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Harmonic analysis on finite abelian groups

I G a finite abelian group

I Dual group Ĝ = Hom(G , S1)

I S1 = {z ∈ C | |z | = 1}

I Pontrjagin Duality:

I G ' ̂̂
G

I g 7−→ κg : Ĝ → S1 where κg (χ) = χ(g)

I The Haar integral I (f ) = ∆
∑

g∈G

f (g).

I The Fourier transform: F∆ : CG → CbG

I F∆(f )(χ) = ∆
∑

g∈G
f (g)χ(g),

I F−1
∆ (ϕ)(g) = 1

|G |∆
∑

ϕ(χ)χ(g).



Harmonic analysis on the nonstandard hulls of hyperfinite
abelian groups

I G - a hyperfinite abelian group;
I Gb ⊆ G a σ-subgroup;
I G0 ⊆ Gb a π-subgroup.

I Topology on G# = Gb/G0

I For A ⊆ G0 put i(A) = {a ∈ A | a + G0 ⊆ A}.
I T = {i(F )# | G0 ⊆ F ⊆ Gb and F is internal}. - a base of

neighborhoods of zero.

I Proposition

The topology T is locally compact iff for any internal set F ⊃ G0

and for any internal set B ⊆ Gb there exists standardly finite set
K ⊆ B such that B ⊆ K + F .

I Corollary

1). For every internal set F ⊆ Gb the set F# is compact.
2). Every compact set K ⊆ G# is contained in some such F#.



I Corollary

K ⊆ G# is a compact open subgroup iff K = H#, where H ⊃ G0

is an internal subgroup of Gb.

I If a locally compact group H is topologically isomorphic to
G#, then we say that the triple (G ,Gb,G0) represents the H

I C0(G
#) the set of all continuous functions with compact

support on G#

I C0(G ) the set of all internal S-continuous functions, whose
support is contained in Gb.

I Proposition

A function f ∈ C0(G
#) iff there exists an internal function

ϕ ∈ C0(G ) such that suppϕ ⊆ Gb and and for every g ∈ Gb holds

f (g#) = ◦ϕ(g).

In this case we denote f by ϕ#.



Haar integral on G#

I A positive hyperreal number ∆ is a normalizing multiplier
(n.m.) if for every internal set F , G0 ⊆ F ⊆ Gb, holds
◦(∆ · |F |) < +∞.

I If ∆ is an n.m., then a hyperreal number ∆1 is an n.m. iff

0 < ◦
(

∆1
∆

)
< +∞.

I Theorem
If ∆ is an n.m., then the functional I on C0(G

#) defined for every
ϕ ∈ C0(G ) by the formula

I(ϕ#) = ◦I∆(f ),

is the Haar integral on G#.



Dual group Ĝ#

I Ĝ – (internal) group dual to G ;

I Ĝb = {χ ∈ Ĝ | χ ¹ G0 ≈ 1};
I Ĝ0 = {χ ∈ Ĝ | χ ¹ Gb ≈ 1};
I Ĝ# = Ĝb/Ĝ0.

I α# ∈ Ĝ# 7−→ ψ(α#) ∈ Ĝ#, α ∈ Ĝb;

I ψ(α#)(g#) = ◦α(g).

I Proposition

The mapping ψ : Ĝ# → ψ(Ĝ#) ⊆ Ĝ# is a topological
isomorphism.



Theorem
1). Suppose that there exits an internal subgroup K ⊆ Gb,
G0 ⊆ K. Then the following statements hold.

a). ψ(Ĝ#) = Ĝ#, thus Ĝ# is canonically isomorphic to Ĝ#.

b). The hyperreal number D̂ = (|G |∆)−1 is a normalizing
multiplier for Ĝ

c). Let f ∈ L1(G
#) and ϕ be an S-integrable lifting of f . Then

the Fourier transform on G F∆(ϕ) is an S-continuous

function on Ĝ and the linear operator F : L1(G
#) → C (Ĝ#)

defined by the formula

F(f ) = F∆(ϕ)#

is the Fourier transform on G#. The operator defined in the

similar way by F−1
∆ is the inverse Fourier transform on Ĝ#.



I Theorem
For every locally compact group H there exists a triple (G , Gb, G0)
representing H that satisfies the statements a) – c) of the first part
of the theorem.

I Definition
We say that a hyperfinite group G approximates a locally compact
group H if there exist an internal injective map j : G → ∗H that
satisfies the following conditions:

1. ∀ h ∈ H∃ g ∈ G (j(g) ≈ h);
2. ∀ g1, g2 ∈ j−1 (ns( ∗H)) (j(g1 ± g2) ≈ j(g1)± j(g2)).

In this case we say that the pair (G , j) is a hyperfinite
approximation of H.

I (G , j) 7−→ (G , Gb, G0);

I Gb = {g ∈ G | j(g) ∈ ns(H)}, G0 = {g ∈ G | j(g) ≈ 0}.



Hyperfinite representations of locally compact
non-commutative groups

I G – a non-commutative hyperfinite group.

I Gb– a σ-subgroup, G0 ⊆ Gb – a π-subgroup, which is normal
in Gb.

I G# = Gb/G0.

I For A ⊆ G put i(A) = {a ∈ G aG0 ⊆ A}.
I T = {i(F )# | G0 ⊆ F ⊆ Gb and F is internal} form a base of

a topology on G#.

I Proposition

The topology T is locally compact iff for any internal set F ⊃ G0

and for any internal set B ⊆ Gb there exists standardly finite set
K ⊆ B such that B ⊆ K · F .

I Corollary

1). For every internal set F ⊆ Gb the set F# is compact.
2). Every compact set K ⊆ G# is contained in some such F#.



I Theorem
If ∆ is a normalizing multiplier, then the positive functional I on
C0(G

#) defined by the formula I(f #) = ◦(∆
∑

g∈G

f (g)) is left and

right Haar integral.

I Corollary

The group G# is unimodular.

I Definition
A locally compact group H is weakly approximable by finite groups
if there exists a triple (G , Gb, G0) representing H. The group H is
strongly approximable by finite groups if has a hyperfinite
approximation

.

I Theorem
A compact Lie group H is strongly approximable by finite groups
iff it has arbitrary dense finite subgroups.



Definition
We say that a groupoid (Q, ◦) is a quasigroup if for an arbitrary
a, b ∈ Q each of the equations a ◦ x = b and x ◦ a = b has a
unique solution. If it holds only for the first (second) equation,
then we say that (Q, ◦) is a left (right) quasigroup.

I (Q, ◦) a hyperfinite groupoid,
I Qb ⊆ Q a σ-subgroupoid,
I ρ a π-equivalence relation on Q, that is a congruence relation

on Qb.
I For A ⊆ Qb put i(A) = {q ∈ Qb | ρ(q) ⊆ A}.

Theorem
If Q is a left quasigroup and ∆ is a normalizing multiplier, then the
positive functional I on C0(Q

#) defined by the formula

I(f #) = ◦


∆

∑

q∈Q

f (q)




is left invariant. If Q is a quasigroup, then I(f ) is right invariant
also.



Theorem
1) Every locally compact group is strongly approximable by finite
left quasigroups.
2) A locally compact group is unimodular iff it is strongly
approximable by finite quasigroups



Discrete groups

I The topology on Q# is discrete iff ρ is the equality relation.
I A discrete group G is weakly approximable by a hyperfinite

groupoid Q if it is isomorphic to a σ-subgroupoid of Q.
I The group G is strongly approximable by the hyperfinite

groupoid Q iff there exists an internal injective map
j : Q → ∗G such that j ¹ j−1(G ) is a homomorphism.

Theorem
A discrete group G is amenable iff there exists a hyperfinite set H,
G ⊆ H ⊆ ∗G, and a binary operation ◦ : H × H → H that satisfy
the following conditions:

1. (H, ◦) is a left quasigroup;

2. G is a subgroup of the left quasigroup (H, ◦), i.e.
∀a, b ∈ G a · b = a ◦ b.

3. ∀a ∈ G
|{h ∈ H | a · h = a ◦ h}|

|H| ≈ 1

.



Definition
A discrete group G is sofic iff there exists a hyperfinite set H,
G ⊆ H, and a binary operation ◦ : H × H → H that satisfy the
following conditions:

1. (H, ◦) is a left quasigroup;

2. G is a subgroup of the left quasigroup (H, ◦), i.e.
∀a, b ∈ G a · b = a ◦ b.

3. ∀a, b ∈ G

|{h ∈ H | (a · b) ◦ h = a ◦ (b · h}|
|H| ≈ 1

.



Theorem
(Elek, Szabo) Let N be an infinite hyperreal number and SN an
internal group of permutations of the set {1, . . . ,N}. Consider its
π normal subgroup

S
(0)
N = {α ∈ SN | {n ≤ N | α(n) = n}|

N
≈ 1}.

Then S(N) = SN/S
(0)
N is a simple sofic group. Moreover, a group

G is sofic iff it is isomorphic to a subgroup of the group S(N) for
some infinite N.



Hyperfinite representations of topological universal algebras

I θ a finite signature that contains only functional symbols,

I A = 〈A, θ〉 a hyperfinite algebra of the signature θ.

I Ab = 〈Ab, θ〉 - σ-subalgebra of A
I ρ a π-equivalence relation on A, that is a congruence relation

on Ab.

I a, b ∈ A: α ≈ β  〈a, b〉 ∈ ρ.

I ϕ(x1, . . . , xn) a first order formula of the signature θ.

I ϕ≈ the formula obtained from ϕ by replacing of every
subformula t1 = t2 by the formula t1 ≈ t2, t1, t2 are θ-terms.

Proposition

For every a1, . . . an ∈ Ab

A# |= ϕ(a#
1 , . . . , a#

n ) ⇐⇒ Ab |= ϕ≈(a1, . . . an).



Hyperfinite representations of reals

I The floating point representation of reals:

α = ±10p × 0.a1a2 . . . , (1)

p ∈ Z, 0 ≤ an ≤ 9, a1 6= 0.

I P, Q hypernatural numbers;

I APQ the hyperfinite set of all reals of the form (1), where
|p| ≤ P and the mantissa contains no more than Q decimal
digits.

I ⊕, ⊗ binary operations on APQ , ∗ stands for either + or ×
I α, β ∈ APQ : α ∗ β = ±10r × 0.c1c2 . . . .



α ~ β =





±10r × 0.c1c2 . . . cQ if |r | ≤ P,
±10P × 0. 99 . . . 9︸ ︷︷ ︸

Q digits

if r > P,

0 if r < −P.

I APQ the algebra 〈APQ ,⊕,⊗〉
I (APQ)b consists of all finite hyperreal numbers from APQ

I ρ a restriction of the relation ≈ on R to APQ .

I Then A#
PQ ' R.



example

5x − 7y + 8z = b
3x − ay + 4z = 5
ax + 4y − bz = 2

(2)

Infinitely many solutions iff

f (b) = b4 − 25b3 + 260b2 − 2856b + 4288 = 0 (3)

and a is found by the formula p(a, b):

a = −21

29
+

3

464
b3 +

5

464
b2 − 19

232
b (4)

General solution of the system (2):

x = 10− b + t
(

245
29 − 19

116b + 5
232b2 + 3

232b3
)

y = t
z = −25

4 + 3
4b + t

(
357
5 8 + 95

928b − 25
1856b2 − 15

1856b3
) (5)



Φ(x , y , z , a, b) the conjunction of equations of the system (2),
Ψ(x , y , z , b, t) the conjunction of formulas in (5).
Formula Γ:

∀ a, b (p(a, b) ∧ f (b) = 0 → (∃ x1, y1, z1, x2, y2, z2((x1 6= x2 ∨ y1 6= y2 ∨ z1 6= z2)
∧Φ(x1, y1, z1, a, b) ∧ Φ(x2, y2, z2, a, b))
∧∀ x , y , z (Φ(x , y , z , a, b) → ∃tΨ(x , y , z , b, t)))

Formula Γ(1):

∀ a, b, a1, b1 (a1 = a2 ∧ b1 = b2 ∧ p(a1, b1) ∧ f (b1) = 0
∧p(a2, b2) ∧ f (b2) = 0 → (∃ x1, y1, z1, x2, y2, z2

((x1 6= x2 ∨ y1 6= y2 ∨ z1 6= z2) ∧ Φ(x1, y1, z1, a, b) ∧ Φ(x2, y2, z2, a, b)),

Formula Γ(2):

∀, a, b, x , y , z (p(a, b)∧f (b) = 0∧Φ(x , y , z , a, b) → ∃ t Ψ(x , y , z , b, t)).



I a, b with 10 digits:
x = 2.885016341, y = 0.6249221609, z = −1.038737628,

I a, b with 12 digits: x = 1.83282895579, y =
0.747271181171, z = −0.274065119805,

I a, b with 15 digits: x = 1.61877806403204, y =
0.772161155406311, z = −0.118504584584998824.



Theorem
There does not exist a topological hyperfinite triple (A,Ab, ρ)
such that A and Ab are hyperfinite associative rings and A# is a
locally compact field.

H =

{(
a b
0 1

)
| a, b ∈ K , a 6= 0

}
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