Pisa
May 2006

Canard Solutions near a Degenerated Turning Point

T. Forget* - Universite de La Rochelle

Advisors : Eric BENOIT and Guy WALLET

*This work has been supported by the Region Poitou-Charentes

Singularly perturbed differential equation :

$$
\begin{equation*}
\varepsilon u^{\prime}=\Psi(x, u, \alpha, \varepsilon) \tag{1}
\end{equation*}
$$

$x \in[-1,1], u$ is a real function, $\alpha \in \mathbb{R}, \varepsilon \rightarrow 0$ positive
\Rightarrow To simplify notations, $\varepsilon=\oslash$, fixed.

We are studying solutions of perturbed equations that are staying "near" the repulsive part of a slow curve.

Example : case of the equation

$$
\varepsilon u^{\prime}=x^{3} u+\alpha+\varepsilon\left(u^{2}+x\right)
$$

PART 1 : Existence of canard solutions

(H1) (1) has a slow curve (α_{0}, u_{0})

$$
\begin{aligned}
&\left(\forall x, \Psi\left(x, u_{0}(x), \alpha_{0}, 0\right)\right.=0) \\
&(H 2) \frac{\partial}{\partial u} \Psi\left(x, u_{0}(x), \alpha_{0}, 0\right) \text { is }\left\{\begin{array}{l}
<0 \text { if } x<0 \\
>0 \text { if } x>0
\end{array}\right.
\end{aligned}
$$

p : order of the zero $x=0$ (p is ODD)

NOTE : Similar study in the complex case
(OVERSTABLE solutions)

Main difference:

- $\alpha \in \mathbb{C}^{p}$ in the complex case
- $\alpha \in \mathbb{R}$ in our case

Restriction of our study to the equations

$$
\begin{equation*}
\varepsilon u^{\prime}=x^{p} u+\alpha x^{L}+\sum_{i} \alpha^{k_{i}} x^{l_{i}}+\varepsilon P(x, u, \alpha, \varepsilon) \tag{2}
\end{equation*}
$$

with :

- $L<p$ even
- $k_{i} \geq 1$ and $l_{i} \geq L+1$

THEOREM

"Locally" \exists ! α^{*} such that the equation

$$
\left\{\begin{array}{c}
(2) \\
u(-1)=0=u(1)
\end{array}\right.
$$

has an unique solution $u^{*} \in \mathcal{C}([-1,1], \mathbb{R})$ which is limited.

Solutions canard en des points tournants degeneres (submitted) [in french]

Demonstration:

Given (β, v), the linear equation

$$
\left\{\begin{array}{c}
\varepsilon u^{\prime}=x^{p} u+\alpha x^{L}+\sum_{i} \alpha^{k_{i}} x^{l_{i}}+\varepsilon P(x, v, \beta, \varepsilon) \\
u(-1)=0=u(1)
\end{array}\right.
$$

has an unique solution $(\alpha, u)=: \equiv(\beta, v)$
$\equiv=\mathcal{I} \circ \wp$ with :
$-\wp(\beta, v)(x):=P(x, v(x), \beta, \varepsilon)$

- I : linear operator such that $\mathcal{I}(w)$ solution of

$$
\left\{\begin{array}{c}
\varepsilon u^{\prime}=x^{p} u+\alpha x^{L}+\sum_{i} \alpha^{k_{i}} x^{l_{i}}+\varepsilon w \\
u(-1)=0=u(1)
\end{array}\right.
$$

三 is a $\left(£ \varepsilon^{1 /(p+1)}\right)$-Lipschitz function
(α^{*}, u^{*}) : fixed point iteration of $\overline{\text {. }}$

PART 2 : Asymptotic expansion

current work

- 三 is a $\left(£ \varepsilon^{1 /(p+1)}\right)$-Lipschitz function
- $\left(\alpha^{*}, u^{*}\right)=\lim _{n \rightarrow+\infty}\left(\alpha_{n}, u_{n}\right)$
\Rightarrow

$$
u^{*}=\sum_{n \geq 1}\left(u_{n}-u_{n-1}\right)
$$

where $\forall n, u_{n}-u_{n-1}=£ \varepsilon^{n /(p+1)}$.

Existence and uniqueness of an $\varepsilon^{1 /(p+1)}$-asymptotic expansion for u^{*} ?

The "natural" $\varepsilon^{1 /(p+1) \text {-asymptotic expansion }}$ $u^{*}(x) \approx \sum_{k} u_{k}(x) \varepsilon^{k /(p+1)}$, with u_{k} analytic in x, isn't suffisant :
0 can be a pole of the coefficients u_{k}.

We allow u_{k} to be analytic in x and in intermediary function(s) φ :

$$
u^{*}(x) \approx \sum_{k} u_{k}(x, \varphi(x, \varepsilon)) \varepsilon^{k /(p+1)}
$$

Some possible choices for φ :

$$
e^{-x^{p+1} / \varepsilon},\left(\mathcal{I}(x), \ldots, \mathcal{I}\left(x^{p}\right)\right)
$$

Note that :

$$
\begin{gathered}
\left\|e^{-x^{p+1} / \varepsilon}\right\|=1 \\
\left\|x e^{-x^{p+1} / \varepsilon}\right\|=\frac{e^{-1 /(p+1)}}{(p+1)^{p+1}} \varepsilon^{1 /(p+1)}
\end{gathered}
$$

So, $x^{i} \varphi^{j} \varepsilon^{l /(p+1)}$ and $\varepsilon^{l /(p+1)}$ have possibly not the same "place" in the expansion.

We have to "ordered" the monomials

$$
x^{i} \varphi^{j} \varepsilon^{l /(p+1)}
$$

with respect to their estimates in $\varepsilon^{1 /(p+1)}$.
\Rightarrow Definition of an "order" :

$$
\mathbf{v}^{\boldsymbol{w}}\left(x^{i} \varphi^{j} \varepsilon^{l /(p+1)}\right):=\left(\frac{\ln \left\|x^{i} \varphi(x, \varepsilon)^{j} \varepsilon^{l /(p+1)}\right\| x}{\ln \varepsilon}\right)^{o}
$$

Set-up of a structure of gradued algebra $\left(\mathcal{A}_{k}\right)_{k}$ such that

$$
\mathcal{A}_{k}=\operatorname{Vect}\left\{x^{i} \varphi^{j} \varepsilon^{l /(p+1)} ; \mathbf{x}^{l}\left(x^{i} \varphi^{j} \varepsilon^{l /(p+1)}\right) \leq k\right\}
$$

\mathcal{A}_{k} will be the set of the principal term with order k for the $\varepsilon^{1 /(p+1)}$-asymptotic expansion of u^{*}.

Implementation in the case $p=0$:
NOT a study of a canard solution!
Study of a limit layer with an attractive slow curve for $x \in[0,1]$.

$$
\begin{aligned}
& \varphi(x, \varepsilon)=e^{-x / \varepsilon}, \text { and } \mathbf{z}\left(x^{i} \varphi^{j} \varepsilon^{l}\right)=\left\{\begin{array}{c}
i \text { if } j=0 \\
i+l \text { if } j>0
\end{array}\right. \\
& \left\{\begin{array}{c}
\varepsilon u^{\prime}=-u+\varepsilon P(x, u, \varepsilon) \\
u(0)=u_{0} \neq 0
\end{array}\right. \\
& u^{*}(x) \approx \sum_{i, l} a_{i, 0, l} x^{i} \varepsilon^{l}+\sum_{i, l, j \geq 1} a_{i, j, l}\left(\frac{x}{\varepsilon}\right)^{i} \varphi(x, \varepsilon)^{j} \varepsilon^{l+i}
\end{aligned}
$$

which is a particular form of a Combined Asymptotic Expansion :

$$
u^{*}(x) \approx \sum_{n}\left(f_{n}(x)+g_{n}\left(\frac{x}{\varepsilon}\right)\right) \varepsilon^{n}
$$

where for all n, f_{n} is analytic, and g_{n} is an exponentially decreasing function.

What about the "canard situation" case ?

$+p=1$: Non degenerated turning point
\rightarrow No intermediary function needed
already countain in the overstable theory
$+p \geq 3$: degenerated turning point
\rightarrow Definition of adapted intermediary function done

* if P is linear in u :
study is done
* if P is not necessary linear in u :
problem to solve :
complete study of the interactions (multiplication+composition) of the intermediary functions.

