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Mountain Pass Theorem of Ambrosetti-Rabinowitz

Definition: Let E be a real Banach space. We say that f ∈ C1(E, R)

satisfies the Palais-Smale condition ((PS) for short) if for all sequence

(un)n∈N in E,

(f(un))n∈N is bounded and lim
n→∞

f ′(un) = 0

⇓

(un)n∈N has a convergent subsequence.
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Mountain Pass Theorem of Ambrosetti-Rabinowitz

Mountain Pass Theorem of Ambrosetti-Rabinowitz (1973): Let E be a

real Banach space and f ∈ C1(E, R). Suppose that

1. there exist x1, x2 ∈ E and r ∈ R+ such that ‖ x1 − x2 ‖> r and

k0 := max{f(x1), f(x2)} < inf
‖y−x1‖=r

f(y);

2. Γ := {γ ∈ C([0, 1], E) : γ(0) = x1 ∧ γ(1) = x2} and

k1 := infγ∈Γ maxt∈[0,1] f(γ(t));

3. f satisfies (PS).

Then k1 > k0 and k1 is a critical value of f .
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Obtaining almost critical points in real Hilbert spaces

Lemma 1: Suppose H is a real Hilbert space with norm ‖ · ‖ and let U be

an open subset of H. Let f ∈ C1(U, R) and x ∈ ns(?U). If f ′(x) 6≈ 0,

then for every 0 < ε ≈ 0, the following inequality holds:

f(x − εf ′(x)) < f(x) − ε
‖ f ′(x) ‖2

2
.

Natália Martins 1 2 3 4©5 6 7 8 9 10 11 12 13 14 15 16 17 18



Mountain Pass Theorems without Palais-Smale conditions

Obtaining almost critical points in real Hilbert spaces

Lemma 2: Let H be a real Hilbert space with norm ‖ · ‖. Suppose that

f ∈ C1(H, R) satisfies the mountain pass geometry with respect to x1

and x2. Let

Γ := {γ ∈ C([0, 1], H) : γ(0) = x1 ∧ γ(1) = x2}

and

k1 := inf
γ∈Γ

max
t∈[0,1]

f(γ(t)).

Then

∀γ ∈?Γ
[ [

γ(?[0, 1]) ⊆ ns(?H) ∧ max
t∈?[0,1]

f(γ(t)) ≈ k1

]
⇒ ∃t0 ∈?[0, 1]

[
f(γ(t0)) ≈ k1 ∧ ‖ f ′(γ(t0)) ‖≈ 0

] ]
.
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Obtaining almost critical points in real Hilbert spaces

Proof: Take γ ∈?Γ such that

γ(?[0, 1]) ⊆ ns(?H) ∧ k2 := max
t∈?[0,1]

f(γ(t)) ≈ k1

and let k0 := max{f(x1), f(x2)}.

Then

k0 < k1 ≤ k2 ≈ k1.

Define

U := {t ∈?[0, 1] : k1 ≤ f(γ(t)) ≤ k2}

and

d := min{‖f ′(γ(t))‖ : t ∈ U}.
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Obtaining almost critical points in real Hilbert spaces

Suppose that d 6≈ 0.

Define

V :=
{

t ∈?[0, 1] : ‖f ′(γ(t))‖ >
d

2

}
and

W := ( ?[0, 1] \ V ) ∪ {0, 1}.

Note that U ⊆ V , V is ?open and W and U are ?closed.

Moreover,

U ∩ W = ∅.
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Obtaining almost critical points in real Hilbert spaces

Take u ∈?C([0, 1], [0, 1]) such that

u(W ) = {0} and u(U) = {1}.

Choose b such that

0 ≤ 2(k2−k1)
d2 < b ≈ 0

and define η :?[0, 1] → [0, b] by

η(t) := bu(t).

Define

γη(t) := γ(t) − η(t)f ′(γ(t)).

Note that γη ∈?Γ.
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Obtaining almost critical points in real Hilbert spaces

We will prove

∀t ∈?[0, 1] f(γη(t)) < k1. Contradiction!

If t ∈ W, then

f(γη(t)) = f
(
γ(t) − η(t)f ′(γ(t))

)
= f(γ(t)) < k1,

because η(t) = 0 and t 6∈ U .
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Obtaining almost critical points in real Hilbert spaces

If t ∈ U , then

f(γη(t)) = f(γ(t) − bf ′(γ(t)))

< f(γ(t)) − b
‖ f ′(γ(t)) ‖2

2
(by Lemma 1)

≤ f(γ(t)) − b
d2

2
< f(γ(t)) − (k2 − k1)

≤ k1.

If t ∈ V \ U , Lemma 1 and the definition of U imply

f(γη(t)) ≤ f(γ(t)) − η(t)
‖ f ′(γ(t)) ‖2

2
< k1.
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Obtaining almost critical points in real Hilbert spaces

Therefore, d ≈ 0.

Hence, there exists t0 ∈ U such that ‖ f ′(γ(t0)) ‖≈ 0, that is,

∃t0 ∈?[0, 1]
(

f(γ(t0)) ≈ k1 ∧ ‖ f ′(γ(t0)) ‖≈ 0
)
. �
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Mountain Pass Theorems without (PS) conditions

Mountain Pass Theorem without Palais-Smale conditions in finite

dimension: Let E be a finite dimensional real Banach space, x1, x2 ∈ E

and f ∈ C1(E, R). Suppose that

1. f satisfies the mountain pass geometry with respect to x1 and x2;

2. Γ := {γ ∈ C([0, 1], E) : γ(0) = x1 ∧ γ(1) = x2} and

k1 := infγ∈Γ maxt∈[0,1] f(γ(t));

3. there exists s ∈ R+ such that ‖ x2 − x1 ‖< s and if ‖ x − x1 ‖≥ s

then f(x) < k1.

Then k1 is a critical value of f .
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Mountain Pass Theorems without (PS) conditions

Proof: Let γ0 ∈?Γ be such that k1 ≤ maxt∈?[0,1] f(γ0(t)) ≈ k1.

We may assume that γ0(?[0, 1]) ⊆ Bs(x1) and, since E is finite

dimensional, γ0(?[0, 1]) ⊆ ns(?E).

Therefore, by Lemma 2, there exists t0 ∈?[0, 1] such that

f(γ0(t0)) ≈ k1 ∧ ‖ f ′(γ0(t0)) ‖≈ 0.

The continuity of f and f ′ shows that st(γ0(t0)) is a critical point with

value k1. �
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Mountain Pass Theorems without (PS) conditions

Example: Let h(x, y) = [1 − (x2 + y2)] exp−(x2+y2) arctan(x2 + y2) for

all (x, y) ∈ R2.
Clearly h is a C1 functional, h(0, 0) = 0, h(1, 0) = 0,

inf
‖(x,y)‖= 1

2

h(x, y) > k0 := max{h(0, 0), h(1, 0)} = 0

and

(x, y) 6∈ B2(0, 0) ⇒ h(x, y) < 0 < k1.

However, h does not satisfy (PS) condition:

(h(n, n))n∈N is bounded ∧
∂h

∂x
(n, n) → 0 ∧

∂h

∂y
(n, n) → 0

((n, n))n∈N does not contain a convergent subsequence.
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Mountain Pass Theorems without (PS) conditions

Mountain Pass Theorem without Palais-Smale conditions in Hilbert

spaces: Let H be a real Hilbert space, x1, x2 ∈ H and f ∈ C1(H, R).

Suppose that

1. f satisfies the mountain pass geometry with respect to x1 and x2;

2. Γ := {γ ∈ C([0, 1], H) : γ(0) = x1 ∧ γ(1) = x2} and

k1 := infγ∈Γ maxt∈[0,1] f(γ(t));

3. ∃γ ∈?Γ [ γ(?[0, 1]) ⊆ ns(?H) ∧ maxt∈?[0,1] f(γ(t)) ≈ k1 ].

Then k1 is a critical value of f .
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Mountain Pass Theorems without (PS) conditions

Example: Let h(x, y) = [1 − (x2 + y2)] exp−(x2+y2) arctan(x2 + y2) for

all (x, y) ∈ R2.

We saw that this function satisfies the mountain pass geometry with

respect to (0, 0) and (1, 0) and

(x, y) 6∈ B2(0, 0) ⇒ h(x, y) < 0.

Since k1 > 0, there exists γ ∈?Γ such that

max
t∈?[0,1]

h(γ(t)) ≈ k1 ∧ γ(?[0, 1]) ⊆ B2(0, 0) ⊆ ns(?R2).

Hence, h satisfies all the conditions of our theorem but do not satisfy

(PS) condition.
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