Nonstandard Methods for Freimans Inverse Problems

Renling Jin

College of Charleston

Appetizers:

Nonstandard proofs of some well-known theorems in combinatorial number theory

Let $\left(T, \leqslant_{T}\right)$ be a tree and T_{α} be the α-th level of T for every ordinal α. The height of T is the least ordinal α such that $T_{\alpha}=\emptyset$.

König's Lemma Suppose T is an infinite tree with height ω (the first infinite ordinal). Suppose T_{n} is finite for each $n \in \mathbb{N}$. Then T must have an infinite path.

Proof Let $T=\bigcup_{n \in \mathbb{N}} T_{n}$ where T_{n} is the n-th level of T. Then ${ }^{*} T=\bigcup_{n \in{ }^{*} \mathbb{N}}{ }^{*} T_{n}$. Note that ${ }^{*} T_{n}=T_{n}$ for every standard n. Let H be a hyperfinite integer and $t_{H} \in T_{H}$. Then $\left\{t \in T: t \leqslant{ }_{T} t_{H}\right\}$ is an infinite path of T.

Ramsey's Theorem Given $f:[\mathbb{N}]^{2} \mapsto 2$, then there is an infinite set $A \subseteq \mathbb{N}$ such that f is a constant function on $[A]^{2}$.

Proof Suppose the theorem is not true. Let H be a hyperfinite integer. For $i=0,1$ let $A_{i} \subseteq \mathbb{N}$ be maximal such that ${ }^{*} f \mid\left[A_{i} \cup\{H\}\right]^{2} \equiv i$. By the transfer principle, there is $c \in \mathbb{N} \backslash\left(A_{0} \cup A_{1}\right)$ such that $f \upharpoonright\left[A_{i} \cup\{c\}\right]^{2} \equiv i$. Now ${ }^{*} f(c, H)=i$ violates the maximality of A_{i}.

Background Music:

Freiman's Inverse Phenomenon

If $A+A$ is "small", then A must have some arithmetic structure.

Let $a . p$. be an abbreviation for "arithmetic progression" and b.p. be an abbreviation for the union of two arithmetic progressions I and J with the same difference such that $I+I, I+J$, and $J+J$ are pairwise disjoint.

Let A be a finite subset of \mathbb{N} and $|A|=k$. Suppose c is a constant independent of k. If

$$
|A+A| \leqslant c k
$$

then c is called a doubling constant of A.
Freiman's "Great" Theorem Let $c \geqslant 2$ be a constant. There exists another constant c^{\prime} such that if $|A|=$ k and

$$
|A+A| \leqslant c k,
$$

then A is a subset of a $\lfloor c-1\rfloor$-dimensional arithmetic progression P and $|P| \leqslant c^{\prime} k$.

Well-known Fact

For every finite $A,|A+A| \geqslant 2 k-1$ and if $|A+A|=$ $2 k-1$, then A is an a.p.

Freiman's "Little" Theorem Let $|A|=k$.
(1) If $k>2$ and $|A+A|=2 k-1+b$ for $0 \leqslant b \leqslant k-3$, then A is a subset of an a.p. of length $k+b$.
(2) If $k>6$ and $|A+A|=3 k-3$, then A is either a subset of an a.p. of length $2 k-1$ or a $b . p$.
(3) If $k>10$ and $|A+A|=3 k-2$, then A is either a subset of an a.p. of length $2 k+1$ or a subset of a $b . p$. of (combined) length $k+1$.

Example (a) Let $A=[0, k-2] \cup\{k+b-1\}$ for $k>2$ and $b<k-2$. Then $|A|=k,|A+A|=2 k-1+b$ and A is a subset of an $a . p$. of length $k+b$. Hence the upper bound of the length of a.p. containing A in (1) is optimal.
(b) Let $A=[0, k-3] \cup\{k-1,2 k-2\}$ for $k>6$. Then $|A+A|=3 k-3$ and A is a subset of an a.p. of length $2 k-1$. Note that A is not a subset of a $b . p$. of reasonable length. Let $A=[0, k-2] \cup\left\{k^{2}\right\}$. Then $|A|=k,|A+A|=3 k-3$, and A is a $b . p$. Note that A is not an $a . p$. of reasonable length.

Freiman's $3 k-3+b$ Conjecture There is a $K>0$ such that if $|A|=k>K$ and $|A+A|=3 k-3+b$ for $0 \leqslant b \leqslant \frac{k}{3}-3$, then A is either a subset of an a.p. of length $2 k-1+2 b$ or a subset of a $b . p$. of length $k+b$.

It can be shown that the upper bound of the length of the $a . p$. and the upper bound of the length of the b.p. containing A in the conjecture above are optimal.

Example Let $k=3 n, m>2 n$, and $A=[0, n-1] \cup$ $[m, m+n-1] \cup[2 m, 2 m+n-1]$. Then $|A|=k$,

$$
|A+A|=10 n-5=3 k-3+\frac{k}{3}-2,
$$

and A is neither a subset of an a.p. of reasonable length nor a subset of a $b . p$. of reasonable length.

For an infinite set $A \subseteq \mathbb{N}$ let $A(n)=|A \cap[1, n]|$. The lower asymptotic density of A is defined by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{A(n)}{n} .
$$

Kneser's Theorem Let $A, B \subseteq \mathbb{N}$ be infinite. If $\underline{d}(A+B)<\underline{d}(A)+\underline{d}(B)$, then there exists a $g>0$ and $F, F^{\prime} \subseteq[0, g-1]$ such that
(1) $A \subseteq F+g \mathbb{N}$ and $B \subseteq F^{\prime}+g \mathbb{N}$ and
(2) $\underline{d}(A)+\underline{d}(B)>\frac{|F|+\left|F^{\prime}\right|}{g}-\frac{1}{g}$.

Remark The theorem above indicates that if $B=A$ and $\underline{d}(A+A)<2 \underline{d}(A)$, then A is a large subset of the union of $|F|-a . p$.'s of difference g.

Note that in Freiman's theorems, the structure can be pinpointed only when the doubling constant is $\leqslant 3$. However, if A is infinite, then either A has nice arithmetic structure or $\underline{d}(A+A) \geqslant 2 \underline{d}(A)$, which implies that we can find an increasing sequence a_{n} such that

$$
(A+A)\left(2 a_{n}\right) \geqslant 4 A\left(a_{n}\right)-\epsilon
$$

for any arbitrary $\epsilon>0$.

Main Course:

Nonstandard Cuts

An infinite proper initial segment U of \mathbb{N}^{*} is called a cut if $U+U \subseteq U$ (or U is a convex additive semi-group of non-negative integers). We often write $n<U$ for $n \in U$ and write $n>U$ for $n \in * \mathbb{N} \backslash U$.

Example \mathbb{N} is the smallest cut. Let H be a hyperfinite integer. Then

$$
U_{H}=\bigcap_{n \in \mathbb{N}}\left[0, \frac{H}{n}\right]
$$

is the largest cut below H.
Note that if $x<U_{H}$, then $\frac{x}{H} \approx 0$ and if $x>U_{H}$, then $\frac{x}{H}>\epsilon$ for some standard positive ϵ.

Proposition Let U be a cut and $A \subseteq * \mathbb{N}$ be internal.
(1) Suppose $g \in \mathbb{N}$ and $G \subseteq[0, g-1]$. If $A \cap U \subseteq G+$ $g * \mathbb{N}$, then there is $H>U$ such that $A \cap[0, H] \subseteq G+g \mathbb{N}$.
(2) Let $\alpha \in \mathbb{R}$. Suppose for every $x \in U$ there is $y \in A$ with $x<y<U$ such that $\frac{(A+A)(y)}{y} \geqslant \alpha$. Then there is a $H>U$ in A such that $\frac{(A+A)(H)}{H} \geqslant \alpha$.
Proof The proposition follows from the fact that a set definable by a first-order formula with internal parameters is internal.

Lower U-Density of A

Let U be a cut and $A \subseteq \mathbb{N}$ be internal. The lower U-density of A is defined by
$\underline{d}_{U}(A)=\sup \left\{\inf \left\{s t\left(\frac{A(x)}{x}\right): m<x<U\right\}: m<U\right\}$.
Note that for $A \subseteq \mathbb{N}$ we have $\underline{d}_{\mathbb{N}}\left({ }^{*} A\right)=\underline{d}(A)$.
From now on we are only interested in the cut of the form U_{H} for some hyperfinite integer H. When H is clearly given, we will drop the subscript H and simply write U for U_{H}.

Key Lemma Let H be hyperfinite and $A \subseteq[0, H]$ be internal such that $0 \in A$ and $0<\underline{d}_{U}(A)=\alpha<\frac{2}{3}$. Then one of the following is true.
(1) There is $g>1$ such that $A \cap U \subseteq g U$.
(2) There is $g>1$ and $a \in[1, g-1]$ with $2 a \neq g$ such that $A \cap U \subseteq g U \cup(a+g U)$.
(3) There is a positive standard real ϵ such that for every $x<U$, there is $y \in A$ with $x<y<U$ and

$$
\frac{(A+A)(2 y)}{2 y} \geqslant \frac{3}{2} \alpha+\epsilon
$$

The lemma above is a weak version of Kneser's theorem for U.

Theorem There exist $K \in \mathbb{N}$ and $\epsilon \in \mathbb{R}, \epsilon>0$, such that if $|A|=k>K$ and $|A+A|=3 k-3+b$ for $0 \leqslant b \leqslant \epsilon k$, then A is either a subset of an a.p. of length $2 k-1+2 b$ or A is a subset of a b.p. of length $k+b$.

Idea of Proof

First Step Suppose the theorem is not true. For each $n \in \mathbb{N}$ there is a counter-example A_{n} with $\left|A_{n}\right|=k_{n}>n$ and

$$
\left|A_{n}+A_{n}\right|-3 k_{n}-3<\frac{1}{n} k_{n} .
$$

Let N be a hyperfinite integer such that $A=A_{N}$ is a counter-example of the theorem with $|A|$ being hyperfinite and $\frac{|A+A|}{|A|} \approx 3$. Without loss of generality we can assume

$$
\begin{gathered}
0=\min A, H=\max A, \operatorname{gcd}(A)=1, \\
\text { and } s t\left(\frac{|A|}{H+1}\right)=\alpha>0 .
\end{gathered}
$$

Note that $\alpha \leqslant \frac{1}{2}$. We can also assume that α is the least number such that there is a hyperfinite counter-example of the theorem $A \subseteq[0, H]$ for some hyperfinite number H with $0, H \in A, \operatorname{gcd}(A)=1$, and $s t\left(\frac{|A|}{H+1}\right)=\alpha$.

Second Step Let $\beta=\underline{d}_{U}(A)$.
Case 1: $\beta \geqslant \frac{2}{3}$. Then there is $N>U$ in A such that $[0, N] \subseteq A+A$ and $s t\left(\frac{A(N, H)}{H-N+1}\right)<\alpha$.

Case 2: $0<\beta<\frac{2}{3}$. Then either (a) $A+A$ has nice arithmetic structure in $[0, N]$ for some $N>U$ in A or (b) $(A+A)(2 N) \geqslant(3+\epsilon) A(N)$ for some $N>U$ in A. If (a) is true, then we have a pan-handle to start a tedious verification process that A has the desired structure, which is not assumed to have. If (b) is true, then we can derive the conclusion that $\frac{|A+A|}{|A|} \geqslant 3+\epsilon$ for some positive standard ϵ, which again leads to a contradiction.

Case 3: $\beta=0$. Then we can consider the lower U density of A from the right end of an interval $[0, N]$ for some $N>U$ in A instead.

Work in Progress

Improved Key Lemma Let H be hyperfinite, $A \subseteq$ $[0, H]$ be internal, $0 \in A$, and $0<\underline{d}_{U}(A)=\alpha<\frac{3}{8}$. Then one of the following is true.
(1) There is $g>0$ such that $A \cap U \subseteq g U$.
(2) There is $g>0$ and $a \in[1, g]$ such that $\mid\{0, a\}+$ $\{0, a\} \mid=3 \bmod g$ and

$$
A \cap U \subseteq\{0, a\}+g U .
$$

(3) There is $g>0$ and $a, b \in[1, g-1]$ such that $|\{0, a, b\}+\{0, a, b\}|=5 \bmod g$ and

$$
A \cap U \subseteq\{0, a, b\}+g U .
$$

(4) For every $x<U$ there is $y \in A$ with $x<y<U$ such that

$$
(A+A)(2 y) \geqslant\left(\frac{10}{3}+\epsilon\right) A(y) .
$$

Conjecture (hope to be settled soon) There is $K \in \mathbb{N}$ such that for any $0<c<\frac{1}{3}$ and any A with $|A|=k>K$ and

$$
|A+A|=3 k-3+b
$$

for $0 \leqslant b \leqslant c k, A$ is either a subset of an a.p. of length $2 k-1+2 b$ or a subset of a b. p. of length $k+b$.

Dessert:

Applications to Upper Asymptotic Density Prob-

 lemsThe upper asymptotic density of an infinite $A \subseteq \mathbb{N}$ is defined by

$$
\bar{d}(A)=\underset{n \rightarrow \infty}{\limsup } \frac{A(n)}{n} .
$$

What will be the structure of A when $\bar{d}(A+A)$ is small?

Fact Suppose $0 \in A, \operatorname{gcd}(A)=1$, and $\bar{d}(A)=\alpha \leqslant \frac{1}{2}$. Then $\bar{d}(A+A) \geqslant \frac{3}{2} \alpha$.

Example (1) If $A=10 \mathbb{N} \cup(3+10 \mathbb{N})$, then $\bar{d}(A+A)=\frac{3}{2} \bar{d}(A)$.
(2) If

$$
A=\bigcup_{n \in \mathbb{N}}\left[(1-\alpha) 2^{2^{n}}, 2^{2^{n}}\right]
$$

for $\alpha \leqslant \frac{1}{2}$, then $\bar{d}(A)=\alpha$ and $\bar{d}(A+A)=\frac{3}{2} \alpha$.

Theorem Let $A \subseteq \mathbb{N}$ be such that $0 \in A, \operatorname{gcd}(A)=1$, $0<\bar{d}(A)=\alpha<\frac{1}{2}$ and $\bar{d}(A+A)=\frac{3}{2} \alpha$. Then one of the following is true.
(1) There is $g>1$ and $a \in[1, g-1]$ such that $A \subseteq$ $g \mathbb{N} \cup(a+g \mathbb{N})$ and $\frac{2}{g}=\alpha$.
(2) For any increasing sequence a_{n} of positive integers with $\lim _{n \rightarrow \infty} \frac{A\left(a_{n}\right)}{a_{n}}=\alpha$ there exist $0 \leqslant c_{n} \leqslant b_{n} \leqslant a_{n}$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{c_{n}}{a_{n}}=0, \\
\lim _{n \rightarrow \infty} \frac{A\left(b_{n}, a_{n}\right)}{a_{n}-b_{n}+1}=1, \text { and }
\end{gathered}
$$

$A \cap\left[c_{n}+1, b_{n}-1\right]=\emptyset$ for each $n \in \mathbb{N}$.
There are also results about the structure of A when $\bar{d}(A) \geqslant \frac{1}{2}$ and $\bar{d}(A+A)$ achieves the least possible value. But they are less interesting.

Bordes' Theorem Let $0 \in A$ and $\operatorname{gcd}(A)=1$. There is $\alpha_{0}>0$ such that if $\bar{d}(A)=\alpha \leqslant \alpha_{0}$ and $\bar{d}(A+A)=\sigma \bar{d}(A)$ for some σ with $\frac{3}{2} \leqslant \sigma<\frac{5}{3}$, then one of the following is true.
(1) There is $g>1$ and $a \in[1, g-1]$ such that $A \subseteq$ $g \mathbb{N} \cup(a+g \mathbb{N})$ and $\alpha \geqslant \frac{6}{(4 \sigma-3) g}$.
(2) There are sequences $0 \leqslant c_{n} \leqslant b_{n} \leqslant a_{n}$ such that a_{n} is increasing, $\lim _{n \rightarrow \infty} \frac{A\left(a_{n}\right)}{a_{n}}=\alpha, A \cap\left[c_{n}+1, b_{n}-1\right]=\emptyset$ for every $n \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \frac{c_{n}}{a_{n}-b_{n}} \leqslant \frac{2 \sigma-3}{2 \sigma-2}\left(\frac{1}{2 \sigma-2}-\alpha\right)^{-1}
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{A\left(b_{n}, a_{n}\right)}{a_{n}-b_{n}+1} \geqslant \\
& \quad\left(\frac{1}{2 \sigma-2}+\left(\frac{1}{2 \sigma-2}-\alpha\right) \lim _{n \rightarrow \infty} \frac{c_{n}}{a_{n}-b_{n}}\right) .
\end{aligned}
$$

We hope to prove a common generalization of both theorems soon.

Fortune Cookie Reading:

Questo non e' un pollo alla Cantonese.

