LA CONJECTURE DE DICKSON ET CLASSES PARTICULIÈRES D'ENTIERS

ABDELMADJID BOUDAOUD

Topic \#3: Nonstandard Methods in Combinatorial Number Theory.

As a consequence of Dickson's Conjecture, we prove, for each couple of integers $q>0$ and $k>0$, the existence of an infinite set $L_{q, k} \subset \mathbb{N}$ such that, for each $n \in L_{q, k}$ and every integer $s, 0<|s| \leq q$, we have $n+s=|s| t_{1} \ldots t_{k}$ where $t_{1}<\ldots<t_{k}$ are prime numbers.

Similarly, we prove the existence of an infinite set $M_{q, k} \subset \mathbb{N}$ such that, for each $n \in M_{q, k}$ and every integer $s \in[-q, q]$ (including 0), we have $n+s=l t_{1} \ldots t_{k}$ where $t_{1}<\ldots<t_{k}$ are prime numbers and $l \in[1,2 q+1]$ is an integer.

The nonstandard interpretation of this result suggests the following question: Is every unlimited integer equal to the sum of a limited integer and a product of two unlimited integers ? We present families of integers in which each unlimited member is a product of two unlimited integers.

Département de Mathématiques, Université de M'sila, Algérie
E-mail address: boudaoudab@yahoo.fr

