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Let fX1; � � � ; Xmg be a family of Lipschitz vector �elds in R
N , and the linear

second order di�erential operator

Lu =
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@i (bij @ju+ diu) +
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bi @iu+ c u;

where bij(x) = bji(x); di; bi and c are measurable functions. Set B = (bij), d =

(d1; : : : ; dN ) and b = (b1; : : : ; bN). The operator L is X{elliptic in an open subset


 of RN if it satis�es the following conditions: (a) there exist positive constants
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;; and (b) there exists a function 
(x) � 0 such that hd(x); �i2 + hb(x); �i2 �


(x)2
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. Here h ; i denotes the standard inner

product in RN .

Assume that 
 2 L2p(
), and c 2 Lp(
) for some Q

2
< p < 1, with Q > 2 the

exponent in the Sobolev inequality for the vector �elds. We establish a maximum

principle for operators L of the form above, and use it to prove Harnack inequality

for nonhomogeneous equations, uniform Harnack inequalities on rings, and as a

consequence Liouville{type results.
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