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Dynamic Random Matching

Let S = {1, 2, . . . , K} be a finite set of types.
A discrete-time dynamical system D with random muta-
tion, partial matching and type changing
The initial distribution of types is p0.
In each time period n ≥ 1,
• first, each type-k agent randomly mutates to an agent of
type l with probability bkl.
• Then, each agent of type k is either not matched, with
probability qk, or is matched to a type-l agent with a prob-
ability proportional to the fraction of type-l agents in the
population immediately after the random mutation step.
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• When an agent is not matched, she keeps her type.

• When a type-k agent is matched with a type-l agent, the
type-k agent becomes type r with probability νkl(r), where
νkl is a probability distribution on S, and similarly for the
type-l agent.
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• When I is finite, the independence condition cannot be
imposed even for static full matchings.

• Correlation reduces to zero when the population is large.

• Independent random matching in a continuum population
(i.e., a non-atomic measure space of agents) is widely used
(explicitly and implicitly) in economic literature and also
in evolutionary biology.

• However, a mathematical foundation has been lacking.
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Formal Inductive Definition of
Dynamic Random Matching

Let α0 : I → S = {1, . . . , K} be an initial type function
with distribution p0 on S.

For time period n ≥ 1, a random mutation is modeled by
a process hn from (I × Ω, I � F , λ � P ) to S. Given a
K ×K probability transition matrix b, we require that, for
each agent i ∈ I ,

P
(
hn

i = l |αn−1
i = k

)
= bkl,

the specified probability with which an agent i of type k at
the end of time period n− 1 mutates to type l.
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Let p n−1/2 be the expected cross-sectional type distribu-
tion immediately after the random mutation. The random
partial matching function πn at time n is defined by:

1. For any ω ∈ Ω, πn
ω( · ) is a full matching on I −

(πn
ω)−1({J}).

2. Extending hn so that hn(J, ω) = J for any ω ∈ Ω, let
gn(i, ω) = hn(πn(i, ω), ω).

3. Let q ∈ [0, 1]S. For each agent i ∈ I ,

P (gn
i = J |hn

i = k) = qk,

P (gn
i = l |hn

i = k) =
(1− qk)(1− ql)p

n−1/2
l∑K

r=1(1− qr)p
n−1/2
r

.
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Let ν : S × S → ∆ specify the probability distribution
νkl = ν(k, l) of the new type of a type-k agent after she is
matched with a type-l agent.

We require that the type function αn after the partial
matching satisfies, for each agent i ∈ I ,

P (αn
i = r |hn

i = k, gn
i = J) = δr

k,

P (αn
i = r |hn

i = k, gn
i = l) = νkl(r),

where δr
k is one if r = k, and zero otherwise.
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Markov Conditional Independence

• an independent random mutation follows from the previ-
ous period,
• followed by an independent random partial matching,
• for matched agents, there is independent random type
changing.

• Formally, the random mutation is Markov conditionally
independent if, for λ-almost all i, j ∈ I , for all types k, l ∈
S

P (hn
i = k, hn

j = l |α0
i , . . . , α

n−1
i ; α0

j, . . . , α
n−1
j )

= P (hn
i = k |αn−1

i )P (hn
j = l |αn−1

j ).
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Define a mapping Γ from ∆ to ∆ such that, for each p =
(p1, . . . , pK) ∈ ∆, the r-th component of Γ is

Γr(p1, . . . , pK) = qr

K∑
m=1

pmbmr +

K∑
k,l=1

νkl(r)(1− qk)(1− ql)
∑K

m=1 pmbmk
∑K

j=1 pjbjl∑K
t=1(1− qt)

∑K
j=1 pjbjt

.
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Theorem 1. Let D be any dynamical system with random
mutation, partial matching and type changing whose para-
meters are (p0, b, q, ν) that is Markov conditionally inde-
pendent. Then:

(1) For time n ≥ 1, the expected cross-sectional type
distribution is given by p n = Γ(p n−1) = Γn(p0), and
p

n−1/2
k =

∑K
l=1 blkp

n−1
l , where Γn is the composition of

Γ with itself n times, and where p n−1/2 is the expected
cross-sectional type distribution after the random mutation.
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(2) For λ-almost all i ∈ I , {αn
i }
∞
n=0 is a Markov chain with

transition matrix zn at time n− 1 defined by

zn
kl = qlbkl +

K∑
r,j=1

νrj(l)bkr

(1− qr)(1− qj)p
n−1/2
j∑K

r′=1(1− qr′)p
n−1/2
r′

.

(3) For λ-almost all i, j ∈ I , the Markov chains {αn
i }
∞
n=0

and {αn
j }
∞
n=0 are independent.

(4) For P -almost all ω ∈ Ω, the cross-sectional type
process {αn

ω}∞n=0 is a Markov chain with transition matrix
zn at time n− 1.
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(5) For P -almost all ω ∈ Ω, at each time period n ≥ 1, the
realized cross-sectional type distribution after the random
mutation λ(hn

ω)−1 is its expectation p n−1/2, and the real-
ized cross-sectional type distribution at the end of period
n, pn(ω) = λ(αn

ω)−1, is equal to its expectation p n, and
thus, P -almost surely, pn(ω) = Γn(p0).

(6) There is a stationary distribution p∗. That is, with initial
cross-sectional type distribution p0 = p∗, for every n ≥ 1,
the realized cross-sectional type distribution pn at time n
is p∗, P -almost surely, and zn = z1. In particular, all of
the relevant Markov chains are time-homogeneous with a
constant transition matrix having p∗ as a fixed point.
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Theorem 2. Fixing any parameters
p0 for initial cross-sectional type distribution,
b for mutation probabilities,
q ∈ [0, 1]S for no-match probabilities,
ν for type-changing probabilities,

there exists a dynamical system D with random
mutation, partial matching and type changing
that is Markov conditionally independent with
these parameters.
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The six properties in Theorem 1 hold for any Markov con-
ditionally independent dynamical matching (not just for
the particular examples shown in Theorem 2).

That is analogous to the fact that the classical law of large
numbers hold for any sequence of random variables satis-
fying independence (or uncorrelatedness) with some mo-
ment conditions (not just for a particular example showing
the existence of a sequence of independent random vari-
ables).
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The Proof of Theorem 1

is based on the exact law of large numbers.

Let f be any real-valued process on (I×Ω, I�F , λ�P ).
If f is square integrable and essentially uncorrelated, then

P (ω ∈ Ω : E(fω) = Ef ) = 1.

Based on that, it is easy to show that if f is essentially
pairwise independent, then

P
(
ω ∈ Ω : λ(fω)−1 = (λ � P )f−1

)
= 1.

Converse law of large numbers: the necessity of uncor-
relatedness or independence (both are the standard condi-
tions).
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Law of large numbers for *-independent random variables

Let {Xi}ni=1 be a hyperfinite sequence of ∗-independent
random variables on an internal probability space
(Ω,F0, P0) with internal mean zero and variances bounded
by a common standard positive number C,

The elementary Chebyshev’s inequality says that for any
positive hyperreal number ε,

P0 (|X1 + . . . + Xn|/n ≥ ε) ≤ C/nε2,

which implies P0 (|X1 + . . . + Xn|/n ' 0) ' 1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Loeb Transition Probability

• (I, I0, λ0) a hyperfinite internal probability space

• {(Ω,F0, P0i) : i ∈ I} an internal collection of hyperfinite
internal probability measures

• Define τ0 on (I × Ω, I0 ⊗ F0) by letting τ0({(i, ω)}) =
λ({i})P0i({ω}) for (i, ω) ∈ I × Ω.

• Let (I, I, λ), (Ω,Fi, Pi), and (I × Ω, I � F , τ ) be
the Loeb spaces corresponding respectively to (I, I0, λ0),
(Ω,F0, P0i), and (I × Ω, I0 ⊗F0, τ0).
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The following result presents a Fubini type theorem for
the Loeb transition probability Pi, i ∈ I , which generalizes
Keisler’s Fubini Theorem for the case that Pi equals a Loeb
probability measure P for all i ∈ I .

Proposition 1. Let f be a real-valued integrable function
on (I × Ω, σ(I0 ⊗F0), τ ). Then,

1. fi is σ(F0)-measurable for each i ∈ I and integrable on
(Ω, σ(F0), Pi) for λ-almost all i ∈ I;

2.
∫
Ω fi(ω)dPi(ω) is integrable on (I, σ(I0), λ);

3.
∫
I

∫
Ω fi(ω)dPi(ω)dλ(i) =

∫
I×Ω f (i, ω)dτ (i, ω).
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The Proof of Theorem 2

is based on an infinite product of Loeb transition probabil-
ities.

• For each m ≥ 1, let Ωm be a hyperfinite set with its
internal power set Fm.

• Ωn, Ω∞, and Ω∞n denote
∏n

m=1 Ωm,
∏∞

m=1 Ωm, and∏∞
m=n Ωm respectively.

• {ωm}nm=1, {ωm}∞m=1, and {ωm}∞m=n denoted by ωn,
ω∞, and ω∞n respectively.
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• For each n ≥ 1, let Qn be an internal transition probabil-
ity from Ωn−1 to (Ωn,Fn), that is, for each ωn−1 ∈ Ωn−1,
Qn(ωn−1) is a hyperfinite internal probability measure on
(Ωn,Fn).

• Q1⊗Q2⊗ · · · ⊗Qn defines an internal probability mea-
sure on (Ωn,⊗n

m=1Fm).

• Denote Q1 ⊗ Q2 ⊗ · · · ⊗ Qn by Qn, and ⊗n
m=1Fm by

Fn. Then Qn is the internal product of the internal tran-
sition probability Qn with the internal probability measure
Qn−1.
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• Let Pn and Pn(ωn−1) be the corresponding Loeb mea-
sures, which are defined respectively on σ(Fn) and σ(Fn)
(the proceeding one is much richer). Pn is the Loeb prod-
uct P1 � P2 � · · ·� Pn of the Loeb transition probabilities
P1, P2, . . . , Pn.

• Let F∞ = ∪∞n=1

[
Fn × Ω∞n+1

]
, which is an algebra of

sets in Ω∞. One can define a measure P∞ on this algebra
by letting P∞(En × Ω∞n+1) = Pn(En) for each En ∈ Fn.
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Proposition 2. There is a unique countably additive proba-
bility measure on σ(F∞) that extends the set function P∞

on E .

Proposition 3. The usual product of the probability spaces
(I, I, λ) and (Ω∞, σ(F∞), P∞) has a Fubini extension(
I × Ω∞, σ

(
∪∞n=1(I0 ⊗Fn)× Ω∞n+1

)
, �∞

m=0Pm
)
.

Note that Keisler’s Fubini Theorem is not applicable to
(I, I, λ) and (Ω∞, σ(F∞), P∞) since F∞ is not an inter-
nal algebra.
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Some details on the Static Case
Let α : I → S be an I-measurable type function with type distribution p =
(p1, . . . , pK) on S. An independent random partial matching π with no-match
probabilities q1, . . . , qK in [0, 1] is a mapping from I × Ω to I ∪ {J} (J denotes “no
match”) such that

1. ∀ω ∈ Ω, πω|I−π−1
ω ({J}) is a full matching on I − π−1

ω ({J}).

2. Let g(i, ω) = α(π(i, ω)) with α(J) = J . g is essentially pairwise independent
and measurable from (I × Ω, I � F , λ � P ) to S ∪ {J}.

3. for λ-almost all i ∈ {i ∈ I : α(i) = k},

P (gi = J) = qk

P (gi = l) =
(1− qk)pl(1− ql)∑K

r=1 pr(1− qr)
.
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Proposition 4. There is an atomless probability space
(I, I, λ) of agents such that for any given I-measurable
type function β from I to S, and for any q ∈ [0, 1]S, there
exists an independent-in-types random partial matching π
from (I × Ω, I � F , λ � P ) to I with q = (q1, . . . , qK) as
the no-match probabilities.
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Ideas of the Proof

• Pick M ∈ ∗N∞. Let I = {1, 2, ...,M}, and (I, I0, λ0) the internal counting proba-
bility space.

• For any I-measurable type function β from I to S = {1, . . . , K}, find an internal
lifting α from I to S. ∀k ∈ S, Ak = α−1(k) has Mk elements with λ(Ak) = pk '
Mk/M .

• Pick mk ∈ ∗N∞ such that qk ' mk/Mk, and N =
∑K

l=1(Ml −ml) ∈ ∗N∞ is even.

N

M
=

K∑
l=1

Ml

M

(
1− ml

Ml

)
'

K∑
l=1

pl(1− ql).

• Let Pmk
(Ak) be the collection of all such internal subsets of Ak with mk elements.

• For given Bk ∈ Pmk
(Ak) for k = 1, 2, . . . , K, let πB1,B2,...,BK be a (full) matching

on I − ∪K
k=1Bk produced by pairwise draws; there are (N − 1)!! such matchings.
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• Let Ω be the set of all ordered tuples
(B1, B2, . . . , BK, πB1,B2,...,BK) such that
Bk ∈ Pmk(Ak) for each k ∈ S,
and πB1,B2,...,BK is a matching on I − ∪K

k=1Bk.

• Ω has ((N−1)!!)
∏K

k=1

(Mk
mk

)
many elements in total. Let

(Ω,F0, P0) be the internal counting probability space.
• Let J represent non-matching.
For ω = (B1, B2, . . . , BK, πB1,B2,...,BK),
let π(i, ω) be{

J, ∃k ∈ S, i ∈ Bk,

πB1,B2,...,BK(i), i ∈ I − ∪K
r=1Br.
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——————
Thanks!

——————


