ISTITUZIONI DI GEOMETRIA 2020/21 - ESERCIZI SETTIMANALI

È sempre lecito e consigliato usare un enunciato degli esercizi precedenti per risolvere un esercizio, anche se non è stato risolto.

1. Esercizi del 27 febbraio

Esercizio 1.1. Costruisci due atlanti lisci non compatibili su \mathbb{R} . Mostra che le due varietà lisce che ne risultano sono però diffeomorfe.

(Nota: Per teoremi profondi, due strutture lisce sulla stessa varietà topologica di dimensione $n \le 3$ sono sempre diffeomorfe. Questo fatto spesso non è vero in dimensione $n \ge 4$.)

Una *struttura liscia* su una varietà topologica è una classe di compatibilità di atlanti lisci, o equivalentemente un atlante massimale.

Esercizio 1.2. Siano M e N due varietà topologiche e $f: M \to N$ un omeomorfismo. Mostra che, data una struttura liscia su N, esiste un'unica struttura liscia su M tale che f sia un diffeomorfismo.

Esercizio 1.3. Scrivi un diffeomorfismo fra \mathbb{RP}^1 e S^1 .

Esercizio 1.4. Mostra che la mappa

$$S^n \to \mathbb{RP}^n$$
, $(x_1, \ldots, x_{n+1}) \mapsto [x_1, \ldots, x_{n+1}]$

è liscia.

Esercizio 1.5. Siano \mathcal{A} e \mathcal{A}' due atlanti lisci su una varietà topologica M. Mostra che sono fatti equivalenti:

- (1) \mathcal{A} e \mathcal{A}' sono compatibili
- (2) per ogni aperto $U \subset M$, le restrizioni $\mathcal{A}|_{U}$ e $\mathcal{A}'|_{U}$ sono compatibili
- (3) ogni $x \in M$ ha un intorno U = U(x) su cui $\mathcal{A}|_U$ e $\mathcal{A}'|_U$ sono compatibili

Un diffeomorfismo locale è una mappa $f: M \to N$ liscia fra varietà tale che per ogni $x \in M$ esistano un intorno aperto U = U(x) di x ed un intorno aperto V = V(y) di y = f(x) tali che f(U) = V e $f|_{U}: U \to V$ sia un diffeomorfismo.

Esercizio 1.6. Siano M e N due varietà topologiche e $f: M \to N$ un omeomorfismo locale. Data una struttura liscia su N, mostra che esiste un'unica struttura liscia su M tale che f sia un diffeomorfismo locale.

Gli spazi proiettivi complessi \mathbb{CP}^n sono in modo naturale delle varietà 2n-dimensionali: si costruisce un atlante in \mathbb{C}^n come per i reali, e poi si identifica \mathbb{C}^n con \mathbb{R}^{2n} nel modo usuale.

Esercizio 1.7. Costruisci un diffeomorfismo $\mathbb{CP}^1 \to S^2$.

2. Esercizi del 6 marzo

Esercizio 2.1. Sia $p(z) \in \mathbb{C}[z]$ polinomio di grado $d \ge 1$. Considera l'insieme $S = \{z \mid p'(z) = 0\}$. Mostra che la mappa

$$p: \mathbb{C} \setminus p^{-1}(p(S)) \longrightarrow \mathbb{C} \setminus p(S)$$
$$z \longmapsto p(z)$$

è un rivestimento liscio di grado d.

Esercizio 2.2. Considera il gruppo $\Gamma < \text{Isom}(\mathbb{R}^2)$ generato da

$$f(x, y) = (x + 1, y),$$
 $g(x, y) = (-x, y + 1).$

Mostra che Γ agisce in modo libero e propriamente discontinuo.

Esercizio 2.3. Considera il gruppo $\Gamma < Aff(\mathbb{R}^2)$ generato da

$$f(x,y) = \left(2x, \frac{1}{2}y\right).$$

Mostra che Γ non agisce in modo propriamente discontinuo sulla varietà $M=\mathbb{R}^2\setminus\{0\}$. Mostra che la mappa $M\to M/\Gamma$ è comunque un rivestimento, ed il quoziente M/Γ è una superficie non di Hausdorff (ogni punto ha un intorno omeomorfo a \mathbb{R}^2 , ma non è di Hausdorff!).

Esercizio 2.4. Considera il gruppo $\Gamma < \text{Isom}(\mathbb{R}^3)$ generato da:

$$f(x, y, z) = (x + 1, y, z),$$
 $g(x, y, z) = (x, y + 1, z),$

$$h(x, y, z) = (-x, -y, z + 1).$$

Mostra che l'azione è libera e propriamente discontinua e che la varietà \mathbb{R}^3/Γ è compatta ed orientabile ma non omeomorfa al 3-toro. Mostra che questa varietà ha un rivestimento doppio diffeomorfo al 3-toro.

Esercizio 2.5. Mostra che una immersione iniettiva propria è un embedding.

Esercizio 2.6. Sia $S \subset M$ una sottovarietà liscia. Mostra che la mappa inclusione $i: S \hookrightarrow M$ è un embedding. Mostra che i è propria se e solo se S è un sottoinsieme chiuso.

Esercizio 2.7. Sia $M \subset N$ una sottovarietà liscia e $S \subset M$ una sottovarietà liscia. Mostra che $S \subset N$ è una sottovarietà liscia.

Esercizio 2.8. Sia M compatta e N connessa. Se dim $M = \dim N$, mostra che ogni embedding $M \to N$ è un diffeomorfismo.

3. Esercizi del 13 marzo

Esercizio 3.1. Siano p, q due numeri reali con $\frac{p}{q}$ irrazionale. Mostra che la mappa

$$f: \mathbb{R} \longrightarrow S^1 \times S^1$$

 $t \longmapsto (e^{pit}, e^{qit})$

è una immersione iniettiva e che l'immagine è densa in $S^1 \times S^1$.

Esercizio 3.2. Sia $f: M \to N$ una mappa liscia fra varietà lisce. Mostra che

$$i: M \hookrightarrow M \times N, \qquad p \longmapsto (p, f(p))$$

è un embedding.

Esercizio 3.3. Mostra che una sommersione è sempre una mappa aperta. Deduci che se M è compatta allora non esistono sommersioni $M \to \mathbb{R}^k$ per nessun k.

Esercizio 3.4. Sia $f: \mathbb{RP}^2 \to \mathbb{R}^4$ la mappa

$$f([x, y, z]) = \frac{1}{x^2 + y^2 + z^2} (x^2 - y^2, xy, xz, yz).$$

Mostra che f è un embedding.

Esercizio 3.5. Costruisci un embedding esplicito della bottiglia di Klein K in \mathbb{R}^n , per qualche n.

Esercizio 3.6. Costruisci un embedding del toro *n*-dimensionale

$$S^1 \times \cdots \times S^1 \hookrightarrow \mathbb{R}^{n+1}$$

per ogni $n \ge 1$.

4. Esercizi del 20 marzo

Indichiamo con $\operatorname{Mult}(V_1, \ldots, V_k; W)$ lo spazio vettoriale di tutte le funzioni multilineari da V_1, \ldots, V_k in W.

Esercizio 4.1. Mostra che l'isomorfismo canonico

$$\operatorname{Mult}(\underbrace{V,\ldots,V}_{k};V) \longrightarrow \operatorname{Mult}(V^{*},\underbrace{V,\ldots,V}_{k};\mathbb{R}) = \mathcal{T}_{1}^{k}(V)$$

definito mandando $F \in Mult(V, ..., V; V)$ nella mappa

$$(\boldsymbol{w}^*,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k)\longmapsto \boldsymbol{w}^*\big(\boldsymbol{\digamma}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k)\big)$$

è effettivamente un isomorfismo.

Un elemento di $\mathcal{T}_h^k(V)$ è *puro* se può essere scritto come prodotto tensoriale di h vettori di V e k covettori di V^* , in qualche ordine.

Esercizio 4.2. Siano $\mathbf{v}, \mathbf{v}', \mathbf{w}, \mathbf{w}' \in V$ vettori non nulli.

- (1) Se \mathbf{v} e \mathbf{v}' sono indipendenti, allora $\mathbf{v} \otimes \mathbf{w}$ e $\mathbf{v}' \otimes \mathbf{w}'$ sono vettori indipendenti in $\mathcal{T}_2^0(V)$.
- (2) Se inoltre anche \mathbf{w} e \mathbf{w}' sono indipendenti, allora

$$\mathbf{v} \otimes \mathbf{w} + \mathbf{v}' \otimes \mathbf{w}' \in \mathcal{T}_2^0(V)$$

non è un elemento puro.

Esercizio 4.3. Considera l'isomorfismo canonico $\mathcal{T}_1^1(V) = \text{Hom}(V, V)$. Mostra che tramite questo isomorfismo gli elementi puri sono mandati precisamente negli omomorfismi di rango ≤ 1 .

Esercizio 4.4. Ricordiamo che \mathbb{RP}^n è l'insieme delle rette vettoriali I in \mathbb{R}^{n+1} . Considera l'insieme

$$E = \{(I, v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} \mid v \in I\}.$$

Mostra che E è una sottovarietà liscia di $\mathbb{RP}^n \times \mathbb{R}^{n+1}$ e che la mappa $E \to \mathbb{RP}^n$, $(I, v) \mapsto I$ è un fibrato vettoriale di rango 1 (detto *fibrato tautologico*).

Esercizio 4.5. Mostra che il fibrato tangente TK della bottiglia di Klein K ha una sezione mai nulla ma non ha due sezioni indipendenti.

Esercizio 4.6. Mostra che il fibrato tangente TM di una varietà M è sempre orientabile, anche se M non lo è.

Esercizio 4.7. Dimostra che esistono esattamente due fibrati vettoriali di rango 1 con base S^1 a meno di isomorfismi.

Esercizio 4.8. Sia $E \to M$ un fibrato vettoriale e $S \subset M$ un sottoinsieme chiuso. Mostra che ogni sezione parziale definita su S si estende ad una sezione globale su M (suggerimento: adatta la dimostrazione vista per le funzioni $S \to \mathbb{R}^k$).

5. Esercizi del 27 marzo

Esercizio 5.1. Sia V uno spazio vettoriale di dimensione n. Dato un elemento non nullo $\alpha \in \Lambda^k(V)$ con $k \leq n$, mostra che esiste sempre un $\beta \in \Lambda^{n-k}(V)$ tale che $\alpha \land \beta \neq 0$ in $\Lambda^n(V)$.

Deduci da questo fatto che la forma bilineare

$$\Lambda^{k}(V) \times \Lambda^{n-k}(V) \longrightarrow \Lambda^{n}(V)$$
$$(\alpha, \beta) \longmapsto \alpha \wedge \beta$$

è non-degenere, cioè che la mappa indotta

$$\Lambda^{k}(V) \longrightarrow \operatorname{Hom}(\Lambda^{n-k}(V), \Lambda^{n}(V))$$
$$\alpha \longmapsto (\beta \mapsto \alpha \wedge \beta)$$

è un isomorfismo.

Esercizio 5.2. Dimostra la identità di Jacobi: dati tre campi vettoriali X, Y, Z su una varietà M, vale

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] \equiv 0.$$

Esercizio 5.3. Data una matrice quadrata A, sia X_A il campo vettoriale su \mathbb{R}^n dato da $X_A(x) = Ax$. Mostra che

$$[X_A, X_B] = X_{BA-AB}.$$

Esercizio 5.4. Sia M una varietà, siano X,Y campi vettoriali su M e $f,g \in C^{\infty}(M)$. Mostra che

$$[fX, gY] = fg[X, Y] + f(Xg)Y - g(Yf)X.$$

Esercizio 5.5. Costruisci un campo vettoriale mai nullo su ciascun spazio lenticolare L(p, q).

Esercizio 5.6. Costruisci un fibrato $E \to K$ con fibra $F = S^1$ sopra la bottiglia di Klein K, tale che E sia una 3-varietà compatta orientabile (consiglio: puoi usare un esercizio della seconda settimana).

Esercizio 5.7. Mostra che qualsiasi varietà non-orientabile M di dimensione n è contenuta in una varietà orientabile di dimensione n+1.

6. Esercizi del 3 aprile

Esercizio 6.1. Costruisci una foliazione sul toro $T = S^1 \times S^1$ che abbia contemporaneamente foglie compatte e non compatte (cerca di descrivere la foliazione in modo rigoroso, non solo con un disegno).

Esercizio 6.2. Mostra che gli unici sottogruppi di Lie connessi di SO(3) sono l'identità, SO(3), e i sottogruppi isomorfi a S^1 che descrivono le rotazioni intorno ad un asse.

Esercizio 6.3. Sia D una distribuzione di rango k su una varietà M. Mostra che D è integrabile se e solo se vale il fatto seguente: per ogni $p \in M$ esiste una sottovarietà $S \subset M$ di dimensione k contenente p tale che per ogni $q \in S$ vale $T_qS = D_q$.

Esercizio 6.4. Sia G un gruppo di Lie e H < G un sottogruppo di Lie connesso. Mostra che H è normale in G se e solo se la corrispettiva sottoalgebra \mathfrak{h} è un ideale.

Esercizio 6.5. Mostra che una distribuzione D di rango 1 (in una varietà M qualsiasi) è sempre integrabile.

Esercizio 6.6. Sia D una distribuzione in M e D' una distribuzione in M'. La distribuzione D + D' in $M \times M'$ è definita nel modo ovvio, ponendo $(D + D')_{(p,p')} = D_p + D'_{p'}$, ricordando che $T_{(p,p')}(M \times M') = T_p M \times T_{p'} M'$. Mostra che se D e D' sono integrabili allora anche D + D' è integrabile.

Esercizio 6.7. Mostra che ciascuno spazio lenticolare L(p, q) ammette una foliazione in cerchi (cioè una foliazione di rango 1 con foglie tutte compatte).

Esercizio 6.8. Considera $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$. Per ogni $p = (z_1, z_2) \in S^3$, prendiamo la retta complessa

$$r_p = \{(w_1, w_2) \in \mathbb{C}^2 \mid w_1 \bar{z}_1 + w_2 \bar{z}_2 = 0\}.$$

- (1) Mostra che $r_p \subset T_pS^3$. Quindi $\{r_p\}_{p \in S^3}$ è una distribuzione di rango due in S^3 , detta distribuzione di Hopf.
- (2) Questa distribuzione è integrabile?

7. Esercizi del 17 aprile

Esercizio 7.1. Mostra che una superficie orientabile che ammette un campo di vettori mai nulli è sempre parallelizzabile.

Esercizio 7.2. Mostra che due embedding $f, g: \mathbb{R} \hookrightarrow \mathbb{R}^2$ sono sempre isotopi.

Una proprietà P di una funzione liscia $f: M \to N$ è stabile se per ogni omotopia liscia $f_t: M \to N$, $t \in [0,1]$, con $f_0 = f$, esiste $\varepsilon > 0$ tale che tutte le funzioni f_t con $t < \varepsilon$ abbiano la proprietà P.

Esercizio 7.3. Sia M compatta e $f: M \to N$ una funzione liscia. Mostra che le seguenti sono proprietà stabili per f:

- *f* è una immersione,
- *f* è una sommersione.

Esercizio 7.4. Sia $f: S^1 \hookrightarrow \mathbb{R}^3$ un nodo (cioè un embedding liscio). Mostra che esiste un piano affine $P \subset \mathbb{R}^3$ tale che $\pi \circ f: S^1 \hookrightarrow P$ sia un'immersione, dove π è la proiezione ortogonale su P.

La caratteristica di Eulero di una superficie S_g di genere g è $\chi(S_g) = 2-2g$. Questa può essere presa come una definizione.

Esercizio 7.5. Siano $g, g', d \ge 1$ qualsiasi. Mostra che se $\chi(S_g) = d\chi(S_{g'})$ allora esiste un rivestimento $S_g \to S_{g'}$ di grado d (basta un disegno).

Esercizio 7.6. Siano M e N due varietà connesse orientate senza bordo di dimensione $n \ge 3$. Mostra che

$$\pi_1(M\#N) \cong \pi_1(M) * \pi_1(N)$$

dove # indica la somma connessa di varietà e * il prodotto libero di gruppi (cerca la definizione in rete se non la conosci).

Esercizio 7.7. Sia $\pi: E \to M$ un fibrato vettoriale. Mostra che π è una equivalenza omotopica.

8. Esercizi del 24 aprile

Esercizio 8.1. Mostra che una n-varietà M è orientabile \iff esiste una n-forma mai nulla su M.

Esercizio 8.2. Considera il toro $T=S^1\times S^1$ con coordinate (θ^1,θ^2) e la 1-forma $\omega=d\theta^1$. Considera la 1-sottovarietà $\gamma_i=\left\{\theta^i=0\right\}$ per i=1,2, orientata come S^1 . Mostra che

$$\int_{\gamma_1} \omega = 0, \qquad \int_{\gamma_2} \omega = 2\pi.$$

Esercizio 8.3. Sia $f: U \to V$ una mappa liscia fra aperti $U \subset \mathbb{R}^m$ e $V \subset \mathbb{R}^n$. Scriviamo $f = (f_1, \ldots, f_n)$. Per non confonderci usiamo variabili diverse $(x^1, \ldots, x^n) \in \mathbb{R}^n$ e $(y^1, \ldots, y^m) \in \mathbb{R}^m$. Mostra che

$$f^*(dx^i) = \frac{\partial f_i}{\partial y^j} dy^j = df_i.$$

Esercizio 8.4. Sia N una m-varietà senza bordo. Se $\varphi: M \to N$ è una mappa liscia e $\omega \in \Omega^k(N)$, otteniamo

$$d(\varphi^*\omega) = \varphi^*(d\omega).$$

Suggerimento. Mostra il teorema nel caso in cui $\omega = f$ sia una funzione e nel caso in cui $\omega = dg$ sia il differenziale di una funzione. Deduci il caso generale dalle buone proprietà di d rispetto alle operazioni + e \wedge .

Esercizio 8.5. Sia $\omega \in \Omega^1(M)$ una 1-forma su M chiusa (cioè tale che $d\omega = 0$) e mai nulla. Poiché $\omega(p) \neq 0$ per ogni $p \in M$, il funzionale $\omega(p) \colon T_pM \to \mathbb{R}$ è non banale e possiamo definire la distribuzione di iperpiani:

$$D(p) = \ker \omega(p).$$

Mostra che D è integrabile e quindi tangente ad una foliazione su M.

Esercizio 8.6. Sia D una distribuzione di piani in una 3-varietà M senza bordo. Mostra che D è integrabile \iff per ogni 1-forma α mai nulla definita su un aperto di M avente ker $\alpha = D$ abbiamo $\alpha \wedge d\alpha = 0$.

9. Esercizi del 1 maggio

Esercizio 9.1. Sia $E \to M$ un fibrato vettoriale. Mostra che le due varietà E e M sono omotopicamente equivalenti.

Esercizio 9.2. Mostra che per qualsiasi successione esatta di spazi vettoriali finito dimensionali

$$0 \longrightarrow V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} \dots \xrightarrow{f_{k-1}} V_k \longrightarrow 0$$

vale la relazione

$$\sum_{i=1}^k (-1)^i \operatorname{dim} V_i = 0.$$

Esercizio 9.3. Sia M una n-varietà connessa, compatta, orientata e senza bordo. Sia N ottenuta da M rimuovendo un punto. Dimostra le uguaglianze sequenti:

$$b^{i}(N) = b^{i}(M) \quad \forall i \le n - 1,$$

$$b^{n}(N) = b^{n}(M) - 1.$$

Suggerimento. Usa Mayer – Vietoris con $M = U \cup V$, U = N, e V palla aperta contenente il punto rimosso.

Esercizio 9.4. Sia M#N la somma connessa di due varietà connesse, orientate, compatte e senza bordo. Dimostra le uguaglianze sequenti:

$$b^{i}(M\#N) = 1$$
 se $i = 0, n$,
 $b^{i}(M\#N) = b^{i}(M) + b^{i}(N)$ se $0 < i < n$.

Puoi usare l'esercizio precedente. Deduci che i numeri di Betti della superficie \mathcal{S}_q di genere g sono

$$b^{0}(S_{q}) = 1$$
, $b^{1}(S_{q}) = 2g$, $b^{2}(S_{q}) = 1$.

Esercizio 9.5. Sia $K \subset S^3$ un nodo. Mostra che $H^1(S^3 \setminus K) \cong \mathbb{R}$.

Esercizio 9.6. Dimostra il Lemma dei 5.

Nel prossimo esercizio, potete usare che le varietà compatte con bordo hanno tutti i numeri di Betti finiti, anche se lo abbiamo dimostrato solo per quelle orientabili senza bordo.

Esercizio 9.7. Siano M e N due varietà compatte con bordo e $\varphi: \partial M \to \partial N$ un diffeomorfismo. Sia W ottenuta incollando M con N via φ . Mostra che

$$\chi(W) = \chi(M) + \chi(N) - \chi(\partial M).$$

Esercizio 9.8. Sia $S \subset \mathbb{CP}^n$ un sottospazio proiettivo di dimensione complessa $k \leq n$. Mostra che la mappa $i^* \colon H^{2k}(\mathbb{CP}^n) \to H^{2k}(S)$ è un isomorfismo.

Esercizio 9.9. Siano $L, L' \subset \mathbb{R}^n$ sottospazi affini.

- (1) Mostra che le varietà $\mathbb{R}^n \setminus L$ e $\mathbb{R}^n \setminus L'$ sono omotopicamente equivalenti se e solo se dim $L = \dim L'$.
- (2) Mostra che se dim $L > \dim L'$ allora ogni mappa continua $f: (\mathbb{R}^n \setminus L) \to (\mathbb{R}^n \setminus L')$ è omotopa ad una mappa costante.

Esercizio 9.10. Siano r_1 , r_2 , r_3 tre rette in \mathbb{CP}^2 con intersezione vuota $r_1 \cap r_2 \cap r_3 = \emptyset$.

- (1) Calcola i gruppi di coomologia della varietà $X=\mathbb{CP}^2\setminus (r_1\cup r_2\cup r_3).$
- (2) Mostra che esiste una mappa $f: X \to X$ tale che $f^*: H^*(X) \to H^*(X)$ non è né l'identità né banale.

Suggerimento. Usa una proiettività per mettere le rette in una forma semplice.

10. Esercizi dell'8 maggio

Esercizio 10.1. Considera lo spazio iperbolico nel modello del semispazio:

$$H^n = \{x \in \mathbb{R}^n \mid x_n > 0\}, \quad g(x) = \frac{1}{x_n^2} g^E(x).$$

Qui g^E è il tensore euclideo. In altre parole

$$g_{ij}(x) = \frac{1}{x_n^2} \delta_{ij}.$$

Mostra che le mappe seguenti sono isometrie per la varietà riemanniana H^n :

- f(x) = x + b, con $b = (b_1, ..., b_{n-1}, 0)$;
- $f(x) = \lambda x \operatorname{con} \lambda > 0$.

Deduci che il gruppo di isometrie $Isom(H^n)$ di H^n agisce transitivamente sulla varietà riemanniana H^n .

Esercizio 10.2. Considera il piano iperbolico nel modello del semipiano:

$$H^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}, \quad g = \frac{1}{y^2} g^E.$$

Calcola l'area del dominio

$$[-a, a] \times [b, \infty)$$

per ogni a, b > 0. L'area è ovviamente quella indotta dalla forma volume della varietà riemanniana H^2 .

Esercizio 10.3. Scrivi la metrica euclidea g su $\mathbb{R}^2 \setminus \{0\}$ usando coordinate polari (θ, ρ) e determina i simboli di Christoffel della connessione di Levi-Civita rispetto a queste variabili θ, ρ .

Esercizio 10.4. Calcola i simboli di Christoffel nel piano iperbolico con il modello del semipiano H^2 .

Sia $v_0=(0,1)$ punto tangente nel punto $(0,1)\in H^2$. Sia v_t il trasporto parallelo di v_0 lungo la curva $\gamma(t)=(t,1)$. Calcola l'angolo fra v_t e l'asse delle ordinate (il risultato dipende da t).

Esercizio 10.5. Identifichiamo \mathbb{R}^2 con \mathbb{C} e scriviamo il modello del sempiano del piano iperbolico come $H^2=\{z\in\mathbb{C}\mid \Im z>0\}$. Mostra che le trasformazioni di Möbius

$$z \mapsto \frac{az+b}{cz+d}$$

con $a, b, c, d \in \mathbb{R}$ e det $\binom{a \ b}{c \ d} > 0$ sono tutte isometrie di H^2 che preservano l'orientazione.

Esercizio 10.6. Sia M una varietà pseudo-Riemanniana connessa. Sia $p \in M$ un punto. Il *gruppo di olonomia* di M in p è il sottoinsieme

$$H_p = \left\{ \Gamma(\gamma)_{t_0}^{t_1} \right\} \subset \mathcal{O}(T_p M, \mathbf{g}(p))$$

ottenuto al variare di tutte le curve $\gamma\colon I\to M$ con $t_0< t_1$ contenuti in I e tali che $\gamma(t_0)=\gamma(t_1)=p$. Mostra che H_p è effettivamente un sottogruppo. Mostra che se $p,q\in M$ allora H_p e H_q sono isomorfi. Determina il tipo di isomorfismo di H_p per $M=\mathbb{R}^n$ e $M=S^2$.

Esercizio 10.7. Sia (M, \mathbf{g}) una varietà Riemanniana. La *divergenza* di un campo vettoriale \mathbf{X} è definita come la contrazione del campo tensoriale $\nabla \mathbf{X}$ di tipo (1, 1). In coordinate:

$$\operatorname{div}(\mathbf{X}) = \nabla_i X^i$$
.

Mostra che in un qualsiasi sistema di coordinate valgono le formule seguenti:

$$\begin{split} \Gamma^{j}_{ji} &= \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^{i}} \sqrt{\det g}, \\ \operatorname{div}(\mathbf{X}) &= \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^{i}} \left(X^{i} \sqrt{\det g} \right). \end{split}$$

Nella scrittura Γ^{j}_{ii} usiamo la convenzione di Einstein.

11. Esercizi del 15 maggio

Esercizio 11.1. Sia G un gruppo di Lie. Mostra che esiste sempre una metrica riemanniana su G invariante a sinistra, cioè tale che $L_g: G \to G$ sia un'isometria per ogni $g \in G$.

Esercizio 11.2. (Difficile, cerca informazioni in rete.) Sia G un gruppo di Lie compatto. Mostra che esiste sempre una metrica riemanniana su G biinvariante, cioè tale che L_g e R_g siano entrambe isometrie per ogni $g \in G$.

Esercizio 11.3. Considera la connessione ∇ su \mathbb{R}^3 con simboli di Christoffel

$$\Gamma^3_{12} = \Gamma^1_{23} = \Gamma^2_{31} = 1$$

$$\Gamma_{21}^3 = \Gamma_{32}^1 = \Gamma_{13}^2 = -1$$

e tutti gli altri simboli di Christoffel nulli. Mostra che questa connessione è compatibile con il tensore metrico euclideo g, ma non è simmetrica. Quali sono le geodetiche?

Esercizio 11.4. Considera il modello del disco dello spazio iperbolico (B^n, \mathbf{g}) ,

$$\mathbf{g}(x) = \left(\frac{2}{1 - \|x\|^2}\right)^2 \mathbf{g}^E(x)$$

dove \mathbf{g}^E è il tensore metrico euclideo. Sia $v \in S^{n-1}$. Mostra che la geodetica massimale passante per l'origine in direzione v è

$$\gamma(t) = \tanh t \cdot v = \frac{e^{2t} - 1}{e^{2t} + 1}v.$$

Esercizio 11.5. Sia M una varietà dotata di una connessione ∇ e $\gamma: I \to M$ una curva. Mostra che il trasporto parallelo

$$\Gamma(\gamma)_{t_0}^{t_1} \colon T_{\gamma(t_0)}M \longrightarrow T_{\gamma(t_1)}M$$

è invariante per riparametrizzzazione di γ . Cioè, se prendiamo una mappa suriettiva $\alpha: J \to I$ con $\alpha'(t) \ge 0$ per ogni $t \in J$, allora

$$\Gamma(\gamma)_{t_0}^{t_1} = \Gamma(\gamma \circ \alpha)_{u_0}^{u_1}$$

per qualsiasi u_0 , $u_1 \in J$ con $\alpha(u_i) = t_i$.

Esercizio 11.6. Considera il modello dell'iperboloide $I^n \subset \mathbb{R}^{n,1}$ dello spazio iperbolico \mathbb{H}^n . Mostra che per ogni $p, q \in I^n$ vale l'uquaglianza

$$\cosh d(p, q) = -\langle p, q \rangle.$$

Esercizio 11.7. Leggi sul libro il fatto che la differenza $D = \nabla - \nabla'$ fra due connessioni ∇ , ∇' su M è interpretabile come un campo tensoriale di tipo (1, 2). Mostra che ∇ e ∇' hanno le stesse geodetiche \iff D è un tensore antisimmetrico. Deduci che:

- (1) $\nabla = \nabla' \iff$ hanno le stesse geodetiche e la stessa torsione.
- (2) Per ogni ∇ esiste un'unica connessione ∇' con le stesse geodetiche di ∇ e con torsione nulla.

Hint. Dimostra che D è antisimmetrico \iff $D(\mathbf{X}, \mathbf{X}) = 0$ per ogni campo \mathbf{X} \iff $\nabla'_{\mathbf{X}}\mathbf{X} = \nabla_{\mathbf{X}}\mathbf{X}$ per ogni campo \mathbf{X} \iff hanno le stesse geodetiche.

12. Esercizi del 22 maggio

Esercizio 12.1. Una varietà riemanniana connessa è *omogenea* se per ogni $p, q \in M$ esiste una isometria di M che porti p in q. Mostra che una varietà riemanniana omogenea è sempre completa.

Una isometria locale fra varietà riemanniane è una $f: M \to N$ tale che per ogni $p \in M$ esistono intorni aperti U(p) e V(f(p)) tali che f(U) = V e $f|_{U}: U \to V$ sia un isometria.

Esercizio 12.2. Sia $f: M \to N$ una isometria locale fra varietà riemanniane connesse. Mostra che se M è completa, allora f è un rivestimento.

Esercizio 12.3. Sia $f: M \to N$ una isometria locale fra varietà riemanniane connesse che è anche un rivestimento. Mostra che M è completa $\iff N$ è completa.

Esercizio 12.4. Una varietà riemanniana connessa è *isotropa* in $p \in M$ se per ogni coppia di vettori $v, w \in T_pM$ di norma unitaria esiste una isometria f di M tale che f(p) = p e $df_p(v) = w$. Mostra che una varietà riemanniana completa che è isotropa in ogni suo punto è anche omogenea.

¹Cioè per ogni $p \in M$ la mappa $D(p) \colon T_pM \times T_pM \to T_pM$ è antisimmetrica, cioè D(p)(v,w) = -D(p)(w,v). In coordinate: $D_{ij}^k = -D_{ji}^k$.

Esercizio 12.5. Sia M una varietà Riemanniana connessa completa. Un raggio uscente da $p \in M$ è una geodetica $\gamma \colon [0, +\infty) \to M$ con $\gamma(0) = p$ e $\|\gamma'(0)\| = 1$ tale che $d(\gamma(t), p) = t$ per ogni $t \in [0, +\infty)$. Mostra che se M è non compatta allora per ogni p esiste un raggio uscente da p.

Esercizio 12.6. Sia M una varietà Riemanniana connessa completa. Sia X un campo su M tale che $||X(p)|| \le C$ per ogni $p \in M$, per qualche costante C > 0 indipendente da p. Mostra che X è completo.

Esercizio 12.7 (Il toro di Clifton – Pohl). Considera la varietà $M = \mathbb{R}^2 \setminus \{0\}$ dotata della metrica Lorentziana

$$\mathbf{g}(x,y) = \frac{2}{x^2 + y^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Ogni mappa $f(x,y)=(\lambda x,\lambda y)$ è una isometria. In particolare possiamo quozientare M con l'isometria f(x,y)=(2x,2y) e ottenere una superficie T diffeomorfa ad un toro. La struttura Lorentziana su M ne induce una su T. Dimostra che le curve

$$\gamma(t) = \left(\frac{1}{1-t}, 0\right), \qquad \eta(t) = (\tan(t), 1)$$

sono entrambe geodetiche massimali definite su $(-\infty,1)$ e $(-\frac{\pi}{2},\frac{\pi}{2})$. Quindi T è compatta ma non geodeticamente completa (questo fatto è impossibile nelle varietà Riemanniane per Hopf – Rinow).