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Introduction

Definition

A Counting System is a triple (W, s,N ) where:

W is a nonempty class of sets which might have some structure
and which is closed for the following operations:

I (a) A ∈ W and B⊂ A⇒ B ∈ W,
I (b) A, B ∈ W ⇒ A] B ∈ W,
I (c) A, B ∈ W ⇒ A× B ∈ W.

N is a linearly ordered class whose elements will be called
numbers (or s-numbers if we need to be more precise).
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Definition
s : W → N is a surjective function which satisfies the following
assumptions:

I (i) Unit principle: If A and B are singleton, then s (A) = s (B)
I (ii) Monotonicity principle: A⊆ B⇒ s(A) ≤ s(B)
I (iii) Union principle: Suppose that A∩ B = ∅ and A′ ∩ B′ = ∅;

then, if
s (A) = s (A′) e s (B) = s (B′)

we have that
s (A] B) = s (A′ ] B′)

I (iv) Cartesian product principle: If

s (A) = s (A′) e s (B) = s (B′) ,

then
s (A× B) = s (A′ × B′)

The number s (A) is called size of A.
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Example

(Fin, | · | , N)

where

Fin is the class of finite sets

| · | is the "number of elements" of a set

N is the set of natural numbers
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The counting system (Fin, | · | , N) is ruled by two general principles:

AP - Aristotle’s Principle .

If A is a proper subset of B then s(A) < s(B),

and

CP - Cantor’s Principle

s(A) = s(B) if and only if A is in 1–1 correspondence with B.
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The problem is to extend the operation of counting to a larger class of
sets which contains some infinite sets; we would like to extend the
counting system in such a way that the Aristotle and the Cantor
Principles remain valid.

This is not possible, in fact

Theorem
A counting system (W, s,N ) satisfies the Cantor and the Aristotle
principles if and only if W ⊂ Fin and N = N.
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However, if we weaken one of these two principles, it is possible to get
counting systems that lead to interesting theories

Definition
A counting system (W, s,N ) is called Cantorian if satisfies the Cantor
principle CP and the weak Aristotle principle

(Weak Aristotle’s Principle): If A is a proper subset of B then
s(A) ≤ s(B).

Definition
A counting system (W, s,N ) is called Aristotelian if it satisfies the
Aristotle principle AP and the weak Cantor principle

(Weak Cantor’s Principle): If s(A) = s(B), then A is in 1–1
correspondence with B.
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Cantorian Counting Systems:

Essentially there is only one Cantorian Counting System

CARDINAL NUMBERS

(Set, | · | , Card)

where

Set is the class of all sets

| · | is the cardinality of a set

Card is the class of cardinal numbers
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Ordinal Numbers:

ORDINAL NUMBERS

(Woset, ord, Ord)

where

Woset is the class of well ordered sets

ord is the order type of a set

Ord is the class of cardinal numbers

The Ordinal Numbers form a Counting System which does not satisfy
the Cantor Principle, nor the Aristotle principle; however they are a
bridge between the Cantorian and the Aristotelian counting theories.
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Aristotelian Counting Systems:

Definition

A Numerosity System is an Aristotelian Counting System (W, n,N )
such that

N ⊂ R+ ∪ {0}

where R is an ordered field.

The number n (A) is called numerosity of A and n is called numerosity
function.
Thus a numerosity function is a measure of the size of a set which
satisfies good algebraic properties.
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The class of labelled sets

Next we define a class of sets suitable for a numerosity theory:

Definition

A labelled set A is a pair (A, `) where A is a set and

` : A→ Ord

is an application such that ∀γ ∈ Ord , the set `−1(γ) is finite. The class
of labelled sets will be denoted by Lset
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Well ordered set vs. labelled sets

When you "count" the elements of a set by an ordinal number, you
order the elements of a set in a "long line" without empty spaces.

When you "count" the elements of a set by an numerosity function, you
order the elements of a set in in a "long line" of finite piles and you
allow to have empty spaces.

Namely the notion of labelled set is an obvious extension of the notion
of well ordered set.
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The well ordered sets have a natural labelling given by their ordering.
The ordinal numbers have the labelling given by the identity

` (x) = x, ∀x ∈ Ord .

Thus

E ⊂ Ord ⇒ E ∈ Lset

The class of labelled sets whose label is less than Ω ∈ Ord will be
denoted by W (Ω) .

W (ω) is called the class of Natural Labelled Set since ω can be
identified with the set of natural numbers N.
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Numerosity of Natural Labelled Sets

Definition
To every natural labelled set A = (A, `) , we associate the counting
function

ϕA : ω → N

defined as follows

ϕA(n) = |{x ∈ A | `(x) ≤ n}| . (1)
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Theorem
Let N∗ be a model of the hypernatural numbers constructed over a
selective ultrafilter U and let

n : W (ω) → N∗ = Nω/U

be a function defined as follows

n (A) = [ϕA]U . (2)

Then, (W (ω) , n, N∗) is a Numerosity System.
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Remark
Nonstandard models of N arise in a natural way from numerosity
theories.

Remark
Numerosity theories select special kinds of ultrafilters ; for example the
above theorem is true if U is a selective ultrafilter. Otherwise we would
have N ⊂ N∗.

Remark
Numerosity theories might have some foundational intrest; in fact the
existence of selective ultrafilters cannot be proved in ZFC (but it can be
proved in ZFC+CH).
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Now the problem consists in extending the notion of numerosity to any
labelled set A such that ` (A) ⊂ Ω where Ω is an arbitrarily large ordinal
number.

The main difficulty is to extend the notion of numerosity function

ϕA : ω → N, ϕA(n) = |{x ∈ A | `(x) < n}|

to a function
ϕA : Ω → N

Clearly an immediate generalization does not work.
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We shall overcome this difficulty introducing a new order relation.
Given two ordinals x, y ∈ Ord , using the Cantor normal form they can
be written as follows:

x =
N∑

i=0

ωγi xi ;

y =
N∑

i=0

ωγi yi ;

xi , yi ∈ ω; γi ∈ Ord
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We set

x∨ y : =
N∑

i=0

ωγi ·max {xi , yi}

and

x∧ y : =
N∑

i=0

ωγi ·min {xi , yi}

Vieri Benci (DMA) Size of Sets 28th May 2006 20 / 41



In this way, Ord is equipped with a lattice structure. Now, we can
introduce a partial order relation "v" which exploits this lattice
structure:

xv y :⇔ x = x∧ y⇔ y = x∨ y.

Thus, given the two ordinals (19), we have that

xv y :⇔ xi ≤ yi , i = 1, .., N
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We define the sum of two labelled sets A1 = (A1, `1) and A2 = (A2, `2) ,
as follows:

A1 ] A2 = (A1 ∪ A2, `)

where ] denotes their union and the labelling ` is defined as follows:

`(x) =

{
`1(x) if x ∈ A1

`2(x) if x ∈ A2
(3)
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The product between two labelled sets [A1, `1] and [A2, `2], is defined
as follows as follows:

A1× A2 = (A1× A2, `(x1, x2))

where
`1(x1, x2) = `1(x1) ∨ `2(x2)

Thus the class W (Ω) is closed for union and cartesian product.
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Using this order relation it is possible to generalize the notion of
counting function as follows: if A ∈ W (Ω)

ϕA : Ω → N

is defined as follows

ϕA(γ) = |{x ∈ A | `(x) v γ}| . (4)
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Theorem

There is a numerosity system

{W (Ω) , num, N (Ω)}

such that
N (Ω) ⊂ R~ (Ω)

where
R~ (Ω) = RΩ/U

and
num(A) = [ϕA]U .

The main technicality of the proof consists in constructing a suitable
ultrafilter U .
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Ordinal numbers and numerosities

The ordinal numbers, are not an Aristotelian Counting System since
they violate the Aristotle principle, nevertheless they satisfy good
arithmetic properties with respect to the natural operations ⊕ and ⊗.

ξ =
n∑

j=0

ωβj aj ; ζ =
n∑

j=0

ωβj bj

ξ ⊕ ζ =
n∑

j=0

ωβj (aj + bj)

ξ ⊗ ζ =
n∑

i,j=0

ωβi⊕βj aibj

Thus they must be strictly related to a numerosity theory.
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The numerosity function provides a natural embedding

num: Ω → N (Ω) ⊂ R~ (Ω) (5)

which associates to each Von Neumann ordinal number γ ∈ Ω its
numerosity γ̂ = num(γ) .

Theorem

If β, γ ∈ Ω, then

num(β ⊕ γ) = β̂ + γ̂

num(β ⊗ γ) = β̂ · γ̂
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Moreover, we have that

Theorem
If ξ ∈ N (Ω) , then there exist E ⊂ Ord, such that

ξ = num(E)

So we have that
N (Ω) = B

(
Ω

)
/ ≈

where Ω is a suitable ordinal number larger than Ω and B
(
Ω

)
is the

family of bounded subsets of Ω.
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Infinite sums

We would like to give a meaning to infinite sums of the type∑
j∈Ω

ξj , ξj ∈ R~ (Ω) (6)

and to have that
num(E) =

∑
j∈Ω

|Ej | (7)

where E ∈ W (Ω) and Ej = {x ∈ E : ` (x) = j} .
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Proposition

There exists an operator σ : R~ (Ω) → F (Ω, R) such that

(it is a ring homomorphism) for every ξ, η ∈ R~ (Ω) ,

σ (ξ + η) = σ (ξ) + σ (η) ;

σ (ξ · η) = σ (ξ) · σ (η) ;

(it is a ring section) JΩ ◦ σ = identitywhere

JΩ : F (Ω, R) → R~ (Ω)

is the ring homomorphism defined by

JΩ (ϕ) = [ϕ]U .
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Now for every j ∈ Ω, we define

δj : Ω → N

δj (x) =

{
1 if x w j
0 otherwise

Proposition
For every j ∈ Ω, JΩ (δj) = 1.

Also this proposition is a consequence of the ultrafilter which we have
chosen
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Now, in order to simplify the notation, when no ambiguity is possible,
for any ξ ∈ R~ (Ω) , we set

ξ (x) = [σ (ξ)] (x) ;

By the above definitions, we have that ξ = JΩ (ξδj) and hence, if I ⊂ Ω
is a finite set, ∑

j∈I

ξj = JΩ

∑
j∈I

ξjδj
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This fact suggests to generalize this equation to the case in which I is
infinite:

Definition
Given ξj ∈ R~ (Ω) , I ⊆ Ω,we set

∑
j∈I

ξj = JΩ

∑
j∈I

ξjδj

 (8)

Equation (8) makes sense, in fact, for any x ∈ Ω∑
j∈I

ξj (x) δj (x) =
∑

j∈I ; jvx

ξj (x)

and this is a finite sum since the set of j’s v x is finite.
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The next theorem describes the main properties satisfied by the infinite
sum:

Theorem

The infinite sum satisfies the following properties:

(i) (finite associative property)
∑

j∈I ξj +
∑

j∈I ζj =
∑

j∈I (ξj + ζj)

(ii) (distributive property) ζ
∑

j∈I ξj =
∑

j∈I ζξj

(iii) (partial sum) if r j ∈ R, then
∑

j∈ωγ r j = JΩ (S) where where

S(x) :=
∑
jvx

r j

is a "partial sum".
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Theorem

(iv) (hyperfinite sum) if r j ∈ R, j ∈ ω, then
∑

j∈ω r j =
∑ω̂

j=0 r j where

ω̂∑
j=0

r j

is the usual hyperfinite sum

(v) (finite permutation) let π : ωγ → ωγ be a permutation of a finite
number of points; then ∑

j∈ωγ

ξj =
∑
j∈ωγ

ξπ(j)
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Theorem
(vi) (translation of indices) if, for j ∈ ωγ , ζj = ξωγβ+j , then

∑
j∈ωγ

ξj =

ωγ(β+1)∑
j=ωγβ

ζj

(vii) (infinite associative property) for any γ ∈ Ω, we have

∑
j∈Ω

ξj =
∑
β∈Ω

ωγ(β+1)∑
j=ωγβ

ζj
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The product principle

In set theory and hence in Counting Systems, the idea of product
arises from the idea of Cartesian Product. However in elementary
Arithmetic the product m · n is thought as the sum of m terms equal to
n.

Thus the most general idea of product of two sets F and E is the
following one: we suppose to have a family of sets Ej , j ∈ F, pairwise
disjoint, and equinumerous to a set E; we would like to have

num(F) · num(E) = num

⋃
j∈F

Ej

 (9)
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We may assume that E, F ⊂ Ω ∈ Ord . Then if we assume that

` (E) ⊂ ωγ , for a fixed γ ∈ Ord

and we set
Ej = {ωγ j + x : x ∈ E} , j ∈ F.

Then

∀j ∈ F, num(Ej) = num(E)

and

num(F) · num(E) = num

⋃
j∈F

Ej


holds.
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Exponentiation

We can also define an "exponentiation" between labelled sets. Given a
function f : E→ γ, γ ∈ Ord , the support of f is defined as follows:

supp (f ) = {x ∈ E : f (x) 6= 0}

Definition
Given a labelled set A = (A, `) and a function f : A→ γ, γ ∈ Ord , we
set

γA = {f ∈ F (A, γ) : supp (f ) is finite}

Moreover, for any f ∈ γA , we set

` (f ) =
∨
{`(x, f (x)) : x ∈ supp (f )}

In particular, we have that

2A ∼= Pfin (A)
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Theorem
If γ ∈ Ord and E ∈ Lset

num
(
γE)

= num(γ)num(E)

and
num(Pfin (E)) = 2num(E)
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The end

Thank you for your attention!
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