On an Inequality by N. Trudinger and J. Moser

Bernhard Ruf

Università di Milano, Italy ruf@mat.unimi.it

It was shown by N. Trudinger and J. Moser that for functions in $H_0^1(\Omega)$ with $\int_{\Omega} |\nabla u|^2 dx \leq 1$ (where Ω is a bounded domain in \mathbb{R}^2) the integral $\int_{\Omega} \exp(\alpha u^2) dx$ remains uniformly bounded by some constant $C_{\alpha} = C_{\alpha}(\Omega)$, for $\alpha \leq 4\pi$, and becomes infinite for $\alpha > 4\pi$. L. Carleson and A. Chang proved that for the limiting case $\alpha = 4\pi$ there exists a corresponding extremal function, in the case that Ω is the unit ball in \mathbb{R}^2 . For proving this they introduced the maximal limit of all "concentrating" sequences of normalized functions; let us call this limit the "Carleson-Chang limit".

We give a new proof, a generalization, and a new interpretation of this result. In particular, we give an explicit sequence which converges to the Carleson-Chang limit.

The constant $C_{4\pi}(\Omega)$ mentioned above becomes infinite for unbounded domains. We show that there exists a uniform bound, independent of Ω , if the Dirichlet norm is replaced by the standard H_0^1 -norm $||u||^2 = \int_{\Omega} |\nabla u|^2 + |u|^2 dx$. Furthermore, an explicit formula for the corresponding Carleson-Chang limit is given.