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1. Introduction

(i) (Tom Lindstrøm), Hyperfinite Lévy processes, Stochas-
tics 2004.

(ii) (Nigel Cutland, Siu-Ah Ng), A nonstandard approach
to the Malliavin calculus, Conference Volume 1995

(iii) (HO) Malliavin calculus for product measures on
R
N based on chaos, Stochastics 2005.

In article (iii) Malliavin calculus is developed for the
product measure µ∞ = µ on RN derived from an arbitrary
Borel probability measure µ1 on R. We obtain Malliavin
calculus for arbitrary abstract Wiener spaces over “little”
l2.

Our aim is to extend the techniques and results of paper
(iii) to the the space R[0,∞[, which is the space of càdlàg
functions, endowed with the Skorohod topology.
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Therefore, we replace RN by ∗(RN) in an ℵ1-saturated
model W of mathematics and fix an H ∈ ∗

N, H ≈ ∞.
Then we may identify{

1

H
,

2

H
, ...

}
≡ [0,∞[,

because there is a close relationship between the Loeb mea-
sure on

∗
N

H and Lebesgue measure on [0,∞[.
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Examples:
(I) (Lindstrøm) Let L : Ω × ∗

N→ ∗
R be an internal

Lévy process on an internal probability space Ω such that
we have P̂ -almost surely:

n

H
6≈ ∞ ⇒ |L (·, n)| 6≈ ∞.

Then ◦L : Ω× [0,∞[→ R, defined by

(◦L) (·, r) := lim
◦ n
H ↓r

◦ (L(·, n)) ,

is a càdlàg Lévy process. Vice versa, each Lévy process can
be essentially obtained in this way.

We may assume that Ω = ∗ (
R
N
)

and the measure
on Ω is the product µ = µ∞ of a certain internal proba-
bility measure µ1 on ∗

R. Moreover, we may assume that
L (X,n) =

∑n
i=1Xi.
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(II) (Cutland) Brownian motion: let

dµ1 := e−
H
2 x

2

dx
2

√
H

2π
.

Then ◦ n
H 7→

◦(X1 + ... + Xn) is a continuous Brownian
motion.

Cutland and Ng studied Malliavin calculus using this
construction.

(III) Poisson processes: let

µ1(B) :=
∑

i∈∗N0∩B

e−
1
H

( 1
H )i

i!
.

Then ◦(X1 + ...+Xn) is a Poisson process.

Pioneers: R. Anderson, J. Keisler, D. Hoover and E.
Perkins, T. Lindstrøm.
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2. General assumptions

(H0) There exists a Borel measurable internal mapping
E : ∗R→ ∗

R with the following properties
(a) E is bijective outside of internal sets D,R in the

domain and range of E and S-bounded. We assume that
µ1(D) ≈ 0 ≈ µ1(R).

(b) H · Eµ1E2, H · Eµ1E are limited.
(c) H · Eµ1E2 6≈ 0.

Then Eµ

∣∣∣∑N
i=1 E (Xi)

∣∣∣2 6≈ ∞ for all N such that N
H 6≈ ∞.

By Condition (c), the Lévy process ◦LE is not identical to
0. Here

LE(X,n) :=
n∑
i=1

E (Xi) .

Siu-Ah Ng shows that Condition H0 is not an essential
restriction.
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In many examples, including Brownian motion and Pois-
son processes, the following Condition (H) is fulfilled for µ1.

We will study stochastic integration and Malliavin cal-
culus for standard Lévy processes, resulting from measures
µ1, satisfying Condition (H).

Condition (H): There exists a Borel measurable map-
ping E : ∗R→ ∗

R such that (H0) is true and

HEµ1 (x− E (x))2 ≈ 0 ≈ HEµ1 (x− E (x))

Examples: In the cases of BM and PP, we have

E (x) := 1{|x|≤1}(x) · x.
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It follows that

Eµe
λ|E(X1)+...+E(XH)| 6≈ ∞

for some λ ∈ R+ (Protter, Lindstrøm). By results of

S. Boucheron, G. Lugosi, M. Massart, Concentration in-
equalities using the entropy method, The Annals of Proba-
bility 2003,

functions of the form

F (1) · E(X1) + ...+ F (H) · E(XH)

have exponential moments if F is S-bounded.

Siu-Ah Ng found a different proof of this fact for the
measures of his smaller equivalence class of measures lead-
ing to the same Lévy process.
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3. Orthogonal polynomials

Using a slight modification of the Gram Schmidt orthog-
onalization procedure applied to 1,E,E2, ..., we construct a
sequence (pi)i∈N0

as follows: set p0(x) := 1. The number 0
is called an uncritical exponent. Define p1 := E − Eµ1E.
We have

H ‖p1‖2
2 = HEµ1p2

1 6≈ 0.

The number 1 is called an uncritical exponent.
Assume that p0, ..., pn−1 are already defined and that

0 = u0 < ... < ul ≤ n − 1 are the uncritical exponents
below n. Define

pn := En −
l∑

i=0

Eµ1 (En · pui)
‖pui‖

2
2

pui.

If H · ‖pn‖2
2 ≈ 0, then n is called critical, otherwise n is

called uncritical.
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Why the notion “uncritical”? Suppose that u is uncrit-
ical. Then∣∣∣∣∣Eµ1 (En · pu)

‖pu‖2
2

∣∣∣∣∣ =

∣∣∣∣∣H · Eµ1 (En · pu) 6≈ ∞
H · ‖pu‖2

2 6≈ 0

∣∣∣∣∣ 6≈ ∞
Examples

We denote the set of uncritical exponents n ≥ 1 by NL.

(1) In the cases of Brownian motion and Poisson pro-
cesses NL = {1}.

(2) For each Borel set B ⊆ ∗
R set

µ1(B) :=

∫
B

√
2H

1 +H2x4

1

π
dx.

For E (x) := 1{|x|≤1}(x) ·x our condition (H) is fulfilled and
NL = {1}.
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4. An example, where polynomials of arbitrary
degree appear

Let

µ1(B) :=

∫
∗[−1,1]∩B

H

1 + (Hx)2dx
1

π
.

Then HEµ1x2n ≈ 2
2n−1 and all positive integers are uncriti-

cal.

Siu-Ah Ng characterized the measures having uncritical
exponents of arbitrary degree by means of the associated
Lévy measure.
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5. Stochastic Integration

Let
f : Ω× [0,∞[→ R

be a non-time-anticipating process in L2(µ̂⊗ λ) and let

F : Ω× ∗
N→ ∗

R

be a non-time-anticipating S-square integrable lifting of f .

Non-time-anticipating means that F is (Bt−1)t∈ ∗N-adap-
ted, where (Bt)t∈ ∗N is the natural filtration on Ω = ∗ (

R
N
)
.

Non-time-anticipating of f means that f is non-time-
anticipating with respect to the standard part (bt)t∈[0,∞[ of
(Bt−1)t∈ ∗N, constructed by Jerry Keisler.
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Now fix an uncritical k ∈ N. Then the k-th integral∫
fdpk of f , is defined by setting for each r ∈ [0,∞[∫

fdpk(X, r) := lim
◦ s
H ↓r

◦
∑
t≤s

F (X, t)pk(Xt).

Thus, we first integrate internally with respect to the dis-
crete martingale X 7→

(∑
t≤n pk(Xt)

)
n∈ ∗N and then take

the standard part.

In order to obtain the integral independent of k, we inte-
grate sequences (fk)k≥1,k is uncritical of non-time-anticipating
processes fk such that∑

k∈NL

∫
Ω×[0,∞[

f 2
kdµ̂⊗ λ <∞,

setting for r ∈ [0,∞[∫
(fk) dp (·, r) :=

∑
k∈NL

∫
fkdpk(·, r).
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6. Multiple Integrals

We integrate deterministic functions

f : NnL × [0,∞[n→ R

such that
∑

k∈NnL

∫
[0,∞[n f

2 (k, ·) dλn <∞. f is called sym-

metric [λn-a.s.] if

f(k1, ..., kn, t1, ..., tn) = f(kσ1
, ..., kσn, tσ1

, ..., tσn)

for all permutation σ on {1, ..., n} and [λn-almost] all t1, ..., tn.
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Let us first define for suitable liftings F of f and fixed
(k1, ..., kn) ∈ NnL

I(k1,...,kn)(f(k1, ..., kn, ·))(X) :=

◦
∑

t1<...<tn∈ ∗N

F (k1, ..., kn, t1, ..., tn)pk1
(Xt1) · ... · pkn(Xtn).

similar to the work of Cutland and Ng for the classical
Wiener space.

In order to define In(f) independent of k ∈ NnL, we set

In(f) :=
∑

(k1,...,kn)∈NnL

I(k1,...,kn)(f(k1,...,kn)).
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7. Chaos decomposition

LetW be the sub-σ-algebra of the Loeb σ-algebra Lµ (B),
generated by the “multiple” integrals I(k)(f) with k ∈ NL,
f ∈ L2 (λ), augmented by the µ̂-nullsets.

Each polynomial Q(I(k)(f)) in I(k)(f) is a linear com-
bination of multiple integrals with kernels of the form f1�
...� fn.

Theorem 7.1. Each ϕ ∈ L2
W (µ̂) has the decomposition

ϕ =
∞∑
n=0

In(fn) =
∞∑
n=0

In(
◦Fn) =

∞∑
n=0

∑
−→
k ∈NnL

◦
∑

t1<...<tn

Fn

(−→
k ,
−→
t
)
· pk1

(Xt1) · ... · pkn(Xtn)
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In order to obtain the Clark Ocone formula, note that
the preceding term equals

Eµ̂ϕ+
∞∑
n=1

∑
k∈NL

∑
−→
k ∈Nn−1

L

◦
∑
t∈ ∗N ∑

t1<...<tn−1<t

Fn

(−→
k , k,

−→
t , t
)
pk1

(Xt1) · ... · pkn−1
(Xtn−1

)︸ ︷︷ ︸
 pk(Xt) =

︷ ︸︸ ︷
E
Bt−

∑
t1<...<tn−1

Fn

(−→
k , k,

−→
t , t
)
pk1

(Xt1) · ... · pkn−1
(Xtn−1

)

Eϕ+

∫ (
t 7→ E

Bt−∨Nµ̂
∞∑
n=1

In−1
◦Fn (·, k, ·, t)

)
k∈NL

dp.

17



8. Comparison with the standard literature

Schoutens (2000) starts with the power jump process

L
(i)
t :=

∑
0<s≤t

(∆Ls)
i

of a Lévy process L such that the associated Lévy measure
has exponential moments. Then he uses the Lévy martin-
gales

Y
(i)
t := L

(i)
t − EL

(i)
t

to define multiple integrals. The integrators of these are

orthogonal martingales Z
(i)
t , where Z

(i)
t is a linear combi-

nation of the Y
(j)
t , j ≤ i. Schoutens uses these multiple

integrals to prove chaos decomposition for the L2-functions
on the underlying probability space, which are measurable
with respect to the σ-algebra, generated by the Lévy pro-
cess L.

Øksendal, Di Nunno, Proske et al. also used two param-
eter processes, now depending on [0,∞[ and on the whole
real numbers.
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The difference between his work and our approach is,
roughly speaking, the following: we orthonormalize the
powers

1 = (∆Lt)
0 , (∆Lt)

1 , (∆Lt)
2 ...

of the increments ∆Lt to

p0, p1, p2, ...

independent of t and integrate first for k ≥ 1 with respect
to the martingales ∑

s≤t
pk (∆Ls) .
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Similar to Cutland’s and Ng’s work for the Brownian
motion case, we have here also a nice recipe for the com-
putations of the kernels of the chaos decomposition

ϕ =
∞∑
i=0

In(
◦Fn).

If Φ is an S-square integrable lifting of ϕ, then

Fn(k1, ..., kn, t1, ..., tn) = EµΦ · pk1
(Xt1) · ... · pkn(Xtn) ·Hn =

EµΦ ·
∆Mk1

t1

∆t1
· ... ·

∆Mkn
tn

∆tn
·
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9. Malliavin derivative

Let ϕ ∈ L2
W (µ̂) with decomposition ϕ =

∑∞
n=0 In(fn).

The Malliavin derivative D is a densely defined op-

erator on L2
W (µ̂) in

(
L2
W (µ̂⊗ λ)

)
NL. This is the space of

sequences (ψk)k∈NLof ψk ∈ L2
W (µ̂⊗ λ) such that∑

k∈NL

∫
Ω×[0,∞[

ϕ2
kdµ̂⊗ λ <∞.

For k ∈ NL and r ∈ [0,∞[ we define

(Dϕ)k (·, r) :=
∞∑
n=1

In−1(fn(·, k, ·, r)

for those ϕ such that Dϕ converges in
(
L2
W (µ̂⊗ λ)

)
NL, in

which case ϕ is called Malliavin differentiable .
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10. The Skorohod integral

The Skorohod integral is a densely defined operator

δ :
(
L2
W (µ̂⊗ λ)

)
NL → L2

W (µ̂) .

In order to define δ we need a suitable decomposition of

(ϕk)k∈NL ∈
(
L2
W (µ̂⊗ λ)

)
NL :

ϕk (·, r) =
∞∑
n=0

In(fn(·, k, ·, r)).

Then

δ (ϕk)k∈NL :=
∞∑
n=0

In+1(f̃n)

for those (ϕk)k∈NL such that
∑∞

n=0 In+1(f̃n) converges in

L2
W (µ̂), in which case (ϕk)k∈NL is called Skorohod inte-

grable.
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The Skorohod integral is an extension of the integral,
defined above, and it is the adjoint operator of the Malliavin
derivative:〈

(ψk)k∈NL , Dϕ
〉

(L2
W(µ̂⊗λ))NL

=
〈
δ (ψk)k∈NL , ϕ

〉
L2
W(µ̂)

if δ (ψk)k∈NL and Dϕ exist.
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