RELATIVE SET THEORY

Karel Hrbacek

Department of Mathematics
The City College of New York

This is a report on a work in progress.
Partial results are in
(1) Internally iterated ultrapowers, in: Nonstandard Models of Arithmetic and Set Theory, ed. by A. Enayat and R. Kossak, Contemporary Math. 361, AMS, Providence, R.I., 2004.
(2) Stratif ied analysis?, in: Proceedings of the International Conference on Non standard Mathematics NSM2004, Aveiro 2004, 13 pages; accepted.

Hilbert:

We know sets before we know their elements.

Elementary theory:

We work in ZFC extended by a new binary "precedence" predicate \sqsubseteq.
$y \sqsubseteq x$ reads " y is accessible to x ".
We also write $y \in \mathbf{v}(x)$ for $y \sqsubseteq x$ and read it " y is at level x ".

We postulate: (o) $x \in \mathbf{v}(x)$
(i) $y \in \mathbf{v}(x) \Rightarrow \mathbf{v}(y) \subseteq \mathbf{v}(x)$
(ii) $(\forall x)(\exists n \in \mathbf{N})(\mathbf{v}(x)=\mathbf{v}(n))$
(iii) $(\forall m, n \in \mathbf{N})(m \leq n \Rightarrow m \in \mathbf{v}(n))$
(iv) $(\forall m \in \mathbf{N})(\exists n \in \mathbf{N})(\mathbf{v}(m) \subset \mathbf{v}(n))$
(v) $\mathbf{v}(m) \subset \mathbf{v}(n) \Rightarrow(\exists k)(\mathbf{v}(m) \subset \mathbf{v}(k) \subset \mathbf{v}(n))$.

Transfer Principle. If $x_{1}, \ldots, x_{n} \in \mathbf{v}(\alpha) \cap \mathbf{v}(\beta)$ then $\mathcal{P}\left(x_{1}, \ldots, x_{n} ; \mathbf{v}(\alpha)\right)$ iff $\mathcal{P}\left(x_{1}, \ldots, x_{n} ; \mathbf{v}(\beta)\right)$.

The coarsest level containing x_{1}, \ldots, x_{n} is $\mathbf{v}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{v}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$; hence $\mathcal{P}\left(x_{1}, \ldots, x_{n} ; \mathbf{v}\left(x_{1}, \ldots, x_{n}\right)\right)$ iff $\mathcal{P}\left(x_{1}, \ldots, x_{n} ; \mathbf{v}(\alpha)\right)$ provided $x_{1}, \ldots, x_{n} \in \mathbf{v}(\alpha)$.

Predicates of the form $\mathcal{P}\left(x_{1}, \ldots, x_{n} ; \mathbf{v}\left(x_{1}, \ldots, x_{n}\right)\right)$ are called acceptable.
(Previously defined acceptable predicates may occur in \mathcal{P}.)
De finition Principle. If \mathcal{P} is acceptable then
$B:=\{x \in A: \mathcal{P}(x, A, \bar{p} ; \mathbf{v}(x, A, \bar{p}))\}$ is a set and $B \in \mathbf{v}(A, \bar{p})$. Similarly, if \mathcal{P} is acceptable and $(\forall x \in A)(\exists!y) \mathcal{P}(x, y, A, \bar{p} ; \mathbf{v}(x, A, \bar{p}))$ then $F(x)=y \Leftrightarrow x \in A \wedge \mathcal{P}(x, y, A, \bar{p} ; \mathbf{v}(x, y, A, \bar{p}))$ defines a function and $F \in \mathbf{v}(A, \bar{p})$.

De finition.

(a) $x \in \mathbf{R}$ is α-limited iff $|x|<n$ for some n in $\mathbf{N} \cap \mathbf{v}(\alpha)$.
(b) $h \in \mathbf{R}$ is α-inf initesimal iff $h \neq 0$ and $|h|<\frac{1}{n}$ for all n in $\mathbf{N} \cap \mathbf{v}(\alpha)$.
(c) x is α-inf initely close to y iff $x-y$ is α-infinitesimal or 0. (Notation: $x \approx_{\alpha} y$.)

Standardization Principle for Real Numbers.

For every α-limited $x \in \mathbf{R}$ there is $r \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that $x \approx_{\alpha} r$.

This r is unique; we call it the α-shadow of x and denote it $\mathbf{s h}_{\alpha}(x)$.

Proposition.

(1) If $x, y \in \mathbf{R}$ are α-limited then $x+y, x-y, x y$ are α-limited.
(2) If h, k are α-infinitesimal and $x \in \mathbf{R}$ is α-limited then $h+k, h-k, x h$ are α-infinitesimal.
(3) $z \in \mathbf{R}$ is α-infinitesimal iff $\frac{1}{z}$ is α-unlimited.
(4) \approx_{α} is an equivalence relation.

If $x_{1} \approx_{\alpha} y_{1}$ and $x_{2} \approx_{\alpha} y_{2}$ then $x_{1}+x_{2} \approx_{\alpha} y_{1}+y_{2}$. If x_{1}, x_{2} are α-limited then also $x_{1} x_{2} \approx_{\alpha} y_{1} y_{2}$.

Proposition. Let $x, y \in \mathbf{R}$ be α-limited.
(0) x is α-infinitesimal iff $\operatorname{sh}_{\alpha}(x)=0$.
(1) $x \leq y$ implies $\operatorname{sh}_{\alpha}(x) \leq \operatorname{sh}_{\alpha}(y)$.
(2) $\mathbf{s h}_{\alpha}(x+y)=\mathbf{s h}_{\alpha}(x)+\mathbf{s h}_{\alpha}(y)$.
(3) $\mathbf{s h}_{\alpha}(x-y)=\mathbf{s h}_{\alpha}(x)-\mathbf{s h}_{\alpha}(y)$.
(4) $\mathbf{s h}_{\alpha}(x y)=\operatorname{sh}_{\alpha}(x) \mathbf{s h}_{\alpha}(y)$.
(5) If y is not α-infinitesimal then $\mathbf{s h}_{\alpha}\left(\frac{x}{y}\right)=\frac{\mathbf{s h}_{\alpha}(x)}{\operatorname{sh}_{\alpha}(y)}$.

Proposition.

(a) If $x \in \mathbf{R}$ is α-infinitesimal and $\beta \sqsubseteq \alpha$ then x is β-infinitesimal.
(b) Every α-limited natural number is in $\mathbf{v}(\alpha)$.
(c) If y is α-infinitesimal then there is an α-infinitesimal x such that y is x-infinitesimal.

Example: CONTINUITY.

De fintion. f is continuous at x iff $y \approx_{\langle f, x\rangle} x$ implies $f(y) \approx_{\langle f, x\rangle} f(x)$.

Equivalently, f is continuous at x iff $y \approx_{\alpha} x$ implies $f(y) \approx_{\alpha} f(x)$, for some or all α such that $f, x \in \mathbf{v}(\alpha)$.

De finition.
f is uniformly continuous iff for all $x, y \in \operatorname{dom} f$,
$y \approx_{f} x$ implies $f(y) \approx_{f} f(x)$.
Let $\vec{s}:=\left\langle s_{n}: n \in \mathbf{N}\right\rangle$ be an infinite sequence of reals. $r \in \mathbf{R}$ is a limit of \vec{s} iff $r=\operatorname{sh}_{\vec{s}}\left(s_{n}\right)$ for all \vec{s}-unlimited n.

Let $\vec{f}:=\left\langle f_{n}: n \in \mathbf{N}\right\rangle$ be an infinite sequence of real valued functions with common domain $A \subseteq \mathbf{R}$.
$f_{n} \rightarrow f$ pointwise iff
for all $x \in A$ and all $\langle\vec{f}, x\rangle$-unlimited $n, f_{n}(x) \approx_{\langle\vec{f}, x\rangle} f(x)$. $f_{n} \rightarrow f$ uniformly iff
for all x and all \vec{f}-unlimited $n, f_{n}(x) \approx_{\vec{f}} f(x)$.
Proposition. The limit of a uniformly convergent sequence of continuous functions is continuous.

Proof. Let $f=\lim _{n \rightarrow \infty} f_{n}$; we note first that if $\vec{f} \in \mathbf{v}(\alpha)$ then also $f \in \mathbf{v}(\alpha)$, by Definition Principle. For $x, x^{\prime} \in A$, $\left|f\left(x^{\prime}\right)-f(x)\right| \leq$ $\left|f\left(x^{\prime}\right)-f_{\nu}\left(x^{\prime}\right)\right|+\left|f_{\nu}\left(x^{\prime}\right)-f_{\nu}(x)\right|+\left|f_{\nu}(x)-f(x)\right|$. If $x^{\prime} \approx_{\alpha} x$ then $x^{\prime} \approx_{\nu} x$ for some α-unlimited ν. Now the middle term is ν-infinitesimal, by continuity of f_{ν}, hence also α-infinitesimal, and the other two are α-infinitesimal by definition of uniform convergence. So $f\left(x^{\prime}\right) \approx_{\alpha} f(x)$.

Proof of equivalence with the standard definition of continuity:
\Rightarrow : Given $\epsilon>0$ fix α such that $f, x, \epsilon \in \mathbf{v}(\alpha)$. Let δ be α-infinitesimal. If $|y-x|<\delta$ then $y \approx_{\alpha} x$, so $f(y) \approx_{\alpha} f(x)$ and hence $|f(y)-f(x)|<\epsilon$.
\Leftarrow : Fix α such that $f, x \in \mathbf{v}(\alpha)$. Let $x^{\prime} \in \operatorname{dom} f, x^{\prime} \approx_{\alpha} x$; we have to show that $f\left(x^{\prime}\right) \approx_{\alpha} f(x)$ Given $\epsilon \in \mathbf{v}(\alpha), \epsilon>0$, there exists δ such that
$\left(^{*}\right)(\forall y \in \operatorname{dom} f)(|y-x|<\delta \Rightarrow|f(y)-f(x)|<\epsilon)$.
We take one such δ and fix β so that $f, x, \epsilon, \delta \in \mathbf{v}(\beta)$. Then there exists $\delta \in \mathbf{v}(\beta)$ such that $(*)$; hence by Transfer, there exists $\delta \in \mathbf{v}(\alpha)$ such that $\left(^{*}\right)$. As $\left|x^{\prime}-x\right|$ is α-infinitesimal, we have $\left|x^{\prime}-x\right|<\delta$, hence $\left|f\left(x^{\prime}\right)-f(x)\right|<\epsilon$. This is true for all $\epsilon \in \mathbf{v}(\alpha)$, proving $f\left(x^{\prime}\right) \approx_{\alpha} f(x)$.

Example: DERIVATIVE.

De finition.
f is differentiable at x iff there is an $\langle f, x\rangle$-standard $L \in \mathbf{R}$ such that $\frac{f(x+h)-f(x)}{h}-L$ is $\langle f, x\rangle$-infinitesimal, for all $\langle f, x\rangle$-infinitesimal $h \neq 0$.
If this is the case, $f^{\prime}(x):=L=\operatorname{sh}_{\langle f, x\rangle}\left(\frac{f(x+h)-f(x)}{h}\right)$.

Proposition. If f is differentiable at x then f is continuous at x.

Proof By definition, for any $\langle f, x\rangle$-infinitesimal h, $f(x+h)-f(x)=L h+k h$ where k is $\langle f, x\rangle$-infinitesimal. This value is $\langle f, x\rangle$-infinitesimal.

Proposition. (l'Hôpital Rule)
If $\lim _{x \rightarrow a}|g(x)|=\infty \quad$ and $\quad \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=d \in \mathbf{R} \quad$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=d$.

Proof (after Benninghofen and Richter). We can assume that $a=0$ (replace x by $x-a$). Fix α so that $f, g, d \in$ $\mathbf{v}(\alpha)$. Let x be α-infinitesimal and y be x-infinitesimal. By Cauchy's Theorem, there is η between x and y (hence, η is α-infinitesimal) such that $\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f^{\prime}(\eta)}{g^{\prime}(\eta)} \approx_{\alpha} d$. Now factor
$d \approx_{\alpha} \frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f(y)-f(x)}{g(y)} \times \frac{g(y)}{g(y)-g(x)}=\left(\frac{f(y)}{g(y)}-\frac{f(x)}{g(y)}\right)\left(1-\frac{g(x)}{g(y)}\right)^{-1}$
and observe that $\frac{f(x)}{g(y)} \approx_{\alpha} 0, \frac{g(x)}{g(y)} \approx_{\alpha} 0$.
$\left(\lim _{x \rightarrow 0}|g(x)|=\infty\right.$ implies that for all α-infinitesimal z, $g(z)$ is α-unlimited. By transfer to x-level, for all x-infinitesimal $z, g(z)$ is x-unlimited. As y is x-infinitesimal, $\frac{f(x)}{g(y)}$ and $\frac{g(x)}{g(y)}$ are x-infinitesimal.)

It follows that the first factor is α-infinitely close to $\frac{f(y)}{g(y)}$ and the second to 1 . From properties of infinitesimals we conclude that $\frac{f(y)}{g(y)} \approx_{\alpha} d$.

Every α-infinitesimal y is x-infinitesimal for some α-infinitesimal x. Hence $\frac{f(y)}{g(y)} \approx_{\alpha} d$ holds for every α-infinitesimal y, and we are done.

FRIST:

Language: \in, \sqsubseteq (binary).
$\mathbb{S}_{\alpha}:=\mathbf{v}(\alpha)=\{x: x \sqsubseteq \alpha\} ;$ in particular $\mathbb{S}:=\mathbb{S}_{0}$.
$x \sqsubseteq_{\alpha} y \equiv(x \sqsubseteq \alpha \wedge y \sqsubseteq \alpha) \vee x \sqsubseteq y$.
Let φ be any \in - \sqsubseteq-formula; φ^{α} denotes the formula obtained from φ by replacing each occurence of \sqsubseteq by \sqsubseteq_{α}.

Axioms:

ZFC (Separation and Replacement for \in-formulas only).
Strati fication: \sqsubseteq is a dense linear preordering with a least element 0 and no greatest element.

Boundedness: $(\forall x)\left(\exists A \in \mathbb{S}_{0}\right)(x \in A)$
Transfer: For any $\alpha, \quad\left(\forall \bar{x} \in \mathbb{S}_{0}\right)\left(\varphi^{0}(\bar{x}) \Leftrightarrow \varphi^{\alpha}(\bar{x})\right)$.

Standardization:

$(\forall \bar{x})\left(\forall x \in \mathbb{S}_{0}\right)\left(\exists y \in \mathbb{S}_{0}\right)\left(\forall z \in \mathbb{S}_{0}\right)$
$\left(z \in y \Leftrightarrow z \in x \wedge \varphi^{0}(z, x, \bar{x})\right)$.

Idealization:

For any $0 \sqsubset \alpha$, any $A, B \in \mathbb{S}_{0}$ and any \bar{x},
$\left(\forall a \in A^{\text {fin }} \cap \mathbb{S}_{0}\right)(\exists x \in B)(\forall y \in a) \varphi^{\alpha}(x, y, \bar{x})$
$\Leftrightarrow(\exists x \in B)\left(\forall y \in A \cap \mathbb{S}_{0}\right) \varphi^{\alpha}(x, y, \bar{x})$.
In these axioms φ can be any \in - \sqsubseteq-formula, not just an ϵ-formula as usual. 0 can be replaced by any $\beta \sqsubseteq \alpha$: FRIST is fully relativized.

Theorem. FRIST is a conservative extension of ZFC. In fact, FRIST has a standard core interpretation in ZFC.

Example: LEBESGUE MEASURE on [0, 1].

\mathcal{B} is the algebra generated by all left-closed right-open intervals.
$l([a, b))=b-a$ for $a<b$.
$l(b)=\sum_{k=1}^{n} l\left(I_{k}\right)$ if $b=\bigcup_{k=1}^{n} I_{k} \in \mathcal{B}$ and the I_{k} are mutually disjoint.

Proposition. Let $X \subseteq[0,1], X \in \mathbf{v}(\alpha)$, and $\alpha \sqsubset \beta$. X is Lebesgue measurable iff there exist $b_{1}, b_{2} \in \mathcal{B}$ such that $b_{1} \subseteq \operatorname{sh}_{\beta}^{-1}(X) \subseteq b_{2}$ and $l\left(b_{2}\right)-l\left(b_{1}\right)$ is α-inf initesimal. $\mathbf{s h}_{\alpha}\left(l\left(b_{1}\right)\right)=\mathbf{s h}_{\alpha}\left(l\left(b_{2}\right)\right)$ is the Lebesgue measure of X.

Example: HIGHER DERIVATIVES.

We assume that $f, x \in \mathbf{v}(\alpha)$ and $f^{\prime}(y)$ exists for all $y \approx_{\alpha} x$.
If $f^{\prime \prime}(x)=L$ exists, then $L \approx_{\alpha} \frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}$ holds for all $h \approx_{\alpha} 0, h \neq 0$. However, the converse of this statement is false; existence of $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ with the above property does not imply that $f^{\prime \prime}(x)$ exists.

Proposition. Assume that $f, x \in \mathbf{v}(\alpha)$ and $f^{\prime}(y)$ exists for all $y \approx_{\alpha} x$. Then $f^{\prime \prime}(x)$ exists iff there is a $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that
$L \approx_{\alpha} \frac{f\left(x+h_{0}+h_{1}\right)-f\left(x+h_{0}\right)-f\left(x+h_{1}\right)+f(x)}{h_{0} h_{1}}$
for all $h_{0} \approx_{\alpha} 0, h_{1} \approx_{h_{0}} 0, h_{0}, h_{1} \neq 0$.
If this is the case, $f^{\prime \prime}(x)=L$.

Proposition. Assume that $n, f, x \in \mathbf{v}(\alpha)$ and $f^{(n-1)}(y)$ exists for all $y \approx_{\alpha} x$. Then $f^{(n)}(x)$ exists iff there is $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that
$L \approx_{\alpha} \frac{1}{h_{0} \ldots h_{n-1}} \sum_{i}(-1)^{i_{0}+\ldots+i_{n-1}} f\left(x+h^{i_{0}}+\ldots+h^{i_{n-1}}\right)$
for all $\left\langle h_{0}, \ldots, h_{n-1}\right\rangle$, where $i=\left\langle i_{0}, \ldots, i_{n-1}\right\rangle \in\{0,1\}^{n}$, $h^{i_{k}}:=h_{k}$ if $i_{k}=0, h^{i_{k}}:=0$ if $i_{k}=1$;
$h_{0} \approx_{\alpha} 0, h_{k} \approx_{h_{k-1}} 0$ for $0<k<n$, and all $h_{k} \neq 0$.
If this is the case, $f^{(n)}(x)=L$.

This proposition implies existence of "strongly decreasing" sequences of infinitesimals of any finite length n :
$\left\langle h_{0}, \ldots, h_{n-1}\right\rangle$ where each h_{k} is h_{k-1}-infinitesimal.

BST:

Language: \in (binary), st (unary).
$\mathbb{S}:=\{x \mid$ st $x\}, \quad \mathbb{I}:=\{x \mid x=x\}$.
If φ is an \in-formula, $\varphi^{\mathbb{S}}$ is the formula obtained from φ by replacing each subformula of the form $(\exists x) \psi$ by $\left(\exists^{\text {st }} x\right) \psi$, and each subformula of the form $(\forall x) \psi$ by $\left(\forall^{\text {st }} x\right) \psi$. $A^{\text {fin }}$ is the set of all finite subsets of A.

Axioms of BST:

ZFC: $\varphi^{\mathbb{S}}$ where φ is any axiom of ZFC (Separation and Replacement for ϵ-formulas only).

Boundedness: $(\forall x)(\exists A \in \mathbb{S})(x \in A)$.
Transfer: $(\forall \bar{x} \in \mathbb{S})\left(\varphi^{\mathbb{S}}(\bar{x}) \Leftrightarrow \varphi(\bar{x})\right)$
where $\varphi(\bar{x})$ is any \in-formula.

Standardization:

$(\forall \bar{x})(\forall x \in \mathbb{S})(\exists y \in \mathbb{S})(\forall z \in \mathbb{S})$
$(z \in y \Leftrightarrow z \in x \wedge \varphi(z, x, \bar{x}))$
where $\varphi(z, x, \bar{x})$ is any \in-st-formula.

Idealization:

For any $A, B \in \mathbb{S}$ and any \bar{x}, $\left(\forall a \in A^{\mathrm{fin}} \cap \mathbb{S}\right)(\exists x \in B)(\forall y \in a) \varphi(x, y, \bar{x}) \Leftrightarrow$ $(\exists x \in B)(\forall y \in A \cap \mathbb{S}) \varphi(x, y, \bar{x})]$
where $\varphi(x, y, \bar{x})$ is any \in-formula.
Theorem (see the book of Kanovei and Reeken).
BST is a conservative extension of ZFC.
In fact, BST has a standard core interpretation in ZFC.

We use letters U, V to denote ultrafilters.
If U is an ultrafilter, $I_{U}:=\bigcup U$.
If $I_{U} \cap(\mathbb{I} \times \mathbb{I}) \in U$ then $\pi(U)$ denotes the projection of U onto the domain of I_{U}; i.e., for $A \subseteq \operatorname{dom} I_{U}, A \in \pi(U) \Leftrightarrow$ $\left.\left\{\langle a, b\rangle \in I_{U}\right\} \mid a \in A\right\} \in U ; \pi(U)$ is an ultrafilter.

For a standard ultrafilter $U, x \mathfrak{M} U$ denotes that $x \in \bigcap(U \cap \mathbb{S})(x$ belongs to the monad of $U)$.

Proposition. (Andreev and H.) (Back and Forth Lemma) (a) $(\forall x)(\forall U \in \mathbb{S})[x \mathfrak{M} U \Rightarrow(\forall y)(\exists V \in \mathbb{S})(\pi(V)=U \wedge$ $\langle x, y\rangle \mathfrak{M} V)]$
(b) $(\forall U \in \mathbb{S})(\forall x)[x \mathfrak{M} U \Rightarrow(\forall V \in \mathbb{S})(\pi(V)=U \Rightarrow$ $(\exists y)\langle x, y\rangle \mathfrak{M} V)]$.

Underlying this lemma is the existence of an isomorphism between $\left(\mathbb{V}^{I} / U\right)^{\mathbb{S}}$, the ultraproduct of the universe modulo U constructed inside \mathbb{S}, and $\mathbb{S}[x]:=\{f(x): f \in \mathbb{S}\}$ for $x \mathfrak{M} U$, given by $f \mapsto f(x)$ (for $f \in \mathbb{S}$, $\operatorname{dom} f=I_{U}$), and the fact that these isomorphisms "fit together" in a natural way.

Corollary. (Normal Form Theorem, or Reduction to $\Sigma_{2}^{\text {st }}$ Formulas.) There is an effective procedure that assigns to each \in-st-formula $\varphi(\bar{x})$ an \in-formula $\varphi^{m}(U)$ so that, for all $\bar{x}, \quad \varphi(\bar{x}) \Leftrightarrow(\exists U \in \mathbb{S})\left(\langle\bar{x}\rangle \mathfrak{M} U \wedge \varphi^{m}(U)\right) \quad \Leftrightarrow$ $(\forall U \in \mathbb{S})\left(\langle\bar{x}\rangle \mathfrak{M} U \rightarrow \varphi^{m}(U)\right)$.

Kanovei and Reeken used Reduction to $\Sigma_{2}^{\text {st }}$ to prove that Collection for arbitrary \in-st-formulas holds in BST.

Corollary. Any two countable models of BST with the same standard core are isomorphic.

De fintion: $U \sim V \Leftrightarrow U \cap V$ is an ultrafilter.
De finition (Strati fied ultra fiters over A):
$\gamma_{0} A:=A$;
$\gamma_{\xi} A:=\gamma_{<\xi} A \cup\left\{U: U\right.$ is non-principal over $\gamma_{<\xi} A$ and $U \sim V$ does not hold for any $\left.V \in \gamma_{<\xi} A\right\}$.

De finition (FRIST):
Let $x \in A \in \mathbb{S}$. A standardizer for x over A is a sequence $\vec{u}:=\left\langle u_{i}: i \leq \nu\right\rangle$ where $\nu \in \omega$ and
i) each u_{i} is a stratified ultrafilter over A;
ii) $u_{0} \in \mathbb{S}, u_{\nu}=x$;
iii) $u_{i} \sqsubset u_{i+1}$ for $i<\nu$;
iv) if $u_{i} \sqsubseteq \alpha \sqsubset u_{i+1}$ then $u_{i+1} \in \bigcap\left(u_{i} \cap \mathbb{S}_{\alpha}\right)$.

Theorem. In the interpretation for FRIST constructed in ref. (1), for any $x \in A \in \mathbb{S}$ there is a unique standardizer \vec{u}_{A} for x over A. The universe $\mathbb{S}\left[\vec{u}_{A}\right]$ is independent of A; we denote it $\mathbb{S}[[x]]$.

De finition (FRIST): $x \mathfrak{M} U$ denotes that $U \in \mathbb{S}$ is a stratified ultrafilter over A and there is a standardizer \vec{u}_{A} for x over A with $u_{0}=U$.

Theorem. The Back and Forth Lemma holds in the interpretation for FRIST constructed in ref. (1).

Corollary. Any two countable models of GRIST = "FRIST + The Back and Forth Lemma" with the same standard core are isomorphic.

Corollary. (GRIST) Collection for \in - \sqsubseteq-formulas fails.

Repeated ultrapowers:

$\mathbb{V}^{I} / U \vDash " k(U)$ is an ultrafilter over $k(I)$ " (k is the canonical embedding of \mathbb{V} into \mathbb{V}^{I} / U)

Observation:

$\left[\mathbb{V}^{k(I)} / k(U)\right]^{\mathbb{V}^{I} / U}$ is isomorphic to $\mathbb{V}^{I \times I} / U \otimes U$ where $X \in U \otimes U \equiv\left\{i_{0} \in I:\left\{i_{1} \in I:\left\langle i_{0}, i_{1}\right\rangle \in X\right\} \in U\right\} \in U$.

More generally, let

$$
\bigotimes_{0} U:=\text { the principal ultrafilter over }\{0\} ;
$$

$\bigotimes_{1} U:=U ;$

$$
\bigotimes_{n+1} U:=U \otimes\left(\bigotimes_{n} U\right)
$$

For $X \subseteq I^{n+1}, \quad X \in \bigotimes_{n+1} U \Leftrightarrow$ $\left\{i_{0} \in I:\left\{\left\langle i_{1}, \ldots, i_{n}\right\rangle:\left\langle i_{0}, i_{1}, \ldots, i_{n}\right\rangle \in X\right\} \in \bigotimes_{n} U\right\} \in U$.
$\varphi: I_{2} \rightarrow I_{1}$ is a morphism of U_{2} to U_{1} iff $\left(\forall X \in U_{1}\right)\left(\varphi^{-1}[X] \in U_{2}\right)$.
Every morphism φ induces an elementary embedding $\varphi^{*}: \mathbb{V}^{I_{1}} / U_{1} \rightarrow \mathbb{V}^{I_{2}} / U_{2}$ defined by $\varphi^{*}(f)=f \circ \varphi$.

For $0 \leq \ell \leq n, \quad \pi_{\ell, n}$ is the projection of I^{n} onto I^{ℓ} :
$\pi_{\ell, n}\left(\left\langle i_{0}, \ldots, i_{n-1}\right\rangle\right)=\left\langle i_{0}, \ldots, i_{\ell-1}\right\rangle$.
Then $\pi_{\ell, n}: \bigotimes_{n} U \rightarrow \bigotimes_{\ell} U$ is a morphism of ultrafilters, so $\pi_{\ell, n}^{*}: \mathbb{V}^{I^{\ell}} / \bigotimes_{\ell} U \rightarrow \mathbb{V}^{I^{n}} / \bigotimes_{n} U$ is an elem. embedding.

Proposition. (Factoring Lemma)
For $0 \leq \ell \leq n$ $\mathbb{V}^{I^{n}} / \bigotimes_{n} U \cong\left[\mathbb{V}^{\pi_{0, \ell}^{*}}\left(I^{n-\ell}\right) / \bigotimes_{n-\ell} \pi_{0, \ell}^{*}(U)\right]^{\mathbb{V}^{I^{\ell}}} / \otimes_{\ell} U$.

Iterated ultrapowers:

The system $\left\langle\pi_{\ell, n}^{*}: \ell \leq n \in \omega\right\rangle$ has a direct limit $\left({ }^{*} \mathbb{V}_{\omega}^{U},=^{*}, \in^{*}\right)$, which elementarily extends each $\mathbb{V}^{I^{n}} / \bigotimes_{n} U$.

Iterated ultrapowers (Gaifman and Kunen)
(iteration with finite support):
ω can be replaced by any linear ordering (Λ, \leq).
Note: If U is NOT countably complete then ${ }^{*} \mathbb{V}_{\omega}^{U}$ is NOT isomorphic to $\left[{ }^{*} \mathbb{V}_{k(\omega \backslash 1)}^{k(U)}\right]^{\mathbb{V}^{I} / U}$, i.e., the Factoring Lemma for the direct limit fails at stage 1. (Reason: $k(\omega)$ is not wellfounded and it has cofinality $>\omega$.)

Observation:

Ultrapowers can be repeated into transfinite!
Assume U is over $I=\omega$ and let $U_{n}:=\bigotimes_{n} U$. Then we can define an ultrafilter W over $I^{<\omega}$ (Rudin-Frolík sum) by: $A \in W \Leftrightarrow\left\{n \in I:\left\{t \in I^{n}:\langle n\rangle \frown t \in A\right\} \in U_{n}\right\} \in U$. $(\langle n\rangle:=\{\langle 0, n\rangle\}$.

Let $\bar{U}:=\left\langle U_{n}: n \in \omega\right\rangle, \quad \nu:=\langle n: n \in \omega\rangle$.
$\mathbb{V}^{I} / U \vDash " \bar{U}$ is an ultrafilter over $k(I)^{\nu} ; \bar{U}=\bigotimes_{\nu} k(U) "$.
Factoring Lemma: $\mathbb{V}^{I^{<\omega}} / W \cong\left[\mathbb{V}^{k(I)^{\nu}} / \bar{U}\right]^{\mathbb{V} I} / U$.
"Iteration with *-finite support": Internally iterated ultrapowers are obtained by allowing arbitrary transfinite repetitions in the Gaifman-Kunen construction.

In ref. (1), interpretations for GRIST in ZFC are constructed using internally iterated ultrapowers of \mathbb{V}.

External sets:

Given an ultrapower $\mathbb{V}^{I} / U=\left(\mathbb{V}^{I},={ }_{U}, \in_{U}\right)$, one can build a cumulative universe \mathbb{E}_{U} over this structure and extend $={ }_{U}$ and ϵ_{U} to it so that this completed ultrapower ($\mathbb{E}_{U},=_{U}, \epsilon_{U}$) satisfies ZFC $^{-}$(ZFC minus Regularity).

In the construction of ref.(1) ultrapowers can be replaced by completed ultrapowers.

The last two slides outline the theory of the resulting structure.

RST:

Language: \in (ternary). $x \in^{w} y$ reads " x belongs to y relative to w ".

It is possible that $x \in^{w} y$ and $x \not \notin^{w^{\prime}} y$, but we want some stability.

De finition: $x \in y$ iff $(\exists w)\left(x \in^{w} y\right)$
Axioms: $\varnothing,\{x, y\}$ exist.
De fintion: x is w-internal iff $(\exists y)\left(x \in^{w} y\right)$.
Notation: $\mathbb{I}_{w}(x)$.
De fitition: y is w-standard iff $y=\varnothing \vee(\exists x)\left(x \in^{w} y\right)$.
Notation: $\mathbb{S}_{w}(y)$.

Axioms:

$$
\begin{aligned}
& \mathbb{S}_{w}(w) \\
& \mathbb{S}_{w}(y) \Rightarrow \mathbb{I}_{w}(y) \\
& \mathbb{S}_{\{x, y\}}(x), \mathbb{S}_{\{x, y\}}(y), \mathbb{S}_{w}(x) \wedge \mathbb{S}_{w}(y) \Rightarrow \mathbb{S}_{w}(\{x, y\}) \\
& \mathbb{S}_{w}(x) \Rightarrow\left(\mathbb{S}_{x}(z) \Rightarrow \mathbb{S}_{w}(z)\right) \\
& \mathbb{I}_{w}(x) \Rightarrow\left(\mathbb{I}_{x}(z) \Rightarrow \mathbb{I}_{w}(z)\right) \\
& \left(\mathbb{I}_{w}(x) \wedge \mathbb{S}_{w}(y) \wedge x \in y\right) \Rightarrow x \in^{w} y
\end{aligned}
$$

De fintion: $x \sqsubseteq_{w} y$ iff $\mathbb{I}_{w}(x) \wedge \mathbb{I}_{w}(y) \wedge \mathbb{S}_{\{y, w\}}(x)$.
Axioms: $\varphi^{\left(\mathbb{I}_{w}, \sqsubseteq_{w}\right)}$ where φ is any axiom of GRIST.

Axiom:
$(\exists!W)(\forall x, y)\left(x \sqsubseteq_{w} y \Leftrightarrow\left(\mathbb{S}_{W}(\langle x, y\rangle) \wedge\langle x, y\rangle \in W\right)\right)$.
It follows that
$(\exists!A)(\forall x)\left(\mathbb{S}_{w}(x) \Leftrightarrow \mathbb{S}_{W}(x) \wedge x \in A\right) \quad$ Notation: $A=\mathbb{S}_{w}$. $(\exists!B)(\forall x)\left(\mathbb{I}_{w}(x) \Leftrightarrow \mathbb{S}_{W}(x) \wedge x \in B\right) \quad$ Notation: $B=\mathbb{I}_{w}$.

Note: It is necessary to carefully distinguish between $x \in \mathbb{S}_{w}$ and $\mathbb{S}_{w}(x) . \quad \mathbb{S}_{w}$ and \mathbb{I}_{w} are sets in \mathbb{S}_{W}.
In RST there is no need for classes!
\mathbb{S}_{W} can serve as the external universe for \mathbb{I}_{w}. It contains all collections definable in ($\mathbb{I}_{w}, \sqsubseteq_{w}$) and satisfies $\mathbf{Z F C}^{-}$.

De finition: $\mathbb{I}_{w}^{W}(x)$ iff $\mathbb{I}_{W}(x) \wedge(\exists y)\left(\mathbb{S}_{w}(y) \wedge x \in y\right)$.
Axioms: $(\forall \bar{x})\left(\mathbb{I}_{w}(\bar{x}) \Rightarrow\left(\varphi^{\left(\mathbb{I}_{w}, \sqsubseteq_{w}\right)}(\bar{x}) \Leftrightarrow \varphi^{\left(\mathbb{I}_{w}^{W}, \sqsubseteq_{W} \upharpoonright \Pi_{w}^{W}\right)}(\bar{x})\right)\right)$ where φ is any ϵ - \sqsubseteq-formula.

Work on a "complete" axiomatization is in progress.

