
Abstract. Many interesting results in topology and

functional analysis are closely related to situations in

which two otherwise distinct topologies or uniformi-

ties coincide. In this talk, we consider a number of

pairs of infinitesimal relations and examine the conse-

quences of the condition that they coincide on certain

subsets of the underlying space. One example leads

to a new characterization of uniform spaces with in-

variant nonstandard hulls. Other applications include

external characterization of strong and weak com-

pactness in Banach spaces.
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Notation
• (X,U): uniform space; ( ∗X,').

• (Z, d): a metric space; ( ∗Z,').

• F(X, Z) = {f : f : X → Z} .

• For each V ⊆ ∗F(X, Z), we define an

infinitesimal relation 'v on ∗X by

a 'v b ↔ f(a) ' f(b) ∀f ∈ V.

and, when f(x) ∈ ns( ∗Z) for each

x ∈ X, we may define an infinitesimal

relation ≈v on ∗X by

a ≈v b ↔ ∗◦f(a) ' ∗◦f(b) ∀f ∈ V.



Problem
Investigate the consequences of conditions

such as:

• ' = 'v or ' = ≈v on a subset of ∗X.

And, assuming that W ⊆ V, investigate the

condition

• 'v = 'w on a subset of ∗X, or

• ≈v = ≈w on a subset of ∗X.

The most fruitful cases are when V is a union

monad and W = σV.



Example 1.
• X, Y : infinite sets; (Z, d) a metric space.

• φ : X × Y → Z

• For each w ∈ ∗Y , we have an internal function

φw : ∗X → ∗Z; φw(v) = ∗φ(v, w).

• In case ∗φ(x, w) is near-standard, for each

x ∈ X, we have a standard function
∗φŵ : ∗X → ∗Z; φŵ(x) = ◦φ(x, w).

• Similarly, for each v ∈ ∗X, we define the

functions:
∗φv̂ : ∗Y → ∗Z and φv : ∗Y → ∗Z.



For each a, b ∈ ∗X, we define

a '
W

b

by

φw(a) ' φw(b) for all w ∈ W

and

a ≈
W

b

by

∗φŵ(a) ' ∗φŵ(b) for all w ∈ W



Problem
Given that V and W are union monads

with X ⊆ V and Y ⊆ W , investigate the

the consequences of conditions:

1. '
Y

= '
W

on V and '
X

= '
V

on W .

2. ≈
Y

= ≈
W

on V and ≈
X

= ≈
V

on W .

Some of our results concerning (1) have been

published. Our results concerning (2) were

presented at the 2004 conference in Aveiro,

Portugal.



Example 2.
• Λ is a set of pseudometrics on X.

• For each ρ ∈ Λ, p ∈ X, we have a function

ρp : X → R given by ρp(x) = ρ(x, p)

• Consider two infinitesimal relations on ∗X:

1.

a ' b ↔ ∗ρ(a, b) ' 0; (ρ ∈ Λ).

2.

a ≈ b ↔ ∗ρp(a) ≈
∗ρp(b); (ρ ∈ Λ, p ∈ X).



In general, we have ' ⊆ ≈ on ∗X.

Theorem. ' = ≈ on pns( ∗X).

Definition
Let fin( ∗X) denote the set of all x ∈ ∗X

such that ∗ρ(x, p) is limited for each ρ ∈ Λ

and each p ∈ X. We call the uniform space

(X,Λ) an S-space if

' = ≈ on fin( ∗X).



Theorem. Every compact space is an S-

space.

Proof. We have ' = ≈ on pns( ∗X), and,

in a compact space, we have

ns( ∗X) = pns( ∗X) = fin( ∗X) = ∗X.

Alternatively,

The uniform structure compatible with the

topology of a compact space is unique. Hence

we must have ' = ≈ on the entire ∗X.

This leads us to the following criterion.



Notation: Let Cb(X) denote the set of
all bounded continuous functions on the uni-
form Hausdorff space (X,Λ) equipped with
the topology of uniform convergence on X.
Let A(X) denote the subalgebra of C(X)
consisting of those f ∈ C(X) that are con-
stant on the complement of some compact
set in X.

Theorem. The uniform space (X,Λ) is an

S-space if A(X) is dense in Cb(X).

Proof. This condition is equivalent to the

uniqueness of compatible uniform structures,

and is due to I. S. GÁL, (1958).



Theorem. Every locally compact space

equipped with the uniformity U' it inher-

its from its one-point compactification is an

S-space.

Proof. It is well known that U' is the coarsest

uniformity that is compatible with the topol-

ogy of X (Alice Dickson, 1952). Since, in

general, U' is finer than U≈, it follows that

U≈ = U'



Theorem. Every pre-compact space is an

S-space.

Proof. We have ' = ≈ on pns( ∗X), and,

in a pre-compact space, we have

pns( ∗X) = fin( ∗X) = ∗X.



Theorem. Every uniform space with invari-

ant nonstandard hulls is an S-space.

Proof. We have ' = ≈ on pns( ∗X), and,

in a uniform space with invariant nonstandard

hulls, we have

pns( ∗X) = fin( ∗X).



Theorem. A uniform space (X,Λ) is an S-space if

and only if it has invariant nonstandard hulls.

Proof. Fix p ∈ fin( ∗X), ρ ∈ Λ, and ε ∈ R+. Let

F = {B ∈ P(X) : p ∈ ∗B},

and let

G = {B ∈ F : U' = U≈ on B }.

Let {F1, . . . , Fn} be a ∗−finite subset of ∗F that

contains F. Let G = ∩n
i=1Fi. Then we have

∅ 6= G ⊆ µ(F) ⊆ fin( ∗X).

Hence G ∈ ∗G, and G 6= ∅. Pick a set B ∈ G.



There exist δ ∈ R+ and p1, . . . , pn ∈ X such that the

set

U = {〈u, v〉 ∈ B2 : max
i

|ρ(u, pi)− ρ(v, pi)| < δ}.

is contained in the set

V = {〈u, v〉 ∈ B2 : ρ(u, v) < ε}.

Therefore, ∗U [x] ⊆ ∗V [x]. Now let ai = ◦ρ(x, pi),

then ai ∈ R. Let A = {v ∈ B : maxi |ai− ρ(v, pi)| < δ
2}.

Clearly, A ⊆ X and x ∈ ∗A. From the latter, it

follows that A 6= ∅. Pick a point q ∈ A. Since
∗A ⊆ ∗U [x] ⊆ ∗V [x], we have ∗ρ(x, q) < ε. Hence

x ∈ pns(∗X), and the proof is finished.


