Second Order Properties of Models of First Order Arithmetic

Roman Kossak
City University of New York

RK, James H. Schmerl

The Structure of Models of Peano Arithmetic, Oxford Logic Guides, 2006

- $M \upharpoonright<$

Friedman's 14th Problem: Let $M \models$ PA and let T be a completion of PA. Is there $N \models T$ such that $M \upharpoonright<\cong N \upharpoonright<$?

Pabion's Theorem: For each uncountable cardinal $\kappa, M \upharpoonright<$ is κ-saturated iff M is κ-saturated.

Bovykin, Kaye 02: Various partial results.

- $M \upharpoonright+, M \upharpoonright \times$

Tennenbaum's Theorem: If M is nonstandard, then $+^{M}$ and \times^{M} are not computable. For countable $M, N, M \upharpoonright+\cong N \upharpoonright+$ iff $M \upharpoonright \times \cong N \upharpoonright$.

Each $M \upharpoonright+$ has $2^{\aleph_{0}}$ nonisomorphic expansions to models of PA.

Theorem (RK, Nadel, Schmerl): There are M, N such that $M \upharpoonright+\cong N \upharpoonright+$ and $M \upharpoonright \times \neq$ $N \upharpoonright$.

- $\operatorname{SSy}(M)=\{X \cap \mathbb{N}: X \in \operatorname{Def}(M)\}$

For every $M=\mathrm{PA},(\mathbb{N}, \mathfrak{X}) \models \mathrm{WKL}_{0}$.
Scott Set Problem: Let $(\mathbb{N}, \mathfrak{X})=\mathrm{WKL}_{0}$. Is there $M \models$ PA such that $\operatorname{SSy}(M)=\mathfrak{X}$?

Kanovei's Question: Is there a Borel model M such that $\operatorname{SSy}(M)=\mathcal{P}(\mathbb{N})$?

- $\operatorname{Lt}(M)=(\{K: K \prec M\}, \prec)$

Mills' Theorem: For every distributive lattice L (satisfying certain immediate necessary conditions) there is $M \models$ PA such that $\operatorname{Lt}(M) \cong L$.

Question: Is there a finite lattice which cannot be represented as $\operatorname{Lt}(M)$?

- $\left\{\operatorname{Th}(M, \operatorname{Cod}(M / I)): I \subseteq_{\text {end }} M\right\}$

For $I \subseteq$ end M,
$\operatorname{Cod}(M / I)=\{X \cap I: X \in \operatorname{Def}(M)\}$
$I \subseteq_{\text {end }} M$ is strong iff $(M, \operatorname{Cod}(M / I)) \models \mathrm{ACA}_{0}$
A countable recursively saturated M is arithmetically saturated iff \mathbb{N} is strong in M
(RK, Schmerl 95): Let T be a completion of PA. If M, N are countable arithmetically saturated models of T, then t.f.a.e:
(1) $M \cong N$
(2) $\operatorname{Lt}(M) \cong \operatorname{Lt}(N)$
(3) $\operatorname{Aut}(M) \cong \operatorname{Aut}(N)$

Key: If M is arithmetically saturated, then Aut (M) and $\operatorname{Lt}(M)$ know SSy (M).

- Aut(M)

Schmerl's Theorem: Let \mathfrak{A} be a linearly ordered structure. There is $M \models \mathrm{PA}$ such that $\operatorname{Aut}(M) \cong \operatorname{Aut}(\mathfrak{A})$.

- If $M \models$ PA is countable and recursively saturated, and \mathfrak{A} is a countable linearly ordered structure, then there is $K \prec_{\text {end }} M$ such that $\operatorname{Aut}(K, \operatorname{Cod}(M / K)) \cong \operatorname{Aut}(\mathfrak{A})$.
- $\operatorname{Th}(\operatorname{Aut}(M))$ is undecidable.
- It all works for PA*
- Nonstandard satisfaction classes
$S \subseteq M$ is a truth extension iff for all $\varphi(x)$

$$
(M, S) \models \forall x[\langle\ulcorner\varphi\urcorner, x\rangle \in S \longleftrightarrow \varphi(x)] .
$$

- Let $M \equiv$ PA be countable. Then, M is recursively saturated iff M has a truth extension such that $(M, S) \models \mathrm{PA}^{*}$.
- "Kossak's conjecture"
(model theory of countable recursively saturated models of PA) $=$ (model theory of $(M, S) \models \mathrm{PA}^{*}$, where S is a truth extension for M)
- Definable sets, inductive sets, classes
$\operatorname{Ind}(M)=\left\{X \subseteq M:(M, X) \vDash \mathrm{PA}^{*}\right\}$
$\operatorname{Class}(M)=\{X \subseteq M: \forall a \in M a \cap X \in \operatorname{Def}(M)\}$

Proposition. For every model M of PA^{*},

$$
\operatorname{Def}(M) \subseteq \operatorname{Ind}(M) \subseteq \operatorname{Class}(M)
$$

Proposition. If M is countable, then

$$
\operatorname{Def}(M) \subset \operatorname{Ind}(M) \subset \operatorname{Class}(M)
$$

- Undefinable inductive sets

Theorem. (Simpson 74) Let $M \vDash \mathrm{PA}^{*}$ be countable. There is $X \in \operatorname{Ind}(M)$ such that every element of M is definable in (M, X). (Cohen forcing in arithmetic)

Theorem. (Enayat 88) There are nonstandard models $M \models$ PA such that for every $X \in$ Class $(M) \backslash \operatorname{Def}(M)$, every element of M is definable in (M, X).

Theorem. (Schmerl 05) Let $\left\{A_{n}\right\}_{n<\omega}$ be a collection of inductive subsets of a countable model M. Then, there is $X \in \operatorname{Ind}(M)$ such that $A_{n} \in \operatorname{Def}(M, X)$, for each n. (Forcing with perfect trees)

- A digression

Definition. A subset of X a model M is large if every element of M is definable in $(M, a)_{a \in X}$.

Proposition. All unbounded definable sets are large.

Lemma. (Schmerl) For every unbounded $X \in$ $\operatorname{Def}(M)$ and every $a \in M$ there are an unbounded definable $Y \subseteq X$ and a Skolem term $t(x)$ such that for all $x \in Y, t(x)=a$.

Proposition. Every countable recursively saturated model of PA has an unbounded inductive subset which is not large.

- Classes and reals

Keisler, Schmerl 91:
$M \longrightarrow \mathbb{Q}(M) \longrightarrow \mathbb{R}^{M}$
$\mathbb{R}^{M}=\left\{D \subseteq_{\text {end }} \mathbb{Q}(M): D \in \operatorname{Def}(M)\right\}$
$\mathbb{R}^{M} \longrightarrow \widehat{\mathbb{R}^{M}}$ Scott completion

A cut I of an ordered field F is Dedekindean if for each positive $\delta \in F$ there is $x \in I$ such that $x+\delta>I$.

A field F is Scott complete is every Dedekindean cut of F has a supremum in F.
(D. Scott, 69) Every ordered field field F has a unique extension \widehat{F} which is Scott complete and F is dense in \widehat{F}.
$X \in \operatorname{Class}(M) \mapsto \Sigma_{i \in X} 2^{-(i+1)}$
For each $a \in M, s_{a}=\Sigma_{i \in a \cap X} 2^{-(i+1)}$.
$I_{X}=\left\{x \in \mathbb{R}^{M}: \exists a \in M\left(x<s_{a}\right)\right\}$ is Dedekindean.
$\sup \left(I_{X}\right)=r(X)$.
Proposition. For any model M of $\mathrm{PA}, \mathbb{R}^{M}$ is real closed and $\left|\widehat{\mathbb{R}^{M}}\right|=|\operatorname{Class}(M)|$.

Proposition. \mathbb{R}^{M} is Scott complete iff
$\operatorname{Class}(M)=\operatorname{Def}(M)$.

Definition. M is rather classless if $\operatorname{Def}(M)=$ Class(M)

Theorem. (Schmerl 81) Let T be a completion of PA^{*} in a countable language \mathcal{L}. Then, for every cardinal κ with $\operatorname{cf}(\kappa)>\aleph_{0}, T$ has a κ-like rather classless model.

Theorem. (Kaufmann 77 (\diamond), Shelah 78)
There is a recursively saturated rather classless ω_{1}-like model of PA.

Theorem. (Schmerl 02) For all regular $\lambda<$ μ, there is rather classless $M \models \mathrm{PA}$ such that $|M|=\mu$ and $|M|$ is λ-saturated.

- Conservative extensions

Definition. The extension $M \prec N$ is conservative if for every $X \in \operatorname{Def}(N), X \cap M \in$ $\operatorname{Def}(M)$.

Theorem. (MacDowel-Specker 61) Every model of PA* for countable language has a conservative elementary (end) extension.

Theorem. (Mills 78) Every countable nonstandard model $M \models$ PA has an expansion to a model of PA* with no conservative extension.

Theorem. (Enayat 06) There is $\mathfrak{X} \subseteq \mathcal{P}(\mathbb{N})$ such that $(\mathbb{N}, \mathfrak{X})$ has no conservative extension.

Let T be a completion of PA.
$p(v)$ is unbounded if $(v>t) \in p(v)$ for each closed Skolem term t.

Theorem. (Gaifman, 65-76) For $p(v) \in S_{1}(T)$ t.f.a.e.

- $p(v)$ is minimal
- $p(v)$ is indiscernible and unbounded
- $p(v)$ is rare and end-extensional
- $p(v)$ is selective and definable
- $p(v)$ is 2-indiscernible and unbounded [Schmerl]
- $p(v)$ is strongly indiscernible and unbounded
- If $p(v)$ is a minimal type of $\mathrm{Th}(M)$, then for every linearly ordered set $(I,<) M$ has a canonical I-extension generated over M by a set of (indiscernible) elements realizing $p(v)$.
- A problem: If $M \prec_{\text {end }} N$ and N is recursively saturated, then the extension is not conservative.
- A way out: Minimal types of $\operatorname{Th}(M, S)$, where S is a truth extension of M.

