Iterated Ultrapowers and Automorphisms

Ali Enayat

Pisa, May 2006

Our story begins with:

- Question (Häsenjäger): Does $P A$ have a model with a nontrivial automorphism?
- Answer (Ehrenfeucht and Mostowski): Yes, indeed given any first order theory T with an infinite model $\mathfrak{M} \vDash T$, and any linear order \mathbb{L}, there is a model $\mathfrak{M}_{\mathbb{L}}$ of T such that

$$
\operatorname{Aut}(\mathbb{L}) \hookrightarrow \operatorname{Aut}\left(\mathfrak{M}_{\mathbb{L}}\right)
$$

- Corollaries:
(a) $P A, R C F$, and $Z F C$ have models with rich automorphism groups.
(b) Nonstandard models of analysis with rich automorphism groups exist.

The EM Theorem via Iterated Ultrapowers (1)

- Gaifman saw a radically different proof of the EM Theorem: iterate the ultrapower construction along a prescribed linear order.
- Suppose
(a) $\mathfrak{M}=(M, \cdots)$ is a structure,
(b) \mathcal{U} is an ultrafilter over $\mathcal{P}(\mathbb{N})$, and
(c) \mathbb{L} is a linear order.
we wish to describe the \mathbb{L}-iterated ultrapower

$$
\mathfrak{M}^{*}:=\prod_{\mathcal{U}, \mathbb{L}} \mathfrak{M} .
$$

The EM Theorem via Iterated Ultrapowers, Continued (2)

- A key definition (reminiscent of Fubini):

$$
\mathcal{U}^{2}:=\{X \subseteq \mathbb{N}^{2}:\{a \in \mathbb{N}: \overbrace{\{b \in \mathbb{N}:(a, b) \in X\}}^{(X)_{a}} \in \mathcal{U}\} \in \mathcal{U} .
$$

- More generally, for each $n \in \mathbb{N}^{+}$:

$$
\mathcal{U}^{n+1}:=\left\{X \subseteq \mathbb{N}^{n+1}:\left\{a \in \mathbb{N}:(X)_{a} \in \mathcal{U}^{n}\right\} \in \mathcal{U}\right\}
$$

where

$$
(X)_{a}:=\left\{\left(b_{1}, \cdots, b_{n}\right):\left(a, b_{1}, \cdots, b_{n}\right) \in X\right\}
$$

The EM Theorem via Iterated Ultrapowers (3)

- Let Υ be the set of terms τ of the form

$$
f\left(l_{1}, \cdots, l_{n}\right)
$$

where $n \in \mathbb{N}^{+}, f: \mathbb{N}^{n} \rightarrow M$ and

$$
\left(l_{1}, \cdots, l_{n}\right) \in[\mathbb{L}]^{n} .
$$

- The universe M^{*} of \mathfrak{M}^{*} consists of equivalence classes $\{[\tau]: \tau \in \Upsilon\}$, where the equivalence relation \sim at work is defined as follows: given $f\left(l_{1}, \cdots, l_{r}\right)$ and $g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)$ from Υ, first suppose that

$$
\left(l_{1}, \cdots, l_{r}, l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right) \in[\mathbb{L}]^{r+s} ;
$$

let $p:=r+s$, and define: $f\left(l_{1}, \cdots, l_{r}\right) \sim g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)$ iff:

$$
\left\{\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: f\left(i_{1}, \cdots, i_{r}\right)=g\left(i_{r+1}, \cdots, i_{p}\right)\right\} \in \mathcal{U}^{p}
$$

The EM Theorem via Iterated Ultrapowers (4)

More generally:

- Given $f\left(l_{1}, \cdots, l_{r}\right)$ and $g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)$ from Υ, let

$$
P:=\left\{l_{1}, \cdots, l_{r}\right\} \cup\left\{l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right\}, \quad p:=|P|,
$$

and relabel the elements of P in increasing order as $\bar{l}_{1}<\cdots<\bar{l}_{p}$. This relabelling gives rise to increasing sequences $\left(j_{1}, j_{2}, \cdots, j_{r}\right)$ and $\left(k_{1}, k_{2}, \cdots, k_{s}\right)$ of indices between 1 and p such that

$$
l_{1}=\bar{l}_{j_{1}}, l_{2}=\bar{l}_{j_{2}}, \cdots, l_{r}=\bar{l}_{j_{r}}
$$

and

$$
l_{1}^{\prime}=\bar{l}_{k_{1}}, l_{2}^{\prime}=\bar{l}_{k_{2}}, \cdots, l_{s}^{\prime}=\bar{l}_{k_{s}} .
$$

Then define: $f\left(l_{1}, \cdots, l_{r}\right) \sim g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)$ iff

$$
\left\{\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: f\left(i_{j_{1}}, \cdots, i_{j_{r}}\right)=g\left(i_{k_{1}}, \cdots, i_{k_{s}}\right)\right\} \in \mathcal{U}^{p} .
$$

The EM Theorem via Iterated Ultrapowers (5)

- We can also use the previous relabelling to define the operations and relations of \mathfrak{M}^{*} as follows, e.g.,

$$
\left[f\left(l_{1}, \cdots, l_{r}\right)\right] \odot_{\mathfrak{M}^{*}}\left[g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)\right]:=\left[v\left(\bar{l}_{1}, \cdots, \bar{l}_{p}\right)\right]
$$

where $v: \mathbb{N}^{n} \rightarrow M$ by

$$
v\left(i_{1}, \cdots, i_{p}\right):=f\left(i_{j_{1}}, \cdots, i_{j_{r}}\right) \odot^{\mathfrak{M}} g\left(i_{k_{1}}, \cdots, i_{k_{s}}\right) ;
$$

$$
\left[f\left(l_{1}, \cdots, l_{r}\right)\right] \triangleleft^{\mathfrak{M}^{*}}\left[g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)\right] \mathrm{iff}
$$

$$
\left\{\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: f\left(i_{j_{1}}, \cdots, i_{j_{r}}\right) \triangleleft^{\mathfrak{M}^{*}} g\left(i_{k_{1}}, \cdots, i_{k_{s}}\right)\right\} \in \mathcal{U}^{p}
$$

The EM Theorem via Iterated Ultrapowers (6)

- For $m \in M$, let c_{m} be the constant m-function on \mathbb{N}, i.e., $c_{m}: N \rightarrow$ $\{m\}$. For any $l \in \mathbb{L}$, we can identify the element $\left[c_{m}(l)\right]$ with m.
- We shall also identify $[i d(l)]$ with l, where $i d: \mathbb{N} \rightarrow \mathbb{N}$ is the identity function $(W L O G \mathbb{N} \subseteq M)$.
- Therefore $M \cup \mathbb{L}$ can be viewed as a subset of M^{*}.
- Theorem. For every formula $\varphi\left(x_{1}, \cdots, x_{n}\right)$, and every $\left(l_{1}, \cdots, l_{n}\right) \in[\mathbb{L}]^{n}$:

$$
\begin{gathered}
\mathfrak{M}^{*} \vDash \varphi\left(l_{1}, l_{2}, \cdots, l_{n}\right) \Longleftrightarrow \\
\left\{\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}: \mathfrak{M} \vDash \varphi\left(i_{1}, \cdots, i_{n}\right)\right\} \in \mathcal{U}^{n} .
\end{gathered}
$$

The EM Theorem via Iterated Ultrapowers (7)

- Corollary 1. $\mathfrak{M} \prec \mathfrak{M}^{*}$, and \mathbb{L} is a set of order indiscernibles in \mathfrak{M}^{*}.
- Corollary 2. Every automorphism j of \mathbb{L} lifts to an automorphism $\hat{\jmath}$ of \mathfrak{M}^{*} via

$$
\hat{\jmath}\left(\left[f\left(l_{1}, \cdots, l_{n}\right)\right]\right)=\left[f\left(j\left(l_{1}\right), \cdots, j\left(l_{n}\right)\right)\right] .
$$

Moreover, the map

$$
j \mapsto \hat{\jmath}
$$

is a group embedding of $\operatorname{Aut}(\mathbb{L})$ into $\operatorname{Aut}\left(\mathfrak{M}^{*}\right)$.

Skolem-Gaifman Ultrapowers (1)

- If \mathfrak{M} has definable Skolem functions, then we can form the Skolem ultrapower

$$
\frac{\Pi \pi}{\pi y}
$$

as follows:
(a) Suppose \mathcal{B} is the Boolean algebra of parametrically definable subsets of M, and \mathcal{U} is an ultrafilter over \mathcal{B}.
(b) Let \mathcal{F} be the family of functions from M into M that are parametrically definable in \mathfrak{M}.
(c) The universe of the \mathfrak{M}^{*} is

$$
\{[f]: f \in \mathcal{F}\},
$$

where

$$
f \sim g \Longleftrightarrow\{m \in M: f(m)=g(m)\} \in \mathcal{U}
$$

Skolem-Gaifman Ultrapowers (2)

- Theorem (MacDowell-Specker) Every model of $P A$ has an elementary end extension.

Proof: for an appropriate choice of \mathcal{U},

$$
\mathfrak{M} \prec_{e} \prod_{\mathcal{F}, \mathcal{U}} \mathfrak{M} .
$$

- For models of some Skolemized theories, such as $P A$, the process of ultrapower formation can be iterated along any linear order.
- For each parametrically definable $X \subseteq M$, and $m \in M$,

$$
(X)_{m}=\{x \in M:\langle m, x\rangle \in X\} .
$$

- \mathcal{U} is an iterable ultrafilter over \mathcal{B} if for every definable $X \subseteq M,\{m \in$ $\left.M:(X)_{m} \in \mathcal{U}\right\}$.

Skolem-Gaifman Ultrapowers (3)

- Theorem (Gaifman) If \mathcal{U} is iterable, and \mathbb{L} is a linear order, then

$$
\mathfrak{M} \prec_{e, c o n s} \prod_{\mathcal{F}, \mathcal{U}, \mathbb{L}} \mathfrak{M} .
$$

- Theorem (Gaifman). For an appropriate choice of iterable \mathcal{U},
(a) $\operatorname{Aut}\left(\prod_{\mathcal{F}, \mathcal{U}, \mathbb{L}} \mathfrak{M} ; M\right) \cong \operatorname{Aut}(\mathbb{L})$.
(b) $\prod_{\mathcal{F}, \mathcal{U}, \mathbb{L}} \mathfrak{M}$ has an automorphism j such that

$$
f i x(j)=M .
$$

- Theorem (Schmerl). Suppose $G \leq A u t(\mathbb{L})$ for some linear order \mathbb{L}.
(a) $G \cong \operatorname{Aut}(\mathfrak{M})$ for some $\mathfrak{M} \vDash P A$.
(b) $G \cong A u t(\mathbb{F})$ for some ordered field \mathbb{F}.

Automorphisms of Countable Recursively Saturated Models of PA (1)

- A cut I of $\mathfrak{M} \vDash P A$ is an initial segment of M with no last element.
- For a cut I of $\mathfrak{M}, S S y_{I}(\mathfrak{M})$ is the collection of sets of the form $X \cap I$, where X is parametrically definable in \mathfrak{M}.
- I is strong in $\mathfrak{M} \operatorname{iff}\left(\mathbf{I}, S S y_{I}(\mathfrak{M})\right) \vDash A C A_{0}$.
- \mathfrak{M} is recursively saturated if for every $\mathbf{m} \in M$, every recursive finitely realizable type over $(\mathfrak{M}, \mathbf{m})$ is realized in \mathfrak{M}.
- For $j \in \operatorname{Aut}(\mathfrak{M})$,

$$
\begin{gathered}
I_{f i x}(j):=\{x \in \operatorname{dom}(j): \forall y \leq x j(y)=y\}, \\
\quad f i x(j):=\{x \in M: j(x)=x\}
\end{gathered}
$$

Automorphisms of Countable Recursively Saturated Models of PA (2)

Suppose $\mathfrak{M} \vDash P A$ is ctble, rec. sat., and I is a cut of \mathfrak{M}.

- Theorem (Smoryński) $I=I_{f i x}(j)$ for some $j \in \operatorname{Aut}(\mathfrak{M})$ iff I is closed under exponentiation.
- Theorem (Kaye-Kossak-Kotlarski) $I=f i x(j)$ for some $j \in A u t(\mathfrak{M})$ iff I is a strong elementary submodel of \mathfrak{M}.

Automorphisms of Countable Recursively Saturated Models of PA (3)

- Theorem (Kaye-Kossak-Kotlarski)
\mathbb{N} isstrongin \mathfrak{M}
$\overbrace{\mathfrak{M} \text { isarithmeticallysaturated }} \quad$ iff \quad for some $j \in \operatorname{Aut}(\mathfrak{M})$,

$$
\overbrace{\text { fix }(j) \text { isthecollectionofdefinableelementsof }}^{j \text { ismaximal }} .
$$

- Theorem (Schmerl) Aut $(\mathbb{Q}) \hookrightarrow \operatorname{Aut}(\mathfrak{M})$.

Automorphisms of Countable Recursively Saturated Models of PA (4)

- Theorem (E). If I is a closed under exponentiation, then there is a group embedding

$$
j \mapsto \hat{\jmath}
$$

from $\operatorname{Aut}(\mathbb{Q})$ into $\operatorname{Aut}(\mathfrak{M})$ such that:
(a) $I_{f i x}(\hat{\jmath})=I$ for every nontrivial $j \in \operatorname{Aut}(\mathbb{Q})$;
(b) fix $(\hat{\jmath}) \cong \mathfrak{M}$ for every fixed point free $j \in \operatorname{Aut}(\mathbb{Q})$.

- Idea of the proof: Fix $c \in M \backslash I$, let $\bar{c}:=\{x \in M: x<c\}, \mathcal{B}:=\mathcal{P}^{\mathfrak{M}}(\bar{c})$, and \mathcal{F} be the family of functions from $(c)^{n} \rightarrow M$ that are coded in \mathfrak{M}. For an appropriate choice of \mathcal{U},

$$
\mathfrak{M} \cong \prod_{\mathcal{F}, \mathcal{U}, \mathbb{Q}} \mathfrak{M} \text { over } I
$$

This sort of iteration was implicitly considered by Mills and Paris.

Automorphisms of Countable Recursively Saturated Models of PA (5)

- A new type of iteration that subsumes both Gaifman and Paris-Mills iteration: starting with

$$
I \subseteq_{e} \mathfrak{M} \preceq \mathfrak{N}, \text { with } I \subseteq_{\text {strong }} \mathfrak{N},
$$

(a) $\mathcal{F}=\left\{f \upharpoonright I^{n}: f\right.$ par. definable in $\left.\mathfrak{N}\right\}$;
(b) $\mathcal{B}:=S S y_{I}(\mathfrak{N})$;
(c) \mathcal{U} an appropriate ultrafilter over \mathcal{B}.

- Theorem (E). Suppose \mathfrak{M} is arithmetically saturated. There is a group embedding

$$
j \mapsto \hat{\jmath}
$$

from $\operatorname{Aut}(\mathbb{Q})$ into $\operatorname{Aut}(\mathfrak{M})$ such that $\hat{\jmath}$ is maximal for every fixed point free $j \in \operatorname{Aut}(\mathbb{Q})$.

Automorphisms of Countable Recursively Saturated Models of PA (6)

- Conjecture (Schmerl). Suppose \mathfrak{M} is arithmetically saturated, and $\mathfrak{M}_{0} \prec \mathfrak{M}$. Then $f i x(j) \cong \mathfrak{M}_{0}$ for some $j \in \operatorname{Aut}(\mathfrak{M})$.
- Theorem (Kossak) Every countable model of $P A$ is isomorphic to some fix (j), for some $j \in \operatorname{Aut}(\mathfrak{M})$, and some countable arithmetically saturated model \mathfrak{M}.
- Theorem (Kossak) The cardinality of

$$
\{\operatorname{fix}(j): j \in \operatorname{Aut}(\mathfrak{M})\} / \cong
$$

is either $2^{\aleph_{0}}$ or 1 , depending on whether \mathfrak{M} is arithmetically saturated or not.

- Theorem (E). Suppose $\mathfrak{M}_{0} \prec \mathfrak{M}$, and \mathfrak{M} is arithmetically saturated. There are $\mathfrak{M}_{1} \prec \mathfrak{M}$ with $\mathfrak{M}_{0} \cong \mathfrak{M}_{1}$, and an embedding $j \mapsto \hat{\jmath}$ of $\operatorname{Aut}(\mathbb{Q})$ into $\operatorname{Aut}(\mathfrak{M})$, such that $\operatorname{fix}(\hat{\jmath})=\mathfrak{M}_{1}$ for every fixed point free $j \in \operatorname{Aut}(\mathbb{Q})$.

Automorphisms of Countable Recursively Saturated Models of PA (6)

- Suppose I is a proper cut of \mathfrak{M}. A subset X of M is I-coded in \mathfrak{M}, if for some $c \in M, X=\left\{(c)_{i}: i \in I\right\}$, and for all distinct i and j in I, $(c)_{i} \neq(c)_{j}$.
- I is I-coded in \mathfrak{M}.
- The collection of definable elements of \mathfrak{M} is \mathbb{N}-coded in \mathfrak{M}.
- Theorem Suppose $I \subseteq_{\text {strong }} \mathfrak{M}, \mathfrak{M}_{0} \prec \mathfrak{M}$ and M_{0} is I-coded in \mathfrak{M}. Then,
(a) There is an embedding $j \mapsto \hat{\jmath}$ of $\operatorname{Aut}(\mathbb{Q})$ into $\operatorname{Aut}(\mathfrak{M})$ such that $\operatorname{fix}(\hat{\jmath})=M_{0}$ for every fixed point free $j \in \operatorname{Aut}(\mathbb{Q})$;
(b) Moreover, if j is expansive on \mathbb{Q}, then $\hat{\jmath}$ is expansive on $M \backslash \overline{M_{0}}$.

Automorphisms and Foundations (1)

- Strong foundational axiomatic systems can be characterized in terms of the fixed point sets of automorphisms of models of weak foundational systems.
- The above phenomenon sheds light on the close relationship between orthodox foundational systems, and the Quine-Jensen system NFU of set theory with a universal set.
- Weak arithmetical system:
$I-\Delta_{0}$ (bounded arithmetic).
- Strong arithmetical systems:
$I \Delta_{0}+E x p+B \Sigma_{1}$,
$W K L_{0}^{*}$,
$P A$,
$A C A_{0}$,
$Z_{2}+\Pi_{\infty}^{1}$-DC.

Automorphisms and Foundations (2)

- Weak set theoretical system: Set theories no stronger than KP (KripkePlatek).
- Strong set theoretical systems:
$K P^{\text {Power }}$, $Z F C+\Phi$, $G B C+$ "Ord is w. compact",
$K M C+$ "Ord is w. compact" $+\Pi_{\infty}^{1}$-DC.

Automorphisms and Foundations (3)

- Theorem (E). The following are equivalent for a model \mathfrak{M} of the language of arithmetic:
(a) $M=\operatorname{fix}(j)$ for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$, where $\mathfrak{M} \subset_{e} \mathfrak{M}^{*} \vDash I-\Delta_{0}$.
(b) $\mathfrak{M} \vDash P A$.
- Theorem (E). The following are equivalent for a model \mathfrak{M} of the language of arithmetic:
(a) $M=I_{f i x}(j)$ for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$, where $\mathfrak{M} \subset_{e} \mathfrak{M}^{*} \vDash I-\Delta_{0}$.
(b) $\mathfrak{M} \vDash I \Delta_{0}+E x p+B \Sigma_{1}$,
where Exp $:=\forall x \exists y 2^{x}=y$, and $B \Sigma_{1}(\mathcal{L})$ is the scheme consisting of the universal closure of formulae of the form

$$
[\forall x<a \exists y \overbrace{\varphi(x, y)}^{\Delta_{0}}] \rightarrow[\exists z \forall x<a \exists y<z \varphi(x, y)] .
$$

Automorphisms and Foundations (4)

- Theorem (E). The following two conditions are equivalent for a countable model $(\mathfrak{M}, \mathcal{A})$ of the language of second order arithmetic:
(a) $\mathfrak{M}=I_{\text {fix }}(j)$ for some nontrivial $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right), \mathfrak{M}^{*} \vDash I \Delta_{0}$ and $\mathcal{A}=S S y_{M}\left(\mathfrak{M}^{*}\right)$.
(b) $(\mathfrak{M}, \mathcal{A}) \vDash W K L_{0}^{*}$.
- $W K L_{0}^{*}$ is a weakening of the well-known subsystem $W K L_{0}$ of second order arithmetic in which the Σ_{1}^{0}-induction scheme is replaced by $I \Delta_{0}+$ Exp.
- $W K L_{0}^{*}$ was introduced by Simpson and Smith who proved that $I \Delta_{0}+$ $E x p+B \Sigma_{1}$ is the first order part of $W K L_{0}^{*}$ (in contrast to $W K L_{0}$, whose first order part is $I \Sigma_{1}$).

Automorphisms and Foundations (5)

- Suppose $\mathfrak{M} \subseteq \mathfrak{M}^{*} \vDash I \Delta_{0}$. An automorphism j of \mathfrak{M}^{*} is M-amenable if $M=\operatorname{fix}(j)$, and for every formula $\varphi(x, j)$ in the language $\mathcal{L}_{A} \cup\{j\}$, possibly with suppressed parameters from M^{*},

$$
\left\{m \in M:\left(\mathfrak{M}^{*}, j\right) \vDash \varphi(m, j)\right\} \in S S y_{M}\left(\mathfrak{M}^{*}\right)
$$

- Theorem (E). If $\mathfrak{M} \subseteq_{e} \mathfrak{M}^{*} \vDash I \Delta_{0}$, and $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$ is M-amenable, then

$$
\left(\mathfrak{M}^{*}, S S y_{M}\left(\mathfrak{M}^{*}\right)\right) \vDash Z_{2} .
$$

Automorphisms and Foundations (6)

- Theorem (E). Suppose $(\mathfrak{M}, \mathcal{A})$ is a countable model of $Z_{2}+\Pi_{\infty}^{1}-D C$. There exists an e.e.e. \mathfrak{M}^{*} of \mathfrak{M} that has an M-amenable automorphism j such that $S S y_{M}\left(\mathfrak{M}^{*}\right)=\mathcal{A}$, where $\Pi_{\infty}^{1}-D C$ is the scheme of formulas of the form
$\forall n \forall X \exists Y \theta(n, X, Y) \rightarrow$
$\left[\forall X \exists Z\left(X=(Z)_{0}\right.\right.$ and $\left.\left.\forall n \theta\left(n,(Z)_{n},(Z)_{n+1}\right)\right)\right]$.

Automorphisms and Foundations (7)

- $\operatorname{EST}(\mathcal{L})$ [Elementary Set Theory] is obtained from the usual axiomatization of $Z F C(\mathcal{L})$ by deleting Power Set and $\Sigma_{\infty}(\mathcal{L})$-Replacement, and adding $\Delta_{0}(\mathcal{L})$-Separation.
- $G W$ [Global Well-ordering] is the axiom expressing " \triangleleft well-orders the universe".
- $G W^{*}$ is the strengthening of $G W$ obtained by adding the following two axioms to $G W$:
(a) $\forall x \forall y(x \in y \rightarrow x \triangleleft y)$;
(b) $\forall x \exists y \forall z(z \in y \longleftrightarrow z \triangleleft x)$.

Automorphisms and Foundations (8)

- $\Phi:=\left\{\exists \kappa\left(\kappa\right.\right.$ is n-Mahlo and V_{κ} is a Σ_{n}-elementary submodel of $\left.\mathbf{V}\right):$ $n \in \omega\}$.
- Theorem (E). The following are equivalent for a model \mathfrak{M} of the language $\mathcal{L}=\{\in, \triangleleft\}$.
(a) $M=\operatorname{fix}(j)$ for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$, where $\mathfrak{M} \subset_{\triangleleft} \mathfrak{M}^{*} \vDash E S T(\mathcal{L})+$ $G W^{*}$.
(b) $\mathfrak{M} \vDash Z F C+\Phi$.

$$
\frac{I-\Delta_{0}}{P A} \sim \frac{E S T(\mathcal{L})+G W^{*}}{Z F C+\Phi}
$$

