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Our story begins with:

• Question (Häsenjäger): Does PA have a model with a nontrivial auto-
morphism?

• Answer (Ehrenfeucht and Mostowski): Yes, indeed given any first order
theory T with an infinite model M ² T , and any linear order L, there
is a model ML of T such that

Aut(L) ↪→ Aut(ML).

• Corollaries:

(a) PA, RCF, and ZFC have models with rich automorphism groups.

(b) Nonstandard models of analysis with rich automorphism groups exist.
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The EM Theorem via Iterated Ultrapowers (1)

• Gaifman saw a radically different proof of the EM Theorem: iterate
the ultrapower construction along a prescribed linear order.

• Suppose

(a) M = (M, · · ·) is a structure,

(b) U is an ultrafilter over P(N), and

(c) L is a linear order.

we wish to describe the L-iterated ultrapower

M∗ :=
∏

U ,L
M.
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The EM Theorem via Iterated Ultrapowers, Continued (2)

• A key definition (reminiscent of Fubini):

U2 := {X ⊆ N2 : {a ∈ N :

(X)a︷ ︸︸ ︷
{b ∈ N : (a, b) ∈ X}∈ U} ∈ U .

• More generally, for each n ∈ N+ :

Un+1 := {X ⊆ Nn+1 : {a ∈ N : (X)a ∈ Un} ∈ U},

where

(X)a := {(b1, · · ·, bn) : (a, b1, · · ·, bn) ∈ X}
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The EM Theorem via Iterated Ultrapowers (3)

• Let Υ be the set of terms τ of the form

f(l1, · · ·, ln),

where n ∈ N+, f : Nn → M and

(l1, · · ·, ln) ∈ [L]n.

• The universe M∗ of M∗ consists of equivalence classes {[τ ] : τ ∈ Υ},
where the equivalence relation ∼ at work is defined as follows: given
f(l1, · · ·, lr) and g(l

′
1, · · ·, l′s) from Υ, first suppose that

(
l1, · · ·, lr, l′1, · · ·, l

′
s

)
∈ [L]r+s;

let p := r + s, and define: f(l1, · · ·, lr) ∼ g(l
′
1, · · ·, l′s) iff:

{(i1, · · ·, ip) ∈ Np : f(i1, · · ·, ir) = g(ir+1 , · · ·, ip)} ∈ Up.
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The EM Theorem via Iterated Ultrapowers (4)

More generally:

• Given f(l1, · · ·, lr) and g(l
′
1, · · ·, l′s) from Υ, let

P := {l1, · · ·, lr} ∪ {l′1, · · ·, l
′
s}, p := |P | ,

and relabel the elements of P in increasing order as l1 < · · · < lp.
This relabelling gives rise to increasing sequences (j1, j2, · · ·, jr) and
(k1, k2, · · ·, ks) of indices between 1 and p such that

l1 = lj1 , l2 = lj2 , · · ·, lr = ljr

and
l′1 = lk1 , l

′
2 = lk2 , · · ·, l

′
s = lks .

Then define: f(l1, · · ·, lr) ∼ g(l
′
1, · · ·, l′s) iff

{(i1, · · ·, ip) ∈ Np : f(ij1 , · · ·, ijr) = g(i
k1

, · · ·, iks)} ∈ Up.
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The EM Theorem via Iterated Ultrapowers (5)

• We can also use the previous relabelling to define the operations and
relations of M∗ as follows, e.g.,

[f(l1, · · ·, lr)]¯M∗
[g(l

′
1, · · ·, l

′
s)] := [v(l1, · · ·, lp)]

where v : Nn → M by

v (i1, · · ·, ip) := f(ij1 , · · ·, ijr)¯M g(i
k1

, · · ·, iks);

[f(l1, · · ·, lr)] CM∗
[g(l

′
1, · · ·, l′s)] iff

{(i1, · · ·, ip) ∈ Np : f(ij1 , · · ·, ijr) CM∗
g(i

k1
, · · ·, iks)} ∈ Up.

The EM Theorem via Iterated Ultrapowers (6)

• For m ∈ M , let cm be the constant m-function on N, i.e., cm : N →
{m}. For any l ∈ L, we can identify the element [cm(l)] with m.

• We shall also identify [id(l)] with l, where id : N → N is the identity
function (WLOG N ⊆ M).

• Therefore M ∪ L can be viewed as a subset of M∗.
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• Theorem. For every formula ϕ(x1, ···, xn), and every (l1, · · ·, ln) ∈ [L]n :

M∗ ² ϕ(l1, l2, · · ·, ln) ⇐⇒

{(i1, · · ·, in) ∈ Nn : M ² ϕ(i1, · · ·, in)} ∈ Un.

The EM Theorem via Iterated Ultrapowers (7)

• Corollary 1. M ≺ M∗, and L is a set of order indiscernibles in M∗.

• Corollary 2. Every automorphism j of L lifts to an automorphism ̂ of
M∗ via

̂([f(l1, · · ·, ln)]) = [f(j(l1), · · ·, j(ln))].

Moreover, the map

j 7→ ̂

is a group embedding of Aut(L) into Aut(M∗).
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Skolem-Gaifman Ultrapowers (1)

• If M has definable Skolem functions, then we can form the Skolem
ultrapower ∏

F ,U
M

as follows:

(a) Suppose B is the Boolean algebra of parametrically definable subsets
of M , and U is an ultrafilter over B.

(b) Let F be the family of functions from M into M that are paramet-
rically definable in M.

(c) The universe of the M∗ is

{[f ] : f ∈ F},

where

f ∼ g ⇐⇒ {m ∈ M : f(m) = g(m)} ∈ U
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Skolem-Gaifman Ultrapowers (2)

• Theorem (MacDowell-Specker) Every model of PA has an elementary
end extension.

Proof : for an appropriate choice of U ,

M ≺e

∏
F ,U

M.

• For models of some Skolemized theories, such as PA, the process of
ultrapower formation can be iterated along any linear order.

• For each parametrically definable X ⊆ M, and m ∈ M,

(X)m = {x ∈ M : 〈m,x〉 ∈ X}.

• U is an iterable ultrafilter over B if for every definable X ⊆ M , {m ∈
M : (X)m ∈ U}.
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Skolem-Gaifman Ultrapowers (3)

• Theorem (Gaifman) If U is iterable, and L is a linear order, then

M ≺e,cons
∏

F ,U ,L
M.

• Theorem (Gaifman). For an appropriate choice of iterable U ,

(a) Aut(
∏
F ,U ,L

M; M) ∼= Aut(L).

(b)
∏
F ,U ,L

M has an automorphism j such that

fix(j) = M.

• Theorem (Schmerl). Suppose G ≤ Aut(L) for some linear order L.

(a) G ∼= Aut(M) for some M ² PA.

(b) G ∼= Aut(F) for some ordered field F.
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Automorphisms of Countable Recursively Saturated Models of PA (1)

• A cut I of M ² PA is an initial segment of M with no last element.

• For a cut I of M, SSyI(M) is the collection of sets of the form X ∩ I,
where X is parametrically definable in M.

• I is strong in M iff (I, SSyI(M)) ² ACA0.

• M is recursively saturated if for every m ∈ M, every recursive finitely
realizable type over (M,m) is realized in M.

• For j ∈ Aut(M),

Ifix(j) := {x ∈ dom(j) : ∀y ≤ x j(y) = y},

fix (j) := {x ∈ M : j(x) = x}
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Automorphisms of Countable Recursively Saturated Models of PA (2)

Suppose M ² PA is ctble, rec. sat., and I is a cut of M.

• Theorem (Smoryński) I = Ifix(j) for some j ∈ Aut(M) iff I is closed
under exponentiation.

• Theorem (Kaye-Kossak-Kotlarski ) I = fix (j) for some j ∈ Aut(M) iff
I is a strong elementary submodel of M.
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Automorphisms of Countable Recursively Saturated Models of PA (3)

• Theorem (Kaye-Kossak-Kotlarski)

NisstronginM︷ ︸︸ ︷
Misarithmeticallysaturated iff for some j ∈ Aut(M),

jismaximal︷ ︸︸ ︷
fix(j)isthecollectionofdefinableelementsofM.

• Theorem (Schmerl) Aut(Q) ↪→ Aut(M).
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Automorphisms of Countable Recursively Saturated Models of PA (4)

• Theorem (E). If I is a closed under exponentiation, then there is a
group embedding

j 7→ ̂

from Aut(Q) into Aut(M) such that:

(a) Ifix(̂) = I for every nontrivial j ∈ Aut(Q);

(b) fix(̂) ∼= M for every fixed point free j ∈ Aut(Q).

• Idea of the proof: Fix c ∈ M\I, let c := {x ∈ M : x < c}, B := PM(c),
and F be the family of functions from (c)n → M that are coded in M.
For an appropriate choice of U ,

M ∼=
∏

F ,U ,Q
MoverI.

This sort of iteration was implicitly considered by Mills and Paris.
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Automorphisms of Countable Recursively Saturated Models of PA (5)

• A new type of iteration that subsumes both Gaifman and Paris-Mills
iteration: starting with

I ⊆e M ¹ N, withI ⊆strong N,

(a) F = {f ¹ In : f par. definable in N};
(b) B := SSyI(N);
(c) U an appropriate ultrafilter over B.

• Theorem (E). Suppose M is arithmetically saturated. There is a group
embedding

j 7→ ̂

from Aut(Q) into Aut(M) such that ̂ is maximal for every fixed point
free j ∈ Aut(Q).
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Automorphisms of Countable Recursively Saturated Models of PA (6)

• Conjecture (Schmerl). Suppose M is arithmetically saturated, and
M0 ≺ M. Then fix (j) ∼= M0 for some j ∈ Aut(M).

• Theorem (Kossak) Every countable model of PA is isomorphic to some
fix (j), for some j ∈ Aut(M), and some countable arithmetically satu-
rated model M.

• Theorem (Kossak) The cardinality of

{ fix (j) : j ∈ Aut(M)} / ∼=

is either 2ℵ0 or 1, depending on whether M is arithmetically saturated
or not.

• Theorem (E). Suppose M0 ≺ M, and M is arithmetically saturated.
There are M1 ≺ M with M0

∼= M1, and an embedding j 7→ ̂ of
Aut(Q) into Aut(M), such that fix(̂) = M1 for every fixed point free
j ∈ Aut(Q).
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Automorphisms of Countable Recursively Saturated Models of PA (6)

• Suppose I is a proper cut of M. A subset X of M is I-coded in M, if
for some c ∈ M, X = {(c)i : i ∈ I}, and for all distinct i and j in I,
(c)i 6= (c)j.

• I is I-coded in M.

• The collection of definable elements of M is N-coded in M.

• Theorem Suppose I ⊆strong M, M0 ≺ M and M0 is I-coded in M.
Then,

(a) There is an embedding j 7→ ̂ of Aut(Q) into Aut(M) such that
fix(̂) = M0 for every fixed point free j ∈ Aut(Q);

(b) Moreover, if j is expansive on Q, then ̂ is expansive on M\M0.
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Automorphisms and Foundations (1)

• Strong foundational axiomatic systems can be characterized in terms of
the fixed point sets of automorphisms of models of weak foundational
systems.

• The above phenomenon sheds light on the close relationship between
orthodox foundational systems, and the Quine-Jensen system NFU of
set theory with a universal set.

• Weak arithmetical system:

I-∆0 (bounded arithmetic).

• Strong arithmetical systems :

I∆0 + Exp + BΣ1,

WKL∗0,

PA,

ACA0,

Z2 + Π1
∞-DC.
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Automorphisms and Foundations (2)

• Weak set theoretical system: Set theories no stronger than KP (Kripke-
Platek).

• Strong set theoretical systems:

KP Power,

ZFC + Φ,

GBC + “Ord is w. compact”,

KMC + “Ord is w. compact”+Π1
∞-DC.
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Automorphisms and Foundations (3)

• Theorem (E). The following are equivalent for a model M of the lan-
guage of arithmetic:

(a) M = fix(j) for some j ∈ Aut(M∗), where M ⊂e M∗ ² I-∆0 .

(b) M ² PA.

• Theorem (E). The following are equivalent for a model M of the lan-
guage of arithmetic:

(a) M = Ifix(j) for some j ∈ Aut(M∗), where M ⊂e M∗ ² I-∆0 .

(b) M ² I∆0 + Exp + BΣ1,

where Exp := ∀x∃y 2x = y, and BΣ1(L) is the scheme consisting of
the universal closure of formulae of the form

[∀x < a∃y
∆0︷ ︸︸ ︷

ϕ(x, y)] → [∃z∀x < a∃y < zϕ(x, y)].
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Automorphisms and Foundations (4)

• Theorem (E). The following two conditions are equivalent for a count-
able model (M,A) of the language of second order arithmetic:

(a) M = Ifix(j) for some nontrivial j ∈ Aut(M∗), M∗ ² I∆0 and
A = SSyM(M∗).

(b) (M,A) ² WKL∗0.

• WKL∗0 is a weakening of the well-known subsystem WKL0 of second
order arithmetic in which the Σ0

1-induction scheme is replaced by I∆0+
Exp.

• WKL∗0 was introduced by Simpson and Smith who proved that I∆0 +
Exp + BΣ1 is the first order part of WKL∗0 (in contrast to WKL0,
whose first order part is IΣ1).
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Automorphisms and Foundations (5)

• Suppose M ⊆ M∗ ² I∆0. An automorphism j of M∗ is M -amenable if
M = fix(j), and for every formula ϕ(x, j) in the language LA ∪ {j},
possibly with suppressed parameters from M∗,

{m ∈ M : (M∗, j) ² ϕ(m, j)} ∈ SSyM(M∗).

• Theorem (E). If M ⊆e M∗ ² I∆0, and j ∈ Aut(M∗) is M -amenable,
then

(M∗, SSyM(M∗)) ² Z2.
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Automorphisms and Foundations (6)

• Theorem (E). Suppose (M,A) is a countable model of Z2 + Π1
∞-DC.

There exists an e.e.e. M∗ of M that has an M -amenable automorphism
j such that SSyM(M∗) = A, where Π1

∞-DC is the scheme of formulas
of the form

∀n ∀X ∃Y θ(n,X, Y ) →

[∀X ∃Z (X = (Z)0 and ∀n θ(n, (Z)n , (Z)n+1))].
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Automorphisms and Foundations (7)

• EST (L) [Elementary Set Theory] is obtained from the usual axiom-
atization of ZFC(L) by deleting Power Set and Σ∞(L)-Replacement,
and adding ∆0(L)-Separation.

• GW [Global Well-ordering] is the axiom expressing “C well-orders the
universe”.

• GW ∗ is the strengthening of GW obtained by adding the following two
axioms to GW :

(a) ∀x∀y(x ∈ y → x C y);

(b) ∀x∃y∀z(z ∈ y ←→ z C x).
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Automorphisms and Foundations (8)

• Φ := {∃κ(κ is n-Mahlo and Vκ is a Σn-elementary submodel of V) :
n ∈ ω}.

• Theorem (E). The following are equivalent for a model M of the lan-
guage L = {∈,C}.

(a) M = fix(j) for some j ∈ Aut(M∗), where M ⊂C M∗ ² EST (L) +
GW ∗.

(b) M ² ZFC + Φ.

I−∆0

PA
∼ EST (L)+GW ∗

ZFC+Φ
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