The Monge-Ampère Equation With Blow-up Boundary Condition

Bo Guan University of Tennessee, USA e-mail guan@math.utk.ed Huai-Yu Jian Tsinghua University, China

e-mail hjian@math.tsinghua.edu.cn

Let Ω be a domain in \mathbb{R}^n and ψ a positive function defined on $\Omega \times \mathbb{R} \times \mathbb{R}^n$. We consider the Dirichlet problem for the Monge-Ampère equation

$$\det D^2 u = \psi(x, u, Du) > 0 \text{ in } \Omega, \qquad (0.1)$$

with the boundary condition

$$u = +\infty \quad \text{on } \partial\Omega. \tag{0.2}$$

We will assume ψ to be smooth and look for strictly convex solutions in $C^{\infty}(\Omega)$; it is necessary to assume the underlying domain Ω to be convex for such solutions to exist. In this work, we find optimal growth conditions under which a solution exists. **Presented by Bo Guan**