesis. Using the relation Sn ' Σ(Sn−1), we can therefore reduce to the
case of S0, which is a particular case of the discussion for K0 we already gave.
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We finally prove (4). Let A ∈ CAlg be a derived ring and let S = Spec(A). Let p : KB × S→ S
be the natural projection. We have to prove that

p∗ : QCoh(KB × S) −→ QCoh(S)

has finite cohomological dimension and tor-amplitude≤ 0. Since K is finite, we have K = Kn and
each map Ki → Ki+1 is obtained by attaching a finite number of cells. We proceed once again by
induction on n. When n = 0, K = K0 is (equivalent to) a finite set. Let m = |K0| be its cardinality,
so we have

Fun(K0, A-Mod) '∏
K0

A-Mod ' Am-Mod .

The pushforward coincides with the forgetful functor along the natural ring map A→ Am, which
is finite and flat. Therefore, p∗ has cohomological dimension 0 and tor-amplitude ≤ 0. Assume
now that the statement holds true for Kn and that Kn+1 is obtained by Kn by attaching a single
cell:

S` ∗

Kn Kn+1

.

Using [PY16, § 8.2] and the fact that bounded A-modules and A-modules of tor-amplitude ≤ 0
are closed under finite limits, we reduce ourselves to prove the same statement for Sn. Using the
relation S` ' Σ(S`−1), we further reduce ourselves to the case ` = 0, where the statement follows
from what we already discussed in the case K = K0. �

REMARK 3.1.2. Let A be an underived commutative ring and let K ∈ S be a space. Then
Proposition 3.1.1-(2) provides a canonical equivalence

Vectn(KB × Spec(A)) ' Fun(K, Vectn(A)) .

As A is underived, Vectn(A) is a 1-category. Therefore, we obtain

Vectn(KB × Spec(A)) ' Fun(τ≤1K, Vectn(A)) .

In other words, we can identify rank n vector bundles on KB × Spec(A) with representations of
the fundamental groupoid of K. 4

The above remark shows that KB encodes the theory of local systems in a rather combinato-
rial way. We now make the link with the theory of locally constant sheaves. For this we suppose
that K is the homotopy type of a topological space X. Let Opens(X) be the poset of open subsets
of X. Consider the functor

(−)htop : Opens(X) −→ S

sending U ∈ Opens(X) to the homotopy type Uhtop. The colimit of this functor is Xhtop. Let
Xhtop

lax be the lax colimit of the same functor. We have a canonical zig-zag

Xhtop
lax Xhtop

Opens(X)op

φ

ψ ,

where φ is an ∞-categorical localization and ψ is a right fibration1. The following is a simplified
version of [Lur17, Theorems A.1.15 and A.4.19]:

1It is the right fibration classifying the functor (−)htop.
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PROPOSITION 3.1.3. Let E be a presentable ∞-category. Assume that X is locally contractible. Then
the functor

ψ! ◦ φ∗ : Fun(Xhtop, E) −→ Fun(Opens(X)op, E)

is fully faithful and its essential image consists of locally constant sheaves. Here φ∗ denotes the precompo-
sition with φ and ψ! denotes the left Kan extension along ψ.

PROOF. We first observe that an object in Xhtop
lax corresponds to a pair (U, x), where U is an

open in X and x ∈ U is a point. The space of morphisms from (U, x) to (V, y) is empty if V 6⊂ U
and it coincides with PathsV(x, y) otherwise. Every morphism in Xhtop

lax is ψ-cartesian.

Let F : Opens(X)op → E be a functor. Let U be an open in X and set

XU/ := Xhtop
lax ×Opens(X)op Opens(X)op

U/ .

By definition, XU/ is the full subcategory of Xhtop
lax spanned by objects (V, x) such that U ⊆ V.

We have

ψ!ψ
∗(F)(U) ' colim

(V,x)∈XU/

F(V) .

Assume that U ⊂ V is the inclusion of two contractible open subsets of X. Then the induced map

XU/ −→ XV/

is final, and in particular the canonical map

ψ!ψ
∗(F)(V) −→ ψ∗ψ

∗(F)(U)

is an equivalence. In other words, ψ!ψ
∗(F) is locally constant.

This shows that if the map

ψ!ψ
∗(F) −→ F

is an equivalence, then F is locally constant. Assume vice-versa that F is locally constant and let
U be a contractible open. Let x ∈ U be a point and consider the diagram

ψ!ψ
∗(F)(U) colimx∈V⊆U ψ!ψ

∗(F)(V)

F(U) colimx∈V⊆U F(V)

,

where the colimits are taken over the categories of contractible open neighborhoods of x inside U.
The horizontal arrows are equivalences because F and ψ!ψ(F) are locally constant. Furthermore,
it is easily checked that the right vertical map is an equivalence. It follows that the left vertical
map is an equivalence as well. Since X is locally contractible, it has a basis of contractible open
neighborhoods, and therefore it follows that ψ!ψ

∗(F)→ F is an equivalence.
This shows that the functor

ψ∗ : Fun(Opens(X)op, E) −→ Fun(Xhtop
lax , E)

is fully faithful once restricted to the full subcategory of locally constant sheaves. Furthermore,
its essential image consists of those functors F : Xhtop

lax → E that take every morphism in Xhtop
lax in

equivalences of E . Indeed, if F is locally constant, then for every morphism (U, x)→ (V, y) such
that V ⊂ U is an inclusion of contractible opens, then the induced morphism

ψ∗(F)(U, x) −→ ψ∗(F)(V, y)

is equivalent to F(U) → F(V), which is an equivalence. As X is locally contractible, every mor-
phism (U, x)→ (V, y) can be written as composition of morphisms of the previous form, whence
the conclusion.
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On the other hand φ is the ∞-categorical localization of Xhtop
lax at cartesian morphisms of

Xhtop
lax . Since every morphism in Xhtop

lax is cartesian, the proof is achieved. �

In particular, this allows us to show that coherent cohomology of KB recovers singular coho-
mology of K:

COROLLARY 3.1.4. Let X be a locally contractible topological space and let K := Xhtop be its homo-
topy type. Then:

(1) via the equivalence supplied by Proposition 3.1.3, the structure sheaf

OKB
∈ QCoh(KB) ' Fun(K, ModC)

corresponds to the constant sheaf CX on X.
(2) Let F ∈ QCoh(KB) and let F be the locally constant sheaf corresponding to F via Proposition

3.1.3. Then there is a canonical equivalence

RΓ(KB;F ) ' RΓ(X; F) .

In particular, there is a canonical equivalence

RΓ(KB;OKB
) ' RΓ(X; CX) .

In other words, the derived global sections of OKB
compute singular cohomology of X.

PROOF. When X is contractible, statement (1) is a consequence of Proposition 3.1.1-(1). The
general case follows by descent along a covering of X made by contractible open subsets. As for
the second statement, let

F := φ∗(F ) .

Then Proposition 3.1.3 provides canonical equivalences

ψ!(F) ' F , φ!(F) ' F .

Consider the canonically commutative diagram

Xhtop
lax Xhtop

Opens(X)op ∗

φ

ψ q

p

.

Then

RΓ(KB,F ) ' q!(F ) , RΓ(X; F) ' p!(F) .

The conclusion therefore follows from the functoriality of left Kan extensions, p! ◦ψ! ' q! ◦φ!. �

3.2. Representability of the stack of perfect complexes

PROPOSITION 3.2.1. Let K ∈ Sfin be a finite space. Then Perf(KB) is a locally geometric stack,
locally of finite presentation.

PROOF. When K is discrete, Proposition 3.1.1-(1) shows that KB ' Spec(C)qn, where n =
|π0(K)|. Therefore Perf(KB) ' Perfn. In the general case, one describes K starting from a finite
discrete set attaching a finite number of cells. Since locally geometric stacks, locally of finite
presentation are closed under finite limits, the conclusion follows. �

REMARK 3.2.2. Remark 3.1.2 implies that if K is connected, then the truncation of the derived
stack Vectn(KB) coincides with the usual stack of n-dimensional representations of π1(K). 4
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De Rham shape

4.1. Definition and geometrical properties

Let i : Affred ↪→ dAff be the inclusion of the full subcategory of dAff spanned by reduced
affine schemes. This is a cocontinuous morphism of sites (for the étale topology) and therefore it
induces an adjunction

i∗ : dSt� Sh(Affred, τét) : i∗ ,

where i∗ denotes the right Kan extension along i. The de Rham functor is the endofunctor

(−)dR := i∗ ◦ i∗ : dSt −→ dSt .

For a derived stack F, we refer to FdR as its de Rham shape. Unraveling the definitions, we see that

FdR(Spec(A)) ' F(Spec(π0(A)red)) .

We denote the unit transformation of the adjunction i∗ a i∗ by

λF : F −→ FdR .

We collect in the following proposition the most basic properties of FdR:

PROPOSITION 4.1.1.

(1) For every derived stack F ∈ dSt, the cotangent complex of FdR exists and it is zero. Moreover, if
F is a derived Artin stack, the canonical map λF : F → FdR is formally étale.

(2) Let f : X → Y be a morphism of derived schemes locally almost of finite presentation over
C. Then X ×XdR

YdR is canonically equivalent to the derived formal completion of the graph
Γ f : X → X×Y. In particular, if f is an lci closed immersion of classical schemes, then X×XdR

YdR is equivalent to the usual formal completion of X along Y1.

(3) If X is a scheme locally almost of finite presentation over C. Then the map λX : X → XdR is an
effective epimorphism if and only if X is smooth.

(4) Let X be a smooth scheme over C. Then the map λX : X → XdR is universally flat.

(5) Let X be an underived scheme almost of finite presentation over C. Then there is a canonical
equivalence of QCoh(XdR) with the derived ∞-category of DX-modules.

(6) Let X be a smooth and proper scheme over C. Then XdR is universally categorically proper and
universally of global tor-amplitude ≤ 0.

PROOF. Statement (1) just follows from the definitions (see [CPT+17, Lemma 2.1.10]). The
first part of statement (2) is [CPT+17, Proposition 2.1.8]. The second part follows from the fact
that for lci closed embeddings there is no difference between derived completion and the usual
completion. This can be for instance deduced from [Bha12, Example 4.5 and Proposition 4.16].

1The lci assumption is necessary.

29
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Statement (3) is equivalent to say that for every affine derived scheme S ∈ dAff the lifting problem

Sred X

S

admits a solution étale locally on S. This is equivalent to the infinitesimal lifting property of X,
i.e. to its formal smoothness. The conclusion follows because X is almost of finite presentation.

For statement (4), consider the Čech nerve

X̂•∆ := Č(X
λX−→ XdR) .

As the notation suggests, one can identify the components of this Čech nerve with the formal
completions of Xn along its main diagonal. Moreover, [GR14, Proposition 3.4.3] guarantees that
for every S ∈ dAff the canonical map

QCoh(XdR × S) −→ lim QCoh(X̂•∆ × S)

is an equivalence. Since X is noetherian, the transition maps in this limit are flat. Therefore,
[HPV16, Lemma 3.20] shows that QCoh(XdR × S) inherits a t-structure characterized by the fact
that the pullback to X× S via λX × idS is t-exact. As X is smooth, point (3) guarantees that this is
the canonical t-structure on QCoh(XdR × S).

Statement (5) follows from [GR17, §4.4.1.4]. Now let S ∈ dAff be an affine derived scheme
and let qS : XdR×S→ S be the canonical projection. Passing to right adjoints in [GR17, Lemma 4.4.1.6]2,
we obtain a canonical equivalence

qS∗(F ) ' p∗((λX × idS)
∗F ⊗OX×S |DR(X× S/S)|) .

Here |DR(X× S/S)| is the realization of the mixed de Rham algebra of X× S relative to S. Since
X is smooth, we can simply identify it with the complex

OX×S Ω1
X×S/S · · · Ωn

X×S/S
ddR ddR ddR .

Since X is of dimension n, the spectral sequence for descent implies that XdR has finite cohomo-
logical dimension. Moreover, since X is proper, we see that p∗(F ⊗OX×S Ωi

X×S/S) has coherent
cohomology. Therefore, the spectral sequence for descent implies once again that XdR is uni-
versally categorically proper. Observe now that since X is underived, (λX × idS)

∗F belongs to
Cohb(X× S). This together with the derived base change immediately implies that XdR has uni-
versally global tor-amplitude ≤ 0. This proves statement (6). �

In the middle of the proof of statement (6), we used the following result, which we extract:

COROLLARY 4.1.2. Let X be a smooth and proper scheme over C. Then RΓ(XdR;OXdR
) is canoni-

cally equivalent to the hypercohomology of the algebraic de Rham complex of X.

4.2. Representability of the stack of perfect complexes

COROLLARY 4.2.1. Let X be a smooth and proper scheme over C. Then Perf(XdR) is a locally
geometric stack.

PROOF. This is a consequence of Theorem 2.6.1 and Proposition 4.1.1-(6). �

REMARK 4.2.2. An alternative way of proving the geometricity of Perf(XdR) is to combine
Simpson’s proof of the geometricity of the corresponding underived stack [Sim09], Proposi-
tion 4.1.1-(6) which implies the existence of the cotangent complex for Perf(XdR), and the easier
version of Lurie’s representability theorem [Lur18, Theorem 18.1.0.2].

2See also [Bha12, Corollary 4.30] and [CPT+17, Proposition 2.2.3].
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Dolbeault shape

5.1. Definition

Let X be a geometric derived stack. The Dolbeault stack of X is defined as follows: let

TX := SpecX(SymOX
(LX))

be the derived tangent bundle to X. It is a linear stack (cf. Definition A.2.1).

Let T̂X := XdR ×(TX)dR
TX be the formal completion of TX along the zero section. Using

[Lur17, 4.2.2.9] we can convert the natural commutative group structure of TX relative to X (seen
as an associative one) into a simplicial diagram T•X : ∆op → (dSt)/X . Unwinding the definitions,
we see that T•X can be identified with the n-fold product TX ×X · · · ×X TX. The zero section
X → TX allows to promote T•X to a simplicial diagram

T•X : ∆op −→ (dSt)X//X .

Formal completion along the natural maps X → TnX provides us with a new simplicial object

T̂•X : ∆op −→ (dSt)/X .

The Dolbeault shape of X is the geometric realization

XDol :=
∣∣∣T̂•X∣∣∣ ∈ (dSt)/X ,

while the nilpotent Dolbeault shape of X is the geometric realization

Xnil
Dol := |T•X| ∈ (dSt)/X .

REMARK 5.1.1. Note that XDol coincides with the relative classifying stack BXT̂X, while
Xnil

Dol ' BXTX. 4

We let

κX : X −→ XDol and κnil
X : X −→ Xnil

Dol

be the natural maps. In addition, κnil
X = ıX ◦ κX , where ıX : XDol → Xnil

Dol is the canonical map
induced by T̂•X → T•X.

PROPOSITION 5.1.2. Let X ∈ dSt be a derived stack for which there exists a cotangent complex LX ,
which is dualizable, that is LX ∈ Perf(X). We denote by TX the dual of LX . Then we have

QCoh(XDol) ' ModSymOX
(TX)

(QCoh(X)) .

In particular, QCoh(XDol)
♥ is the category of Higgs sheaves on X.

PROOF. Note that by definition, we have

QCoh(XDol) ' Mod
ŜymOX

(LX)∨
(QCoh(X)) .

Now, since ŜymOX
(LX) ' SymOX

(TX)
∨ , we obtain the assertion. �
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5.2. The BNR correspondence for perfect complexes

In this section, we shall provide a version of the Beauville-Narasimhan-Ramanan correspon-
dence, in the sense of Simpson [Sim94, Lemma 6.8], for perfect complexes.

DEFINITION 5.2.1. Let p : X → Y be a morphism of derived schemes. Let F ∈ Perf(X) be
a perfect complex. We say that F is properly supported with respect to p if there exists a closed
subscheme i : Z → X such that:

(1) the composition Z i−→ X
p−→ Y is proper;

(2) let j : X r Z ↪→ X be inclusion of open complementary of Z. Then j∗F ' 0.

We let Perf p-prop(X) denote the full subcategory of Perf(X) spanned by perfect complexes prop-
erly supported with respect to p. �

LEMMA 5.2.2. Let p : X → Y be a quasi-compact and quasi-separated morphism of derived schemes
of finite tor-amplitude. Let F ∈ Perf(X) be a perfect complex which is properly supported with respect to
p. Then p∗(F ) is perfect.

PROOF. Since p has finite tor-amplitude and X and Y are schemes, a Čech cohomology ar-
gument shows that p∗(F ) has finite tor-amplitude. It is therefore enough to prove that p∗(F )
is almost perfect. Since j∗F ' 0, we see that each πi(F ) is set-theoretically supported on Z.
Therefore, the cohomological descent spectral sequence

Ri p∗(πj(F ))⇒ Ri+j p∗(F )

implies that each Ri p∗(F ) is coherent and that Ri p∗(F ) = 0 for i � 0. The conclusion follows.
�

PROPOSITION 5.2.3. Let X be a smooth and proper scheme. Let T∗X := SpecX(SymOX
(TX)) and

let p : T∗X → X be the natural projection. Then the functor p∗ : QCoh(T∗X) → QCoh(X) restricts to
an equivalence

Perf p-prop(T
∗X) ' Perf(XDol) .

PROOF. The functor p∗ : QCoh(T∗X) ' QCoh(X) induces an equivalence

QCoh(T∗X) ' ModSymOX
(TX)

(QCoh(X)) ' QCoh(XDol) .

Lemma 5.2.2 implies that the functor p∗ restricts to a functor

Perf p-prop(T
∗X) −→ Perf(XDol) .

On the other hand, let F ∈ QCoh(T∗X) be such that p∗(F ) ∈ Perf(XDol). We want to prove
that it is properly supported with respect to p. Since X is smooth, we have that πi(F ) 6= 0
for only finitely many integers i. It is therefore enough to check that each πi(F ) is properly
supported with respect to p. This follows from the classical BNR correspondence (cf. [Sim94,
Lemma 6.8]). �

By using the same arguments as above and [Sim94, Lemma 6.10], one can prove:

COROLLARY 5.2.4. Let X be a smooth and proper scheme. Then the functor p∗ : QCoh(T∗X) →
QCoh(X) restricts to an equivalence

PerfX(T
∗X) ' Perf(Xnil

Dol) ,

where PerfX(T
∗X) is the full subcategory of Perf(T∗X) of perfect complexes set-theoretically supported

at X, seen as the zero-section of T∗X.
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5.3. Geometrical properties of the Dolbeault shape

LEMMA 5.3.1. Let X be a geometric derived stack over C. The map κX is universally flat and an
effective epimorphism. The same properties hold for κnil

X .

PROOF. The map κX is an effective epimorphism by construction. The flatness follows from
the fact that the transition maps in the diagram T̂•X are flat. By arguing similarly, one proves the
same statement for κnil

X . �

LEMMA 5.3.2. The derived stack XDol is categorically proper and universally of tor-amplitude ≤ 0.

PROOF. Using the BNR correspondence for perfect complexes proven in Proposition 5.2.3
, we can identify Perf(XDol) with the ∞-category Perf p-prop(X) of perfect complexes properly
supported with respect to the projection p : T∗X → X. Under this equivalence, the functor

q∗ : QCoh(XDol) −→ QCoh(X)

is identified with the global section functor on T∗X. Since X is smooth, T∗X is smooth as well,
and therefore we conclude that XDol has universally tor-amplitude ≤ 0. Finite cohomological
dimension follows immediately. Finally, categorical properness is consequence of the properness
of X, Lemma 5.2.2 and the BNR correspondence. �

By using similar arguments as above and Corollary 5.2.4, one can prove the following.

LEMMA 5.3.3. The derived stack Xnil
Dol is categorically proper and universally of tor-amplitude ≤ 0.

Let X be a smooth scheme over C. Then the category of (quasi) coherent sheaves on XDol is
canonically equivalent to the category of (quasi) coherent Higgs sheaves on X (cf. [Sim96, Sim97,
Sim02]).

5.4. The stack of perfect complexes

5.4.1. Relation with linear stacks. Let X be a smooth proper connected complex scheme.
Define

Ẽ := q+
(

q∗XTX ⊗ ev∗End(Euniv)
)

,

where the maps are

Perf

X× Perf(X) X

Perf(X)

qX

ev

q

.

PROPOSITION 5.4.1. Let X be a smooth proper connected complex scheme of dimension n. Then there
exists a map

Perf(XDol) −→ VPerf(X)(Ẽ) ,

which is an equivalence when n = 1.

PROOF. Let us start by giving an explicit description of the points of VPerf(X)(Ẽ).
Fix A ∈ dAff and let x : Spec(A) → Perf(X) be a point. By Formula A.2, a point Spec(A) →

VPerf(X)(Ẽ) corresponds to a morphism as A-Mod:

x∗Ẽ → A . (5.4.1)
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Consider the diagram

XA X× Perf(X)

Spec(A) Perf(X)

pA

id×x

q

x

,

where XA := X× Spec(A) and pA : XA → Spec(A) is the projection to the second factor. We have

x∗q+ ' pA+(id× x)∗ .

Thus

x∗Ẽ ' pA+

(
p∗XTX ⊗ End(FA)

)
,

where FA := (id× x)∗ev∗(Euniv) and pX : XA → X is the projection to the first factor. Therefore,
the morphism (5.4.1) is equivalent, by adjunction, to the morphism of OXA -modules:

p∗XTX ⊗ End(FA) −→ OXA . (5.4.2)

Since FA is perfect, we get a morphism p∗XTX → End(FA), which induces a morphism

TOXA
(p∗XTX) −→ End(FA) (5.4.3)

from the tensor algebra TOXA
(p∗XTX) of p∗XTX .

Recall now that

Perf(XDol × Spec(A)) ' Perf(BXA
̂VXA(p∗XLX)) ' ModSymOXA

(p∗XTX)
(Perf(XA)) .

By arguing in a way similar to above, a point Spec(A)→ Perf(XDol × Spec(A)) corresponds to a
morphism

SymOXA
(p∗XTX) −→ End(FA) .

By composing the natural projection TOXA
(p∗XTX)→ SymOXA

(p∗XTX) with the above morphism,
we get a morphism of the form (5.4.3). Thus, we have a canonical morphism

Perf(XDol) −→ VPerf(X)(Ẽ) . (5.4.4)

Moreover, the canonical projection TOXA
(p∗XTX) → SymOXA

(p∗XTX) is an isomorphism when
n = 1. Hence, the map (5.4.4) is an equivalence when n = 1. �

We now give a characterization of VPerf(X)(Ẽ) when n = 1. Recall that, by Corollary 2.3.28,
the global tangent complex of Perf(X) is

TPerf(X) ' q+
(

ev∗End(Euniv)[1]
)

.

PROPOSITION 5.4.2. Let X be a smooth proper connected complex scheme of dimension one. Then

VPerf(X)(Ẽ) ' T∗[0]Perf(X) := VPerf(X)(TPerf(X)) .

PROOF. Let us start by giving an explicit description of the points of VPerf(X)(TPerf(X)).

Fix A ∈ dAff and let x : Spec(A) → Perf(X) be a point. By Formula A.2, a point Spec(A) →
VPerf(X)(TPerf(X)) corresponds to a morphism as A-Mod:

x∗TPerf(X) → A .

By using arguments similar to those in the proof of Proposition 5.4.1, the above morphism corre-
sponds to the morphism of OXA -modules:

End(FA)[1] −→ OXA . (5.4.5)

By Grothendieck-Serre duality, we have

End(FA)[1] ' p∗XTX ⊗ End(FA) .
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Thus morphism (5.4.5) is equivalent to (5.4.2). This proves the assertion.
�

By combining the above two propositions, we obtain:

COROLLARY 5.4.3. Let X be a smooth proper connected complex scheme of dimension one. Then

Perf(XDol) ' T∗[0]Perf(X) .

REMARK 5.4.4. A version of the above corollary for Bun(XDol) has been proved in [GR18,
Lemma 4.3]. 4

5.4.2. Representability. To be written.



CHAPTER 6

Deligne shape

6.1. Definition and geometrical properties

Following ideas of Deligne and Simpson,1 we consider the cosimplicial affine scheme

Del• : ∆ −→ dAff/A1 ,

given by

Deln := Spec(C[X, Y]/(Xn −Yn)) ,

where the structural map to A1 := Spec(C[T]) is given by T 7→ Y. Moreover Gm naturally acts
on Deln in an equivariant way with respect to A1. This gives rise to a cosimplicial stack

Del•Gm
:= [Del•/Gm] : ∆ −→ dSt/[A1/Gm ] .

Let now X be a smooth scheme over C. Then

Map/[A1,Gm ](Del•Gm
, X× [A1/Gm])

is a simplicial object over [A1/Gm]. Pulling back along the atlas A1 → [A1/Gm] (that is, forget-
ting the Gm-action) we obtain the A1-cosimplicial object

Map/A1(Del•, X×A1) ,

which can explicitly be described as follows: over the open A1 r {0}, it is canonically equivalent
to the simplicial object

[n] 7→ Xn × (A1 r {0}) ,

while over the point 0 ∈ A1 it becomes the simplicial object

[n] 7→ TnX

described in the previous section. The canonical map

Del•Gm
−→ [A1, Gm]

gives rise to a map

δ : X× [A1, Gm] −→ Map/[A1/Gm ](Del•Gm
, X× [A1/Gm]) .

Given [n] ∈ ∆, the induced family of morphisms

X×A1 Map/A1(Deln, X×A1)

A1

,

1The reader might want to compare with the general construction performed in [GR17, §9.1.6].
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coincides with the deformation to the normal cone of the diagonal embedding X ↪→ Xn. We now
define the simpicial object X•Del,Gm

as the fiber product

X•Del,Gm
Map/[A1/Gm ](Del•Gm

, X× [A1/Gm])

(X× [A1/Gm])dR Map/[A1/Gm ](Del•Gm
, X× [A1/Gm])dR

δdR

.

In other words, X•Del,Gm
is the formal completion of Map/[A1/Gm ](Del•Gm

, X× [A1, Gm]) along the
diagonal morphism δ. Finally, we let

XDel,Gm :=
∣∣XDel,Gm

∣∣ ∈ dSt/[A1/Gm ] .

We also let XDel be the pullback of XDel,Gm along the atlas A1 → [A1/Gm].
Let X be a smooth scheme over C. Then for any (quasi)-coherent sheaf E on XDel, its fiber

E|λ at λ ∈ A1 is a (quasi) coherent λ-connection on X (see e.g. [Sim09, §7]).

6.1.1. Representability. To be written.



APPENDIX A

Linear stacks

A.1. Picard stacks

We follow and generalize [SGA73, Exposé XVIII, §1.4]. Recalling the (homotopy) equivalence
between groupoids and 1-homotopy types, we can rephrase Definition 1.4.5 in loc.cit. as follows:

DEFINITION A.1.1. Let X be an ∞-topos. A Picard stack over X is a sheaf

F : X op → sAb61 ,

where sAb61 denotes the ∞-category of simplicial abelian groups whose underlying space is a
1-homotopy type. We let Pic(X ) denote the ∞-category of Picard stacks on X . �

The main result of [SGA73, Exposé XVIII, §1.4] can then be summarized as follows:

PROPOSITION A.1.2 (Proposition 1.4.15 & Corollary 1.4.17 in loc.cit.). Let X be an ∞-topos.
There is an equivalence of ∞-categories

Pic(X ) ' ShD[−1,0](Ab)(X ) ,

where D[−1,0](Ab) denotes the full ∞-subcategory of D(Ab) (the ∞-derived category of abelian groups)
spanned by objects in cohomological amplitude [−1, 0].

From a modern point of view, the proof is a direct consequence of the Dold-Kan equivalence

sAb ' D60(Ab) ,

combined with the remark that objects in cohomological degree [−1, 0] inD60(Ab) correspond to
1-homotopy types. The language of higher stacks, allows us to generalize the above proposition:

PROPOSITION A.1.3. Let X be an ∞-topos. There is an equivalence of ∞-categories

ShsAb(X ) ' ShD60(Ab)(X ) .

We will call the elements of ShD60(Ab)(X ) higher Picard stacks.

We now consider a special case of interest: namely, we will suppose that X is the smooth-
étale site of some geometric derived stack X. In this case, we have a forgetful functor

U : QCoh(X)→ ShD(Ab)(X ) .

Composing with the truncation functor

τ60 : D(Ab)→ D60(Ab)

we obtain a functor

U60 : QCoh(X)→ ShD(Ab)(X )→ ShD60(Ab)(X )

that allows to see a quasi-coherent sheaf F on X as a higher Picard stack on X.

REMARK A.1.4. Let F ∈ QCoh(X). Then the canonical map τ60F → F induces an equiva-
lence

U60(τ60(F )) ' U60(F ) .

For this reason, we will more often consider the restriction of U60 to QCoh(X)60. 4
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A.2. Definition of a linear stack

We now introduce an example of higher Picard stack.

DEFINITION A.2.1. Let F ∈ dSt be a derived stack. Let E ∈ QCoh(F). The linear stack over F
associated to E is the derived stack V(E) ∈ dSt/F:

V(E) := SpecX(SymOX
(E)) .

When F is clear from the context, we will simply write V(E) instead of VF(E). �

Unraveling this definition, we see that for any x : Spec(A)→ F, one has

Map/F(Spec(A), V(E)) ' MapOX/(SymOX
(E), x∗OA)

' MapQCoh(X)(E , x∗OA) ' MapA-Mod(x∗E , A) .

REMARK A.2.2. As A-Mod is naturally enriched in D(Ab) and since for any F ,G ∈ A-Mod
we have

MapA-Mod(F ,G) ' τ60Map
D(Ab)
A-Mod(F ,G) ,

it is then clear that V(E) defines a higher Picard stack on F. 4

Note that, by definition, V(E) ∈ dSt/F is a derived stack equipped with a canonical map

π : V(E)→ F .

The following result is evident:

PROPOSITION A.2.3. Let F be a geometric derived stack and let E ∈ QCoh(F)60. Then the map
π : V(E)→ F is representable by affine derived schemes. In particular, V(E) is a geometric derived stack.

Let now F be a geometric derived stack X.

PROPOSITION A.2.4. Let Perf(X)>0 be the category of perfect complexes on X that are in positive
cohomological amplitude. Let (−)∨ : Perf(X)>0 → A-Mod60 be the duality functor:

E∨ := HomOX (E ,OX) ,

for E ∈ Perf(X)>0. Then the diagram

QCoh(X)60

Perf(X)>0 QCoh(X) ShD≤0(Ab)(X)

U

(−)∨

V(−)

commutes.

PROOF. Let x : Spec(A) → X be a fixed map and let E ∈ Perf(X)>0. Since E is perfect, we
have:

Map/X(Spec(A), V(E)) ' MapA-Mod(x∗E , A) ' MapA-Mod(A, x∗(E∨)) .

Observe now that we can identify MapA-Mod(A, x∗(E∨)) with the underlying complex of abelian
groups of x∗(E∨). In other words, it coincides by definition with U(E∨)(Spec(A)). �

Let now F ∈ Perf [−1,0](X) be a perfect complex in tor-amplitude [−1, 0]. Then F [−1] ∈
Perf>0(X) and therefore the above proposition supplies us with an equivalence

V(F [−1]) ' U(F∨[1]) .

PROPOSITION A.2.5. The stack U(F∨[1]) coincides with the so-called vector bundle stack (h1/h0)(F∨)
of [BF97].
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PROOF. This follows tautologically if one believes to the claim at the beginning of [BF97, §2]
that (h1/h0)(F∨) coincides with the construction ch(−) performed in [SGA73, Exposé XVIII,
§1.4]. �
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[CPT+17] D. Calaque, T. Pantev, B. Toën, M. Vaquié, and G. Vezzosi, Shifted Poisson structures and deformation quantization,

J. Topol. 10 (2017), no. 2, 483–584. 29, 30
[GR14] D. Gaitsgory and N. Rozenblyum, Crystals and D-modules, Pure Appl. Math. Q. 10 (2014), no. 1, 57–154. 30
[GR17] , A study in derived algebraic geometry. Vol. II. Deformations, Lie theory and formal geometry, Mathematical

Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. 30, 36
[GR18] V. Ginzburg and N. Rozenblyum, Gaiotto’s Lagrangian subvarieties via derived symplectic geometry, Algebr. Rep-

resent. Theory 21 (2018), no. 5, 1003–1015. 35
[HLP14] D. Halpern-Leistner and A. Preygel, Mapping stacks and categorical notions of properness, arXiv:1402.3204, 2014.

2, 8, 15, 22
[HPV16] B. Hennion, M. Porta, and G. Vezzosi, Formal gluing along non-linear flags, arXiv:1607.04503, 2016. 25, 30
[Lur09] J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton,

NJ, 2009. 14, 25
[Lur17] , Higher algebra, available at his webpage, 2017. 8, 12, 15, 19, 26, 31
[Lur18] , Spectral algebraic geometry, available at his webpage, 2018. 2, 6, 7, 8, 19, 22, 30
[Por15] M. Porta, GAGA theorems in derived complex geometry, arXiv:1506.09042. To appear in J. Algebraic Geom., 2015.

24
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