II Determinante Jacobiano per Mappe Singolari

Candidato: G. de Philippis Relatore: Dott. E.Paolini

Firenze, 15 Ottobre 2009

Formule di cambiamento di variabile

Se $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ è Lipschitziana

Formula dell'area non-orientata

$$\int_{\Omega} |\det Du(x)| dx = \int_{\mathbb{R}^n} N(u, \Omega, y) dy$$

Formula dell'area orientata

$$\int_{\Omega} \det Du(x) dx = \int_{\mathbb{R}^n} \deg(u, \Omega, y) dy$$

dove:

- $N(u, \Omega, y) = \#\{u^{-1}(y) \cap \Omega\}$
- $deg(u, \Omega, y) = grado di Brouwer$

E se $u \in W^{1,p}(\Omega)$?

- Se p ≥ n ⇒ det Du ∈ L¹ ⇒ essenzialmente stesse proprietà mappe lisce
- Se p < n in generale det $Du \notin L^1$
- Se p < n e det $Du \in L^1$ NON si conservano le proprietà delle mappe lisce

E se
$$u \in W^{1,p}(\Omega)$$
?

- Se $p \ge n \Rightarrow \det Du \in L^1 \Rightarrow$ essenzialmente stesse proprietà mappe lisce
- Se p < n in generale det $Du \notin L^1$
- Se p < n e det $Du \in L^1$ NON si conservano le proprietà delle mappe lisce

E se
$$u \in W^{1,p}(\Omega)$$
?

- Se $p \ge n \Rightarrow \det Du \in L^1 \Rightarrow$ essenzialmente stesse proprietà mappe lisce
- Se p < n in generale det $Du \notin L^1$
- Se p < n e det $Du \in L^1$ NON si conservano le proprietà delle mappe lisce

E se
$$u \in W^{1,p}(\Omega)$$
?

- Se $p \ge n \Rightarrow \det Du \in L^1 \Rightarrow$ essenzialmente stesse proprietà mappe lisce
- Se p < n in generale det $Du \notin L^1$
- Se p < n e det $Du \in L^1$ NON si conservano le proprietà delle mappe lisce

Null Lagrangem

Se $u, v \colon \Omega \to \mathbb{R}^n$ sono regolari e u = v su $\partial \Omega$ allora

$$\int_{\Omega} \det Du = \int_{\Omega} \det Dv$$

Il determinante jacobiano è un Null Lagrangem.

Null Lagrangem

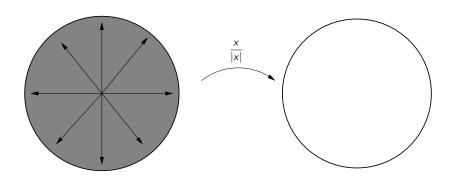
Se $u, v \colon \Omega \to \mathbb{R}^n$ sono regolari e u = v su $\partial \Omega$ allora

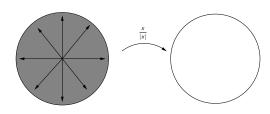
$$\int_{\Omega} \det Du = \int_{\Omega} \det Dv$$

Il determinante jacobiano è un Null Lagrangem.

 $deg(u, \Omega, y)$ dipende solo da $u \cup \partial \Omega$.

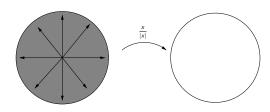
Consideriamo $u: B \to \mathbb{S}^{n-1}$:





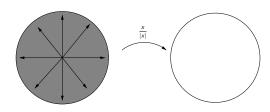
- $u \in W^{1,p}(B)$ per ogni p < n
- $Du: \mathbb{R}^n \to T_{\frac{x}{|x|}} \mathbb{S}^{n-1} \simeq \mathbb{R}^{n-1}$
- $\det Du = 0$ quasi ovunque
- Se v è regolare e v = u su ∂B :

$$|B| = \int \det Dv \neq \int \det Du = 0$$



- $u \in W^{1,p}(B)$ per ogni p < n
- $Du: \mathbb{R}^n \to T_{\frac{x}{|x|}} \mathbb{S}^{n-1} \simeq \mathbb{R}^{n-1}$
- $\det Du = 0$ quasi ovunque
- Se v è regolare e v = u su ∂B :

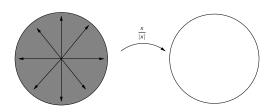
$$|B| = \int \det Dv \neq \int \det Du = 0$$



- $u \in W^{1,p}(B)$ per ogni p < n
- $Du : \mathbb{R}^n \to T_{\frac{x}{|x|}} \mathbb{S}^{n-1} \simeq \mathbb{R}^{n-1}$
- $\det Du = 0$ quasi ovunque
- Se v è regolare e v = u su ∂B :

$$|B| = \int \det Dv \neq \int \det Du = 0$$

La mappa $\frac{\lambda}{|\lambda|}$



- $u \in W^{1,p}(B)$ per ogni p < n
- $Du: \mathbb{R}^n \to T_{\frac{x}{|x|}} \mathbb{S}^{n-1} \simeq \mathbb{R}^{n-1}$
- $\det Du = 0$ quasi ovunque
- Se v è regolare e v = u su ∂B :

$$|B| = \int \det Dv \neq \int \det Du = 0$$

$$u_k \rightharpoonup u$$
 in $W^{1,p}(\Omega)$

- Se p > n allora det $Du_k
 ightharpoonup$ det Du in $L^{\frac{p}{n}}(\Omega)$
- Se p=n allora det $Du_k \stackrel{*}{\rightharpoonup}$ det Du in $\mathcal{M}(\Omega)$
- Se $p < n \longrightarrow \text{Nessun tipo di continuità}$.

$$u_k \rightharpoonup u$$
 in $W^{1,p}(\Omega)$

- Se p > n allora det $Du_k
 ightharpoonup \det Du$ in $L^{\frac{p}{n}}(\Omega)$
- Se p = n allora det $Du_k \stackrel{\widehat{}}{\rightharpoonup} \det Du$ in $\mathcal{M}(\Omega)$
- Se $p < n \longrightarrow \text{Nessun tipo di continuità}$.

$$u_k \rightharpoonup u$$
 in $W^{1,p}(\Omega)$

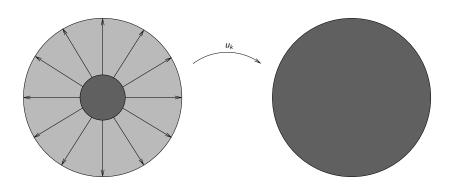
- Se p > n allora det $Du_k
 ightharpoonup \det Du$ in $L^{\frac{p}{n}}(\Omega)$
- Se p = n allora det $Du_k \stackrel{*}{\rightharpoonup} \det Du$ in $\mathcal{M}(\Omega)$
- Se p < n → Nessun tipo di continuità.

$$u_k \rightharpoonup u$$
 in $W^{1,p}(\Omega)$

- Se p > n allora det $Du_k
 ightharpoonup \det Du$ in $L^{\frac{p}{n}}(\Omega)$
- Se p = n allora det $Du_k \stackrel{*}{\rightharpoonup} \det Du$ in $\mathcal{M}(\Omega)$
- Se $p < n \longrightarrow \text{Nessun tipo di continuità}$.

Sia
$$u(x) = \frac{x}{|x|}$$
 e:

$$u_k(x) = \begin{cases} \frac{x}{|x|} & \text{se } \frac{1}{k} \le |x| \le 1\\ kx & \text{se } |x| \le \frac{1}{k} \end{cases}$$



Allora $u_k \to u$ in $W^{1,p}(B)$ ma:

$$|B| = \int_B \det Du_k \nrightarrow \int_B \det Du = 0.$$

Allora $u_k \to u$ in $W^{1,p}(B)$ ma:

$$|B| = \int_B \det Du_k \nrightarrow \int_B \det Du = 0.$$

Il determinante jacobiano *puntuale* non tiene conto della frattura nell'immagine di *u*!

Semicontinuità

Studiamo la semicontinuità:

• Se $p \ge n$ allora

$$u\mapsto \mathit{TV}(u):=\int_{\Omega}|\det \mathit{D}u|$$

è semicontinuo inferiormente

• Se
$$p < n$$
? \longrightarrow NO!

Semicontinuità

Studiamo la semicontinuità:

• Se $p \ge n$ allora

$$u\mapsto \mathcal{T}V(u):=\int_{\Omega}|\det Du|$$

è semicontinuo inferiormente

• Se
$$p < n$$
? \longrightarrow NO.

Semicontinuità

Studiamo la semicontinuità:

• Se $p \ge n$ allora

$$u\mapsto \mathcal{T}V(u):=\int_{\Omega}|\det Du|$$

è semicontinuo inferiormente

• Se
$$p < n$$
? \longrightarrow NO!

Consideriamo $u \colon Q \to \mathbb{R}^n$ regolare. Esiste una successione $u_r \rightharpoonup u \in W^{1,p}$ che soddisfa

$$\int |\det Du_r| = 0.$$

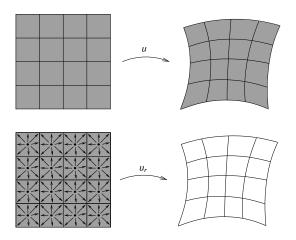
Consideriamo $u: Q \to \mathbb{R}^n$ regolare.

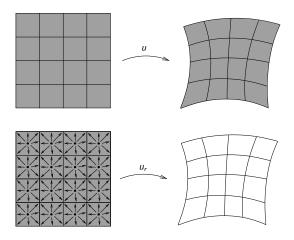
Esiste una successione $u_r
ightharpoonup u \in W^{1,p}$ che soddisfa

$$\int |\det Du_r| = 0.$$

⇓

Nessuna speranza di semicontinuità se det $Du \neq 0$.





Ancora una volta det Dur non tiene conto delle "fratture"!

Esistono due possibili soluzioni:

Esistono due possibili soluzioni:

- Determinante distribuzionale (Integrazione per parti)
- Variazione totale rilassata (Rilassamento)

Esistono due possibili soluzioni:

- Determinante distribuzionale (Integrazione per parti)
- Variazione totale rilassata (Rilassamento)

Esistono due possibili soluzioni:

- Determinante distribuzionale (Integrazione per parti)
- Variazione totale rilassata (Rilassamento)

Non sempre coincidono!

Il Determinante Distribuzionale

Il determinante jacobiano è una divergenza:

$$\det Du = -\frac{1}{n}\operatorname{div}(u\operatorname{adj} Du)$$

Il Determinante Distribuzionale

Il determinante jacobiano è una divergenza:

$$\det Du = -\frac{1}{n}\operatorname{div}(u\operatorname{adj} Du)$$

definiamo la distribuzione:

$$\langle \operatorname{\mathsf{Det}} Du, \varphi \rangle := -\frac{1}{n} \int_{\Omega} u \operatorname{\mathsf{adj}} Du \cdot D \varphi$$

Il Determinante Distribuzionale

Il determinante jacobiano è una divergenza:

$$\det Du = -\frac{1}{n}\operatorname{div}(u\operatorname{adj} Du)$$

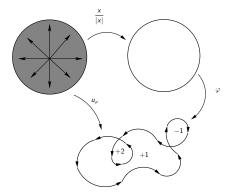
definiamo la distribuzione:

$$\langle \operatorname{\mathsf{Det}} Du, arphi
angle := -rac{1}{n} \int_{\Omega} u \operatorname{\mathsf{adj}} Du \cdot Darphi$$

Ben definita se $u \in W^{1,p} \cap L^{\infty}$ con n-1 .

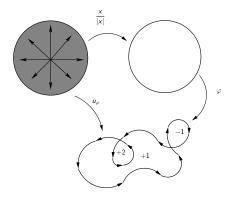
Mappe zero-omogenee

Data $\varphi \colon \mathbb{S}^{n-1} \to \mathbb{R}^n$ consideriamo $u_{\varphi}(x) = \varphi(\frac{x}{|x|})$:



Mappe zero-omogenee

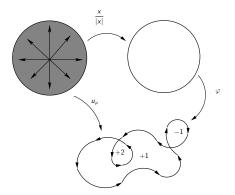
Data $\varphi \colon \mathbb{S}^{n-1} \to \mathbb{R}^n$ consideriamo $u_{\varphi}(x) = \varphi(\frac{x}{|x|})$:



$$\mathsf{Det}\, \mathit{Du}_{\varphi} = \{\mathsf{Somma}\,\,\mathsf{aree}\,\,\mathsf{orientate}\} \times \delta_0$$

Mappe zero-omogenee

Data $\varphi \colon \mathbb{S}^{n-1} \to \mathbb{R}^n$ consideriamo $u_{\varphi}(x) = \varphi(\frac{x}{|x|})$:



Non sempre Det Du è una misura di Radon

Variazione totale rilassata

Data $u \in W^{1,p}(\Omega)$ definiamo per $p \in (n-1, n)$:

$$TV_w^p(u,\Omega) = \inf\{\liminf_{k \to \infty} \int_{\Omega} |\det Du_k| \colon u_k \in W^{1,n}, u_k \rightharpoonup u \text{ in } W^{1,p}\}$$

Variazione totale rilassata

Data $u \in W^{1,p}(\Omega)$ definiamo per $p \in (n-1, n)$:

$$TV_w^p(u,\Omega) = \inf\{\liminf_{k\to\infty} \int_{\Omega} |\det Du_k| \colon u_k \in W^{1,n}, u_k \rightharpoonup u \text{ in } W^{1,p}\}$$

Se $u \in W^{1,n}$ si può provare:

$$TV_w^p(u,\Omega) = \int_{\Omega} |\det Du|$$

Variazione totale rilassata

Data $u \in W^{1,p}(\Omega)$ definiamo per $p \in (n-1, n)$:

$$TV_w^p(u,\Omega) = \inf\{\liminf_{k\to\infty} \int_{\Omega} |\det Du_k| \colon u_k \in W^{1,n}, u_k \rightharpoonup u \text{ in } W^{1,p}\}$$

Se $u \in W^{1,n}$ si può provare:

$$TV_w^p(u,\Omega) = \int_{\Omega} |\det Du|$$

Questo è data da un risultato di semicontinuità non banale e valido solo per $p \in (n-1, n)$

TV vs Det Du

Confronto tra TV e Det Du

- se $TV^p_w(u,\Omega)<\infty$ allora $TV^p_w(u,\cdot)$ è (quasi) una misura
- se $TV_s^p(u,\Omega) < \infty$ allora Det Du è una misura e $|\operatorname{Det} Du|(\cdot) \leq TV_w^p(u,\cdot)$

TV vs Det Du

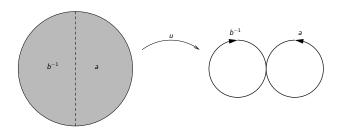
Confronto tra TV e Det Du

- se $TV_w^p(u,\Omega)<\infty$ allora $TV_w^p(u,\cdot)$ è (quasi) una misura
- se $TV_s^p(u,\Omega) < \infty$ allora Det Du è una misura e $|\operatorname{Det} Du|(\cdot) \leq TV_w^p(u,\cdot)$

Può accadere che $|\operatorname{Det} Du| < TV$

Esempio: la curva a "otto" I

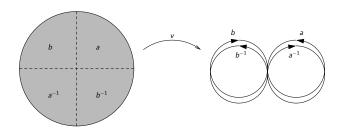
Sia
$$u(x) = \varphi\left(\frac{x}{|x|}\right) \, \mathrm{con} \, \, \varphi \sim ab^{-1}$$



$$Det Du = 0 TV(u, B) = 2\pi$$

Esempio: la curva a "otto" II

Sia
$$v(x) = \psi(\frac{x}{|x|}) \text{ con } \psi \sim aba^{-1}b^{-1}$$



$$Det Dv = 0 TV(v, B) = 2\pi$$

Casi di uguaglianza

Teorema (Mappe a valori in sfere)

Sia $u \in W^{1,p}(\Omega;\mathbb{S}^{n-1})$ tale che $TV_w^p(u,\Omega) < \infty$ allora, per (quasi) ogni aperto $A \subseteq \Omega$ abbiamo:

$$|\operatorname{Det} Du|(A) = TV_w^p(A)$$

Casi di uguaglianza

Teorema (Mappe che "preservano" l'orientazione)

Sia $u \in W^{1,p}(\Omega) \cap L^{\infty}$, $p \in (n-1,n)$ e supponiamo che:

- **1** n > 3;
- $2 TV(u,\Omega) < \infty;$
- $u \in WOP$;
- **4** esiste un rappresentante di u continuo per quasi ogni $x \in \Omega$.

Allora

- 1 Det Du è una distribuzione positiva
- 2 Per (quasi) ogni aperto A:

$$Det Du(A) = TV_w^p(A)$$

Teorema di struttura per mappe a valori in sfere

Teorema

Sia $u \in W^{1,p}(\Omega; \mathbb{S}^{n-1})$, $p \in (n-1,n)$ e tale che Det Du è una misura, allora:

$$Det Du = \omega_n \sum_{i=1}^m d_i \delta_{x_i}$$

dove

- $d_i = \deg(u, \partial B(x_i, r_i), \mathbb{S}^{n-1})$
- x_i sono le "singolarità topologiche" di u

Teorema di struttura per mappe a valori in sfere

Teorema

Sia $u \in W^{1,p}(\Omega; \mathbb{S}^{n-1})$, $p \in (n-1, n)$ e tale che Det Du è una misura, allora:

$$Det Du = \omega_n \sum_{i=1}^m d_i \delta_{x_i}$$

dove

•
$$d_i = \deg(u, \partial B(x_i, r_i), \mathbb{S}^{n-1})$$

• xi sono le "singolarità topologiche" di u

Teorema di struttura per mappe a valori in sfere

Teorema

Sia $u \in W^{1,p}(\Omega; \mathbb{S}^{n-1})$, $p \in (n-1, n)$ e tale che Det Du è una misura, allora:

$$Det Du = \omega_n \sum_{i=1}^m d_i \delta_{x_i}$$

dove

- $d_i = \deg(u, \partial B(x_i, r_i), \mathbb{S}^{n-1})$
- xi sono le "singolarità topologiche" di u

Schema di dimostrazione

- Il teorema è vero per mappe zero-omogenee
- Approssimiamo u con mappe u_k a valori in \mathbb{S}^{n-1} liscie tranne che in un numero finito di punti
- I punti singolari delle u_k son esattamente quanti le singolarità topologiche di u e

$$\deg(u_k) = \deg(u)$$

vicino alle singolarità

Schema di dimostrazione

- Il teorema è vero per mappe zero-omogenee
- Approssimiamo u con mappe u_k a valori in \mathbb{S}^{n-1} liscie tranne che in un numero finito di punti
- I punti singolari delle u_k son esattamente quanti le singolarità topologiche di u e

$$\deg(u_k) = \deg(u)$$

vicino alle singolarità

Schema di dimostrazione

- Il teorema è vero per mappe zero-omogenee
- Approssimiamo u con mappe u_k a valori in \mathbb{S}^{n-1} liscie tranne che in un numero finito di punti
- I punti singolari delle u_k son esattamente quanti le singolarità topologiche di u e

$$\deg(u_k) = \deg(u)$$

vicino alle singolarità

Schema di dimostrazione

- Il teorema è vero per mappe zero-omogenee
- Approssimiamo u con mappe u_k a valori in \mathbb{S}^{n-1} liscie tranne che in un numero finito di punti
- I punti singolari delle u_k son esattamente quanti le singolarità topologiche di u e

$$\deg(u_k) = \deg(u)$$

vicino alle singolarità

Teorema WOP

Teorema (Mappe che "preservano" l'orientazione)

Sia $u \in W^{1,p}(\Omega) \cap L^{\infty}$, $p \in (n-1,n)$ e supponiamo che:

- **1** $n \ge 3$;
- $ext{ } ext{ } ext$
- $u \in WOP$;
- esiste un rappresentante di u continuo per quasi ogni $x \in \Omega$.

Allora

- 1 Det Du è una distribuzione positiva
- 2 Per (quasi) ogni aperto A:

$$Det Du(A) = TV_w^p(A)$$

Grado distribuzionale e WOP

Definizione (Grado di Brouwer per mappe discontinue)

Sia $u \in W^{1,p}(\Omega,\mathbb{R}^n) \cap L^{\infty}$, $p \in (n-1,n)$ definiamo, per ogni $D \subset\subset \Omega$ con bordo lipschitziano $\mathrm{Deg}(u,D,y)$ come l'unica funzione $BV(\mathbb{R}^n,\mathbb{Z})$ tale che per ogni campo $g \in C^1(\mathbb{R}^n;\mathbb{R}^n) \cap W^{1,\infty}$ si ha:

$$\int_{\mathbb{R}^n} \mathsf{Deg}(u, D, y) \operatorname{div} g(y) dy = \int_{\partial D} g(u(x)) \operatorname{adj} Du \cdot \nu_{\partial D} d\mathcal{H}^{n-1}$$

Grado distribuzionale e WOP

Definizione (WOP)

Diremo che una mappa $u \in W^{1,p}(\Omega)$ conserva l'orientazione in senso debole e scriveremo $u \in WOP(\Omega)$ se per ogni $x \in \Omega$ e per quasi ogni raggio r abbiamo

$$Deg(u, B(x, r), y) \ge 0.$$

WOP e Det Du

Proposizione

Sia $u \in WOP(\Omega) \cap W^{1,p} \cap L^{\infty}$ allora:

- 1 Det Du è una misura di Radon positiva
- 2 Per ogni x e quasi ogni r:

$$Det Du(B(x,r)) = \int_{B^n} Deg(u,B(x,r),y) dy$$

Teorema di White

Teorema (White)

Sia $k \geq n \geq 3$ e $f: \partial B(0,1) \subset \mathbb{R}^n \to \mathbb{R}^k$ una mappa lipschitziana, allora:

$$\min\{\mathbb{M}(T), T \in \mathcal{R}^n(\mathbb{R}^k) \ \partial T = f_{\#} \llbracket \partial B \rrbracket \}$$

$$= \inf\{ \int_B J_n g(x) dx, g \colon B \to \mathbb{R}^k, g \text{ lipschitziana, } g \sqcup \partial B = f \}$$

dove $J_n g = \sqrt{\det Dg^T Dg}$ è il jacobiano n-dimensionale.

Teorema di White

Corollario

Sia $u: B \subset \mathbb{R}^n \to \mathbb{R}^n$ regolare dove B è una palla, $n \geq 3$, allora per ogni $\sigma > 0$ esiste una mappa $g: B \to \mathbb{R}^n$ lipschitziana g = u su ∂B tale che:

$$\int_{B} |\det Dg(x)| dx \leq \int_{\mathbb{R}^{n}} |\deg(u, B, y)| dy + \sigma.$$

Dimostrazione del teorema WOP

Schema di dimostrazione

- Si usa Besicovitch e ci si riduce a quadrati
- Si "buca" l'immagine di u
- Si tappano i buchi in maniera "ottimale" usando il teorema di White

Dimostrazione del teorema WOP

Schema di dimostrazione

- Si usa Besicovitch e ci si riduce a quadrati
- Si "buca" l'immagine di u
- Si tappano i buchi in maniera "ottimale" usando il teorema di White

Dimostrazione del teorema WOP

Schema di dimostrazione

- Si usa Besicovitch e ci si riduce a quadrati
- Si "buca" l'immagine di u
- Si tappano i buchi in maniera "ottimale" usando il teorema di White

Mappe debolmente monotone

Definizione

Sia $u \in W^{1,p}(B(x,r) \cap W^{1,p}(\partial B(x,r)))$ definiamo per ogni raggio tale che $u \cup B(x,r)$ è continua:

$$\operatorname{Im}_{\mathcal{T}}(u,B(x,r)) = \{ y \in R^n \setminus u(\partial B(x,r)) \colon \operatorname{Deg}(u,B(x,r),y) \neq 0 \}$$

Definizione

Diremo che una mappa $u \in W^{1,p}(\Omega; \mathbb{R}^n)$ è debolmente monotona se vale per quasi ogni $r \in (0, \operatorname{dist}(x, \partial\Omega))$:

$$u(z) \in \operatorname{Im}_{\mathcal{T}}(u, (B(x, r)) \cup u(\partial B(x, r))$$
 per quasi ogni $z \in B(x, r)$.

Mappe debolmente monotone

Teorema

Sia $u \in W^{1,p}(\Omega; \mathbb{R}^n)$, p > n-1 una mappa debolmente monotona che soddisfa WOP, allora esiste un rappresentante u^* di u ed un insieme NC tale che u^* è continua in ogni $x \in \Omega \setminus NC$, inoltre $\dim_{\mathcal{H}} NC < n-p$

Mappe debolmente monotone

Teorema

Sia $u \in W^{1,p}(\Omega;\mathbb{R}^n)$, p > n-1 una mappa debolmente monotona che soddisfa WOP, allora esiste un rappresentante u^* di u ed un insieme NC tale che u^* è continua in ogni $x \in \Omega \setminus NC$, inoltre $\dim_{\mathcal{H}} NC \leq n-p$

In particolare le mappe debolmente monotone soddisfano tutte le ipotesi del teorema WOP