A GENERAL FATOU LEMMA Peter A. Loeb, Yeneng Sun

SETUP

Let Ω be a non-empty internal set,
\mathcal{A}_{0} an internal algebra on Ω, and
\mathcal{A} the σ-algebra generated by \mathcal{A}_{0}.
Let J be a finite or countably infinite set. $\forall j \in J$, let $\left(\Omega, \mathcal{A}_{0}, \mu_{0 j}\right)$ and $\left(\Omega, \mathcal{A}, \mu_{j}\right)$ be internal and Loeb probability spaces.

From these generate $\bar{\mu}$ so that $\forall j, \mu_{j} \ll \bar{\mu}$. We may assume \mathcal{A} is $\bar{\mu}$-complete.

Let Y be a separable Banach lattice, and X is its dual Banach space with the natural dual order (denoted by \leq) and lattice norm (i.e., $|x| \leq|z| \Rightarrow\|x\| \leq\|z\|)$).

Let P be any probability measure on (Ω, \mathcal{A}).

Definition. A sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ of functions from (Ω, \mathcal{A}, P) to X is said to be weak* P-tight, if for any $\varepsilon>0$, there exists a weak* compact set K in X such that for all $n \in \mathbb{N}, P\left(g_{n}^{-1}(K)\right)>1-\varepsilon$.

Definition. For each $x \in X, y \in Y$, the value of the linear functional x at y will be denoted by $\langle x, y\rangle$. A function f from (Ω, \mathcal{A}, P) to X is said to be Gelfand P integrable if for each $y \in Y$, the real-valued function $\langle f(\cdot), y\rangle$ is integrable on (Ω, \mathcal{A}, P).

Proposition. If $f:(\Omega, \mathcal{A}, P) \longmapsto X$ is Gelfand P-integrable, then there is a unique $x \in X$ such that $\langle x, y\rangle=$ $\int_{\Omega}\langle f(\omega), y\rangle P(d \omega)$ for all $y \in Y$.
(That element x, called the Gelfand integral, will be denoted by $\int_{\Omega} f d P$.)

$$
2
$$

Proof. (Well-known): Let $T(y)$ be the element of $L^{1}(P)$ given by $\omega \longmapsto\langle f(\omega), y\rangle$. By Closed Graph Theorem, $\|T\|<\infty$, so $\begin{aligned}\left|\int_{\Omega}\langle f(\omega), y\rangle P(d \omega)\right| & \leq \int_{\Omega}|\langle f(\omega), y\rangle| P(d \omega) \\ & \leq\|T\|\|y\| . \square\end{aligned}$

Simplifying Assumption: \exists an increasing (perhaps constant) sequence $y_{m} \geq 0$ in Y with $\lim _{m \rightarrow \infty}\left\langle x, y_{m}\right\rangle=\|x\| \forall x \geq 0$ in X.
The assumption is valid when $X=\ell^{1}$ or $X=\mathcal{M}(S)$, the space of finite, signed Borel measures on a second-countable, locally compact Hausdorff space S.

The main result, stated here for a sequence of functions $g_{n} \geq 0$, is generalized with the assumption that each $n \in \mathbb{N}, g_{n} \geq f_{n}$ where the sequence $\left\langle f_{n}\right\rangle$ has appropriate properties.

$$
3
$$

Theorem. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative functions from Ω to X.
Suppose $\forall j \in J$, each function g_{n} is
Gelfand integrable on $\left(\Omega, \mathcal{A}, \mu_{j}\right)$,
and the Gelfand integrals $\int_{\Omega} g_{n} d \mu_{j}$
have a weak* limit $a_{j} \in X$ as $n \rightarrow \infty$.
Then $\exists g: \Omega \mapsto X$ such that

1. for $\bar{\mu}$-a.e. $\omega \in \Omega, g(\omega)$ is a weak* limit point of $\left\{g_{n}(\omega)\right\}_{n=1}^{\infty}$,
2. the function g is Gelfand μ_{j}-integrable with $\int_{\Omega} g d \mu_{j} \leq a_{j}$ for each $j \in J$;
3. the integral $\int_{\Omega}\langle g, y\rangle d \mu_{j}=\left\langle a_{j}, y\right\rangle$ for any $y \in Y$ and $j \in J$ for which $\left\{\left\langle g_{n}, y\right\rangle\right\}_{n=1}^{\infty}$ is uniformly μ_{j}-integrable;
4. In particular, $\int_{\Omega} g d \mu_{j}=a_{j}$ for any $j \in J$ for which the sequence $\left\{\left\|g_{n}\right\|\right\}_{n=1}^{\infty}$ is uniformly μ_{j}-integrable.

Corollary. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of \mathcal{A}-measurable functions from Ω to a complete separable metric space Z.
Assume $\forall j \in J,\left\{\mu_{j} f_{n}^{-1}\right\}_{n=1}^{\infty}$ converges weakly to a Borel probability measure ν_{j}.
Then, there is an \mathcal{A}-measurable function f from Ω to Z such that $f(\omega)$ is a limit point of $\left\{f_{n}(\omega)\right\}_{n=1}^{\infty}$ for $\bar{\mu}$-a.e. $\omega \in \Omega$, and $\mu_{j} f^{-1}=\nu_{j}$ for each $j \in J$.

Corollary. A simplified version of our theorem holds for functions taking values in \mathbb{R}^{p}, where the norm of each $x=\left(x^{1}, \ldots, x^{p}\right)$ in \mathbb{R}^{p} is given by $\sum_{i=1}^{p}\left|x^{i}\right|$.
For a more general theorem, the following consequence of the Simplifying Assumption about X must be added to the hypotheses.
Claim. $\forall j \in J,\left\{g_{n}\right\}_{n=1}^{\infty}$ is weak* μ_{j}-tight.

Proof. By an argument of H . Lotz using the Monotone Convergence Theorem,
$\forall j \in J, \forall n \in \mathbb{N},\left\|\int_{\Omega} g_{n}(\omega) d \mu_{j}\right\|$
$=\lim _{m \rightarrow \infty}\left\langle\int_{\Omega} g_{n}(\omega) d \mu_{j}, y_{m}\right\rangle$
$=\lim _{m \rightarrow \infty} \int_{\Omega}\left\langle g_{n}(\omega), y_{m}\right\rangle d \mu_{j}$
$=\int_{\Omega} \lim _{m \rightarrow \infty}\left\langle g_{n}(\omega), y_{m}\right\rangle d \mu_{j}=\int_{\Omega}\left\|g_{n}(\omega)\right\| d \mu_{j}$.
The Gelfand integrals $\int_{\Omega} g_{n} d \mu_{j}$ converge in the weak*-topology, so by the Uniform Boundedness Principle $\exists M_{j}>0$ such that $\forall n \in \mathbb{N},\left\|\int_{\Omega} g_{n} d \mu_{j}\right\| \leq M_{j}$. Since

$$
\begin{aligned}
& \forall n, k \in \mathbb{N}, \int_{\left\{\left\|g_{n}(\omega)\right\| \geq k\right\}}\left\|g_{n}\right\| d \mu_{j} \leq M_{j} \\
& \mu_{j}\left(\left\{\omega \in \Omega:\left\|g_{n}(\omega)\right\| \geq k\right\}\right) \leq M_{j} / k .
\end{aligned}
$$

$$
6
$$

EXAMPLES

We have an example showing that even for a single measure μ, there may be no function g if μ is Lebesgue measure on $[0,1]$.
Here, we let $X=\ell^{1}$. An example of Liapounoff constructs an $h:[0,1] \rightarrow \ell^{1}$ such that for no $E \subset[0,1]$ is it true that for coordinate-wise integration,
$\int_{E} h(t) d t=\frac{1}{2} \int_{[0,1]} h(t) d t$.
We use the Liapounoff Theorem and $\forall n$ the first n components of h, to construct a sequence $g_{n} \geq 0$ satisfying the conditions of our theorem, but g can not exist by the Liapounoff example.
A modification of this first example shows that the corollary, even for \mathbb{R}^{2}, can fail when the measures μ_{j} are multiples of Lebesgue measure on $[0,1]$.

Lemma 1. Let X be a standard, separable metric space with metric ρ and the Borel σ-algebra \mathcal{B}. Fix $x_{0} \in X$.

Let P_{0} be an internal probability measure on $\left(\Omega, \mathcal{A}_{0}\right)$ with Loeb space (Ω, \mathcal{A}, P).

Let h be an internal, measurable map from $\left(\Omega, \mathcal{A}_{0}\right)$ to $\left({ }^{*} X,{ }^{*} \mathcal{B}\right)$.

Let ν be the internal probability measure on $\left({ }^{*} X,{ }^{*} \mathcal{B}\right)$ such that $\nu=P_{0} h^{-1}$.

Fix a standard tight probability measure γ on (X, \mathcal{B}) such that ${ }^{*} \gamma \simeq \nu$ in the nonstandard extension of the topology of weak convergence of Borel measures on X.

Then the standard part ${ }^{\circ} h(\omega)$ exists for P-almost all $\omega \in \Omega$ (where $h(\omega)$ is not nearstandard, set ${ }^{\circ} h(\omega)=x_{0}$). This function ${ }^{\circ} h$ is measurable, and $\gamma=P\left({ }^{\circ} h\right)^{-1}$.

Proof. For every standard, bounded, continuous real-valued f on X,

$$
\int_{*_{X}}{ }^{*} f d \nu \simeq \int_{*_{X}}{ }^{*} f d^{*} \gamma=\int_{X} f d \gamma .
$$

Let $K_{0}=\varnothing$, and $\forall n \in \mathbb{N}$, let $K_{n} \supseteq K_{n-1}$ be compact in X with $\gamma\left(K_{n}\right)>1-\frac{1}{2 n} . \forall j \in \mathbb{N}$,

$$
V_{n}^{j}:=\left\{x \in X: \rho\left(x, K_{n}\right)<\frac{1}{j}\right\}
$$

has the property that $\nu\left({ }^{*} V_{n}^{j}\right)>1-\frac{1}{n}$, whence $\exists H \in{ }^{*} \mathbb{N}_{\infty}$, with $\nu\left(V_{n}^{H}\right)>1-\frac{1}{n}$.

Now the monad $m\left(K_{n}\right):=\cap_{j \in \mathbb{N}^{*}} V_{n}^{j}$, and
$h^{-1}\left[m\left(K_{n}\right)\right]=h^{-1}\left[\cap_{j \in \mathbb{N}^{*}} V_{n}^{j}\right]=\cap_{j \in \mathbb{N}} h^{-1}\left[{ }^{*} V_{n}^{j}\right]$
is measurable and $P\left(h^{-1}\left[m\left(K_{n}\right)\right]\right) \geq 1-\frac{1}{n}$.
The standard part ${ }^{\circ} h$ is defined on $h^{-1}\left[m\left(K_{n}\right)\right]$, is measurable there, and takes values in K_{n}. 9

Therefore, ${ }^{\circ} h$ defines a measurable mapping from $\cup_{n} h^{-1}\left[m\left(K_{n}\right)\right]$ to $\cup_{n} K_{n}$, and

$$
P\left(\cup_{n} h^{-1}\left[m\left(K_{n}\right)\right]\right)=1 .
$$

Set ${ }^{\circ} h=x_{0}$ on $\Omega \backslash \cup_{n} h^{-1}\left[m\left(K_{n}\right)\right]$.
With this extension, ${ }^{\circ} h$ is a measurable mapping defined on (Ω, \mathcal{A}, P).
Finally, given a bounded, continuous, realvalued function f on X,
$\int_{X} f d P\left({ }^{\circ} h\right)^{-1}=\int_{\Omega} f \circ{ }^{\circ} h d P$
$=\int_{\Omega} \operatorname{st}(* f \circ h) d P$

$$
\begin{aligned}
& \simeq \int_{\Omega}^{*} f \circ h d P_{0}=\int_{*_{X}}{ }^{*} f d \nu \\
& \simeq \int_{*_{X}}{ }^{*} f d^{*} \gamma=\int_{X} f d \gamma
\end{aligned}
$$

It follows that $\gamma=P\left({ }^{\circ} h\right)^{-1}$ on X. \square
10

Lemma 2. Let (X, ρ) be a separable metric space with the Borel σ-algebra \mathcal{B}.

Let P_{0} be an internal probability measure on $\left(\Omega, \mathcal{A}_{0}\right)$ with Loeb space (Ω, \mathcal{A}, P).

Fix an internal sequence $\left\{h_{n}: n \in{ }^{*} \mathbb{N}\right\}$ of measurable maps from $\left(\Omega, \mathcal{A}_{0}\right)$ to $\left({ }^{*} X,{ }^{*} \mathcal{B}\right)$.

Fix a nonempty compact $K \subseteq X$.
Then $\exists H \in{ }^{*} \mathbb{N}_{\infty}$ and a P-null set $S \subset \Omega$ such that
if $n \leq H$ in $* \mathbb{N}_{\infty}$, while $\omega \notin S$, and $h_{n}(\omega)$ has standard part in K,
then for any standard $\varepsilon>0$, there are infinitely many limited $k \in \mathbb{N}$ for which ${ }^{*} \rho\left(h_{k}(\omega), h_{n}(\omega)\right)<\varepsilon$.

11

Proof. Given $l \in \mathbb{N}$ cover K with n_{l} open balls of radius $1 / l$. Let $B(l, j)$ denote the nonstandard extension of the $j^{\text {th }}$ ball.

For each $i \in * \mathbb{N}$, set

$$
A_{i}(l, j):=\left\{\omega \in \Omega: h_{i}(\omega) \notin B(l, j)\right\} .
$$

$\forall k \in \mathbb{N}$, choose $m_{k}(l, j) \in{ }^{*} \mathbb{N}_{\infty}$ so that $P\left(\cap_{i=k}^{m_{k}(l, j)} A_{i}(l, j)\right)=P\left(\cap_{i=k, i \in \mathbb{N}}^{\infty} A_{i}(l, j)\right)$.

Set
$S_{k}(l, j):=\left(\cap_{i=k, i \in \mathbb{N}}^{\infty} A_{i}(l, j)\right) \backslash \cap_{i=k}^{m_{k}(l, j)} A_{i}(l, j)$.
Fix $H \in{ }^{*} \mathbb{N}_{\infty}$ with $H \leq m_{k}(l, j)$ $\forall l \in \mathbb{N}, \forall j \leq n_{l}$, and $\forall k \in \mathbb{N}$.

Let S be the P-null set formed by the union of the set $S_{k}(l, j) \forall l \in \mathbb{N}, \forall j \leq n_{l}, \forall k \in \mathbb{N}$. 12

Fix $n \in{ }^{*} \mathbb{N}_{\infty}$ with $n \leq H$, and suppose st $\left(h_{n}(\omega)\right) \in K$ but $\exists l \in \mathbb{N}$ for which there are at most finitely many limited $k \in \mathbb{N}$ for which * $\rho\left(h_{k}(\omega), h_{n}(\omega)\right)<2 / l$.
Then for some $j \leq n_{l}, h_{n}(\omega) \in B(l, j)$, and by assumption there is a limited $k \in \mathbb{N}$ such that for all limited $i \geq k, h_{i}(\omega) \notin B(l, j)$. It follows that $\omega \in S_{k}(l, j) \subseteq S . \square$

Idea of Parts of Theorem's Proof.

Replace sequence $\left\{g_{n}\right\}$ with a subsequence so $\forall j \in J, \mu_{j} g_{n}{ }^{-1}$ converges weakly to γ_{j}.
Lift and extend $\left\{g_{n}\right\}$ to $\left\{h_{n}\right\}$ and work with measures $\mu_{0 j} h_{n}{ }^{-1}$. Use Lemma 1 to show $\exists H \in{ }^{*} \mathbb{N}_{\infty}$ so $g(\omega):=\left({ }^{\circ} h_{H}\right)(\omega)$ exists for $\bar{\mu}$-a.e. $\omega \in \Omega$ and $\gamma_{j}=\mu_{j}\left({ }^{\circ} h_{H}\right)^{-1} \forall j \in J$. Use Lemma 2 to show that for $\bar{\mu}$-a.e. $\omega \in \Omega$, $g(\omega)$ is a weak* limit point of $\left\{g_{n}(\omega)\right\}_{n=1}^{\infty}$.

