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Abstract

Let T stand for the usual topology on Rd. J.F. Colombeau’s non-
linear theory of generalized functions is based on varieties of families of
differential commutative rings G def= {G(Ω)}Ω∈T such that: 1) Each G
is a sheaf of differential rings (consequently, each f ∈ G(Ω) has a sup-
port which is a closed set of Ω). 2) Each G(Ω) is supplied with a chain
of sheaf-preserving embeddings C∞(Ω) ⊂ D′(Ω) ⊂ G(Ω), where C∞(Ω)
is a differential subring of G(Ω) and the space of L. Schwartz’s distri-
butions D′(Ω) is a differential linear subspace of G(Ω). 3) The ring
of the scalars C̃ of the family G (defined as the set of the functions in
G(Rd) with zero gradient) is a non-Archimedean ring with zero devisors
containing a copy of the complex numbers C. Colombeau theory has
numerous applications to ordinary and partial differential equations,
fluid mechanics, elasticity theory, quantum field theory and more re-
cently to general relativity. The main purpose of our non-standard
version of Colombeau’ theory is the improvement of the scalars:
in our approach the set of scalars is always an algebraically closed
non-Archimedean Cantor complete field. This leads to other improve-
ments and simplifications such as reducing the number of quantifiers
and possibilities for an axiomatization of the theory. As an application
we shall prove the existence of a weak soliton-like solution of Hopf’s
equation improving a similar result, due to M. Radyna, obtained in
the framework of V. Maslov’s theory.

MSC: Functional Analysis (46F30); Generalized Solutions of PDE (35D05).
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1 J. F. Colombeau’s Non-Linear Theory of Gen-
eralized Functions

Let T stand for the usual topology on Rd. J.F. Colombeau’s
non-linear theory of generalized functions is based
on varieties of families of differential commutative
rings:

G def
= {G(Ω)}Ω∈T ,

such that:

1. Each G is a sheaf of differential rings (consequently,
each f ∈ G(Ω) has a support which is a closed set of
Ω).

2. The ring of the scalars of the family G

C̃ = {f ∈ G(Rd) | ∇f = 0 on Rd},

is a non-Archimedean ring with zero devisors con-
taining a copy of the complex numbers C.

3. Each G(Ω) is supplied with a chain of sheaf-preserving
embeddings

E(Ω) ↪→ D′(Ω) ↪→ G(Ω),

where E(Ω)
def
= C∞(Ω) is a differential subring of

G(Ω) and the space of L. Schwartz’s distributionsD′(Ω)
is a differential linear subspace of G(Ω).

4. Colombeau’s theory has numerous applications to
PDE, elasticity theory, quantum field theory
and more recently to general relativity.
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5. The main purpose of our non-standard version of
Colombeau’ theory is the improvement of the scalars:
in our approach the set of scalars is always an alge-
braically closed non-archimedean Cantor com-
plete fields.

6. The improvement of the properties of the scalars leads
to other simplifications improvements such as re-
ducing the number of quantifiers and possibilities for
an axiomatization of the theory.

Remark 1.1 (A Non-Standard Sheaf) The collection

{∗E(Ω)}Ω∈∗T ,

is a sheaf of differential rings on ∗Rd, but

{∗E(Ω)}Ω∈T ,

is not a sheaf on Rd !!!!!!!!

Example 1.1 (A Counter Example) Let ϕ 6= 0 and ν ∈
∗N \ N.

f(x) = ∗ϕ(x− ν).

However, ⋃
n∈N

(0, n) = R+,

and f � (0, n) = f |∗(0, n) = 0 for all n. Yet,

f � R+ = f |∗R+ = f 6= 0.
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2 Non-Archimedean Hulls

In what follows ∗C stands for a non-standard extension
of the field of the complex numbers C. Here is the
summary of our non-archimedean hull theory:

1. Let F be a convex subring in ∗C, i.e. F is a subring
of ∗C such that

(∀x ∈ ∗C)(∀y ∈ F)(|x| ≤ |y| ⇒ x ∈ F).

We denote by F0 the set of all non-invertible ele-
ments of F , i.e.

F0 = {x ∈ F | x = 0 ∨ 1/x /∈ F}.

2. We denote by
F̂ = F/F0,

the corresponding factor ring and by q : F → F̂ the
corresponding quotient mapping.

If x ∈ F , we write x̂ ∈ F̂ instead of q(x).

We say that F̂ is a non-Archimedean hull whenever
F̂ is a non-Archimedean field.

3. We C ⊆ F̂ by letting c = ĉ for all c ∈ C.

4. Let Fd = F × F × · · · F and F̂d = F̂ × F̂ × · · · F̂
(d times). If x = (x1, x2, · · · , xd) ∈ F , we shall write
x̂ = (x̂1, x̂2, · · · , x̂d) ∈ F̂ . We denote by || · || the usual
Euclidean norm in either Fd or F̂d. If X ⊆ Rd, the set

µF(X) = {x + dx | x ∈ X, dx ∈ F̂d, ||dx|| ≈ 0},

is the monad of X in F̂d.
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5. We define the ring of F-moderate functions and the
ideal of the F-negligible functions in ∗E(Ω) by

MF(Ω) = {f ∈ ∗E(Rd) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F)},

NF(Ω) = {f ∈ ∗E(Rd) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F0)},

respectively, and we define also the factor ring:

ÊF(Ω) = MF(Ω)/NF(Ω).

We say that ÊF(Ω) is a differential ring generated
by F .

If f ∈ MF(Ω), then we denote by f̂ ∈ ÊF(Ω) the
corresponding equivalence class.

Summarizing: For every convex subring F of ∗C
there is a unique differential ring of generalized
functions:

F → ÊF(Ω).

6. We define the embedding

E(Ω) ↪→ ÊF(Ω),

by f → ∗f , where ∗f is the non-standard extension
of f .

7. Let Ω,O ∈ T be two open sets of Rd such that O ⊆ Ω.
Let f̂ ∈ ÊF(Ω). We define a restriction of f̂ on O by
the formula

f̂ � O = f̂ |∗O,

where ∗O is the non-standard extension of O and f |∗O
is the pointwise restriction of f on ∗O.
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8. Let f̂ ∈ ÊF(Ω) and x̂ ∈ µF(Ω). We define the value
of f̂ at x̂ by the formula

f̂(x̂) = f̂(x).

We shall use the same notation, f̂ , for the correspond-
ing value-mapping f̂ : µF(Ω) → F̂ .

9. Simplified Notation: We shall sometimes drop F ,
as a lower-index, in MF(Ω), NF(Ω), ÊF(Ω), µF(Ω),
etc. and write simply

M(Ω), N (Ω), Ê(Ω), µ(Ω), . . . ,

when no confusion could arise.
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Theorem 2.1 (Some Basic Results) Let F ⊆ ∗C be a
convex subring of ∗C. Then:

1. F0 is a convex maximal ideal in F .

2. F̂ is an algebraically closed field. Consequently,
{±|x| : x ∈ F̂} is a real closed field.

3. MF(Ω) is a differential subring of ∗E(Ω) and NF(Ω)
is a differential ideal in MF(Ω).

4. Let T stands for the usual topology on Rd. Then the
collection

ÊF
def
= {ÊF(Ω)}Ω∈T ,

is a sheaf of differential rings in the sense that:

(∀Ω,O ∈ T )
(
F ∈ ÊF(Ω) and O ⊆ Ω implies F � O ∈ ÊF(O)

)
.

Consequently, every F ∈ ÊF(Ω) has a support supp(F )
which is closed set of Ω (not of ∗Ω !!!!!).

5. Each ÊF(Ω) is a differential ring of generalized
functions with values in F̂ , i.e.

(∀F ∈ ÊF(Ω))(∀x ∈ µF(Ω))
[
F (x) ∈ F̂

]
.
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6. The ring of scalars of the sheaf ÊF
def
= {ÊF(Ω)}Ω∈T

coincides with the field F̂ , i.e.

{F ∈ ÊF(Rd) | ∇F = 0 on Rd} = F̂ .

Consequently, each ÊF(Ω) is a differential algebra
over the field F̂ .

7. E(Ω) is a differential subalgebra of ÊF(Ω) over C
under the embedding f → ∗f . We shall often write this
as an inclusion

E(Ω) ↪→ ÊF(Ω).
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3 How We Justify Our Hull Construction

We have to prove the following: Let F be a convex
subring of ∗C. Then

1. C ⊂ F(∗C) ⊆ F ⊆ ∗C.

2. There exists maximal fields M ⊂ F (Zorn Lemma).

3. Every maximal field M is an algebraically closed
field.

4. Let M be a maximal field. We have the following
characterization of F and F0 (see the beginning of
this section):

F = {x ∈ F | (∃ε ∈ M+)(|x| ≤ ε},(1)

F0 = {x ∈ F | (∀ε ∈ M+)(|x| < ε}.(2)

Consequently, F0 is a convex maximal ideal in F
and the factor ring F̂ = F/F0 is a field.

5. The fields M, M̂ and F̂ are mutually isomorphic.

6. There exists an embedding F̂ ⊆ ∗C and a quasi-
standard part mapping

ŝt : F → ∗C

with range ŝt[F ] = F̂ .
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SEVERAL EXAMPLES:

Example 3.1 (Nothing New) Let F = F(∗C). In this
case

F0 = I(∗C),

F̂ = C,

MF(Ω) = {f ∈ ∗E(Ω) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F(∗C))},

NF(Ω) = {f ∈ ∗E(Ω) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ I(∗C))}.

Consequently, the corresponding hull coincides with the
familiar algebra of smooth functions:

ÊF(Ω) = E(Ω).

The quasi-standard part mapping ŝt coincides with
the usual standard part mapping st.
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Example 3.2 (Asymptotic Functions) Let ρ be a posi-
tive infinitesimal in ∗R and let

F = Mρ(
∗C) = {x ∈ ∗C : |x| ≤ ρ−n for some n ∈ N},

is the ring of the ρ-moderate numbers in ∗C. In this
case we have:

F0 = Nρ(
∗C) = {x ∈ ∗C : |x| ≤ ρn for all n ∈ N},

ρC = Mρ(
∗C)/Nρ(

∗C), (A. Robinson’s asymptotic numbers)

MF(Ω) = Mρ(
∗E(Ω)),

NF(Ω) = Nρ(
∗E(Ω)),

where

Mρ(
∗E(Ω)) =

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈Mρ(
∗C)]

}
,

Nρ(
∗E(Ω)) =

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Nρ(
∗C)]

}
.

The corresponding factor ring

ρE(Ω) = MF(Ω)/NF(Ω),

is a differential algebra over the field of asymptotic
numbers ρC.

1. The field of real asymptotic numbers ρR was intro-
duce by A. Robinson [74] (see also A. Robonson and
A.H. Lightstone [56])

2. The functions in ρE(Ω) are called asymptotic func-
tions (M. Oberguggenberger and T. Todorov [66]). Here
you will find the following result:
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Theorem 3.1 (Embedding of Schwartz Distributions in ρE(Ω))
There exists an embedding ΣΩ : D′(Ω) → ρE(Ω) which
preserves all linear operations in D′(Ω) and the multi-
plication in E(Ω) = C∞(Ω), in symbol,

E(Ω) ↪→ D′(Ω) ↪→ ρE(Ω).

Proof: (M. Oberguggenberger and T. Todorov [66])

3. The algebra ρE(Ω) is, in a sense, a non-standard coun-
terpart of a special Colombeau’s algebra Gs(Ω) (J.
F. Colombeau [12]) with the important improvement
of the properties of the scalars.
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Example 3.3 (Logarithmic Hull) Let ρ be (as before) a
positive infinitesimal in ∗R and let

F = Fρ(
∗C) = {x ∈ ∗C : |x| < 1/ n

√
ρ for all n ∈ N},

is the set of the ρ-finite numbers in ∗C. In this case we
have:

F0 = Iρ(
∗C) = {x ∈ ∗C : |x| ≤ n

√
ρ for some n ∈ N},

ρ̂C = Fρ(
∗C)/Iρ(

∗C) logarithmic field,

MF(Ω) = Fρ(
∗E(Ω)),

NF(Ω) = Iρ(
∗E(Ω)),

where

Fρ(
∗E(Ω)) =

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Fρ(
∗C)]

}
,

Iρ(
∗E(Ω)) =

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Iρ(
∗C)]

}
.

For the corresponding algebra of generalized func-
tions

ÊF(Ω) = Fρ(
∗E(Ω))/Iρ(

∗E(Ω)),

is a algebra over the logarithmic field ρ̂C. It seems that this
algebra of generalized functions is without counterpart
in Colombeau’s theory.

Example 3.4 (The case F = ∗C) Let F = ∗C. In this
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case

F0 = {0},
F̂ = ∗C,

MF(Ω) = ∗E(Ω),

NF(Ω) = {f ∈ ∗E(Rd) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) = 0)},

Ê(Ω) = ∗E(Ω)/NF(Ω).

The differential ring Ê(Ω) is an algebra over the field ∗C.
The algebra Ê(Ω) is, in a sense, a non-standard coun-
terpart of Egorov algebra (Yu. V. Egorov [20]-[21])
with (at least) two important improvements:

(a) The ring of the scalars ∗C of Ê(Ω) constitutes an al-
gebraically closed saturated field. In contrast, the the
scalars of Egorov’s algebra are a ring with zero divi-
sors.
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(b) We ave the following result:

Theorem 3.2 (Embedding of Schwartz Distributions in Ê(Ω))
There exists an embedding σΩ : D′(Ω) → Ê(Ω) which pre-
serves all linear operations in D′(Ω) and the multiplication
in the ring of polynomials C[Ω], in symbol,

C[Ω] ↪→ D′(Ω) ↪→ Ê(Ω).

where C[Ω]
def
= C[x1, x2, ..., xd] |Ω.

Proof: :

1. We construct ∗C = CD(Rd)/U and ∗E(Ω) = E(Ω)D(Rd)/U ,
where U is a c+-good ultrafilter on the index set I =
D(Rd). Here D(Rd) = C∞0 (Rd) and c = card(R)).

2. The choice of the ultrafilter U is closely connected with
Colombeau’s theory: Let

D(Rd)
def
= B0 ⊃ B1 ⊃ B2 ⊃ . . . ,

where

Bn = {ϕ ∈ D(Rd) :

(3)

∫
Rd

ϕ(x) dx = 1,∫
Rd

xαϕ(x) dx = 0 for all α ∈ Nd
0, 1 ≤ |α| ≤ n,

||x|| ≥ 1/n ⇒ ϕ(x) = 0,

1 ≤
∫

Rd

|ϕ(x)| dx < 1 +
1

n
}.

15



Lemma 3.1 (Properties of Bn) Bn 6= ∅ for all n.

Proof: (M. Oberguggenberger and T. Todorov [66]).

Lemma 3.2 There exists a c+-good ultrafilter U on
D(Rd), where c = card(R), such that (∀n ∈ N) (Bn ⊂ U).

Proof: (C. C. Chang and H. Jerome Keisler [8]).
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Notation:

(a) If (Aϕ) ∈ CD(Rd), we denote by 〈Aϕ〉 ∈ ∗C the
corresponding non-standard number.

(b) Similarly, if (fϕ) ∈ E(Ω)D(Rd), we denote 〈fϕ〉 ∈
∗E(Ω).

(c) If 〈fϕ〉 ∈ ∗E(Ω), we shall often write f̂ϕ ∈ Ê(Ω)

instead of the more precise 〈̂fϕ〉 ∈ Ê(Ω).

Example 3.5 (Canonical Infinitesimal) Define (Rϕ) ∈
CD(Rd) by

Rϕ =

{
sup{||x|| | x ∈ Rd, ϕ(x) 6= 0}, ϕ 6= 0,

1, ϕ = 0.

The nonstandard number ρ = 〈Rϕ〉 is a positive in-
finitesimal in ∗R.

Example 3.6 (Non-Standard Delta Function) Let
id : D(Rd) → D(Rd) be the identity function on D(Rd),
given by id(ϕ) = ϕ. Notice that id ∈ E(Ω)D(Rd). let

δ
def
= ϕ̂ ∈ Ê(Ω). We shall call the corresponding Here

are some of the properties of this function:∫
Rd

δ(x) dx = 1,∫
Rd

|δ(x)| dx ≈ 1,∫
Rd

δ(x) xα dx = 0, |α| 6= 0.
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Example 3.7 (The Square of δ) For δ2 = ϕ̂2 we have

(a) δ2(x) = 0 for x ∈ ∗Rd, ||x|| ≥ ρ.

(b)
∫

R δ2(x) dx = ̂∫∞
−∞ ϕ2(x) dx is infitely large number

in ∗R.
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3. The mapping T → T̂ ? ϕ from D′(Rd) to Ê(Rd) satisfies
the following commutative diagram:

C[Rd]
P→TP−−−−→ D′(Rd)

P→∗̂P

y yTP→T̂P ?ϕ

Ê(Rd) −−→
id

Ê(Rd),

where id is the identity mapping and

〈TP , τ〉 =

∫
Rd

P (x)τ(x) dx, τ ∈ D(Rd),

TP ? ϕ = P ? ϕ.

We have to show that ∗̂P = P̂ ? ϕ in Ê(Rd). The Taylor

formula gives P (x− t) = P (x) +
∑p

|α|=1
(−1)|α|∂αP (x)

α! tα,
where p is the degree of P . It follows

(P ? ϕ)(x) =

∫
Rd

P (x− t)ϕ(t)dt =

= P (x)

∫
Rd

ϕ(t)dt +

p∑
|α|=1

(−1)|α|∂αP (x)

α!

∫
Rd

tαϕ(t)dt = P (x),

for all ϕ ∈ D(Rd) and all x ∈ Rd. Notice that if ϕ ∈ Bn

for some n ≥ p, then
∫

Rd ϕ(t)dt = 1 and∫
Rd tαϕ(t)dt = 0, |α| = 1, 2, . . . , p. Thus we have

Bn ⊆ {ϕ | P ? ϕ = P},

implying {ϕ | P ? ϕ = P} ∈ U , as required.
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4. If Ω 6= Rd, we extend the embedding by

T → ̂(∗TΠΩ,ϕ) ? ϕ,

from D′(Ω) to Ê(Ω), where ΠΩ,ϕ ∈ ∗D(Rd) is a
cut-off-function, i.e.

Π̂Ω,ϕ(x) = 0, for all x ∈ µ(Ω).
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4 Example from Masslov Theory: Weak Solution
of Hopf’s Equation

Theorem 4.1 (M. Radyna [70]) M. Radyna proves
the following result: For every n ∈ N there exists a
function Θn ∈ S(R) such that the function

u(x, t, ε, n) = u0 +
A

ε
Θn

(
x− vt

ε

)
,

satisfies:∣∣∣∣∫
R
[ut(x, t, ε, n) + u(x, t, ε, n)ux(x, t, ε, n)]τ(x) dx

∣∣∣∣ < εn,

for every test function τ ∈ D(R), every t ∈ R and all
sufficiently small ε ∈ R.

We say that the family u(x, t, ε, n) is a weak solution
of order n to Hopf’s equation:

(4) ut(x, t) + u(x, t)ux(x, t) = 0.

in the sense of Masslov approach.
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In contrast to M. Radyna’s result we have the following
result:

Theorem 4.2 Let ρ be a positive infinitesimal in ∗R and
A, v, u0 ∈ Mρ(

∗R), A > 0. There exists a function Θ ∈
∗S(R) (not depending on n), with

∫
∗R Θ(x)dx = 1, such

that the function:

u(x, t) = u0 +
A

ρ
Θ

(
x− vt

ρ

)
,

satisfies:∣∣∣∣∫
R
[ut(x, t) + u(x, t)ux(x, t))τ(x) dx

∣∣∣∣ < ρn,

for every test function τ ∈ D(R) and every finite t ∈ ∗R+

and for all n ∈ N.
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Corollary 4.1 Let ρ be a positive infinitesimal in ∗R. Then:

1. There exists and an asymptotic function

U(x, t) = û(x, t) ∈ ρE(R2),

which is a weak solution of Hopf’s equation

(5) ut(x, t) + u(x, t)ux(x, t) = 0,

in the sense that∫
R

[Ut(x, t) + U(x, t)Ux(x, t)] τ(x) dx = 0,

for every test function τ ∈ D(R) and every finite
t ∈ ∗R+.

2. We have the formula for the amplitude:

A =
2(v̂ − û0)ρ̂∫
R Θ̂2(y)dy

.

(a) Infinitesimal amplitude A and finite velocities v, u0

(small signals);

(b) Finite (or even infinitely large) amplitude A and
infinitetely large velocities v, u0 (explosion).

3. U(x, t) obeys the conservation law in the sense that
for all real a, b ∈ R, and every finite t ∈ ∗R+,

(6)
d

dt

∫ b

a

U(x, t)dx =
1

2
[U 2(a, t)− U 2(b, t)],

where the equality in (6) is in ρC.
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Proof of the Theorem:

Step 1 (Standard Part of the Proof): Let f ∈ S(R)

with
∫

R f(x) dx = 1. We replace u(x, t) = u0 + A
ρ
∗f

(
x−vt

ρ

)
in the integral:∫

∗R
[ut + uux]

∗τ(x)dx

=
(u0 − v)A

ρ2

∫
∗R

∗f ′
(

x− vt

ρ

)
∗τ(x)dx +

A2

2ρ2

∫
∗R

(
∗f 2

(
x− vt

ρ

))
x

∗τ(x)dx

Integrating by parts and making the substitution
y = x−vt

ρ gives

=

∫
∗R

[
(v − u0) A ∗f(y)− A2

2ρ
∗f 2(y)

]
∗τ ′(vt + ρy)dy =

Step 2: By Taylor expansion for τ ′(vt + ρy), we obtain
the asymptotic expansion in the powers of ρ:

=
m∑

n=0

∫
∗R

[
(v − u0) A ∗f(y)− A2

2ρ
∗f 2(y)

]
yn

∗τ (n+1)(vt)

n!
ρn dy+Rm(τ)

where the remainder term is

Rm(τ) = ρm+1
∫
∗R

[
(v − u0) A ∗f(y)− A2

2ρ
∗f 2(y)

] ∗τ (m+2)(η(y, t))

(m + 1)!
ym+1dy

We impose the condition on the coefficients to be
zero:∫

R

[
(v − u0) A f(y)− A2

2ρ
f 2(y)

]
yndy = 0, 0 ≤ n ≤ m,
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and |Rm(τ)| < ρm+k (for some fixed k).

Step 3: When m = 0, we have that:

A =
2(v − u0)ρ∫

R f 2(y)dy

Replacing this value of A, we have that for every m,(∫
R

f 2(y)dy

) (∫
R

f(y)yndy

)
=

∫
R

f 2(y)yndy, 0 ≤ n ≤ m

Define

Sm =

{
f ∈ S(R) :

∫
R

f(x)xndx =

∫
R f 2(x)xndx∫

R f 2(x)dx
, 0 ≤ n ≤ m

}
We have Sm 6= ∅ for all m ∈ N, by (M. Radyna [70]
p. 275).

This is the end of the “standard part of the proof”.

Step 4 (Non-Standard Part of the Proof): We
define the internal sets:

Am = {f ∈ ∗Sm :| ln ρ|−1
∫
∗R
|f(x)xn| < 1/m

| ln ρ|−1
∫
∗R
|f 2(x)xn|dx < 1/m,

| ln ρ|−1 |f (n)(x)| < 1/m, x ∈ ∗R, |x| ≤ m, 0 ≤ n ≤ m}

and observe that A1 ⊃ A2 ⊃ A3 ⊃ . . . . Also Am 6= ∅ for
all m ∈ N. Indeed, f ∈ Sm implies ∗f ∈ Am because
the integrals of ∗f is a standard (real) number and
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| ln ρ|−1 is infinitesimal. Thus there exists

Θ ∈
∞⋂

m=1

Am,

by the Saruration Principle. Notice that (due to the
logarithmic term | ln ρ|−1)∫

∗R
|Θ(x)xn| ≤ | ln ρ|,∫

∗R
|Θ2(x)xn|dx ≤ | ln ρ|,

which guarantees the estimation of the residual term Rm(τ).
We have the formula for the amplitude:

A =
2(v − u0)ρ∫
R Θ2(y)dy

.

N

Remark 4.1 Notice that (due to the logarithmic term | ln ρ|−1)

Θ ∈Mρ(
∗S(R)) ⊂Mρ(

∗E(R)),

which is important in the factorization in Corollary !!!
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Oberguggenberger), Chapman & Hall/CRC Research Notes in Mathe-
matics, 401, 1999, p. 369-383, arXiv:math.FA/0601723.

[94] Todor D. Todorov, Back to Classics: Teaching Limits through Infinites-
imals, International Journal of Mathematical Education in Science and
Technology, 2001, vol. 32, no. 1, p. 1-20.

[95] Todor Todorov and Robert Wolf, Hahn Field Representation of A.
Robinson’s Asymptotic Numbers, in Nonlinear Algebraic Analysis and
Applications, Proceedings of the ICGF 2000 (Edited by A. Delcroix,
M. Hasler, J.-A. Marti, V. Valmorin), 2004 Cambridge Scientific Pub-
lishers, p. 357-374, ArXiv:math.AC/0601722.

[96] Todor D. Todorov, Existence and uniqueness of v-asymptotic expan-
tions and Colombeau’s generalized numbers, Journal of Mathematical
Analysis and Applications, Volume 312, Issue 1, 1 December, 2005, p.
261-279, arXiv:math.CA/0601720.

[97] Francois Treves, On Local Solvability of Linear Partial Differential
Equations, Bulletin of the American Mathematical Society, Vol.76, No
3, May, 1970, p. 552-5.

[98] V. Vladimirov, Generalized Functions in Mathematical Physics, Mir-
Publisher, Moskow, 1979.

[99] B. L. Van Der Waerden, Modern Algebra, Ungar Publishing, New York,
third printing, 1964.

34


