Pisa mai 2006

Nonstandard Averaging and Signal Processing

IST framework.
Notations:
\mathbf{R} for the (hyper)reals
$\underline{\mathbf{R}}$ for the standard reals (external set)
$£$ for the limited real numbers
Point of view for applications:
The natural objects are modelised by internal elements. In all the talk, f (the signal) will be a given internal function.

Aim of the talk :
Revisit averaging theory for application to signal processing.
M. Fliess, a specialist in control theory and signal processing, hopes that averaging can give new methods to study noise in signal processing.

I - Averaging
C. Reder (1985), P.Cartier and Y. Perrin (1995)
A. Robinson, P. Loeb, etc... in *ANS-language
T : a (hyper)finite set.
$m:$ a measure on it $: m: T \rightarrow \mathbf{R}^{+}$
$d:$ a distance on it $: d: T \times T \rightarrow \mathbf{R}^{+}$

For internal $A \subset T$, we write $m(A):=\sum_{t \in A} m(t)$.

Internal subset A is rare iff $m(A) \simeq 0$.

External subset A is rare iff

$$
\forall^{s t} \varepsilon>0 \quad \exists U \subset T \quad m(U)<\varepsilon
$$

σ-additivity : if $\left(A_{n}\right),(n \in \underline{\mathbf{N}})$ is an external sequence of external rare sets, then $\cup_{n \in \mathbf{N}} A_{n}$ is rare.

For f in \mathbf{R}^{T} and internal A, we write

$$
\int_{A} f d m:=\sum_{t \in A} f(t) m(t)
$$

Problem (C. Reder):

Define (if it is possible) an external function \tilde{f} : $X \in \underline{\mathbf{R}}$ such that

$$
\tilde{f}(t) \simeq \frac{1}{|h a l(t)|} \int_{|h a l(t)|} f d m
$$

If T is included in some standard set E, then \tilde{f} would be a standard function on E.

Examples:

for $T \subset \mathbf{R}, m\left(t_{k}\right)=t_{k+1}-t_{k}=d t$, and usual distance :
if f is S-continuous, then $\tilde{f}={ }^{\circ} f$.
if $f(t)=\sin (\omega t), \omega \simeq \infty$, then $\tilde{f}=0$.
if $f=$ Heaviside, then \tilde{f} can not be defined on 0 .
if $f(t)= \pm 1$ with independent random variables, then $\tilde{f}=0$ almost surely.

Cartier-Perrin article :

$$
S(T):=\left\{f \in \mathbf{R}^{T}, \int|f| d m=£\right\}
$$

$S L^{1}(T):=\left\{f \in S(T), m(A) \simeq 0 \Rightarrow \int_{A} f d m \simeq 0\right\}$

Theorem 1 (Radon-Nykodym: Let f be in $S(T)$. Then there exist g and k such that $f=g+k$, $g \in S L^{1}(T)$ and $k=0$ almost everywhere.

The proof is constructive: if λ is infinitely large, but small enough (in an other level in RIST axiomatic ?), $g=f \chi_{|f|<\lambda}$ is convenient.

At this point only we introduce metric d and topology.

$$
\begin{aligned}
L^{1}(T):= & \left\{f \in S L^{1}(T), \exists^{e x t} A \text { rare },\right. \\
& f S \text {-continuous on } T-A\}
\end{aligned}
$$

$A \subset T$ is quadrable iff $\operatorname{hal}(A) \cap h a l(T-A)$ is rare.
A function h is quickly oscillating iff it is in $S L^{1}(T)$ and for all quadrable set A we have $\int_{A} h d m \simeq 0$.

Examples: $h\left(t_{k}\right)=(-1)^{k}$, $h\left(t_{k}\right)=\sin \left(\omega t_{k}\right)(\omega$ unlimited, $\omega \nsim 0 \bmod 2 \pi / d t)$

Theorem 2: Let f be in $S L^{1}(T)$. Then there exist g and h such that $f=g+h, g \in L^{1}(T)$ and h is quickly oscillating.

The idea of the proof is interesting because it shows that the studied notions persist if we replace T by a subset of it. It explain why g is the average of f.

Let \mathcal{P} a partition of T. We define $E^{\mathcal{P}}(f)$ by $E^{\mathcal{P}}(f)(t)=\frac{1}{m(A)} \int_{A} f d m$ where A is the atom of \mathcal{P} containing t.

We say that f_{n} is a martingale of f if $f_{n}=E^{\mathcal{P}_{n}}$ where \mathcal{P}_{n} is a family of partitions such that

- The partition \mathcal{P}_{n+1} is finer than \mathcal{P}_{n}.
- For all limited n, every subset of limited diameter in T is covered by a limited number of atoms of \mathcal{P}_{n}.
- For all limited n, all atoms of \mathcal{P}_{n} are quadrable. - For all unlimited n, all atoms of \mathcal{P}_{n} have infinitesimal diameter.

The existence of martingales needs some additional hypothesis of local compacity:
For every appreciable r, every subset of T with limited diameter can be covered by a limited number of subsets of diameter less than r.

Let f be a function in $S L^{1}(T)$. Let f_{n} a martingale of f. Then one can prove that if n is unlimited but small enough (in an intermediate level in RIST axiomatic ?), f_{n} is in $L^{1}(T)$ and $f-f_{n}$ is quickly oscillating.

The decomposition $f=g+h$ is almost unique, i.e. if $f=g_{1}+h_{1}=g_{2}+h_{2}$ with g_{1}, g_{2} in $L^{1}(T)$ and with h_{1} and h_{2} quickly oscillating, then $g_{1} \simeq g_{2}$ and $h_{1} \simeq h_{2}$ almost everywhere.

Conclusion

If $\int|f| d m=£$, there exist g, h, k such that

- $f=g+h+k$
- $g \in L^{1}$ i.e. g is S-continuous on the complementary of a rare set and $\int_{A} f d m \simeq 0$ on every set A of infinitesimal measure.
- h is quickly oscillating
- $k=0$ almost everywhere.

II - Signal processing

A signal is the output of a physical instrument. He pretends to measure some physical quantity. It is often digital i.e. discrete.

Let us give $T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$ the instants of measure. They are not known exactly. Let us give also a weight $m\left(t_{k}\right)$ at all these instants. We could choose $m\left(t_{k}\right)=t_{k+1}-t_{k}$, but we have to fix m even if the instants are not known.

The operational calculus is very common in the community of automaticians. With Laplace transform, all the computations on functions of t are replaced by computations on functions of s (the adjoint variable). The operational calculus is very well adapted for two reasons : the linear autonomous differential operators are replaced by rational operators, and the frequence are directly readable : a frequence of the signal $f(t)$ is the imaginay part of a pole of the Laplace transform $F(s)$.
M. Fliess has developed a new algebraic theory in the operational calculus. It is based on differential extension of differentiable fields. For example, a parameter can be estimated sometimes as the solution of an equation in the differential field.

I will know present transformations in frequence domain of the Cartier-Perrin theorems.

Let us give $T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$ an increasing sequence of real positive numbers. Let us give a measure m on T. The distance is the usual distance.

We assume: for all k, hal $\left(t_{k}\right)$ is a rare set.
For a function f element of \mathbf{R}^{T}, we define the Laplace transform F by

$$
F(s)=\sum_{t \in T} f(t) e^{-s t} m(t)
$$

The function F (as an internal function on \mathbb{C}) is analytic. The limit of F is 0 when $\Re e(s)$ tends
to infinity. The derivative of F is the Laplace transform of $-t f$.

Proposition (Callot): If F is analytic and limited in the S-interior of a standard domain D, then there exists a standard analytic function ${ }^{\circ} F$ defined on D with $F(x) \simeq{ }^{\circ} F(x)$ for all x in the S-interior of D.

Proposition 1: If $f \in S(T)$ then $F(s)$ is limited for $\Re \mathrm{e}(s) \geq 0$.

Obvious: $|F(s)| \leq \int|f(t)| d m$

Then there exists a standard function (unique) ${ }^{\circ} F$ analytic in the half-plane $\Re e(s)>0$ with ${ }^{\circ} F(s) \simeq F(s)$ while $\Re \mathrm{e}(s) \nless 0$. The following questions concern the equivalence between properties of the functions f and ${ }^{\circ} F$ even if the t_{k} are not regular.

Proposition 2 (EB): If f is quickly oscillating then
$F(s) \simeq 0$ while $\Re \mathrm{e}(s)>0$ and $\frac{\Im \mathrm{m}(s)}{\Re \mathrm{e}(s)}$ limited.

Corollary : ${ }^{\circ} F=0$.
Example : $f(t)=\sin \omega t$. When ω is limited, the classical Laplace transform is $F(s)=\frac{\omega}{s^{2}+\omega^{2}}$. When ω is unlimited, this function $F(s)$ satisfies the proposition 2 . We will show that our discrete Laplace transform has also this property.

Proof:

- The set $\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ is quadrable.
- Define the "primitive" $g\left(t_{k}\right)=\int_{\left\{t_{1}, \ldots, t_{k}\right\}} f d m$.
- $g \simeq 0$. Indeed, f is quickly oscillating.
- Lemma (integration by parts) :

$$
F(s)=g\left(t_{N}\right) e^{-s t_{N}}+\sum_{k=1}^{N-1} g\left(t_{k}\right)\left(e^{-s t_{k}}-e^{-s t_{k+1}}\right)
$$

- By classical majorations one can prove that

$$
\sum_{k=1}^{N-1}\left|e^{-s t_{k}}-e^{-s t_{k+1}}\right|=£
$$

while $\Re \mathrm{e}(s)>0$ and $\frac{\Im \mathrm{m}(s)}{\Re \mathrm{e}(s)}$ limited, even if the repartition of the t_{k} is not regular.

