## Cases of equality in perimeter inequalities for Steiner symmetrization

## Andrea Cianchi

**Abstract.** One of the several remarkable properties of Steiner symmetrization is that if E is any set of finite perimeter P(E) in  $\mathbb{R}^n$ ,  $n \geq 2$ , and H is any hyperplane, then also its Steiner symmetral  $E^s$  about H is of finite perimeter, and

$$(0.1) P(E^s) \le P(E)$$

Recall that  $E^s$  can be defined as follows. Label the points  $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$  as x = (x', y), where  $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$  and  $y = x_n$ , assume, without loss of generality, that  $H = \{(x', 0) : x' \in \mathbb{R}^{n-1}\}$ , and set  $E_{x'} = \{y \in \mathbb{R} : (x', y) \in E\}$ ,  $\ell(x') = \mathcal{L}^1(E_{x'})$  for  $x' \in \mathbb{R}^{n-1}$ , and  $\pi(E)^+ = \{x' \in \mathbb{R}^{n-1} : \ell(x') > 0\}$  where  $\mathcal{L}^m$  denotes the outer Lebesgue measure in  $\mathbb{R}^m$ . Then

(0.2) 
$$E^{s} = \{ (x', y) \in \mathbb{R}^{n} : x' \in \pi(E)^{+}, |y| \le \ell(x')/2 \}.$$

The purpose of this joint work with Miroslav Chlebík and Nicola Fusco is to investigate on the cases of equality in (0.1), i.e. to characterize those sets of finite perimeter E which satisfy

$$(0.3) P(E^s) = P(E)$$

Partial results about this problem can be found in the literature. It is classical that if E is convex and fulfills (0.3), then it is equivalent to  $E^s$  (up to translations along the y-axis). On the other hand, as far as we know, the only available result concerning a general set of finite perimeter  $E \subset \mathbb{R}^n$  satisfying (0.3) states that its section  $E_{x'}$  is equivalent to a segment for  $\mathcal{L}^{n-1}$ -a.e.  $x' \in \pi(E)^+$ . As a first step, we strengthen this result and show that, in fact, the generalized inner normals to E at the endpoints of  $E_{x'}$  are symmetric about H for  $\mathcal{L}^{n-1}$ -a.e.  $x' \in \pi(E)^+$ .

It might seem surprising that this information is not sufficient to conclude that E is equivalent to  $E^s$  (up to translations along the y-axis). However, simple counterexamples can be exhibited showing that such an equivalence cannot be inferred without any additional assumption on  $E^s$ . Our second and main result consists in finding out minimal conditions of geometric nature on  $E^s$  ensuring that if (0.3) is in force, then necessarily E is equivalent to  $E^s$  (up to translations along the y-axis).