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CHAPTER 1

Preliminaries

We state here some basic notions of topology and analysis that we will use
in this book. The proofs of some theorems are omitted and can be found in
many excellent sources.

1.1. General topology

1.1.1. Topological spaces. A topological space is a pair (X, τ) where X
is a set and τ is a collection of subsets of X called open subsets, satisfying
the following axioms:

• ∅ and X are open subsets;
• the arbitrary union of open subsets is an open subset;
• the finite intersection of open subsets is an open subset.

The complement X \U of an open subset U ∈ τ is called closed. When we
denote a topological space, we often write X instead of (X, τ) for simplicity.

A neighbourhood of a point x ∈ X is any subset N ⊂ X containing an
open set U that contains x , that is x ∈ U ⊂ N ⊂ X.

1.1.2. Examples. There are many ways to construct topological spaces
and we summarise them here very briefly.

Metric spaces. Every metric space (X, d) is also naturally a topological
space: by definition, a subset U ⊂ X is open ⇐⇒ for every x0 ∈ U there is an
r > 0 such that the open ball

B(x0, r) =
{
x ∈ X

∣∣ d(x, x0) < r
}

is entirely contained in U.
In particular Rn is a topological space, whose topology is induced by the

euclidean distance between points.

Product topology. The cartesian product X =
∏
i∈I Xi of two or more

topological spaces is a topological space: by definition, a subset U ⊂ X is
open ⇐⇒ it is a (possibly infinite) union of products

∏
i∈I Ui of open subsets

Ui ⊂ Xi , where Ui 6= Xi only for finitely many i .
This is the coarsest topology (that is, the topology with the fewest open

sets) on X such that the projections X → Xi are all continuous.

3



4 1. PRELIMINARIES

Subspace topology. Every subset S ⊂ X of a topological space X is also
naturally a topological space: by definition a subset U ⊂ S is open ⇐⇒ there
is an open subset V ⊂ X such that U = V ∩ S.

This is the coarsest topology on S such that the inclusion i : S ↪→ X is
continuous.

In particular every subset S ⊂ Rn is naturally a topological space.

Quotient topology. Let f : X → Y be a surjective map. A topology on
X induces one on Y as follows: by definition a set U ⊂ Y is open ⇐⇒ its
counterimage f −1(U) is open in X.

This is the finest topology (that is, the one with the most open subsets)
on Y such that the map f : X → Y is continuous.

A typical situation is when Y is the quotient space Y = X/∼ for some
equivalence relation ∼ on X, and X → Y is the induced projection.

1.1.3. Continuous maps. A map f : X → Y between topological spaces
is continuous if the inverse of every open subset of Y is an open subset of X.
The map f is a homeomorphism if it has an inverse f −1 : Y → X which is also
continuous.

Two topological spaces X and Y are homeomorphic if there is a homeomor-
phism f : X → Y relating them. Being homeomorphic is clearly an equivalence
relation.

1.1.4. Reasonable assumptions. A topological space can be very wild,
but most of the spaces encountered in this book will satisfy some reasonable
assumptions, that we now list.

Hausdorff. A topological space X is Hausdorff if every two distinct points
x, y ∈ X have disjoint open neighbourhoods Ux and Uy , that is Ux ∩ Uy = ∅.

The euclidean space Rn is Hausdorff. Products and subspaces of Hausdorff
spaces are also Hausdorff.

Second-countable. A base for a topological space X is a set of open sub-
sets {Ui} such that every open set is an arbitrary union of these. A topological
space X is second-countable if it has a countable base.

The euclidean space Rn is second-countable. Countable products and
subspaces of second-countable spaces are also second-countable.

Connected. A topological space X is connected if it is not the disjoint
union X = X1 t X2 of two non-empty open subsets X1, X2. Every topologi-
cal space X is partitioned canonically into maximal connected subsets, called
connected components. Given this canonical decomposition, it is typically
harmless to restrict our attention to connected spaces.

A slightly stronger notion is that of path-connectedness. A space X is
path-connected if for every x, y ∈ X there is a path connecting them, that is
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a continuous map α : [0, 1] → X with α(0) = x and α(1) = y . Every path-
connected space is connected. The converse is also true if one assumes the
reasonable assumption that the topological space we are considering is locally
path-connected, that is every point has a path-connected neighbourhood.

The Euclidean space Rn is path-connected. Products and quotients of
(path-)connected spaces are (path-)connected.

Locally compact. A topological space X is locally compact if every point
x ∈ X has a compact neighbourhood. The euclidean space Rn is locally
compact.

1.1.5. Reasonable consequences. The reasonable assumptions listed in
the previous section have some nice and reasonable consequences.

Countable base with compact closure. We first note the following.

Proposition 1.1.1. If a topological space X is Hausdorff and locally com-
pact, every x ∈ X has an open neighbourhood U(x) with compact closure.

Proof. Every x ∈ X has a compact neighbourhood V (x), that is closed
since X is Hausdorff. The neighbourhood V (x) contains an open neighbour-
hood U(x) of x , whose closure is contained in V (x) and hence compact. �

Proposition 1.1.2. Every locally compact second-countable Hausdorff space
X has a countable base made of open sets with compact closure.

Proof. Let {Ui} be a countable base. For every open set U ⊂ X and
x ∈ U, there is an open neighbourhood U(x) ⊂ U of x with compact closure,
which contains a Ui that contains x . Therefore the Ui with compact closure
suffice as a base for X. �

Exhaustion by compact sets. Let X be a topological space. An exhaus-
tion by compact subsets is a countable family K1, K2, . . . of compact subsets
such that Ki ⊂ int(Ki+1) for all i and ∪iKi = X.

The standard example is the exhaustion of Rn by closed balls

Ki = B(0, i) =
{
x ∈ Rn

∣∣ ‖x‖ ≤ i}.
Proposition 1.1.3. Every locally compact second-countable Hausdorff space

X has an exhaustion by compact subsets.

Proof. The space X has a countable base U1, U2, . . . of open sets with
compact closures. Define K1 = U1 and

Ki+1 = U1 ∪ . . . ∪ Uk

where k is the smallest natural number such that Ki ⊂ ∪ki=1Ui . �
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Figure 1.1. A locally compact second-countable Hausdorff space is para-
compact: how to construct a locally finite refinement using an exhaustion
by compact subsets.

Paracompactness. An open cover for a topological space X is a set {Ui}
of open sets whose union is the whole of X. An open cover {Ui} is locally
finite if every point in X has a neighbourhood that intersects only finitely many
Ui . A refinement of an open cover {Ui} is another open cover {Vj} such that
every Vj is contained in some Ui .

Definition 1.1.4. A topological space X is paracompact if every open cover
{Ui} has a locally finite refinement {Vj}.

Of course a compact space is paracompact, but the class of paracompact
spaces is much larger.

Proposition 1.1.5. Every locally compact second-countable Hausdorff space
X is paracompact.

Proof. Let {Ui} be an open covering: we now prove that there is a locally
finite refinement. We know that X has an exhaustion by compact subsets
{Kj}, and we set K0 = K−1 = ∅. For every i , j we define Vi j =

(
int(Kj+1) \

Kj−2

)
∩Ui as in Figure 1.1. The family {Vi j} is an open cover and a refinement

of {Ui}, but it may not be locally finite.
For every fixed j = 1, 2, . . . only finitely many Vi j suffice to cover the com-

pact set Kj \ int(Kj−1), so we remove all the others. The resulting refinement
{Vi j} is now locally finite. �

In particular the Euclidean space Rn is paracompact, and more generally
every subspace X ⊂ Rn is paracompact. The reason for being interested
in paracompactness may probably sound obscure at this point, and it will be
unveiled in the next chapters.

1.1.6. Topological manifolds. Recall that the open unit ball in Rn is

Bn =
{
x ∈ Rn

∣∣ |x | < 1
}
.

A topological manifold of dimension n is a reasonable topological space
locally modelled on Bn.
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Figure 1.2. A topological manifold is covered by open subsets, each
homeomorphic to Bn. Here the manifold is a circle, and is covered by four
open arcs, each homeomorphic to the open interval B1.

Definition 1.1.6. A topological manifold of dimension n (shortly, a topo-
logical n-manifold) is a Hausdorff second-countable topological space M such
that every point x has an open neighbourhood Ux homeomorphic to Bn.

In other words, a Hausdorff second-countable topological space M is a
manifold⇐⇒ it has an open covering {Ui} such that each Ui is homeomorphic
to Bn. A schematic picture in Figure 1.2 shows that the circle is a topological
1-manifold: a more rigorous proof will be given in the next chapters.

Example 1.1.7. Every open subset of Rn is a topological n-manifold. In
general, any open subset of a topological n-manifold is a topological n-manifold.

1.1.7. Pathologies. The two reasonability hypothesis in Definition 1.1.6
are there only to discard some spaces that are usually considered as patholog-
ical. Here are two examples. The impressionable reader may skip this section.

Exercise 1.1.8 (The double point). Consider two parallel lines Y = {y =

±1} ⊂ R2 and their quotient X = Y/∼ where (x, y) ∼ (x ′, y ′)⇐⇒ x = x ′ and
(y = y ′ or x 6= 0). Prove that every point in X has an open neighbourhood
homeomorphic to B1, but X is not Hausdorff.

The following is particularly crazy.

Exercise 1.1.9 (The long ray). Let α be an ordinal, and consider X =

α×[0, 1) with the lexicographic order. Remove from X the first element (0, 0),
and give X the order topology, having the intervals (a, b) = {a < x < b} as
a base. If α is countable, then X is homeomorphic to R. If α = ω1 is the
first non countable ordinal, then X is the long ray : every point in X has an
open neighbourhood homeomorphic to B1, but X is not separable (it contains
no countable dense subset) and hence is not second-countable. However, the
long ray X is path-connected!

1.1.8. Homotopy. Let X and Y be two topological spaces. A homotopy
between two continuous maps f , g : X → Y is another continuous map F : X×
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[0, 1] → Y such that F (·, 0) = f and F (·, 1) = g. Two maps f and g are
homotopic if there is a homotopy between them, and we may write f ∼ g.

Two topological spaces X and Y are homotopically equivalent if there are
two continuous maps f : X → Y and g : Y → X such that f ◦ g ∼ idY and
g ◦ f = idX .

Two homeomorphic spaces are homotopically equivalent, but the converse
may not hold. For instance, the euclidean space Rn is homotopically equivalent
to a point for every n. A topological space that is homotopically equivalent to
a point is called contractible.

1.2. Algebraic topology

1.2.1. Fundamental group. Let X be a topological space and x0 ∈ X a
base point. The fundamental group of the pair (X, x0) is a group

π1(X, x0)

defined by taking all loops, that is all paths starting and ending at x0, considered
up to homotopies with fixed endpoints. Loops may be concatenated, and this
operation gives a group structure to π1(X, x0).

If x1 is another base point, every arc from x0 to x1 defines an isomorphism
between π1(X, x0) and π1(X, x1). Therefore if X is path-connected the fun-
damental group is base point independent, at least up to isomorphisms, and
we write it as π1(X). If π1(X) is trivial we say that X is simply connected.

Every continuous map f : X → Y between topological spaces induces a
homomorphism

f∗ : π1(X, x0) −→ π1

(
Y, f (x0)

)
.

The transformation from f to f∗ is a functor from the category of pointed
topological spaces to that of groups. This means that (f ◦ g)∗ = f∗ ◦ g∗ and
(idX)∗ = idπ1(X,x0). It implies in particular that homeomorphic spaces have
isomorphic fundamental groups.

Exercise 1.2.1. Every topological manifold M has a countable π1(M).

Hint. Since M is second countable, we may find an open covering of M
that consists of countably many open sets homeomorphic to open balls called
islands. Every pair of such sets intersect in an open set that has at most
countably many connected components called bridges. Every loop in π1(M, x0)

may be determined by a (non unique!) finite sequence of symbols saying which
islands and bridges it crosses. There are only countably many sequences. �

Two maps f , g : (X, x0) → (Y, y0) that are homotopic, via a homotopy
that sends x0 to y0 at each time, induce the same homomorphisms f∗ =

g∗ on fundamental groups. This implies that homotopically equivalent path-
connected spaces have isomorphic fundamental groups, so in particular every
contractible topological space is simply connected.



1.2. ALGEBRAIC TOPOLOGY 9

There are simply connected manifolds that are not contractible, as we will
discover in the next chapters.

1.2.2. Coverings. Let X̃ andX be two path-connected topological spaces.
A continuous surjective map p : X̃ → X is a covering map if every x ∈ X has
an open neighbourhood U such that

p−1(U) =
⊔
i∈I
Ui

where Ui is open and p|Ui : Ui → U is a homeomorphism for all i ∈ I.
A local homeomorphism is a continuous map f : X → Y where every x ∈ X

has an open neighbourhood U such that f (U) is open and f |U : U → f (U) is a
homeomorphism. A covering map is always a local homeomorphism, but the
converse may not hold.

The degree of a covering p : X̃ → X is the cardinality of a fibre p−1(x) of
a point x , a number which does not depend on x .

Two coverings p : X̃ → X and p′ : X̃ ′ → X of the same space X are
isomorphic if there is a homeomorphism f : X̃ → X̃ ′ such that p = p′ ◦ f .

1.2.3. Coverings and fundamental group. One of the most beautiful
aspects of algebraic topology is the exceptionally strong connection between
fundamental groups and covering maps.

Let p : X̃ → X be a covering map. We fix a basepoint x0 ∈ X and a lift
x̃0 ∈ p−1(x0) in the fibre of x0. The induced homomorphism

p∗ : π1(X̃, x̃0) −→ π1(X, x0)

is always injective. If we modify x̃0 in the fibre of x0, the image subgroup Im p∗
changes only by a conjugation inside π1(X, x0). The degree of p equals the
index of Im p∗ in π1(X, x0).

A topological space Y is locally contractible if every point y ∈ Y has a
contractible neighbourhood. This is again a very reasonable assumption: every
topological space considered in this book will be of this kind.

We now consider a connected and locally contractible topological space X
and fix a base-point x0 ∈ X.

Theorem 1.2.2. By sending p to Im p∗ we get a bijective correspondence{
coverings p : X̃ → X

up to isomorphism

}
←→

{
subgroups of π1(X, x0)

up to conjugacy

}
The covering corresponding to the trivial subgroup is called the univer-

sal covering. In other words, a covering X̃ → X is universal if X̃ is simply
connected, and we have just discovered that this covering is unique up to
isomorphism.

Exercise 1.2.3. Let p : X̃ → X be a covering map. If X is a topological
manifold, then X̃ also is.
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Hint. To lift the second countability from X to X̃, use that π1(X) is
countable by Exercise 1.2.1 and hence p has countable degree. �

1.2.4. Deck transformations. Let p : X̃ → X be a covering map. A deck
transformation or automorphism for p is a homeomorphism f : X̃ → X̃ such
that p ◦ f = p. The deck transformations form a group Aut(p) called the deck
transformation group of p.

If Im p∗ is a normal subgroup, the covering map is called regular. For
instance, the universal cover is regular. Regular covering maps behave nicely
in many aspects: for instance we have a natural isomorphism

Aut(p) ∼= π1(X)/π1(X̃).

To be more specific, we need to recall some basic notions on group actions.

1.2.5. Group actions. An action of a group G on a set X is a group
homomorphism

ρ : G −→ S(X)

where S(X) is the group of all the bijections X → X. We denote ρ(g) simply
by g, and hence write g(x) instead of ρ(g)(x). We note that

g(h(x)) = (gh)(x), e(x) = x

for every g, h ∈ G and x ∈ X. In particular if g(x) = y then g−1(y) = x .
The stabiliser of a point x ∈ X is the subgroup Gx < G consisting of all

the elements g such that g(x) = x . The orbit of a point x ∈ X is the subset

O(x) =
{
g(x)

∣∣ g ∈ G} ⊂ X.
Exercise 1.2.4. We have x ∈ O(x). Two orbits O(x) and O(y) either

coincide or are disjoint. They coincide ⇐⇒ ∃g ∈ G such that g(x) = y .

Therefore the set X is partitioned into orbits. The action is:

• transitive if for every x, y ∈ X there is a g ∈ G such that g(x) = y ;
• faithful if ρ is injective;
• free if the stabiliser of every point is trivial, that is g(x) 6= x for every
x ∈ X and every non-trivial g ∈ G.

Exercise 1.2.5. The stabilisers Gx and Gy of two points x, y lying in the
same orbit are conjugate subgroups of G.

Exercise 1.2.6. There is a natural bijection between the left cosets of Gx
in G and the elements of O(x). In particular the cardinality of O(x) equals
the index [G : Gx ] of Gx in G.

The space of all the orbits is denoted by X/G . We have a natural projection
π : X → X/G .
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1.2.6. Topological actions. If X is a topological space, a topological
action of a group G on X is a homomorphism

G −→ Homeo(X)

where Homeo(X) is the group of all the self-homeomorphisms of X. We have
a natural projection π : X → X/G and we equip the quotient set X/G with the
quotient topology. The action is:

• properly discontinuous if any two points x, y ∈ X have neighbour-
hoods Ux and Uy such that the set{

g ∈ G
∣∣ g(Ux) ∩ Uy 6= ∅

}
is finite.

Example 1.2.7. The action of a finite group G is always properly discon-
tinuous.

This definition is relevant mainly because of the following remarkable fact.

Proposition 1.2.8. Let G act on a Hausdorff path-connected space X. The
following are equivalent:

(1) G acts freely and properly discontinuously;
(2) the quotient X/G is Hausdorff and X → X/G is a regular covering.

Every regular covering arises in this way.

Concerning the last sentence: if X̃ → X is a regular covering, it turns out
that the deck transformation group G acts transitively on each fibre, and we
get X = X̃/G . This does not hold for non-regular coverings.

We have here a formidable and universal tool to construct plenty of regular
coverings and of topological spaces: it suffices to have X and a group G acting
freely and properly discontinously on it.

Since every universal cover is regular, we also get the following.

Corollary 1.2.9. Every path-connected locally contractible Hausdorff topo-
logical space X is the quotient X̃/G of its universal cover by the action of
some group G acting freely and properly discontinuously.

Note that the group G is isomorphic to π1(X). There are plenty of exam-
ples of this phenomenon, but in this introductory chapter we limit ourselves to
a very basic one. More will come later.

Example 1.2.10. Let G = Z act on X = R as translations, that is g(v) =

v + g. The action is free and properly discontinuous; hence we get a covering
R→ R/Z. The quotient R/Z is in fact homeomorphic to S1 (exercise).

In principle, one could now think of classifying all the (locally contractible,
path-connected, Hausdorff) topological spaces by looking only at the simply
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connected ones and then studying the groups acting freely and properly dis-
continuously on them. It is of course impossible to carry on this too ambitious
strategy in this wide generality, but the task becomes more reasonable if one
restricts the attention to spaces of some particular kind like – as we will see –
the riemannian manifolds having constant curvature.

Recall that a continuous map f : X → Y is proper if f −1(K) is compact
for every compact K ⊂ Y .

Exercise 1.2.11. Let a group G act on a locally compact space X. Assign
to G the discrete topology. The following are equivalent:

• the action is properly discontinuous;
• for every compact K ⊂ X, the set

{
g | g(K) ∩K 6= ∅

}
is finite;

• the map G ×X → X ×X that sends (g, x) to (g(x), x) is proper.

1.3. Multivariable analysis

1.3.1. Smooth maps. A map f : U → V between two open sets U ⊂ Rn
and V ⊂ Rm is C∞ or smooth if it has partial derivatives of any order. All the
maps considered in this book will be smooth.

In particular, for every p ∈ U we have a differential

dfp : Rn 7−→ Rm

which is the linear map that best approximates f near p, that is we get

f (x) = f (p) + dfp(x − p) + o
(
‖x − p‖

)
.

If we see dfp as a m × n matrix, it is called the Jacobian and we get

dfp =
(
∂f
∂x1
· · · ∂f∂xn

)
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 .
A fundamental property of differentials is the chain rule: if we are given two
smooth functions

U
f−→ V

g−→ W

then for every p ∈ U we have

d(g ◦ f )p = dgf (p) ◦ dfp.

1.3.2. Taylor theorem. A multi-index is a vector α = (α1, . . . , αn) of
non-negative integers αi ≥ 0. We set

|α| = α1 + . . .+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · · x

αn
n .

Let f : U → R be a smooth map defined on some open set U ⊂ Rn. For every
multi-index α we define the corresponding combination of partial derivatives:

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αn
n
.
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We recall Taylor’s Theorem:

Theorem 1.3.1. Let f : U → R be a smooth map defined on some open
convex set U ⊂ Rn. For every point x0 ∈ U and integer k ≥ 0 we have

f (x) =
∑
|α|≤k

Dαf (x0)

α!
(x − x0)α +

∑
|α|=k+1

hα(x)(x − x0)α

where hα : U → R is a smooth map that depends on α.

1.3.3. Diffeomorphisms. A smooth map f : U → V between two open
sets U ⊂ Rn and V ⊂ Rm is a diffeomorphism if it is invertible and its inverse
f −1 : V → U is also smooth.

Proposition 1.3.2. If f is a diffeomorphism, then dfp is invertible for every
p ∈ U. In particular we get n = m.

Proof. The chain rule gives

idRn = d(idU)p = d(f −1 ◦ f )p = df −1
f (p)
◦ dfp,

idRm = d(idV )f (p) = d(f ◦ f −1)f (p) = dfp ◦ df −1
f (p)

.

Therefore the linear map dfp is invertible. �

We now show that a weak converse of this statement holds.

1.3.4. Local diffeomorphisms. We say that a smooth map f : U → V

is a local diffeomorphism at a point p ∈ U if there is an open neighbourhood
U ′ ⊂ U of p such that f (U ′) is open and f |U ′ : U ′ → f (U ′) is a diffeomorphism.

Here is an important theorem, that we will use frequently.

Theorem 1.3.3 (Inverse Function Theorem). A smooth map f : U → V is
a local diffeomorphism at p ∈ U ⇐⇒ its differential dfp is invertible.

We say that a smooth map f : U → V is a local diffeomorphism if it is so
at every point p ∈ U. A diffeomorphism is always a local diffeomorphism, but
the converse does not hold as the following example shows.

Example 1.3.4. The smooth map f : R2 → R2 given by

f

(
x

y

)
=

(
ex cos y

ex sin y

)
has Jacobian

df(x,y) =

(
ex cos y −ex sin y

ex sin y ex cos y

)
with determinant e2x and hence everywhere invertible. By the Inverse Function
Theorem, the map f is a local diffeomorphism. The map f is however not
injective, hence it is not a diffeomorphism.
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Figure 1.3. A smooth bump function f : R2 → R.

1.3.5. Bump functions. A smooth bump function is a smooth function
ρ : Rn → R that has compact support (the support is the closure of the set of
points x ∈ Rn where ρ(x) 6= 0). See Figure 1.3.

The existence of bump functions is a peculiar feature of the smooth envi-
ronment that has many important consequences in differential topology. The
main tool is the smooth function

h(t) =

{
e−

1
t if t ≥ 0,

0 if t ≤ 0.

We may use it to build a bump function ρ : Rn → R as follows:

ρ(x) = h
(

1− ‖x‖2
)
.

The support of ρ is the closed unit disc ‖x‖ ≤ 1, and it has a unique maximum
at the origin x = 0.

Note that a bump function is never analytic (unless it is constantly zero).
Sometimes it is useful to have a bump function that looks like a plateau, for
instance consider η : Rn → R defined as follows:

η(x) =
h
(

1− ‖x‖2
)

h
(

1− ‖x‖2
)

+ h
(
‖x‖2 − 1

4

) .
Here η(x) = 1 for all ‖x‖ ≤ 1

2 and η(x) = 0 for all ‖x‖ ≥ 1, while η(x) ∈ (0, 1)

for all 1
2 < ‖x‖ < 1.

1.3.6. Transition function. Another important smooth non-analytic func-
tions is the transition function Ψ: R→ R defined as

Ψ(x) =
h(x)

h(x) + h(1− x)

where h(x) is the function defined above. The function Ψ is smooth and non-
decreasing, and we have Ψ(x) = 0 for all x ≤ 0 and Ψ(x) = 1 for all x ≥ 1.
See Figure 1.4.
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Figure 1.4. A smooth transition function Ψ.

1.3.7. Cauchy–Lipschitz theorem. The Cauchy–Lipschitz Theorem cer-
tifies the existence and uniqueness of solutions of a system of first-order dif-
ferential equations, and also the smooth dependence on its initial values, when
appropriate hypothesis are satisfied. Here is the version that we will use here.

Theorem 1.3.5. Given a smooth function g : Rn → Rn, there is a number
ε > 0 and a unique smooth map

f : Bn × (−ε, ε)→ Rn

such that

f (x, 0) = x,

∂f

∂t
(x, t) = g

(
f (x, t)

)
.

Uniqueness here means that if we get another ε′ and another f ′ then
f (x, t) = f ′(x, t) for all x ∈ Bn and |t| < min{ε, ε′}.

1.3.8. Integration. A Borel set V ⊂ Rn is any subset constructed from
the open and closed sets by countable unions and intersections.

If V ⊂ Rn is a Borel set and f : V → R is a non-negative measurable
function, we may consider its Lebesgue integral∫

V

f .

If ϕ : U → V is a diffeomorphism between two open subsets of Rn, then we
get the following changes of variables formula∫

V ′
f =

∫
U ′
| det dϕ|f ◦ ϕ

for any Borel subsets U ′ ⊂ U and V ′ = ϕ(U ′).

Remark 1.3.6. A diffeomorphism of course does not preserve the measure
of Borel sets, but it sends zero-measure sets to zero-measure sets.
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1.3.9. The Sard Lemma. Let f : U → Rn be a smooth map defined
on some open subset U ⊂ Rm. We say that a point p ∈ U is regular if
the differential dfp is surjective, and singular otherwise. A value q ∈ Rn is
a regular value if all its counterimages p ∈ f −1(q) are regular points, and
singular otherwise.

Here is an important fact on smooth maps.

Lemma 1.3.7 (Sard’s Lemma). The singular values of f form a zero-
measure subset of Rn.

Corollary 1.3.8. If m < n, the image of f is a zero-measure subset.

Recall that a Peano curve is a continuous surjection R → R2. Maps of
this kind are forbidden in the smooth world.

1.3.10. Complex analysis. Let U, V ⊂ C be open subsets. Recall that a
function f : U → V is holomorphic if for every z0 ∈ U the limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

exists. The limit f ′(z0) is a complex number called the complex derivative of
f at z0.

Quite surprisingly, a homolorphic function satisfies a wealth of very good
properties: if we identify C with R2 in the usual way, we may interpret f as
a function between open sets of R2, and it turns out that f is smooth (and
even analytic) and its Jacobian at z0 is such that

det(dfz0 ) = |f ′(z0)|2.

It is indeed a remarkable fact that the presence of the complex derivative alone
guarantees the existence of partial derivatives of any order.

1.4. Projective geometry

1.4.1. Projective spaces. Let K be any field: we will be essentially in-
terested in the cases K = R or C. Let V be a finite vector space on K. The
projective space of V is

P(V ) =
(
V \ {0}

)
/∼

where v ∼ w ⇐⇒ v = λw for some λ 6= 0. In particular we write

KPn = P(Kn+1).

Every non-zero vector v = (x0, . . . , xn) ∈ Kn+1 determines a point in KPn
which we denote as

[x0, . . . , xn].

These are the homogeneous coordinates of the point. Of course not all the
xi are zero, and [x0, . . . , xn] = [λx0, . . . , λxn] for all λ 6= 0.
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1.4.2. Topology. When K = R or C, the space KPn inherits the quotient
topology from Kn+1 and is a Hausdorff compact connected topological space.
A convenient way to see this is to consider the projections

π : Sn −→ RPn, π : S2n+1 −→ CPn

obtained by restricting the projections from Rn \ {0} and Cn \ {0}. Note that
S2n+1 =

{
z ∈ Cn+1

∣∣ |z0|2 + . . .+ |zn|2 = 1
}
.

Exercise 1.4.1. Show that the projections are surjective and deduce that
the projective spaces are connected and compact.

Exercise 1.4.2. We have the following homeomorphisms

RP1 ∼= S1, CP1 ∼= S2.

The fundamental group of RPn is Z when n = 1 and Z/2Z when n > 1.
On the other hand the complex projective space CPn is simply connected for
every n.





CHAPTER 2

Tensors

2.1. Multilinear algebra

2.1.1. The dual space. In this book we will be concerned mostly with real
finite-dimensional vector spaces. Given two such spaces V,W of dimension
m, n, we denote by Hom(V,W ) the set of all the linear maps V → W . The
set Hom(V,W ) is itself naturally a vector space of dimension mn.

A space that will be quite relevant here is the dual space V ∗ = Hom(V,R),
that consists of all the linear functionals V → R, also called covectors. The
spaces V and V ∗ have the same dimension, but there is no canonical way to
choose an isomorphism V → V ∗ between them: this fact will have important
consequences in this book.

A basis B = {v1, . . . , vn} for V induces a dual basis B∗ = {v1, . . . , vn} for
V ∗ by requiring that vi(vj) = δi j . (Recall that the Kronecker delta δi j equals
1 if i = j and 0 otherwise.) We can construct an isomorphism V → V ∗ by
sending vi to vi , but it heavily depends on the chosen basis B.

On the other hand, a canonical isomorphism V → V ∗∗ exists between V
and its bidual space V ∗∗ = (V ∗)∗. The isomorphism is the following:

v 7−→
(
v∗ 7−→ v∗(v)

)
.

For that reason, the bidual space V ∗∗ will play no role here and will always be
identified with V . In fact, it is useful to think of V and V ∗ as related by a
bilinear pairing

V × V ∗ −→ R
that sends (v, v∗) to v∗(v). Not only the vectors in V ∗ act on V , but also the
vectors in V act on V ∗.

Every linear map L : V → W induces an adjoint linear map L∗ : W ∗ → V ∗

that sends f to f ◦ L. Of course we get L∗∗ = L.

2.1.2. Multilinear maps. Given some vector spaces V1, . . . , Vk ,W , a map

F : V1 × · · · × Vk −→ W

is multilinear if it is linear on each component.
Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi and C = {w1, . . . ,wn} a basis

of W . The coefficients of F with respect to these basis are the numbers

F jj1,...,jk

19
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with 1 ≤ ji ≤ mi and 1 ≤ j ≤ n such that

F (v1,j1 , . . . , vk,jk ) =

n∑
j=1

F jj1,...,jkwj .

Exercise 2.1.1. Every multilinear F is determined by its coefficients, and
every choice of coefficients determines a multilinear F .

We denote by Mult(V1, . . . , Vk ;W ) the space of all the multilinear maps
V1 × · · · × Vk → W . This is naturally a vector space.

Corollary 2.1.2. We have

dim Mult(V1, . . . , Vk ;W ) = dim V1 · · · dim Vk dimW.

When W = R we omit it from the notation and write Mult(V1, . . . , Vk).
In that case of course we have

dim Mult(V1, . . . , Vk) = dim V1 · · · dim Vk .

In fact, every space Mult(V1, . . . , Vk ;W ) may be transformed canonically into
a similar one where the target vector space is R, thanks to the following:

Exercise 2.1.3. There is a canonical isomorphism

Mult(V1, . . . , Vk ;W ) −→ Mult(V1, . . . , Vk ,W
∗)

defined by sending F ∈ Mult(V1, . . . , Vk ;W ) to the map

(v1, . . . , vk ,w
∗) 7−→ w∗

(
F (v1, . . . , vk)

)
.

Hint. The spaces have the same dimension and the map is injective. �

2.1.3. Sum and product of spaces. We now introduce a couple of opera-
tions ⊕ and ⊗ on vector spaces. Let V1, . . . , Vk be some real finite-dimensional
vector spaces.

Sum. The sum V1⊕· · ·⊕Vk is just the cartesian product with componen-
twise vector space operations. That is:

V1 ⊕ · · · ⊕ Vk =
{

(v1, . . . , vk)
∣∣ v1 ∈ V1, . . . , vk ∈ Vk

}
and the vector space operations are

(v1, . . . , vk) + (w1, . . . ,wk) = (v1 +w1, . . . , vk +wk),

λ(v1, . . . , vk) = (λv1, . . . , λvk).

Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi , for all i = 1, . . . , k .

Exercise 2.1.4. A basis for V1 ⊕ · · · ⊕ Vk is{
(v1,j1 , 0, . . . , 0), . . . , (0, . . . , 0, vi ,ji , 0, . . . , 0), . . . , (0, . . . , 0, vk,jk )

}
where 1 ≤ ji ≤ mi varies for each i = 1, . . . , k .
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We deduce that

dim(V1 ⊕ · · · ⊕ Vk) = dim V1 + . . .+ dim Vk .

Tensor product. The tensor product V1 ⊗ · · · ⊗ Vk is defined (a bit more
obscurely. . .) as the space of all the multilinear maps V ∗1 × · · · × V ∗k → R, i.e.

V1 ⊗ · · · ⊗ Vk = Mult(V ∗1 , . . . , V
∗
k ).

We already know that

dim(V1 ⊗ · · · ⊗ Vk) = dim V1 · · · dim Vk .

Any k vectors v1 ∈ V1, . . . , vk ∈ Vk determine an element

v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk
which is by definition the multilinear map

(v∗1, . . . , v
∗
k) 7−→ v∗1(v1) · · · v∗k(vk).

As opposite to the sum operation, it is important to note that not all the
elements of V1 ⊗ · · · ⊗ Vk are of the form v1 ⊗ · · · ⊗ vk . The elements of this
type (sometimes called pure or simple) can however generate the space, as
the next proposition shows. Let Bi = {vi ,1, . . . , vi ,mi} be a basis of Vi for all
1 ≤ i ≤ k .

Proposition 2.1.5. A basis for the tensor product V1 ⊗ · · · ⊗ Vk is

{v1,j1 ⊗ · · · ⊗ vk,jk}

where 1 ≤ ji ≤ mi varies for each i = 1, . . . , k .

Proof. The number of elements is precisely the dimension dim V1 · · · dim Vk
of the space, hence we only need to show that they are independent. Let
Bi = {vi ,1, . . . , vi ,mi} be the dual basis of Bi . Suppose that∑

J

λJv1,j1 ⊗ · · · ⊗ vk,jk = 0

where J = (j1, . . . , jk). By applying both members of the equation to the
element (v1,j1 , . . . , vk,jk ) we get λJ = 0 where J = (j1, . . . , jk), and this for
every multi-index J. �

Example 2.1.6. A basis for R2 ⊗ R2 is given by the elements(
1

0

)
⊗
(

1

0

)
,

(
1

0

)
⊗
(

0

1

)
,

(
0

1

)
⊗
(

1

0

)
,

(
0

1

)
⊗
(

0

1

)
.

Exercise 2.1.7. The following relations hold in V ⊗W :

(v + v′)⊗w = v ⊗w + v′ ⊗w, v ⊗ (w +w′) = v ⊗w + v ⊗w′,

λ(v ⊗w) = (λv)⊗w = v ⊗ (λw),

v ⊗w = 0⇐⇒ v = 0 or w = 0.
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Exercise 2.1.8. Let v, v′ ∈ V and w,w′ ∈ W be non-zero vectors. If v and
v′ are independent, then v ⊗w and v′ ⊗w′ also are.

Exercise 2.1.9. Let v, v′ ∈ V and w,w′ ∈ W be two pairs of independent
vectors. Show that

v ⊗w + v′ ⊗w′ ∈ V ⊗W
is not a pure element.

2.1.4. Canonical isomorphisms. We now introduce some canonical iso-
morphisms, that may look quite abstract at a first sight, but that will help us
a lot to simplify many situations: two spaces that are canonically isomorphic
may be harmlessly considered as the same space.

We start with the following easy:

Proposition 2.1.10. The map v 7→ v ⊗ 1 defines a canonical isomorphism

V −→ V ⊗ R.

Proof. The spaces have the same dimension and the map is linear and
injective by Exercise 2.1.7. �

Let V1, . . . , Vk , Z be any vector spaces.

Proposition 2.1.11. There is a canonical isomorphism

Mult(V1, . . . , Vk ;Z) −→ Hom(V1 ⊗ · · · ⊗ Vk , Z)

defined by sending F ∈ Mult(V1, . . . , Vk ;Z) to the unique homomorphism F ′

that satisfies the relation

F ′(v1 ⊗ · · · ⊗ vk) = F (v1, . . . , vk).

for every v1 ∈ V1, . . . , vk ∈ Vk .

Proof. It is easier to define the inverse map: every homomorphism F ′ ∈
Hom(V1 ⊗ · · · ⊗ Vk , Z) gives rise to an element F ∈ Mult(V1, . . . , Vk ;Z) just
by setting F (v1, . . . , vk) = F ′(v1 ⊗ · · · ⊗ vk). This gives rise to a linear map

Hom(V1 ⊗ · · · ⊗ Vk , Z) −→ Mult(V1, . . . , Vk ;Z)

between spaces of the same dimension. The map is injective (exercise: use
Proposition 2.1.5), hence it is an isomorphism. �

This canonical isomorphism is called the universal property of ⊗ and one
can also show that it characterises the tensor product uniquely. This is typically
stated by drawing a commutative diagram like this:

(1) V1 × · · · × Vk //

F
((

V1 ⊗ · · · ⊗ Vk
F ′

��
Z
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The universal property is very useful to construct maps. For instance, we
may use it to construct more canonical isomorphisms:

Proposition 2.1.12. There are canonical isomorphisms

V ⊕W ∼= W ⊕ V, (V ⊕W )⊕ Z ∼= V ⊕W ⊕ Z ∼= V ⊕ (W ⊕ Z),

V ⊗W ∼= W ⊗ V, (V ⊗W )⊗ Z ∼= V ⊗W ⊗ Z ∼= V ⊗ (W ⊗ Z),

V ⊗ (W ⊕ Z) ∼= (V ⊗W )⊕ (V ⊗ Z),

(V1 ⊕ · · · ⊕ Vk)∗ ∼= V ∗1 ⊕ · · · ⊕ V ∗k , (V1 ⊗ · · · ⊗ Vk)∗ ∼= V ∗1 ⊗ · · · ⊗ V ∗k .

Proof. The isomorphisms in the first line are

(v,w) 7→ (w, v), (v,w, z) 7→
(

(v,w), z
)
, (v,w, z) 7→ (v,

(
w, z)

)
.

Those in the second line are uniquely determined by the conditions

v⊗w 7→ w⊗ v, v⊗w⊗ z 7→ (v⊗w)⊗ z, v⊗w⊗ z 7→ v⊗ (w⊗ z)

thanks to the universal property of the tensor products. Analogously the iso-
morphism of the third line is determined by

v ⊗ (w, z) 7→ (v ⊗w, v ⊗ z).

Concerning the last line, the first isomorphism is straightforward. For the
second, we have

(V1⊗· · ·⊗ Vk)∗ = Hom(V1⊗· · ·⊗ Vk ,R) = Mult(V1, . . . , Vk) = V ∗1 ⊗· · ·⊗ V ∗k .

More concretely, every element v1 ⊗ · · · ⊗ vk ∈ V ∗1 ⊗ · · · ⊗ V ∗k is naturally an
element of (V1 ⊗ · · · ⊗ Vk)∗ as follows:

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗wk) = v1(w1) · · · vk(wk).

The proof is complete. �

There are yet more canonical isomorphisms to discover! The following is
a consequence of Exercise 2.1.3 and is particularly useful.

Corollary 2.1.13. There is a canonical isomorphism

Hom(V,W ) ∼= V ∗ ⊗W.

In particular we have End(V ) ∼= V ∗ ⊗ V = Mult(V, V ∗). In this canonical
isomorphism, the identity endomorphism idV corresponds to the bilinear map
V × V ∗ → R that sends (v, v∗) to v∗(v).

Exercise 2.1.14. Given v∗ ∈ V ∗ and w ∈ W , the element v∗ ⊗ w corre-
sponds via the canonical isomorphism Hom(V,W ) ∼= V ∗ ⊗ W to the homo-
morphism v 7→ v∗(v)w. Deduce that the pure elements in V ∗⊗W correspond
precisely to the homomorphisms V → W of rank ≤ 1.
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2.1.5. The Segre embedding. We briefly show a geometric application
of the algebra introduced in this section. Let U, V be vector spaces. The
natural map U × V → U ⊗ V induces an injective map on projective spaces

P(U)× P(V ) ↪→ P(U ⊗ V )

called the Segre embedding. The map is injective thanks to Exercise 2.1.8.
We have just discovered a simple method for embedding a product of

projective spaces in a bigger projective space. If U = Rm+1 and V = Rn+1 we
have an isomorphism U ⊗ V ∼= R(m+1)(n+1) and we get an embedding

RPm × RPn ↪→ RPmn+m+n.

Example 2.1.15. When m = n = 1 we get RP1 ×RP1 ↪→ RP3. Note that
RP1 × RP1 is topologically a torus. The Segre map is(

[x0, x1], [y0, y1]
)
7−→

[(
x0

x1

)
⊗
(
y0

y1

)]
and the right member equals[
x0y0

(
1

0

)
⊗
(

1

0

)
+ x0y1

(
1

0

)
⊗
(

0

1

)
+ x1y0

(
0

1

)
⊗
(

1

0

)
+ x1y1

(
0

1

)
⊗
(

0

1

)]
.

In coordinates with respect to the canonical basis the Segre embedding is(
[x0, x1], [y0, y1]

)
7−→ [x0y0, x0y1, x1y0, x1y1].

It is now an exercise to show that the image is precisely the quadric z0z3 = z1z2

in RP3. We recover the well-known fact that such a quadric is a torus.

2.1.6. Infinite-dimensional spaces. In very few points in this book we
will be concerned with infinite dimensional real vector spaces. We summarise
briefly how to extend some of the operations introduced above to an infinite-
dimensional context.

The dual V ∗ of a vector space V is always the space of all functionals
V → R. There is a canonical injective map V ↪→ V ∗∗ which is surjective if and
only if V has finite dimension.

Let V1, V2, . . . be vector spaces. The direct product and the direct sum∏
i

Vi ,
⊕
i

Vi

are respectively the space of all sequences (v1, v2, . . .) with vi ∈ Vi , and the
subspace consisting of sequences with only finitely many non-zero elements.
In the latter case, when the spaces Vi are clearly distinct, one may write every
sequence simply as a sum

vi1 + . . .+ vih

of the non-zero elements in the sequence. There is a canonical isomorphism

(⊕iVi)∗ =
∏
iV
∗
i .
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The tensor product V ⊗W of two vector spaces of arbitrary dimension may
be defined as the unique vector space that satisfies the universal property
(1). Uniqueness is easy to prove, but existence is more involved: the space
Mult(V ∗,W ∗) does not work here, it is too big because V 6= V ∗∗. Instead we
may define V ⊗W as a quotient

V ⊗W = F (V ×W )/∼

where F (S) is the free vector space generated by the set S, that is the abstract
vector space with basis S, and ∼ is the equivalence relation generated by
equivalences of this type:

(v1, w) + (v2, w) ∼ (v1 + v2, w),

(v , w1) + (v , w2) ∼ (v , w1 + w2),

(λv, w) ∼ λ(v , w) ∼ (v , λw).

The equivalence class of (v , w) is indicated as v ⊗w . More concretely, if {vi}
and {wj} are basis of V and W , then {vi ⊗ wj} is a basis of V ⊗W , and this
is the most important thing to keep in mind.

The tensor product is distributive with respect to direct sum, that is there
are canonical isomorphisms

V ⊗
(
⊕i Wi

) ∼= ⊕i(V ⊗Wi)

but the tensor product is not distributive with respect to the direct product in
general! We need dim V <∞ for that:

Exercise 2.1.16. If V has finite dimension, there is a canonical isomorphism

V ⊗
(∏

iWi

) ∼= ∏
i(V ⊗Wi).

Dimostrare?

2.2. Tensors

We have defined the operations ⊕,⊗, ∗ in full generality, and we now apply
them to a single finite-dimensional real vector space V .

2.2.1. Definition. Let V be a real vector space of dimension n and h, k ≥
0 some integers. A tensor of type (h, k) is an element T of the vector space

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

.

In other words T is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
h

× V × · · · × V︸ ︷︷ ︸
k

−→ R.

This elegant definition gathers many well-known notions in a single word:
• a tensor of type (0, 0) is by convention an element of R, a scalar ;
• a tensor of type (1, 0) is an element of V , a vector ;
• a tensor of type (0, 1) is an element of V ∗, a covector ;
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• a tensor of type (0, 2) is a bilinear form V × V → R;
• a tensor of type (1, 1) is an element of V ⊗ V ∗ and hence may be
interpreted as an endomorphism V → V , by Corollary 2.1.13;

More generally, every tensor T of type (h, k) may be interpreted as a
multilinear map

T ′ : V × · · · × V︸ ︷︷ ︸
k

−→ V ⊗ · · · ⊗ V︸ ︷︷ ︸
h

by writing

T ′(v1, . . . , vk)(v∗1, . . . , v
∗
h) = T (v∗1, . . . , v

∗
h, v1, . . . , vk).

In particular a tensor of type (1, k) can be interpreted as a multilinear map

T : V × · · · × V︸ ︷︷ ︸
k

−→ V.

Example 2.2.1. The euclidean scalar product in Rn is defined as

(x1, . . . , xn) · (x ′1, . . . , x ′n) = x1x
′
1 + . . .+ xnx

′
n.

It is a bilinear map Rn × Rn → R and hence a tensor of type (0, 2).

Example 2.2.2. The cross product in R3 is defined as

(x, y , z) ∧ (x ′, y ′, z ′) = (yz ′ − zy ′, zx ′ − xz ′, xy ′ − yx ′).

It is a bilinear map R3 × R3 → R3 and hence a tensor of type (1, 2).

Example 2.2.3. The determinant may be interpreted as a multilinear map

Rn × · · · × Rn︸ ︷︷ ︸
n

−→ R

that sends (v1, . . . , vn) to det(v1 · · · vn). As such, it is a tensor of type (0, n).

2.2.2. Coordinates. Every abstract and ethereal object in linear algebra
transforms into a more reassuring multidimensional array of numbers, called
coordinates, as soon as we choose a basis.

Let B = {v1, . . . , vn} be a basis of V , and B∗ = {v1, . . . , vn} be the dual
basis of V ∗. A basis of the tensor space T kh (V ) consists of all the vectors

vi1 ⊗ · · · ⊗ vih ⊗ v
j1 ⊗ · · · ⊗ vjk

where 1 ≤ i1, . . . , ih, j1, . . . , jk ≤ n. Overall, this basis consists of nh+k vectors.
Every tensor T of type (h, k) can be written uniquely as

(2) T = T i1,...,ihj1,...,jk
vi1 ⊗ · · · ⊗ vih ⊗ v

j1 ⊗ · · · ⊗ vjk .

We are using here the Einstein summation convention: every index that is re-
peated at least twice should be summed over the values of the index. Therefore
in (2) we sum over all the indices i1, . . . , ih, j1, . . . , jk . The following proposition
shows how to compute the coordinates of T directly.
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Figure 2.1. The coordinates of the cross product tensor with respect
to the canonical basis of R3 (or any positive orthonormal basis) form the
Levi-Civita symbol εi jk .

Proposition 2.2.4. The coordinates of T are

T i1,...,ihj1,...,jk
= T

(
vi1 , . . . , vih , vj1 , . . . , vjk

)
.

Proof. Apply both members of (2) to
(
vi1 , . . . , vih , vj1 , . . . , vjk

)
. �

Example 2.2.5. The coordinates of the Euclidean scalar product g on Rn
with respect to an orthonormal basis are gi j = δi j .

Example 2.2.6. The coordinates of id ∈ Hom(V, V ) = V ⊗V ∗ with respect
to any basis are idij = δij . This is again the Kronecker delta, written as δij for
convenience.

Exercise 2.2.7. The coordinates of the cross product tensor in R3 with
respect to any positive orthonormal basis are

T ijk = εi jk =


+1 if (i , j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i , j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i .

The three-dimensional array εi jk is called the Levi-Civita symbol and is shown
in Figure 2.1.

Exercise 2.2.8. The determinant in R3 may be interpreted as a tensor of
type (0, 3). Show that its coordinates with respect to any positive orthonormal
basis are also εi jk .

2.2.3. Coordinates manipulation. The coordinates and the Einstein con-
vention are powerful tools that enable us to describe complicated tensor ma-
nipulations in a very concise way, and the reader should familiarise with them.
We start by exhibiting some simple examples. We fix a basis B = {v1, . . . , vn}
for V and consider coordinates with respect to this basis. We write the coor-
dinates of a generic vector v as v i , that is we have

v = v ivi .
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If v ∈ V is a vector and T : V → V is an endomorphism, that is T ∈ T 1
1 (V ),

we may write w = T (v) directly in coordinates as follows:

w j = T ji v
i

where v i , w j , T ji are the coordinates of v,w, T . The trace of T is simply

T ii .

If v,w ∈ V are vectors and g : V ×V → R is a bilinear form, that is g ∈ T 2
0 (V ),

it has coordinates gi j and we may write the scalar g(v,w) as follows:

v igi jw
j .

The expressions w j = T ji v
i and v igi jw j are just the usual products matrix-

times-vector(s) that describe endomorphisms and bilinear forms in coordinates:
we are only rewriting them using the Einstein convention.

Let T be the tensor of type (1, 2) that describes the cross product in R3.
The equality z = v ∧w can be written in coordinates as

z i = T ijkv
jw k .

Note that in all the cases described so far the Einstein convention is applied
to pairs of indices, one being a superscript and the other a subscript. This is
in fact a more general phenomenon.

Example 2.2.9. We prove the well-known equalities

(v ∧w) · z = v · (w ∧ z) = det(vw z)

using coordinates. The three members may be written as

v jT ijkw
kgi lz

l , v lgl iw
jT ijkz

k , deti jkv
iw jzk .

Now we take an orthonormal basis B, so that gi j = δi j and T ijk = εi jk = deti jk .
The three members simplify as

εi jkv
jw kz i , εi jkv

iw jzk , εi jkv
iw jzk

and they represent the same number thanks to the symmetries of ε.

2.2.4. Change of basis. If C = {w1, . . . ,wn} is another basis of V then

wj = Aijvi , vj = Bijwi

for some matrices A and B = A−1. Here Aij is the entry at the i-th row and
the j-th column of A, and we use the Einstein convention: we sum along the
repeated index i . The relation B = A−1 may be written as

AikB
k
j = δij = BikA

k
j

where δij is the Kronecker delta.

Proposition 2.2.10. The dual bases change as follows:

wi = Bijv
j , vi = Aijw

j .
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Proof. We check that the proposed wi form the dual basis of wi :

wi(wj) = (Bikv
k)(Aljvl) = BikA

l
jv
k(vl) = BikA

l
jδ
k
l = BikA

k
j = δij .

It is a useful exercise to fully understand each of the previous equalities! In
the fourth one we removed the Kronecker delta and set k = l . �

Let T be a tensor as in (2). We now want to determine the coordinates
T̂ i1,...,ihj1,...,jk

of T in the new basis C, in terms of the coordinates T i1,...,ihj1,...,jk
in the old

basis B and of the matrices A and B.

Proposition 2.2.11. We have

(3) T̂ i1...ihj1...jk
= Bi1l1 · · ·B

ih
lh
Am1
j1
· · ·Amkjk T

l1...lh
m1...mk

This complicated equation may be memorised by noting that we need one
A for every lower index of T , and one B for every upper index.

Proof. By Proposition 2.2.4 we have

T̂ i1,...,ihj1,...,jk
= T

(
wi1 , . . . ,wih ,wj1 , . . . ,wjk

)
= T

(
Bi1l1v

l1 , . . . , Bihlhv
lh , Am1

j1
vm1 , . . . , A

mk
jk
vmk
)

= Bi1l1 · · ·B
ih
lh
Am1
j1
· · ·Amkjk T

(
vl1 , . . . , vlh , vm1 , . . . , vmk

)
= Bi1l1 · · ·B

ih
lh
Am1
j1
· · ·Amkjk T

l1...lh
m1...mk

.

The proof is complete. �

The reader should appreciate the generality of the formula (3): it describes
in a single equality the coordinate changes of vectors, covectors, endomor-
phisms, bilinear forms, the cross product in R3, the determinant, and some
more complicate tensors that we will encounter in this book. We write some
of them:

v̂ i = Bil v
l , v̂j = Amj vm, T̂ ij = BilA

m
j T

l
m, ĝi j = Ami A

n
j gmn.

The formula (3) contains many indices and may look complicated at a
first glance, but in fact it only says that the lower indices j1, . . . , jk change
through the matrix A, while the upper indices i1, . . . , ih change via the inverse
matrix B = A−1. For that reason, the lower and upper indices are also called
respectively covariant and contravariant.

Remark 2.2.12. In some physics and engineering text books, the formula
(3) is used as a definition of tensor: a tensor is simply a multi-dimensional
array, that changes as prescribed by the formula if one modifies the basis of
the vector space.

We now introduce some operations with tensors.
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2.2.5. Tensor product. It follows from the definitions that

T kh (V )⊗ T nm(V ) = T k+n
h+m(V ).

In particular, given two tensors S ∈ T kh (V ) and T ∈ T nm(V ), their product
S ⊗ T is an element of T k+n

h+m(V ). In coordinates with respect to some basis
B, it may be written as

(S ⊗ T )
i1...ih ih+1...ih+m

j1...jk jk+1...jk+n
= Si1...ihj1...jk

T
ih+1...ih+m

jk+1...jk+n
.

2.2.6. The tensor algebra. The tensor algebra of V is

T (V ) =
⊕
h,k≥0

T kh (V ).

The product ⊗ is defined on every pair of tensors, and it extends distributively
on the whole of T (V ). With this operation T (V ) is an associative algebra and
an infinite-dimensional vector space (if V is not trivial). Recall that

T 0
0 (V ) = R, T 0

1 (V ) = V, T 1
0 (V ) = V ∗.

Exercise 2.2.13. If dim V ≥ 2 the algebra is not commutative: if v,w ∈ V
are independent vectors, then v ⊗w 6= w ⊗ v.

Hint. Extend them to a basis v1 = v, v2 = w, v3, . . . , vn, consider the dual
basis v1, . . . , vn and determine the value of v ⊗w and w ⊗ v on (v1, v2). �

We denote for simplicity

Th(V ) = T 0
h (V ), T k(V ) = T k0 (V ).

The vector spaces

T∗(V ) =
⊕
h≥0

Th(V ), T ∗(V ) =
⊕
k≥0

T k(V )

are both subalgebras of T (V ) and are called the covariant and contravariant
tensor algebras, respectively.

Exercise 2.2.14. The algebras T∗(R) and R[x ] are isomorphic.

Remark 2.2.15. Let B = {v1, . . . , vn} be a basis of V . The elements
v1, . . . , vn ∈ T1(V ) generate T∗(V ) as a free algebra. This means that every
element of T∗(V ) may be written as a polynomial in the variables v1, . . . , vn in
a unique way up to permuting its addenda. Note that ⊗ is not commutative,
hence the ordering in each monomial is important. As an example:

3 + v1 − 7v2 + v1 ⊗ v2 − 3v2 ⊗ v1.
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2.2.7. Contractions. We now introduce a general important operation
on tensors called contraction that generalises the trace of endomorphisms.

The trace is an operation that picks as an input an endomorphism, that is
a (1, 1)-tensor, and produces as an output a number, that is a (0, 0)-tensor.
More generally, a contraction is an operation that transforms a (h, k)-tensor
into a (h − 1, k − 1)-tensor, and is defined for all h, k ≥ 1. It depends on the
choice of two integers 1 ≤ a ≤ h and 1 ≤ b ≤ k and results in a linear map

C : T kh (V ) −→ T k−1
h−1 (V ).

The contraction is defined as follows. Recall that

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

.

The indices a and b indicate which factors V and V ∗ need to be “contracted”.
After a canonical isomorphism we may put these factors at the end and write

T kh (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
h−1

⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k−1

⊗ V ⊗ V ∗ = T k−1
h−1 (V )⊗ V ⊗ V ∗.

The contraction is the linear map

C : T k−1
h−1 ⊗ V ⊗ V

∗ −→ T k−1
h−1

determined by the condition

C(w ⊗ v ⊗ v∗) = v∗(v)w.

Recall that C is well-defined because (w, v, v∗) 7→ v∗(v)w is multilinear and
hence the universal property applies.

Example 2.2.16. The contraction of a pure tensor is

C(v1 ⊗ · · · ⊗ vh ⊗ v1 ⊗ · · · ⊗ vk) =

vb(va)v1 ⊗ · · · ⊗ v̂a ⊗ · · · ⊗ vh ⊗ v1 ⊗ · · · ⊗ v̂b ⊗ · · · ⊗ vk

where ŵ indicates that the factor w is omitted.

2.2.8. In coordinates. The definition of a contraction may look abstruse,
but we now see that everything is pretty simple in coordinates. Let Bi =

{v1, . . . , vn} be a basis for V .

Proposition 2.2.17. If T has coordinates T i1,...,ihj1,...,jk
, then C(T ) has

C(T )
i1,...,ih−1

j1,...,jk−1
= T

i1,...,l ,...,ih−1

j1,...,l ,...,jk−1

where l is inserted at the positions a above and b below.
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Proof. We write the coordinates of T as T i1,...,i ,...,ih−1

j1,...,j,...,jk−1
for convenience,

where i and j occupy the places a and b. We have

C(T ) = C
(
T
i1,...,i ,...,ih−1

j1,...,j,...,jk−1
vi1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vih−1

⊗ vj1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vjk−1
)

= T
i1,...,i ,...,ih−1

j1,...,j,...,jk−1
δji vi1 ⊗ · · · ⊗ vih−1

⊗ vj1 ⊗ · · · ⊗ vjk−1

= T
i1,...,l ,...,ih−1

j1,...,l ,...jk−1
vi1 ⊗ · · · ⊗ vih−1

⊗ vj1 ⊗ · · · ⊗ vjk−1 .

The proof is complete. �

This shows in particular that, as promised, the contraction of an endomor-
phism whose coordinates are T ij is indeed its trace T ii .

Contractions are handled very easily in coordinates. As an example, a
tensor T of type (1, 2) has coordinates T ijk and can be contracted in two
ways, producing two (typically distinct) covectors v and v′ with coordinates

vk = T iik , v ′j = T ij i .

It is important to remember that the coordinates depend on the choice of a
basis B, but the covectors v and v′ obtained by contracting T do not depend
on B. Likewise, a tensor of type T i jkl has four types of contractions, producing
four (possibly distinct) tensors of type (1,1), that is homomorphisms.

It is convenient to manipulate a tensor using coordinates as we just did:
remember however that we must always contract a covariant index together
with a contravariant one! The “contraction” of two covariant (or contravari-
ant) indices makes no sense because it is not basis-independent. This should
not be surprising: the trace T ii of an endomorphism is basis-independent, but
the trace gi i of a bilinear form is notoriously not. Said with other words:
there is a canonical homomorphism V ⊗ V ∗ → R, but there is no canonical
homomorphism V ⊗ V → R.

Exercise 2.2.18. The tensor T that expresses the cross product in R3 has
two contractions. Prove that they both give rise to the null covector.

Hint. This can be done by calculation, or abstractly: T is invariant under
orientation-preserving isometries, hence also its contractions are. �

Example 2.2.19. Let T, det, g be the tensors in R3 that represent the cross
product, the determinant, and the Euclidean scalar product. They are of type
(1, 2), (0, 3), and (0, 2) respectively. The tensor T ⊗ g is of type (1, 4) and
may be written in coordinates as T kij glm. It has four contractions C(T ⊗ g),
that are all of type (0, 3). These are

T kkjglm, T kikglm, T kij gkm, T kij glk .

The first two are null by the previous exercise. The last two, expressed on a
orthonormal basis, become εi jm and εi j l . Therefore for these two contractions
we get C(T ⊗ g) = det .
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Every time we sum over a pair of covariant and contravariant indices, we
are doing a contraction. So for instance each of the operations

w j = T ji v
i , v igi jw

j

described in Section 2.2.3 may be interpreted as two-steps operations, where
we first multiply some tensors and then we contract the result. Contractions
are everywhere.

2.3. Scalar products

We now study vector spaces V equipped with a scalar product g. We
investigate in particular the effects of g on the tensor algebra T (V ). We start
by recalling some basic facts on scalar products.

2.3.1. Definition. A scalar product on V is a symmetric bilinear form g

that is not degenerate, that is

g(v,w) = 0 ∀v ∈ V ⇐⇒ w = 0.

Recall that the scalar product is

• positive definite if g(v, v) > 0 ∀v 6= 0,
• negative definite if g(v, v) < 0 ∀v 6= 0,
• indefinite in the other cases.

Every scalar product g has a signature (p,m) where p (respectively, m) is the
maximum dimension of a subspace W ⊂ V such that the restriction g|W is
positive definite (respectively, negative definite). We have p+m = n = dim V .
The scalar product is positive definite (respectively, negative definite) ⇐⇒ its
signature is (n, 0) (respectively, (0, n)).

A scalar product g is a tensor of type (0, 2) and its coordinates with respect
to some basis B = {v1, . . . , vn} are written as gi j . The basis B is orthonormal
if gi j = ±δi j for all i , j . In particular gi i = ±1, and the sign +1 and −1 must
occur p and m times as i varies. Every scalar product has an orthonormal
basis.

We are mostly interested in positive definite scalar products, but indefinite
scalar product also arise in some interesting contexts – notably in Einstein’s
general relativity.

2.3.2. Isometries. Let V and W be equipped with some scalar products
g and h. A linear map T : V → V is an isometry if g(u, v) = h

(
T (u), T (v)

)
for all u, v ∈ V . This condition can be expressed in coordinates as

uigi jv
j = ukT ikhi jT

j
l v
l

and since it must be verified for all u, v we get

gi j = T ikhi jT
j
l .
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2.3.3. The identification of V and V ∗. Let V be equipped with a scalar
product g. Our aim is now to show that g enriches the tensor algebra T (V )

with some new interesting structures.
We first discover that g induces an isomorphism

V −→ V ∗

that sends v ∈ V to the functional v∗ ∈ V ∗ defined by v∗(w) = g(v,w). (This
is an isomorphism because g is non-degenerate!) This is an important point:
as we know, the spaces V and V ∗ are not canonically identified, but we can
identify them once we have fixed a scalar product g.

Exercise 2.3.1. In coordinates, the isomorphism V → V ∗ sends a vector v i

to the covector
vj = gi jv

i .

The scalar product g induces a scalar product on V ∗, that we lazily still
name g, as follows:

g(v∗,w∗) = g(v,w)

where v∗,w∗ ∈ V ∗ are the images of v,w ∈ V along the isomorphism V → V ∗

defined above. The scalar product g on V ∗ is a tensor of type (2, 0) and its
coordinates are denoted by gi j .

Proposition 2.3.2. The matrix gi j is the inverse of gi j .

Proof. Note that gi j is invertible because g is non-degenerate. The equality
defining gi j may be rewritten in coordinates as

v igikg
klgl jw

j = vkg
klwl = v igi jw

j .

Since this holds for every v,w ∈ V we get

gikg
klgl j = gi j .

Read as a matrices multiplication, this is GHG = G that implies GH = HG = I

because G is invertible and hence H = G−1. The proof is complete. �

Note that the proposition holds for every choice of a basis B.

2.3.4. Raising and lowering indices. We may use the scalar product g
on V to “raise” and “lower” the indices of any tensor at our pleasure. That is,
the isomorphism V → V ∗ induces an isomorphism

T kh (V ) −→ Th+k(V )

for all h, k ≥ 0. In coordinates, the isomorphism sends a tensor T i1,...,ihj1,...,jk
to

U i1,...,ih,j1,...,jk = T i1,...,ihl1,...,lk
gl1j1 · · · glk jk .

We can use gi j to raise the indices of a tensor, and in the opposite direction
we can use gi j to lower them.
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2.3.5. Scalar product on the tensor spaces. A scalar product g on V
induces a scalar product on each vector space T kh (V ), still boringly denoted by
g. This is done as follows: if S, T ∈ T kh (V ), then g(S, T ) is the scalar

T i1,...,ihj1,...,jk
gi1l1 · · · gih lhg

j1m1 · · · gjkmkSl1,...,lhm1,...,mk
.

Note that this number is basis-independent: it is obtained by multiple contrac-
tions of a product of tensors.

Exercise 2.3.3. If B = {v1, . . . , vn} is an orthonormal basis of V , then

{vi1 ⊗ · · · ⊗ vih ⊗ v
j1 ⊗ · · · ⊗ vjk}

is an orthonormal basis of T kh (V ). If g is positive-definite on V then it is so
also on T kh (V ).

2.4. The symmetric and exterior algebras

Symmetric and antisymmetric matrices play an important role in linear
algebra: both concepts can be generalised to tensors.

2.4.1. Symmetric and antisymmetric tensors. We now introduce two
special types of contravariant tensors.

Definition 2.4.1. A tensor T ∈ T k(V ) is symmetric if

(4) T (u1, . . . ,uk) = T
(
uσ(1), . . . ,uσ(k)

)
for every vectors u1, . . . ,uk ∈ V and every permutation σ ∈ Sk . On the other
hand T is antisymmetric if

T (u1, . . . ,uk) = (−1)sgn(σ)T
(
uσ(1), . . . ,uσ(k)

)
for every vectors u1, . . . ,uk ∈ V and every permutation σ ∈ Sk .

Both conditions are very easily expressed in coordinates. As usual we fix
any basis B = {v1, . . . , vn} on V and consider the coordinates of T with
respect to B.

Proposition 2.4.2. A tensor T ∈ T k(V ) is symmetric if and only if

(5) Ti1,...,ik = Tiσ(1),...,iσ(k)

for every i1, . . . , ik and σ ∈ Sk . Analogously, T is antisymmetric if and only if

Ti1,...,ik = (−1)sgn(σ)Tiσ(1),...,iσ(k)

for every i1, . . . , ik and σ ∈ Sk .

Proof. We prove the first sentence, the second being totally analogous. If
T is symmetric, then

Ti1,...,ik = T
(
vi1 , . . . , vik

)
= T

(
viσ(1)

, . . . , viσ(k)

)
= Tiσ(1),...,iσ(k)

.
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Conversely, if (5) holds, then

T (u1, . . . ,uk) = Ti1,...,iku
i1
1 · · · u

ik
k = Tiσ(1),...,iσ(k)

ui11 · · · u
ik
k

= Tiσ(1),...,iσ(k)
u
iσ(1)

σ(1)
· · · uiσ(k)

σ(k)
= T

(
uσ(1), . . . ,uσ(k)

)
.

The proof is complete. �

For instance a tensor Ti j is symmetric if Ti j = Tj i and antisymmetric if
Ti j = −Tj i , for all 1 ≤ i , j ≤ n.

Example 2.4.3. Every scalar product on V is a symmetric tensor g ∈
T 2(V ). The determinant is an antisymmetric tensor det ∈ T n(Rn).

Remark 2.4.4. If T is antisymmetric and the indices i1, . . . , ik are not all
distinct, then Ti1,...,ik = 0.

2.4.2. Symmetrisation and antisymmetrisation of tensors. If a tensor
T is not (anti-)symmetric, we can transformed it by brute force into an (anti-
)symmetric one.

Let T ∈ T k(V ) be a contravariant tensor. The symmetrisation of T is the
tensor S(T ) ∈ T k(V ) defined by averaging T on permutations as follows:

S(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

T
(
vσ(1), . . . , vσ(k)

)
.

Analogously, the antisymmetrisation of T is the tensor

A(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(−1)sgn(σ)T
(
vσ(1), . . . , vσ(k)

)
.

Exercise 2.4.5. The tensors S(T ) and A(T ) are indeed symmetric and
antisymmetric, respectively. We have S(T ) = T ⇐⇒ T is symmetric and
A(T ) = T ⇐⇒ T is antisymmetric.

In coordinates with respect to some basis we have

S(T )i1,...,ik =
1

k!

∑
σ∈Sk

Tiσ(1),...,iσ(k)
,

A(T )i1,...,ik =
1

k!

∑
σ∈Sk

(−1)sgn(σ)Tiσ(1),...,iσ(k)
.

The members on the right can be written more concisely as

T(i1,...,ik), T[i1,...,ik ].

The round or square brackets indicate that we symmetrise or antisymmetrise
by summing along all permutations on the indices (and dividing by k!).
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2.4.3. The symmetric and antisymmetric algebras. We now introduce
two more algebras associated to V . For every k ≥ 0 we denote by

Sk(V ), Λk(V )

the vector subspace of T k(V ) consisting of all the symmetric or antisymmetric
tensors, respectively. We now define

S∗(V ) =
⊕
k≥0

Sk(V ), Λ∗(V ) =
⊕
k≥0

Λk(V ).

These are both vector subspaces of the contravariant tensor algebra T ∗(V ).
These are not subalgebras of T ∗(V ), because they are not closed under ⊗.
Note that

S1(V ) = Λ1(V ) = T 1(V ) = V ∗

but S2(V ) and Λ2(V ) are strictly smaller than T 2(V ) if dim V ≥ 2, because
of the following:

Exercise 2.4.6. If v∗,w∗ ∈ V ∗ are independent, then v∗ ⊗ w∗ is neither
symmetric nor antisymmetric. Moreover

S(v∗ ⊗w∗) =
1

2
(v∗ ⊗w∗ +w∗ ⊗ v∗), A(v∗ ⊗w∗) =

1

2
(v∗ ⊗w∗ −w∗ ⊗ v∗).

The spaces S∗(V ) and Λ∗(V ) are acutally algebras, but with some products
different from ⊗, that we now define. The symmetrised product of some
contravariant tensors T 1 ∈ T k1 (V ), . . . , Tm ∈ T km(V ) is

T 1 � · · · � Tm =
(k1 + . . .+ km)!

k1! · · · km!
S(T 1 ⊗ · · · ⊗ Tm)

while their antisymmetrised product is

T 1 ∧ . . . ∧ Tm =
(k1 + . . .+ km)!

k1! · · · km!
A(T 1 ⊗ · · · ⊗ Tm).

For instance if v∗,w∗ ∈ V ∗ then

v∗ �w∗ = v∗ ⊗w∗ +w∗ ⊗ v∗, v∗ ∧w∗ = v∗ ⊗w∗ −w∗ ⊗ v∗.

Note that

v∗ �w∗ = w∗ � v∗, v∗ ∧w∗ = −w∗ ∧ v∗.

More generally, if v1, . . . , vm ∈ V ∗ then

v1 � · · · � vm =
∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m),

v1 ∧ · · · ∧ vm =
∑
σ∈Sm

(−1)sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(m).
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Using coordinates with respect to some basis B of V we can write

(T � U)i1,...,ip+q =
(p + q)!

p!q!
T[i1,...,ipUip+1,...,ip+q ],

(T ∧ U)i1,...,ip+q =
(p + q)!

p!q!
T(i1,...,ipUip+1,...,ip+q).

Proposition 2.4.7. The vector spaces S∗(V ) and Λ∗(V ) form two associa-
tive algebras with the products � and ∧ respectively.

Proof. Everything is immediate except associativity. We prove it for Λ,
the other is analogous. Pick S ∈ Λp, T ∈ Λq, and U ∈ Λr . In coordinates(

(S ∧ T ) ∧ U
)
i1,...,ip+q+r

=
1

(p + q)!r !
(S ∧ T )[i1,...,ip+q

Uip+q+1,...,ip+q+r ]

=
1

(p + q)!p!q!r !
S[[i1,...,ipTip+1,...,ip+q ]Uip+q+1,...,ip+q+r ]

=
1

p!q!r !
S[i1,...,ipTip+1,...,ip+qUip+q+1,...,ip+q+r ]

= (S ∧ T ∧ U)i1,...,ip+q+r .

The third equality follows from the fact that the same permutation in Sp+q+r is
obtained (p+q)! times. Analogously we can prove that S∧(T∧U) = S∧T∧U.
The proof is complete. �

The two algebras S∗(V ) and Λ∗(V ) are called the contravariant symmetric
algebra and the contravariant exterior algebra. The products ⊗ and ∧ are
called the symmetric and exterior product.

2.4.4. Dimensions. We now construct some standard basis for Sk(V )

and Λk(V ) and calculate their dimensions. Let B = {v1, . . . , vn} be a basis
for V and B∗ = {v1, . . . , vn} the dual basis of V ∗.

Proposition 2.4.8. A basis for Sk(V ) is{
vi1 � · · · � vik

}
where 1 ≤ i1 ≤ . . . ≤ ik ≤ n vary. A basis for Λk(V ) is{

vi1 ∧ · · · ∧ vik
}

where 1 ≤ i1 < . . . < ik ≤ n vary.

Proof. This is a consequence of Propositions 2.4.2 and Remark 2.4.4. �

Example 2.4.9. The following is a basis for S2(R2):

e1 � e1, e1 � e2, e2 � e2.

The following is a basis for Λ2(R3):

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.
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Corollary 2.4.10. We have

dimSk(V ) =

(
n + k − 1

k

)
,

dim Λk(V ) =


(
n

k

)
if k ≤ n,

0 if k > n.

Corollary 2.4.11. The algebra S∗(V ) is commutative, while Λ∗(V ) is anti-
commutative, that is

T ∧ U = (−1)pqU ∧ T
for every T ∈ Λp(V ) and U ∈ Λq(V ).

Proof. We prove anticommutativity. It suffices to prove this when T, U
are basis elements, that is we must show that

vi1 ∧ . . . ∧ vip ∧ vj1 ∧ . . . ∧ vjq = (−1)pqvj1 ∧ . . . ∧ vjq ∧ vi1 ∧ . . . ∧ vip .

This equality follows from applying pq times the simple equality

v∗ ∧w∗ = −w∗ ∧ v∗.

The proof is complete. �

Corollary 2.4.12. If T ∈ Λk(V ) with odd k then T ∧ T = 0.

Corollary 2.4.13. We have dimS∗(V ) =∞ and dim Λ∗(V ) = 2n.

Exercise 2.4.14. The algebras S∗(V ) and R[x1, . . . , xn] are isomorphic.

2.4.5. The determinant line. One of the most important aspect of the
theory, that will have important applications in the next chapters, is the fol-
lowing – apparently innocuous – fact:

dim Λn(V ) = 1.

The space Λn(V ) is called the determinant line. If v1, . . . , vn is a basis of V ∗,
then a generator for Λn(V ) is the tensor

v1 ∧ . . . ∧ vn.

In fact, we already know that there is only one alternating n-linear form in V
up to rescaling – this is exactly where the determinant comes from. When
V = Rn, we get

det = e1 ∧ . . . ∧ en

where e1, . . . , en is the canonical basis of (Rn)∗ = Rn. Note however that
Λn(V ) has no canonical generator unless we make some choice, like for instance
a basis of V .

Let now v1, . . . , vn and w1, . . . ,wn be two basis of V ∗, and let A the
change of basis matrix, so that vi = Aijw

j .
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Proposition 2.4.15. The following equality holds:

v1 ∧ . . . ∧ vn = detA ·w1 ∧ . . . ∧wn.

Proof. We have

v1 ∧ . . . ∧ vn = A1
j1
· · ·Anjnw

j1 ∧ . . . ∧wjn

=
∑
σ∈Sn

A1
σ(1) · · ·A

n
σ(n)w

σ(1) ∧ . . . ∧wσ(n)

=
∑
σ∈Sn

(−1)sgn(σ)A1
σ(1) · · ·A

n
σ(n)w

1 ∧ . . . ∧wn

= detA ·w1 ∧ . . . ∧wn.

The proof is complete. �

We have discovered here another important fact: the equality looks like
the formula in the change of variables in multiple integrals, see Section 1.3.8.
This will allow us to connect alternating tensors with integration and volume.

2.4.6. Totally decomposable antisymmetric tensors. An antisymmetric
tensor T ∈ Λk(V ) is totally decomposable if it may be written as

T = w1 ∧ . . . ∧wk

for some covectors w1, . . . ,wk ∈ V ∗. This notion is similar to that of a pure
tensor, only with the product ∧ instead of ⊗.

Proposition 2.4.16. The element T = w1 ∧ . . . ∧ wk is non-zero ⇐⇒ the
covectors w1, . . . ,wk are linearly independent.

Proof. If w1 = λiw
i , then T is a combination of totally decomposable

elements where the same covector wi appears twice, and wi ∧wi = 0.
Conversely, if they are independent they can be completed to a basis

w1, . . . ,wn of V and we know that w1 ∧ . . . ∧wn 6= 0, hence T 6= 0. �

Not all the antisymmetric tensors are totally decomposable:

Exercise 2.4.17. If v1, v2, v3, v4 ∈ V ∗ are linearly independent then

v1 ∧ v2 + v3 ∧ v4

is not totally decomposable.

Hint. If w is totally decomposable, then w ∧w = 0. �
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2.4.7. Covariant versions. We have established the theory of symmetric
and antisymmetric contravariant tensors, but actually everything we said also
holds verbatim for the covariant tensors: we can therefore denote by

Sk(V ), Λk(V )

the subspaces of Tk(V ) consisting of all the symmetric or antisymmetric ten-
sors, and define

S∗(V ) =
⊕
k≥0

Sk(V ), Λ∗(V ) =
⊕
k≥0

Λk(V ).

These form two algebras, called the covariant symmetric algebra and covariant
exterior algebra.

2.4.8. Linear maps. Every linear map L : V → W between vector spaces
induces some algebra homomorphisms

L∗ : T∗(V ) −→ T∗(W ), L∗ : T ∗(W ) −→ T ∗(V ),

L∗ : S∗(V ) −→ S∗(W ), L∗ : S∗(W ) −→ S∗(V ),

L∗ : Λ∗(V ) −→ Λ∗(W ), L∗ : Λ∗(W ) −→ Λ∗(V ).

The passing from L to L∗ or L∗ is functorial, that is

(L′ ◦ L)∗ = L′∗ ◦ L∗, id∗ = id,

(L′ ◦ L)∗ = L∗ ◦ (L′)∗, id∗ = id.

From this we deduce that if L is an isomorphism then L∗ is an isomorphism.
More than that:

• if L is injective then L∗ is injective and L∗ is surjective,
• if L is surjective then L∗ is surjective and L∗ injective.

This holds because if L is injective (surjective) there is a linear map L′ : W → V

such that L′◦L = idV (L◦L′ = idW ), as one proves with standard linear algebra
techniques.

Remark 2.4.18. The terms covariance and its opposite contravariance are
used for similar objects in two quite different contexts, and this is a perma-
nent source of confusion. In general, a mathematical entity is “covariant”
if it changes “in the same way” as some other preferred entity when some
modification is made. But which modifications are we considering here?

Physicists are interested in changes of frame, that is of basis, and they
note that if we change a basis with a matrix A, then the coordinates of a
vector change with B = A−1, that is contravariantly. On the other hand,
mathematicians are mostly interested in functoriality, and note that a map
L : V → W induce maps L∗ : T∗(V ) → T∗(W ) and L∗ : T ∗(W ) → T ∗(V )

on tensors, and they call contravariant the second ones because arrows are
reversed.
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The reader can ignore all these matters – in fact, these issues start to annoy
you only when you start to write a textbook, and must choose a notation that
is both reasonable and consistent.

2.5. Grassmannians

After many pages of algebra, we now would like to see some geometric
applications of the structures that we have just introduced. Here is one.

2.5.1. Definition. Let V be a real vector space of dimension n. Remem-
ber that the projective space P(V ) is the set of all the vector lines in V . More
generally, fix 0 < k < n = dim V .

Definition 2.5.1. The Grassmannian Grk(V ) is the set consisting of all the
k-dimensional vector subspaces W ⊂ V .

Recall that every W ⊂ V determines a dual subspace W ∗ ⊂ V ∗ consisting
of all the functionals that vanish on W . We have dimW ∗ = n − dimW .
Therefore the sets Grk(V ) and Grn−k(V ∗) may be identified canonically. In
particular we get

Gr1(V ) = P(V ), Grn−1(V ) = P(V ∗).

The simplest new interesting set to investigate is the Grassmannian Gr2(R4)

of vector planes in R4. How can we study such an object?

2.5.2. The Plücker embedding. A generic Grassmannian is not a pro-
jective space in any sense, but we now show that it can be embedded in some
(bigger) projective space. We do this using the exterior algebra.

For every k-dimensional subspace W ⊂ V of V we have the inclusion map
L : W → V which induces an injective linear map

Λk(W ) −→ Λk(V ).

Since dim Λk(W ) = 1, the image of this map is a line in Λk(V ) that depends
only on W . By sending W to this line we get a map

Grk(V ) −→ P
(

Λk(V )
)

called the Plücker embedding. Concretely, the map sends W ⊂ V to

[w1 ∧ . . . ∧wk ]

where w1, . . . ,wk is any basis of W .

Proposition 2.5.2. The Plücker embedding is injective.

Proof. Consider W 6= W ′. Let w1, . . . ,wk and w′1, . . . ,w
′
k be any basis of

W and W ′. Pick any vector w ∈ W \W ′. By Proposition 2.4.16 we have

w1 ∧ . . . ∧wk ∧w = 0, w′1 ∧ . . . ∧w′k ∧w 6= 0.

Therefore the tensorsw1∧. . .∧wk andw′1∧. . .∧w′k cannot be proportional. �
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For instance, we get the Plücker embedding

Gr2(R4) ↪−→ P
(

Λ2(R4)
) ∼= P

(
R
(

4
2

))
= RP5.

This embedding is clearly not surjective because of Exercise 2.4.17. We can
consider the set Grk(Rn) canonically embedded in RPN with N =

(
n
k

)
− 1 and

in particular we may assign it the subspace topology.

2.5.3. The Veronese embedding. Here is another geometric application.
Fix k > 0 and consider the natural map V → Sk(V ) defined as

v 7−→ v � · · · � v︸ ︷︷ ︸
k

.

This map is not linear in general, however it is injective (exercise) and it also
induces an injective map between projective spaces

P(V ) ↪→ P
(
Sk(V )

)
called the Veronese embedding. This map is not a projective map in general.

Exercise 2.5.3. If V = Rn+1 and we use the canonical basis, we get

Pn ↪−→ PN

where N =
(
n + k
k

)
− 1. The map sends [x0, . . . , xn] to [xk0 , x

k−1
0 x1, . . .] where

the square brackets contain all the possible degree-k monomials in the variables
x0, . . . , xn. For instance for k = n = 2 we get

P2 ↪−→ P5

given by

[x, y , z ] 7−→ [x2, y2, z2, xy , yz, zx ].

For n = 1 we get

P1 ↪−→ Pk

given by

[x, y ] 7−→ [xk , xk−1y , . . . , xy k−1, y k ].

2.6. Orientation

We end this chapter with a short section, where we introduce and discuss
the notion of orientation on a real vector space V .
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2.6.1. Definition. Let us say that two basis of V are cooriented if the
change of basis matrix relating them has positive determinant. Being coori-
ented is an equivalence relation on the set of all the basis in V , and one checks
immediately that we get precisely two equivalence classes of basis.

Definition 2.6.1. An orientation on V is the choice of one of these two
equivalence classes.

If V is oriented, the bases belonging to the preferred equivalence class
are called positive, and the other negative. Of course V has two distinct
orientations. The space Rn has a canonical orientation given by the canonical
basis, but a space V may not have a canonical orientation in general.

Exercise 2.6.2. If V = U⊕W , then an orientation on any two of the spaces
U, V,W induces an orientation on the third, by requiring that, for every positive
basis u1, . . . , uk of U and w1, . . . , wh of W , the basis u1, . . . , uk , w1, . . . , wh of
V is also positive.

2.6.2. Via the exterior algebra. We now study briefly the relation be-
tween the orientation on V and on some other tensor spaces.

Exercise 2.6.3. An orientation on V induces one on V ∗ and vice-versa, as
follows: a basis on V is positive ⇐⇒ its dual basis on V ∗ is positive.

Proposition 2.4.15 in turn shows that an orientation on V ∗ induces one
on Λn(V ) and vice-versa: a basis v1, . . . , vn is positive in V ∗ ⇐⇒ the element
v1 ∧ . . . ∧ vn is a positive basis for the line Λn(V ).

Indeed we could define an orientation on V to be an orientation on the
determinant line Λn(V ).

2.6.3. Scalar product. Finally, we note that if V is equipped with both
an orientation and a positive-definite scalar product g, then we get for free a
canonical generator T for the determinant line Λn(V ) by taking

T = v1 ∧ . . . ∧ vn

where v1, . . . , vn is any positive orthonormal basis of V ∗. The generator T
does not depend on the basis, because any two such basis are related by an
orthogonal matrix A with detA = 1 and hence Proposition 2.4.15 applies. The
element T is also determined by requiring that

T (v1, . . . , vn) = 1

on every positive orthonormal basis v1, . . . , vn of V .



CHAPTER 3

Smooth manifolds

3.1. Smooth manifolds

We introduce here the notion of smooth manifold, the main protagonist
of the book.

3.1.1. Definition. The definition of topological manifold that we have
proposed in Section 1.1.6 is simple but also very poor, and it is quite hard to
employ it concretely: for instance, it is already non obvious to answer such a
natural question as whether Rn and Rm are homeomorphic when n 6= m. To
make life easier, we enrich the definition by adding a smooth structure that
exploits the power of differential calculus.

Let M be a topological n-manifold. A chart is a homeomorphism ϕ : U →
V from some open set U ⊂ M onto an open set V ⊂ Rn. The inverse map
ϕ−1 : V → U is called a parametrisation. An atlas onM is a set

{
ϕi
}
of charts

ϕi : Ui → Vi that cover M, that is such that ∪Ui = M.
Let

{
ϕi
}
be an atlas on M. Whenever Ui ∩Uj 6= ∅, we define a transition

map
ϕi j : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

by setting ϕi j = ϕj ◦ϕ−1
i . The reader should visualise this definition by looking

at Figure 3.1. Note that both the domain and codomain of ϕi j are open sets of
Rn, and hence it makes perfectly sense to ask whether the transition functions
ϕi j are smooth. We say that the atlas is smooth if all the transition functions
ϕi j are smooth. Here is the most important definition of the book:

Definition 3.1.1. A smooth n-manifold is a topological n-manifold equipped
with a smooth atlas.

To be more precise, we allow the same smooth manifold to be described by
different atlases, as follows: we say that two smooth atlases {ϕi} and {ϕ′j} are
compatible if their union is again a smooth atlas; compatibility is an equivalent
relation and we define a smooth structure on a topological manifold M to be
an equivalence class of smooth atlases on M. The rigorous definition of a
smooth manifold is a topological manifold M with a smooth structure on it.

Remark 3.1.2. The union of all the smooth atlases in M compatible with
a given one is again a compatible smooth atlas, called a maximal atlas. The
maximal atlas is uniquely determined by the smooth structure: hence one can

45
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Figure 3.1. Two overlapping charts ϕi and ϕj induce a transition func-
tion ϕi j = ϕj ◦ ϕ−1

i .

also define a smooth manifold to be a topological manifold equipped with a
maximal atlas, without using equivalence classes.

As a first example, every open subset U ⊂ Rn is naturally a smooth mani-
fold, with an atlas that consists of a unique chart: the identity map U → U.

The open subsets of Rn can be pretty complicated, but they are never
compact. To construct some compact smooth manifolds we now build some
atlases as in Figure 1.2.

3.1.2. Spheres. Recall that the unit sphere is

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
.

This is the prototypical example of a compact smooth manifold. To build a
smooth atlas on Sn, we may consider the hemispheres

U+
i =

{
x ∈ Sn

∣∣ xi > 0
}
, U−i =

{
x ∈ Sn

∣∣ xi < 0
}

for i = 1, . . . , n+ 1 and define a chart ϕ±i : U±i → Bn by forgetting xi , that is

ϕ±i (x1, . . . , xn+1) = (x1, . . . , x̌i , . . . , xn+1).

Proposition 3.1.3. These charts define a smooth atlas on Sn.

Proof. The inverse (ϕ±i )−1 is

(y1, . . . , yn) 7−→
(
y1, . . . , yi−1,

√
1− y2

1 − . . .− y2
n , yi , . . . , yn

)
.

The transition functions are compositions ϕ±i ◦ (ϕ±j )−1 and are smooth. �

We have equipped Sn with the structure of a smooth manifold. As we said,
the same smooth structure on Sn can be built via a different atlas: for instance
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Figure 3.2. The stereographic projection sends a point x ∈ Sn \ {N} to
the point ϕ(x) obtained by intersecting the line l containing N and x with
the horizontal hyperplane xn+1 = −1.

we describe one now that contains only two charts. Consider the north pole
N = (0, . . . , 0, 1) in Sn and the stereographic projection ϕN : Sn \ {N} → Rn,

ϕN(x1, . . . , xn+1) =
2

1− xn+1
(x1, . . . , xn).

The geometric interpretation of the stereographic projection is illustrated in
Figure 3.2. The map ϕN is a homeomorphism, so in particular Sn \ {N} is
homeomorphic to Rn. We can analogously define a stereographic projection
ϕS via the south pole S = (0, . . . , 0,−1), and deduce that Sn \ {S} is also
homeomorphic to Rn.

Exercise 3.1.4. The two charts {ϕS, ϕN} form a smooth atlas for Sn,
compatible with the one defined above.

The atlases {ϕ±i } and {ϕS, ϕN} define the same smooth structure on Sn.

Remark 3.1.5. The circle S1 is quite special: we can identify C with R2 and
write S1 = {e iθ | θ ∈ R}. The universal covering R→ S1, θ 7→ e iθ is of course
not injective, but it furnishes an atlas of natural charts when restricted to the
open segments (a, b) with b − a < 2π. The transition maps are translations.

3.1.3. Projective spaces. We now consider the real projective space RPn.
Recall the every point in RPn has some homogeneous coordinates [x0, . . . , xn].

For i = 0, . . . , n we set Ui ⊂ RPn to be the open subset defined by the
inequality xi 6= 0. We define a chart ϕi : Ui → Rn by setting

ϕi
(

[x0, . . . , xn]
)

=

(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

The inverse parametrisation ϕ−1
i : Rn → Ui may be written simply as

ϕ−1
i (x1, . . . , xn) = [x1, . . . , xi−1, 1, xi+1, . . . , xn].
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Figure 3.3. The torus S1×S1 embedded in R3. Every point (e iθ, e iϕ) ∈
S1×S1 of the torus may be interpreted on the figure as a point with (blue)
longitude θ and (red) latitude ϕ. Note that the latitude and longitude
behave very nicely on the torus, as opposite to the sphere where longitude
is ambiguous at the poles. Cartographers would enjoy to live on a torus-
shaped planet.

The open subsets U0, . . . , Un cover RPn and the transition functions ϕi j are
clearly smooth: hence the atlas {ϕi} defines a smooth structure on RPn.

We have discovered that RPn is naturally a smooth n-manifold. The same
construction works for the complex projective space CPn which is hence a
smooth 2n-manifold: it suffices to identify Cn+1 with R2n+2 in the usual way.

Recall that RPn and CPn are connected and compact, see Exercise 1.4.1.

3.1.4. Products. The product M ×N of two smooth manifolds M, N of
dimension m, n is naturally a smooth (m + n)-manifold. Indeed, two smooth
atlases {ϕi}, {ψj} on M,N induce a smooth atlas {ϕi × ψj} on M × N.

For instance the torus S1×S1 is a smooth manifold of dimension two. By
the way, a 2-manifold is usually called a surface. The torus may be conveniently
embedded in R3 as in Figure 3.3.

3.1.5. Alternative definition. We end this section with a slightly techni-
cal observation, that the reader may wish to skip. We note that it is not strictly
necessary to priorly have a topology to define a smooth manifold structure:
we can also proceed directly with atlases as follows.

Let X be any set. We define a smooth atlas on X to be a collection
of subsets Ui covering X and of bijections ϕi : Ui → Vi onto open subsets
of Rn, such that ϕi(Ui ∩ Uj) is open for every i , j , and the transition maps
ϕi j = ϕ−1

j ◦ ϕi are smooth wherever they are defined.

Exercise 3.1.6. There is a unique topology on X such that every Ui is open
and every ϕi : Ui → Vi is a homeomorphism. In this topology, a subset U ⊂ X
is open ⇐⇒ the sets ϕ(U ∩ Ui) are open for every i .

Therefore a smooth atlas on a set X defines a compatible topology and
hence a smooth manifold structure on X.
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3.2. Smooth maps

Every honest category of objects has its morphisms. We have defined the
smooth manifolds, and we now introduce the right kind of maps between them.

We will henceforth use the following convention: if M is a given smooth
manifold, we just call a chart on M any chart ϕ : U → V compatible with the
smooth structure on M.

3.2.1. Definition. We say that a map f : M → N between two smooth
manifolds is smooth if it is so when read along some charts. This means that
for every x ∈ M there are some charts ϕ : U → V and ψ : W → Z of M and
N, with x ∈ U and f (U) ⊂ W , such that the map

ψ ◦ f ◦ ϕ−1 : V −→ Z

is smooth. Note that the manifolds M and N may have different dimensions.
It may be useful to visualise this definition via a commutative diagram:

U
f //

ϕ

��

W

ψ
��

V
F
// Z

Here F = ψ ◦ f ◦ ϕ−1 should be thought as “the map f read on charts”.

Remark 3.2.1. If f : M → N is smooth then ψ ◦ f ◦ ϕ−1 is also smooth
for any charts ϕ and ψ as above. This is a typical situation: if something is
smooth on some charts, it is so on all charts, because the transition functions
are smooth and the composition of smooth maps is smooth.

A curve in M is a smooth map γ : I → M defined on some open interval
I ⊂ R, that may be bounded or unbounded. Curves play an important role in
differential topology and geometry.

Exercise 3.2.2. The inclusion Sn ↪→ Rn+1 is a smooth map.

The space of all the smooth mapsM → N is usually denoted by C∞(M,N).
We will often encounter the space C∞(M,R), written as C∞(M) for short.
We note that C∞(M) is a real commutative algebra.

3.2.2. Diffeomorphisms. A smooth map f : M → N is a diffeomorphism
if it is a homeomorphism and its inverse f −1 : N → M is also smooth.

Example 3.2.3. The map f : Bn → Rn defined as

f (x) =
x√

1− ‖x‖2

is a diffeomorphism. Its inverse is

g(x) =
x√

1 + ‖x‖2
.
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Two manifoldsM,N are diffeomorphic if there is a diffeomorphism f : M →
N. Being diffeomorphic is clearly an equivalence relation. The open ball of
radius r > 0 centred at x0 ∈ Rn is by definition

B(x0, r) =
{
x ∈ Rn

∣∣ ‖x − x0‖ < r
}
.

Exercise 3.2.4. Any two open balls in Rn are diffeomorphic.

As a consequence, every open ball in Rn is diffeomorphic to Rn itself.

Exercise 3.2.5. The antipodal map ι : Sn → Sn, ι(x) = −x is a diffeomor-
phism.

Example 3.2.6. The following diffeomorphisms hold:

RP1 ∼= S1, CP1 ∼= S2.

These are obtained as compositions

RP1 −→ R ∪ {∞} −→ S1

CP1 −→ C ∪ {∞} −→ S2

where the first map sends [x0, x1] to x1/x0, and the second is the stereographic
projection. All the maps are clearly 1-1 and we only need to check that the
composition is smooth, and with smooth inverse. Everything is obvious except
near the point [0, 1]. In the complex case, if we take the parametrisation
z 7→ [z, 1], by calculating we find that the map is

[z, 1] 7−→
1

1 + 4|z |2
(

4<z,−4=z, 1− 4|z |2
)
.

So it is smooth and has smooth inverse.

3.3. Partitions of unity

We now introduce a powerful tool that may look quite technical at a
first reading, but which will have spectacular consequences in the next pages.
The general idea is that smooth functions are flexible enough to be patched
altogether: one can use bump functions (see Section 1.3.5) to extend smooth
maps from local to global, or to approximate continuous maps with smooth
maps.

3.3.1. Definition. Let M be a smooth manifold. We say that an atlas
{ϕi : Ui → Vi} for M is adequate if the open sets {Ui} form a locally finite
covering of M, we have Vi = Rn for all i , and the open sets ϕ−1

i (Bn) also form
a covering of M.

We already know that M is paracompact by Proposition 1.1.5, so every
open covering has a locally finite refinement. We reprove here this fact in a
stronger form.
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Figure 3.4. A partition of unity on S1.

Proposition 3.3.1. Let {Ui} be an open covering of M. There is an ade-
quate atlas {ϕk : Wk → Rn} such that {Wk} refines {Ui}.

Proof. We readapt the proof of Proposition 1.1.5. We know that M has
an exhaustion by compact subsets {Kj}, and we set K0 = K−1 = ∅.

We construct the atlas inductively on j = 1, 2 . . . For every p ∈ Kj \
int(Kj−1) there is an open set Ui containing p. We fix a chart ϕp : Wp → Rn
with Wp ⊂

(
int(Kj+1) \Kj−2

)
∩ Ui .

The open sets ϕ−1
p (Bn) cover the compact set Kj \ int(Kj−1) as p varies

there, and finitely many of them suffice to cover it. By taking only these
finitely many ϕp for every j = 1, 2, . . . we get an adequate covering. �

Let {Ui} be an open covering of M.

Definition 3.3.2. A partition of unity subordinate to the open covering
{Ui} is a family {ρi : M → R} of smooth functions with values in [0, 1], such
that the following hold:

(1) the support of ρi is contained in Ui for all i ,
(2) every x ∈ M has a neighbourhood where all but finitely many of the

ρi vanish, and
∑
i ρi(x) = 1.

See an example in Figure 3.4. What is important for us, is that partitions
of unity exist.

Proposition 3.3.3. For every open covering {Ui} of M there is a partition
of unity subordinate to {Ui}.

Proof. Fix a smooth bump function λ : Rn → R with values in [0, 1] such
that λ(x) = 1 if ‖x‖ ≤ 1 and λ(x) = 0 if ‖x‖ ≥ 2, see Section 1.3.5.

Pick an adequate atlas
{
ϕk : Wk → Rn

}
such that {Wk} refines {Ui}.

Define the function ρ̄k(p) : M → R as ρ̄k(p) = λ(ϕk(p)) if p ∈ Wk and zero
otherwise. The family {ρ̄k} is almost a partition of unity subordinate to {Wk},
except that

∑
j ρ̄j(p) may be any strictly positive number (note that it is not

zero because the atlas is adequate). To fix this it suffices to set

ρk(p) =
ρ̄k(p)∑
j ρ̄j(p)

.

The family {ρk} is a partition of unity subordinate to {Wk}. To get one {ηi}
subordinate to {Ui} we fix a function i(k) such that Wk ⊂ Ui(k) for every k
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and we define

ηi(p) =
∑
i(k)=i

ρk(p).

The proof is complete. �

3.3.2. Extension of smooth maps. We show an application of the par-
titions of unity. Let M and N be two smooth manifolds. The fact that we
prove here is already interesting and non-trivial when M is Rm or some open
set in it. We first need to define a notion of smooth map for arbitrary (not
necessarily open) domains.

Definition 3.3.4. Let S ⊂ M be any subset. A map f : S → N is smooth if
it is locally the restriction of smooth functions. That is, for every p ∈ S there
are an open neighbourhood U ⊂ M of p and a smooth map g : U → N such
that g|U∩S = f |U∩S.

One may wonder whether the existence of local extensions implies that of
a global one. This is true if the domain is closed and the codomain is Rn.

Proposition 3.3.5. If S ⊂ M is a closed subset, every smooth map f : S →
Rn is the restriction of a smooth map F : M → Rn.

Proof. By definition for every p ∈ S there are an open neighbourhood
U(p) and a local extension gp : U(p)→ Rn of f . Consider the open covering{

U(p)
}
p∈S ∪

{
M \ S

}
of M, and pick a partition of unity {ρp} ∪ {ρ} subordinate to it. For every
x ∈ M we define

F (x) =
∑

ρp(x)gp(x)

where the sum is taken over the finitely many p ∈ M such that ρp(x) 6= 0.
The function F : M → Rn is locally a finite sum of smooth functions and is
hence smooth. If x ∈ S we have

F (x) =
∑

ρp(x)gp(x) =
∑

ρp(x)f (x) = f (x)
∑

ρp(x) = f (x).

Therefore F : M → R is a smooth global extension of f . �

Remark 3.3.6. Smooth (not even continuous) extensions cannot exist for
every S ⊂ M for obvious reasons. Take for instance M = R and S = R∗ =

R \ {0} and f : S → R with f (x) = 1 on x > 0 and f (x) = 0 on x < 0.

Remark 3.3.7. In the proof, the extension F vanishes outside ∪p∈SU(p).
In the construction we may take the U(p) to be arbitrarily small: hence we
may require F to vanish outside of an arbitrary open neighbourhood of S.
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3.3.3. Approximation of continuous maps. Here is another application
of the partition of unity. Let M be a smooth manifold.

Proposition 3.3.8. Let f : M → Rn be a continuous map, whose restriction
f |S to some (possibly empty) closed subset S ⊂ M is smooth. For every
continuous positive function ε : M → R>0 there is a smooth map g : M → Rn
with f (x) = g(x) for all x ∈ S and |f (x)− g(x)| < ε(x) for all x ∈ M.

Proof. The map g is easily constructed locally: for every p ∈ M there are
an open neighbourhood U(p) ⊂ M and a smooth map gp : U(p) → Rn such
that f (x) = gp(x) for all x ∈ U(p) ∩ S and |f (x) − gp(x)| < ε(x) for all
x ∈ U(p). (This is proved as follows: if p ∈ S, let gp be an extension of f ,
while if p 6∈ S simply set gp(x) = f (p) constantly. The second condition is
then achieved by restricting U(p).)

We now paste the gp to a global map by taking a partition of unity {ρp}
subordinated to

{
U(p)

}
and defining

g(x) =
∑

ρp(x)gp(x).

The sum is taken over the finitely many p ∈ M. such that ρp(x) 6= 0. The
map g : M → Rn is smooth and f (x) = g(x) for all x ∈ S. Moreover

|f (x)− g(x)| =
∣∣∣∑ ρp(x)f (x)−

∑
ρp(x)gp(x)

∣∣∣
≤
∑

ρp(x)
∣∣f (x)− gp(x)

∣∣ ≤∑ ρp(x)ε(x) = ε(x).

The proof is complete. �

We have proved in particular that every continuous map f : M → Rn may
be approximated by smooth functions.

3.3.4. Smooth exhaustions. Here is another application. A smooth ex-
haustion on a manifold M is a smooth positive function f : M → R>0 such
that f −1[0, T ] is compact for every T .

Proposition 3.3.9. Every manifold M has a smooth exhaustion.

Proof. Pick a locally finite covering
{
Ui
}
where Ūi is compact for every i ,

and a subordinated partition of unity ρi . The function

f (p) =

∞∑
j=1

jρj(p)

is easily seen to be a smooth exhaustion. �
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Figure 3.5. The tangent space TpM is the set of all curves γ passing
through p up to some equivalence relation.

3.4. Tangent space

Let M be a smooth n-manifold. We now define for every point p ∈ M a
n-dimensional real vector space TpM called the tangent space of M at p.

Heuristically, the tangent space TpM should generalise the intuitive notions
of tangent line to a curve in R2 or R3, or of a tangent plane to a surface in
R3, as in Figure 3.5. There is however a problem here in trying to formalise
this idea: our manifold M is an abstract object and is not embedded in some
bigger space like the surface in R3 depicted in the figure! For that reason we
need to define TpM intrinsically, using only the points that are contained inside
M and not outside – since there is no outside at all. We do this by considering
all the curves passing through p: as suggested in Figure 3.5, every such curve
γ should define somehow a tangent vector v ∈ TpM.

3.4.1. Definition via curves. Here is a rigorous definition of the tangent
space TpM at p ∈ M. We fix a point p ∈ M and consider all the curves
γ : I → M with 0 ∈ I and γ(0) = p. (The interval I may vary.) We want
to define a notion of tangency of such curves at p. Let γ1, γ2 be two such
curves.

If M = Rn, the derivative γ′(t) makes sense and we say as usual that
γ1 and γ2 are tangent at p if γ′1(0) = γ′2(0). On a more general M, we
pick a chart ϕ : U → V and we say that γ1 and γ2 are tangent at p if the
compositions ϕ ◦ γ1 and ϕ ◦ γ2 are tangent at ϕ(p).1

This definition is chart-independent, that is it is not influenced by the
choice of ϕ, because a transition map between two different charts transports
tangent curves to tangent curves.

The tangency at p is an equivalence relation on the set of all curves γ : I →
M with γ(0) = p. We are ready to define TpM.

1To be precise, we may need to priorly restrict γ1 and/or γ2 to a smaller interval I ′ ⊂ I
in order for their images to lie in U.
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Definition 3.4.1. The tangent space TpM at p ∈ M is the set of all curves
γ : I → M with 0 ∈ I and γ(0) = p, considered up to tangency at p.

When M = Rn, the space TpRn is naturally identified with Rn itself, by
transforming every curve γ into its derivative γ′(0). We will always write

TpRn = Rn.

This holds also for open subsets M ⊂ Rn.

3.4.2. Definition via derivations. We now propose a more abstract and
quite different definition of the tangent space at a point. It is always good to
understand different equivalent definitions of the same mathematical object:
the reader may choose the one she prefers, but we advise her to try to under-
stand and remember both because, depending on the context, one definition
may be more suitable than the other – for instance to prove theorems.

Let M be a smooth manifold and p ∈ M be a point. A derivation v

at p is an operation that assigns a number v(f ) to every smooth function
f : U → R defined in some open neighbourhood U of p, that fulfils the following
requirements:

(1) if f and g agree on a neighbourhood of p, then v(f ) = v(g);
(2) v is linear, that is v(λf +µg) = λv(f ) +µv(g) for all numbers λ, µ;
(3) v(f g) = v(f )g(p) + f (p)v(g).

In (2) and (3) we suppose that f and g are defined on the same open neigh-
bourhood U. The term “derivation” is used here because the third requirement
looks very much like the Leibnitz rule. Here is a fresh new definition of the
tangent space at a point:

Definition 3.4.2. The tangent space TpM is the set of all the derivations
at p.

A linear combination λv + λ′v ′ of two derivations v , v ′ with λ, λ′ ∈ R is
again a derivation: therefore the tangent space TpM has a natural structure
of real vector space.

We study the model case M = Rn. Here every vector v ∈ Rn determines
the directional derivative ∂v along v , defined as usual as

∂v f =

n∑
i=1

v i
∂f

∂xi
,

which fulfils all the requirement (1-3) and is hence a derivation. Conversely:

Proposition 3.4.3. If M = Rn every derivation is a directional derivative ∂v
along some vector v ∈ Rn.
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Proof. We set p = 0 for simplicity. By the Taylor formula every smooth
function f can be written near 0 as

f (x) = f (0) +
∑
i

∂f

∂xi
(0)xi +

∑
i ,j

hi j(x)xixj

for some smooth functions hi j . If v is a derivation, by applying it to f we get

v(f ) = f (0)v(1) +
∑
i

∂f

∂xi
(0)v(xi) +

∑
i ,j

v(hi jxixj).

The first and third term vanish because of the Leibnitz rule (exercise: use
that v(1) = v(1 · 1)). Therefore v is the partial derivative along the vector
(v(x1), . . . , v(xn)). �

We have discovered that whenM = Rn the tangent space TpM is naturally
identified with Rn. This works also if M ⊂ Rn is an open subset.

We have shown in particular that the two definitions – via curves and via
derivations – of TpM are equivalent at least for the open subsets M ⊂ Rn. On
a general M, here is a direct way to pass from one definition to the other: for
every curve γ : I → M with γ(0) = p, we may define a derivation v by setting

v(f ) = (f ◦ γ)′(0).

This gives indeed a 1-1 correspondence between curves up to tangency and
derivations, as one can immediately deduce by taking one chart.

Summing up, we have two equivalent definitions: the one via curves may
look more concrete, but derivations have the advantage of giving TpM a natural
structure of a n-dimensional real vector space.

It is important to note that TpM is a vector space and nothing more than
that: for instance there is no canonical norm or scalar product on TpM, so
it does not make any sense to talk about the lengths of tangent vectors –
tangent vectors have no lengths. We are lucky enough to have a well-defined
vector space and we are content with that. To define lengths we need an
additional structure called metric tensor, that we will introduce later on in the
subsequent chapters.

3.4.3. Differential of a map. We now introduce some kind of derivative
of a smooth map, called differential. The differential is neither a number, nor
a matrix of numbers in any sense: it is “only” a linear function between tangent
spaces that approximates the smooth map at every point, in some sense.

Let f : M → N be a smooth map between smooth manifolds. The differ-
ential of f at a point p ∈ M is the map

dfp : TpM −→ Tf (p)N

that sends a curve γ with γ(0) = p to the curve f ◦ γ.
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The map dfp is well-defined, because smooth maps send tangent curves to
tangent curves, as one sees by taking charts. Alternatively, we may use deriva-
tions: the map dfp sends a derivation v ∈ TpM to the derivation dfp(v) = v ′

that acts as v ′(g) = v(g ◦ f ).

Exercise 3.4.4. The function v ′ is indeed a derivation. The two definitions
of dfp are equivalent; using the second one we see that dfp is linear.

The definition of dfp is clearly functorial, that is we have

d(g ◦ f )p = dgf (p) ◦ dfp, d(idM)p = idTpM .

This implies in particular that the differential dfp of a diffeomorphism f : M →
N is invertible at every point p ∈ M.

When M ⊂ Rm and N ⊂ Rn are open subsets, the differential dfp of a
smooth map f : M → N is a linear map

dfp : Rm −→ Rn

because we have the natural identifications TpM = Rm and Tf (p)N = Rn. It is
an exercise to check that dfp is just the ordinary differential of Section 1.3.1.

3.4.4. On charts. A constant refrain in differential topology and geome-
try is that an abstract highly non-numerical definition becomes a more concrete
numerical object when read on charts. If ϕ : U → V and ψ : W → Z are charts
of M and N with f (U) ⊂ W , then we may consider the commutative diagram

U
f //

ϕ

��

W

ψ
��

V
F
// Z

where F = ψ ◦ f ◦ϕ−1 is the map f read on charts. By taking differentials we
find for every p ∈ U another commutative diagram of linear maps

TpM
dfp //

dϕp
��

Tf (p)W

dψf (p)

��
Rm

dFϕ(p)

// Rn

and dFϕ(p) should be thought as “the differential dfp read on charts”. Note
that the vertical arrows are isomorphisms, so one can fully recover dfp by
looking at dFϕ(p). In particular dFϕ(p) has the same rank of dfp, and is
injective/surjective ⇐⇒ dfp is.

It is convenient to look at dFϕ(p) because it is a rather familiar object:
being the differential of a smooth map F : V → Z between open sets V ⊂ Rm
and Z ⊂ Rn, the differential dFϕ(p) is a quite reassuring Jacobian n×m matrix
whose entries vary smoothly with respect to the point ϕ(p) ∈ V .
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Example 3.4.5. The Veronese embedding f : RP1 ↪→ RP2 is

f
(

[x0, x1]
)

= [x2
0 , x0x1, x

2
1 ],

see Exercise 2.5.3. The map sends the open subset U0 = {x0 6= 0} ⊂ RP1 into
W0 = {x0 6= 0} ⊂ RP2. We use the coordinate charts ϕ : U0 → R, [1, t] 7→
t and ψ : W0 → R2, [1, t, u] 7→ (t, u). Read on these charts the map f
transforms into a map F = ψ ◦ f ◦ ϕ−1 : R→ R2, that is

F (t) = (t, t2).

Its differential is (1, 2t), so in particular it is injective. Analogously the chart
U1 = {x1 6= 0} ⊂ RP1 injects into W2 = {x2 6= 0} ⊂ RP2 like t 7→ (t2, t). We
have discovered that dfp is injective for every p ∈ RP1.

Exercise 3.4.6. For every k, n and every p ∈ RPn, show that the differential
dfp of the Veronese embedding f : Pn ↪→ PN of Exercise 2.5.3 is injective.

3.4.5. Products. Let M×N be a product of smooth manifolds of dimen-
sions m and n. For every (p, q) ∈ M × N there is a natural identification

T(p,q)M × N = TpM × TqN.

This identification is immediate using the definition of tangent spaces via
curves, since a curve in M × N is the union of two curves in M and N.

Exercise 3.4.7. The Segre embedding f : RP1 × RP1 ↪→ RP3 is

[x0, x1]× [y0, y1] 7−→ [x0y0, x0y1, x1y0, x1y1].

See Section 2.1.5. Prove that for every (p, q) ∈ RP1 × RP1 the differential
df(p,q) is injective.

3.4.6. Velocity of a curve. If γ : I → M is a curve, for every t ∈ I we
get a differential dγt : TtR → Tγ(t)M. Since TtR = R we may simply write
dγt : R → Tγ(t)M and it makes sense to define the velocity of γ at the time
t as the tangent vector

γ′(t) = dγt(1).

In fact, if we use the description of TpM via curves, this definition is rather
tautological. Recall as we said above that there is no norm in Tγ(t)M, hence
there is no way to quantify the “speed” of γ′(t) as a number – except when it
is zero.

3.4.7. Inverse Function Theorem. The Inverse Function Theorem 1.3.3
applies to this context. We say that f : M → N is a local diffeomorphism at
p ∈ M if there is an open neighbourhood U ⊂ M of p such that f (U) ⊂ N is
open and f |U : U → f (U) is a diffeomorphism.

Theorem 3.4.8. A smooth map f : M → N is a local diffeomorphism at
p ∈ M ⇐⇒ its differential dfp is invertible.
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Proof. Apply Theorem 1.3.3 to ψ ◦ f ◦ ϕ−1 for some charts ϕ,ψ. �

Exercise 3.4.9. Consider the map Sn → RPn that sends x to [x ]. Prove
that it is a local diffeomorphism.

3.5. Smooth coverings

In the smooth manifolds setting it is natural to consider topological cover-
ings that are also compatible with the smooth structures, and these are called
smooth coverings.

3.5.1. Definition. Let M and N be two smooth manifolds of the same
dimension.

Definition 3.5.1. A smooth covering is a local diffeomorphism f : M → N

between smooth manifolds that is also a topological covering.

For instance, the map R → S1, t 7→ e it is a smooth covering of infinite
degree, and the map Sn → RPn of Exercise 3.4.9 is a smooth covering of
degree two. To construct a local diffeomorphism that is not covering, pick any
covering M → N (for instance, a diffeomorphism) and remove some random
closed subset from the domain.

3.5.2. Surfaces. As an example, one may use a bit of complex analysis
to construct many non-trivial smooth coverings between smooth surfaces.

Exercise 3.5.2. Let p(z) ∈ C[z ] be a complex polynomial of some degree
d ≥ 1. Consider the set S = {z ∈ C | p′(z) = 0}, that has cardinality at most
d − 1. The restriction

p : C \ p−1
(
p(S)

)
−→ C \ p(S)

is a smooth covering of degree d .

For instance, the map f (z) = zn is a degree-n smooth covering f : C∗ →
C∗ where we indicate C∗ = C \ {0}.

3.5.3. From topological to smooth coverings. Let M̃ → M be a cov-
ering of topological spaces. If M has a smooth manifold structure, we already
know from Exercise 1.2.3 that M̃ is a topological manifold; more than that:

Proposition 3.5.3. There is a unique smooth structure on M̃ such that
p : M̃ → M is a smooth covering.

Proof. For every chart ϕ : U → V of M and every open subset Ũ ⊂ M̃

such that p|Ũ : Ũ → U is a homeomorphism, we assign the chart ϕ ◦ p|Ũ to
M̃. These charts form a smooth atlas on M̃ and p is a smooth covering.
Conversely, since p is a local diffeomorphism the smooth structure of M̃ is
uniquely determined (exercise). �
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As a consequence, much of the machinery on topological coverings sum-
marised in Section 1.2.2 apply also to smooth coverings. For instance, if
M is a connected smooth manifold, there is a bijective correspondence be-
tween the conjugacy classes of subgroups of π1(M) and the smooth cov-
erings M̃ → M considered up to isomorphism, where two smooth cover-
ings p : M̃ → M, p′ : M̃ ′ → M are isomorphic if there is a diffeomorphism
f : M̃ → M̃ ′ such that p = p′ ◦ f .

3.5.4. Smooth actions. We keep adapting the topological definitions of
Section 1.2.6 to this smooth setting. A smooth action of a group G on a
smooth manifold M is a group homomorphism

G −→ Diffeo(M)

where Diffeo(M) is the group of all the self-diffeomorphisms M → M. All the
results stated there apply to this smooth setting. In particular we have the
following.

Proposition 3.5.4. Let G act smoothly, freely, and properly discontinuously
on a smooth manifold M. The quotient M/G has a unique smooth structure
such that p : M → M/G is a smooth covering.

Proof. We already know that p is a covering and M/G is a topological
manifold. The smooth structure is constructed as follows: for every chart
U → V on M such that p|U is injective and p(U) is open, we add the chart
ϕ ◦ p−1 : p(U) → V to M. We get a smooth atlas on M because G acts
smoothly. �

For instance, if M is a smooth manifold and ι : M → M a fixed-point free
involution (a diffeomorphism ι such that ι2 = id), then M/ι = M/G where
G = 〈ι〉 has order two is a smooth manifold and M → M/ι a degree-two
covering. This applies for instance to

RPn = Sn/ι

where ι is the antipodal map. Every degree-two covering in fact arises in this
way, because every degree-two covering is regular (every index-two subgroup
is normal).

3.5.5. The n-dimensional torus. Here is one example. Let G = Zn act
on Rn by translations, that is g(v) = v + g. The action is free and properly
discontinuous, hence the quotient T n = Rn/Zn is a smooth manifold called the
n-dimensional torus. The manifold is in fact diffeomorphic to the product

S1 × · · · × S1︸ ︷︷ ︸
n

via the map
f (x1, . . . , xn) =

(
e2πx1i , . . . , e2πxn i

)
.
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Figure 3.6. Some fundamental domains for the torus, the Klein bottle,
and the projective plane. The surface is obtained from the domain by
identifying the boundary curves with the same colours, respecting arrows.

The map f is defined on Rn but it descends to the quotient T n, and is invertible
there. The n-torus T n is compact and its fundamental group is Zn.

3.5.6. Lens spaces. Let p > 1 and q > 1 be two coprime integers and
define the complex number ω = e

2πi
p . We identify R4 with C2 and see the

three-dimensional sphere S3 as

S3 =
{

(z, w) ∈ C2
∣∣ |z |2 + |w |2 = 1

}
.

The map
f (z, w) = (ωz, ωqw)

is a linear isomorphism of C2 that consists geometrically of two simultaneous
rotations on the coordinate real planes w = 0 e z = 0. The map f preserves
S3, it has order p and none of its iterates f , f 2, . . . , f p−1 has a fixed point in
S3. Therefore the group Γ = 〈f 〉 generated by f acts freely on S3, and also
properly discontinuously because it is finite. The quotient

L(p, q) = S3/Γ

is therefore a smooth manifold covered by S3 called lens space. Its fundamental
group is isomorphic to the cyclic group Γ ∼= Z/pZ. Note that the manifold
depends on both p and q.

3.5.7. Fundamental domains. Let G be a group acting smoothly, freely,
and properly discontinuously on a manifold M. Sometimes we can visualise
the quotient manifold M/G by drawing a fundamental domain for the action.

A fundamental domain is a closed subset D ⊂ M such that:

• every orbit intersects D in at least one point;
• every orbit intersects int(D) in at most one point.

For instance, Figure 3.6 shows some fundamental domains for:

• the action of Z2 to R2 via translations, yielding the torus T = R2/Z2 ;
• the action of G on R2, yielding the Klein bottle K = R2/G . Here G
is the group of affine isometries generated by the maps

f (x, y) = (x + 1, y), g(x, y) =
(

1
2 − x, y + 1

)
;
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• the action of the antipodal map ι on S2 yielding RP2 = S2/ι.

We will encounter the Klein bottle again in Section 3.6.5.

3.6. Orientation

Some (but not all) manifolds can be equipped with an additional structure
called an orientation. An orientation is a way of distinguishing your left hand
from your right hand, through a fixed convention that holds coherently in the
whole universe you are living in.

3.6.1. Oriented manifolds. Let M be a smooth manifold. We say that
a compatible atlas on M is oriented if all the transition functions ϕi j have
orientation-preserving differentials. That is, for every p in the domain of ϕi j
the differential d(ϕi j)p has positive determinant, for all i , j . Note that this
determinant varies smoothly on p and never vanishes because ϕi j is a diffeo-
morphism: hence if the domain is connected and the determinant is positive
at one point p, it is so at every point of the domain by continuity.

Definition 3.6.1. An orientation on M is an equivalence class of oriented
atlases (compatible with the smooth structure of M), where two oriented
atlases are considered as equivalent if their union is also oriented.

There are two important issues about orientations: the first is that a
manifold M may have no orientation at all (see Exercise 3.6.7 below), and the
second is that an orientation for M is never unique, as the following shows.

Exercise 3.6.2. If A = {ϕi} is an oriented atlas for M, then A′ = {r ◦ϕi}
is also an oriented atlas, where r : Rn → Rn is a fixed reflection along some
hyperplane H ⊂ Rn. The two oriented atlases are not orientably compatible.

We say that the orientations on M induced by A and A′ are opposite. If
M admits some orientation, we say that M is orientable.

Exercise 3.6.3. The sphere Sn is orientable.

Exercise 3.6.4. If M and N are oriented, then M × N also is.

3.6.2. Tangent spaces. We now exhibit an equivalent definition of orien-
tation that involves tangent spaces. Recall the notion of orientation for vector
spaces from Section 2.6.1.

Let M be a smooth manifold. Suppose that we assign an orientation to
the vector space TpM for every p ∈ M. We say that this assignment is locally
coherent if the following holds: for every p ∈ M there is a chart ϕ : U → V

with p ∈ U whose differential dϕq : TqM → Tϕ(q)Rn = Rn is orientation-
preserving (that is, it sends a positive basis of TqM to a positive one of Rn),
for all q ∈ U.

Here is a new definition of orientation on M.
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Figure 3.7. The Möbius strip is a non-orientable surface.

Definition 3.6.5. An orientation for M is a coherent assignment of orien-
tations on all the tangent spaces TpM.

We have two distinct notions of orientation on M, and we now show that
they are equivalent. We see immediately how to pass from the first to the
second: for every p ∈ M there is some chart ϕ : U → V in the oriented atlas
with p ∈ U and we assign an orientation to TpM by saying that a basis in
TpM is positive ⇐⇒ its image in Rn along dϕp is. The orientation of TpM is
well-defined because it is chart-independent: every other chart of the oriented
atlas differs by composition with a ϕi j with positive differentials. We leave to
the reader as an exercise to discover how to go back from the second definition
to the first.

Proposition 3.6.6. A connected smooth manifold M has either two orien-
tations or none.

Proof. Let A be an oriented atlas, and A′ its opposite. Suppose that we
have a third oriented atlas A′′. We get a partition M = StS′ where S (S′) is
the set of points p ∈ M where the orientation induced by A′′ on TpM coincides
with that of A (A′′). Both sets S, S′ are open, so either M = S or M = S′,
and hence A′′ is compatible with either A′ or A′. �

Exercise 3.6.7. The Möbius strip shown in Figure 3.7 is non-orientable.
(A rigorous definition and proof will be exhibited soon, but it is instructive to
guess why that surface is not orientable only by looking at the picture.)

3.6.3. Orientation-preserving maps. Let f : M → N be a local dif-
feomorphism between two oriented manifolds M and N. We say that f is
orientation-preserving if the differential dfp : TpM → Tf (p)N is an orientation-
preserving isomorphism for every p ∈ M. That is, we mean that it sends pos-
itive bases to positive bases. Analogously, the map f is orientation-reversing
if dfp is so for every p ∈ M, that is it sends positive bases to negative bases.

Exercise 3.6.8. If M is connected, every local diffeomorphism f : M → N

between oriented manifolds is either orientation-preserving or reversing.
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As a consequence, if M is connected, to understand whether f : M → N

is orientation-preserving or reversing it suffices to examine dfp at any single
point p ∈ M.

Exercise 3.6.9. The orthogonal reflection π along a linear hyperplane H ⊂
Rn+1 restricts to an orientation-reversing diffeomorphism of Sn

Hint. Suppose H = {x1 = 0}, pick p = (0, . . . , 0, 1), examine dπp. �

Corollary 3.6.10. The antipodal map ι : Sn → Sn is orientation-preserving
⇐⇒ n is odd.

Proof. The map ι is a composition of n+1 reflections along the coordinate
hyperplanes. �

Remark 3.6.11. Let M be connected and oriented and f : M → M be a
diffeomorphism. The condition of f being orientation-preserving or reversing
is independent of the chosen orientation for M (exercise). A manifold M that
admits an orientation-reversing diffeomorphism M → M is called mirrorable.
For instance, the sphere Sn is mirrorable. Not all the orientable manifolds are
mirrorable! This phenomenon is sometimes called chirality.

3.6.4. Orientability of projective spaces. We now determine whether
RPn is orientable or not, as a corollary of the following general fact.

Proposition 3.6.12. Let π : M̃ → M be a regular smooth covering of man-
ifolds. The manifold M is orientable ⇐⇒ M̃ is orientable and all the deck
transformations are orientation-preserving.

Proof. If M is orientable, there is a locally coherent way to orient all the
tangent spaces TpM, which lifts to a locally coherent orientation of the tangent
spaces Tp̃M̃, by requiring dπp̃ to be orientation-preserving ∀ p̃ ∈ M̃. Every
deck transformation τ is orientation preserving because π ◦ τ = π.

Conversely, suppose that M̃ is orientable and all the deck transformations
are orientation-preserving. We can assign an orientation on TpM by requiring
that dπp̃ be orientation-preserving for some lift p̃ of p: the definition is lift-
independent since the deck transformations are orientation-preserving and act
transitively on π−1(p) because π is regular. �

Corollary 3.6.13. The real projective space RPn is orientable⇐⇒ n is odd.

Proof. We have RPn = Sn/ι and the deck transformation ι is orientation-
preserving ⇐⇒ n is odd. �

Exercise 3.6.14. The projective plane RP2 contains an open subset diffeo-
morphic to the Möbius strip.

On the other hand, the n-torus and the lens spaces are orientable, be-
cause they are obtained by quotienting an orientable manifold (Rn or S3) via
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Figure 3.8. The Klein bottle immersed non-injectively in R3.

an group of orientation-preserving diffeomorphisms acting freely and properly
discontinuously.

Example 3.6.15. We may redefine the Möbius strip as

S = S1 × (−1, 1)/ι

where ι is the involution ι(e iθ, t) = (e i(θ+π),−t). The non-orientability of S
is now a consequence of Proposition 3.6.12.

3.6.5. The Klein bottle. Inspired by Example 3.6.15, we now define an-
other non-orientable surface K, called the Klein bottle. This is the quotient

K = T/ι

of the torus T = S1 × S1 via the fixed-point free involution

ι
(
e iθ, e iϕ

)
=
(
e i(θ+π), e−iϕ

)
.

Since ι is orientation-reversing, the Klein bottle is not orientable. It has infinite
fundamental group π1(K) with an index-two normal subgroup isomorphic to
π1(T ) = Z×Z. This shows in particular that K is not homeomorphic to RP2.

We will soon see that, as opposite to the Möbius strip, the Klein bottle
cannot be embedded in R3, and the best that we can do is to “immerse” it
in R3 non-injectively as shown in Figure 3.8. The notions of immersion and
embedding will be introduced in Section 3.8.

Exercise 3.6.16. Verify that this Klein bottle is indeed diffeomorphic to
the Klein bottle already introduced in Section 3.5.7. Convince yourself that by
glueing the opposite sides of the central square in Figure 3.6 you get a surface
homeomorphic to that shown in Figure 3.8.

3.6.6. Orientable double cover. Non-orientable manifolds are fascinat-
ing objects, but we will see in the next chapters that it is often useful to assume
that a manifold is orientable, just to make life easier. So, if you ordered an
orientable manifold and you received a non-orientable one by mistake, what
can you do? The best that you can do is to transform it into an orientable
one by substituting it with an appropriate double cover. We now describe this
operation.

We say that a manifold N is doubly covered by another manifold Ñ if there
is a covering Ñ → N of degree two.
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Proposition 3.6.17. Every non-orientable connected manifold M is canon-
ically doubly covered by an orientable manifold M̃.

Proof. We define M̃ as the set of all pairs (p, o) where p ∈ M and o is an
orientation for TpM. By sending (p, o) to p we get a 2-1 map π : M̃ → M. We
now assign to the set M̃ a structure of smooth connected orientable manifold
and prove that π is a smooth covering.

For every chart ϕi : Ui → Vi on M we consider the set Ũi ⊂ M̃ of all pairs
(p, o) where p ∈ U and o is the orientation induced by transferring back that
of Rn via dϕp. We also consider the map ϕ̃i : Ũi → Vi , ϕ̃i = ϕi ◦ π. We now
show that the maps

ϕ̃i : Ũi −→ Vi

constructed in this way form an oriented smooth atlas for the set M̃, recall
the definition in Section 3.1.5.

To prove that this is an oriented smooth atlas, we first note that the sets
Ũi cover M̃ and every ϕ̃i is a bijection. Then, we must show that for every
i , j the images of Ũi ∩ Ũj along ϕ̃i and ϕ̃j are open subsets (if not empty) and
the transition map ϕ̃i j is orientation-preservingly smooth.

We consider a point (p, o) ∈ Ũi ∩ Ũj . The charts ϕi and ϕj both send
o to the canonical orientation of Rn, therefore the transition map ϕi j has
positive determinant in ϕi(p) and hence in the whole connected component
W of ϕi(Ui ∩Uj) containing ϕi(p). This implies that ϕ̃i(Ũi ∩ Ũj) contains the
open set W . Moreover ϕ̃i j is orientation-preserving on W .

Now that M̃ is a smooth manifold, we check that π is a smooth covering:
for every p ∈ M we pick any chart ϕi : Ui → Vi with p ∈ Ui and note that
ϕ′i = r ◦ϕi is also a chart for any reflection r of Rn; the two charts define two
open subsets Ũi , Ũ ′i of M̃, each projected diffeomorphically to Ui via π.

Actually, it still remains to prove that M̃ is connected: if it were not, it
would split into two components, each diffeomorphic to M via π, but this is
excluded because M̃ is orientable and M is not. �

For instance: the Klein bottle is covered by the torus, the projective spaces
are covered by spheres, and the Möbius strip is covered by the annulus S1 ×
(−1, 1), with degree two in all the cases.

Corollary 3.6.18. Every simply connected manifold is orientable.

Proof. A simply connected manifold has no non-trivial covering! �

Corollary 3.6.19. The complex projective spaces CPn are all orientable.

Remark 3.6.20. The orientability of CPn can be checked also by noting
that Cn has a natural orientation and that the transition maps between the
coordinate charts are holomorphic and hence orientation-preserving.
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Figure 3.9. A smooth submanifold S ⊂ M looks locally like a linear
subspace L ⊂ Rm.

3.7. Submanifolds

One of the fundamental aspects of smooth manifolds is that they contain
plenty of manifolds of smaller dimension, called submanifolds.

3.7.1. Definition. Let M be a smooth m-manifold.

Definition 3.7.1. A subset S ⊂ M is a n-dimensional smooth submanifold
(shortly, a n-submanifold) if for every p ∈ S there is a chart ϕ : U → Rm with
p ∈ U that sends U ∩ S onto some linear n-subspace L ⊂ Rm.

That is, the subset S looks locally like a vector n-subspace in Rm, on some
chart. Of course we must have n ≤ m. See Figure 3.9.

A smooth submanifold S ⊂ M is itself a smooth n-manifold: an atlas
for S is obtained by restricting all the diffeomorphisms U → Rm as above to
U ∩ S, composed with any linear isomorphism L → Rn. The transition maps
are restrictions of smooth functions to linear subspaces and are hence smooth.

If we use the definition of tangent spaces via curves, we see immediately
that for every p ∈ S there is a canonical inclusion i : TpS ↪→ TpM. Via
derivations, the inclusion is i(v)(f ) = v(f |S). We will see TpS as a linear
n-subspace of TpM.

When m = n, a submanifold N ⊂ M is just an open subset of M.

Example 3.7.2. Every linear subspace L ⊂ Rn is a submanifold.

Example 3.7.3. The graph S of a smooth function f : Rn → Rm is a n-
submanifold of Rn ×Rm diffeomorphic to Rn. The map Rn ×Rm → Rn ×Rm
that sends (x, y) to

(
x, y + f (x)

)
is a diffeomorphism that sends the linear

space L = {y = 0} to S.

As a consequence, a subset S ⊂ Rn that is locally the graph of some
smooth function is a submanifold. For instance, the sphere Sn ⊂ Rn+1 can be
seen locally at every point (up to permuting the coordinates) as the graph of
the smooth function x 7→

√
1− ‖x‖2 and is hence a n-submanifold in Rn+1.

If S ⊂ Rn is a k-submanifold, the tangent space TpS at a point p ∈ S
may be represented very concretely as a k-dimensional vector subspace of
TpRn = Rn.
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Exercise 3.7.4. For every p ∈ Sn we have

TpS
n = p⊥

where p⊥ indicates the vector space orthogonal to p. (We will soon deduce
this exercise from a general theorem.)

Example 3.7.5. A projective k-dimensional subspace S of RPn or CPn is the
zero set of some homogeneous linear equations. It is a smooth submanifold,
because read on each coordinate chart it becomes a linear k-subspace in Rn
or Cn. It is diffeomorphic to RPk or CPk .

Exercise 3.7.6. Let M,N be smooth manifolds. For every p ∈ M the
subset {p} × N is a submanifold of M × N diffeomorphic to N.

3.8. Immersions, embeddings, and submersions

We now study some particular kinds of nice maps called immersions, em-
beddings, and submersions.

3.8.1. Immersions. A smooth map f : M → N between smooth mani-
folds of dimension m and n is an immersion at a point p ∈ M if the differential

dfp : TpM −→ Tf (p)N

is injective. This implies in particular that m ≤ n.
It is a remarkable fact that every immersion may be described locally in a

very simple form, on appropriate charts. This is the content of the following
proposition.

Proposition 3.8.1. Let f : M → N be an immersion at p ∈ M. There are
charts ϕ : U → Rm and ψ : W → Rn with p ∈ U ⊂ M and f (U) ⊂ W ⊂ N

such that ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

The proposition can be memorised via the following commutative diagram:

(6) U
f //

ϕ

��

W

ψ
��

Rm
F
// Rn

where F (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0). Read on some charts, every
immersion looks like F .

Proof. We can replace M and N with any open neighbourhoods of p and
f (p), in particular by taking charts we may suppose that M ⊂ Rm and N ⊂ Rn
are some open subsets.
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We know that dfp : Rm → Rn is injective. Therefore its image L has
dimension m. Choose an injective linear map g : Rn−m → Rn whose image is
in direct sum with L and define

G : M × Rn−m −→ Rn

by setting G(x, y) = f (x) +g(y). Its differential at (p, 0) is dG(p,0) = (dfp, g)

and it is an isomorphism. By the Implicit Function Theorem the map G is a
local diffeomorphism at p. Therefore there are open neighbourhoods U1, U2,W

of p, 0, f (p) such that

G|U1×U2
: U1 × U2 → W

is a diffeomorphism, and we call ψ its inverse. Now for every x ∈ U1 we get

ψ
(
f (x)

)
= ψ

(
G(x, 0)

)
= (x, 0).

Therefore we get the commutative diagram

U1
f // W

ψ

��
U1

F
// U1 × U2

with F (x) = (x, 0) as required. To conclude, we may take neighbourhoods
U1, U2 diffeomorphic to Rm, Rn−m and the diagram transforms into (6). �

A map f : M → N is an immersion if it is so at every p ∈ M. An immersion
is locally injective because of Proposition 3.8.1, but it may not be so globally:
see for instance Figure 3.10-(left).

3.8.2. Embeddings. We have discovered that an immersion has a partic-
ularly nice local behaviour. We now introduce some special type of immersions
that also behave nicely globally.

Definition 3.8.2. A smooth map f : M → N is an embedding if it is an
immersion and a homeomorphism onto its image.

The latter condition means that f : M → f (M) is a homeomorphism, so
in particular f is injective. We note that f may be an injective immersion
while not being a homeomorphism onto its image! A counterexample is shown
in Figure 3.10-(right). We really need the “homeomorphism onto its image”
condition here, injectivity is not enough for our purposes.

The importance of embeddings relies in the following.

Proposition 3.8.3. If f : M → N is an embedding, then f (M) ⊂ N is a
smooth submanifold and f : M → f (M) a diffeomorphism.
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Figure 3.10. A non-injective immersion S1 → R2 (left) and an injective
immersion R→ R2 that is not an embedding (right).

Proof. For every f (p) ∈ f (M) there are open neighbourhoods U ⊂ M,
W ⊂ f (M) of p, f (p) such that f |U : U → W is a homeomorphism. There is
an open set V ⊂ N such that V ∩ f (M) = W .

By Proposition 3.8.1, after taking a smaller W there is a chart that sends(
W,W ∩ f (M)

)
to (Rn, L) for some linear subspace L. Therefore f (M) is a

smooth submanifold, and f is a diffeomorphism onto f (M). �

Figure 3.10-(right) shows that the image of an injective immersion needs
not to be a submanifold. Conversely:

Exercise 3.8.4. If S ⊂ N is a smooth submanifold, then the inclusion map
i : S ↪→ N is an embedding.

We now look for a simple embedding criterion. Recall that a map f : X →
Y is proper if C ⊂ Y compact implies f −1(C) ⊂ X compact.

Exercise 3.8.5. A proper injective immersion f : M → N is an embedding.

In particular, if M is compact then f is certainly proper, and we can con-
clude that every injective immersion of M is an embedding. This is certainly a
fairly simple embedding criterion.

Example 3.8.6. Fix two positive numbers 0 < a < b and consider the map
f : S1 × S1 → R3 given by

f (e iθ, e iϕ) =
(

(a cos θ + b) cosϕ, (a cos θ + b) sinϕ, a sin θ
)
.

Using the coordinates θ and ϕ, the differential is−a sin θ cosϕ −(a cos θ + b) sinϕ

−a sin θ sinϕ (a cos θ + b) cosϕ

a cos θ 0


and it has rank two for all θ, ϕ. Therefore f is an injective immersion and
hence an embedding since S1×S1 is compact. The image of f is the standard
torus in space already shown in Figure 3.3.

Example 3.8.7. Let p, q be two coprime integers. The map g : S1 →
S1 × S1 given by

g(e iθ) =
(
e ipθ, e iqθ

)
is injective (exercise) and its differential in the angle coordinates is (p, q) 6=
(0, 0). Therefore g is an embedding.
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Figure 3.11. A knot is an embedding S1 ↪→ R3. This is a torus knot:
what are the parameters p and q here?

The composition f ◦ g : S1 → R3 with the map f of the previous example
is also an embedding, and its image is called a torus knot: see an example in
Figure 3.11. More generally, a knot is an embedding S1 ↪→ R3.

Exercise 3.8.8. Let p, q be two real numbers with irrational ratio p/q. The
map h : R→ S1 × S1 defined by

h(t) =
(
e ipt , e iqt

)
is an injective immersion but is not an embedding. Its image is in fact a dense
subset of the torus.

Exercise 3.8.9. If M is compact and N is connected, and dimM = dimN,
every embedding M → N is a diffeomorphism.

3.8.3. Submersions. We now describe some maps that are somehow dual
to immersions. A smooth map f : M → N is a submersion at a point p ∈ M
if the differential dfp is surjective. This implies that m ≥ n. Again, every such
map has a simple local form.

Proposition 3.8.10. Let f : M → N be a submersion at p ∈ M. There are
charts ϕ : U → Rm and ψ : W → Rn with p ∈ U ⊂ M and f (U) ⊂ W ⊂ N

such that ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xn).

The proposition can be memorised via the following commutative diagram:

U
f //

ϕ

��

W

ψ
��

Rm
F
// Rn
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where F (x1, . . . , xm) = (x1, . . . , xn). Read on some charts, every submersion
looks like F .

Proof. The proof is very similar to that of Proposition 3.8.1. We can
replace M and N with any open neighbourhoods of p and f (p), in particular
by taking charts we suppose that M ⊂ Rm and N ⊂ Rn are open subsets.

We know that dfp : TpM → Tf (p)N is surjective, hence its kernel K has
dimension m − n. Choose a linear map g : Rm → Rm−n that is injective on K
and define

G : M −→ N × Rm−n

by setting G(x) =
(
f (x), g(x)

)
. Its differential at p is dGp = (dfp, g) and

is an isomorphism. By the Implicit Function Theorem the map G is a local
diffeomorphism at p.

Therefore there are open neighbourhoods U,W1,W2 of p, f (p), 0 such that
G(U) = W1 ×W2 and G|U is a diffeomorphism. Now f

(
G−1(x, y)

)
= x and

we conclude similarly as in the proof of Proposition 3.8.1. �

A smooth map f : M → N is a submersion if it is so at every p ∈ M.

3.8.4. Regular values. We have proved that the image of an embedding
is a submanifold, and now we show that (somehow dually) the preimage of a
submersion is also a submanifold. In fact, one does not really need the map
to be a submersion: some weaker hypothesis suffices, that we now introduce.

Let f : M → N be a smooth map between manifolds of dimension m ≥ n
respectively. A point p ∈ M is regular if the differential dfp is surjective (that
is if f is a submersion at p), and critical otherwise.

Proposition 3.8.11. The regular points form an open subset of M.

Proof. Read on charts, the differential dfp becomes a n ×m matrix that
depends smoothly on the point p. The matrices with maximum rank m form
an open subset in the set of all n ×m matrices. �

A point q ∈ N is a regular value if the counterimage f −1(q) consists en-
tirely of regular points, and it is singular otherwise. The map f is a submersion
⇐⇒ all the points in the codomain are regular values.

Proposition 3.8.12. If q ∈ N is a regular value, then S = f −1(q) is either
empty or a smooth (m − n)-submanifold. Moreover for every p ∈ S we have

TpS = ker dfp.

Proof. Thanks to Proposition 3.8.10 there are charts at p and f (p) that
transform f locally into a projection π : Rm → Rn. On these charts f −1(q) is
the linear subspace kerπ, hence a (m − n)-submanifold. The tangent space
at p is kerπ = ker dπp. �
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Using this proposition we can re-prove that the sphere Sn is a submanifold
of Rn+1: pick the smooth map f (x) = ‖x‖2 and note that Sn = f −1(1). The
gradient dfx is (2x1, . . . , 2xn), hence every non-zero point x ∈ Rn+1 is regular
for f , and therefore every non-zero point y ∈ R is a regular value: in particular
1 is regular and the proposition applies.

We can also deduce Exercise 3.7.4 quite easily: for every x ∈ Sn we get

TxS
n = ker dfx = ker(2x1, . . . , 2xn) = x⊥.

3.9. Examples

Some familiar spaces are actually smooth manifolds in a natural way. We
list some of them and state a few results that will be useful in the sequel.

3.9.1. Matrix spaces. The vector space M(m, n) of all m×n matrices is
isomorphic to Rmn and inherits from it a structure of smooth manifold. The
subset consisting of all the matrices with maximal rank is open, and is hence
also a smooth manifold.

In particular, the set M(n) of all the square n × n matrices is a smooth
manifold, and the set GL(n,R) of all the invertible n× n matrices is a smooth
manifold, both of dimension n2. We do not forget thatM(n) is a vector space:
hence for every A ∈ M(n) we have a natural identification TAM(n) = M(n),
and also TAGL(n,R) = M(n) for every A ∈ GL(n,R).

The subspaces S(n) and A(n) of all the symmetric and antisymmetric
matrices are submanifolds of dimension (n+1)n

2 and (n−1)n
2 respectively.

3.9.2. Orthogonal matrices. Another important example is the set of all
the orthogonal matrices

O(n) =
{
A ∈ M(n)

∣∣ tAA = I
}
.

Proposition 3.9.1. The set O(n) is a submanifold of M(n) of dimension
(n−1)n

2 . We have
TIO(n) = A(n).

Proof. Consider the smooth map

f : M(n) −→ S(n),

A 7−→ tAA.

Note that O(n) = f −1(I). We now show that I ∈ S(n) is a regular value. For
every A ∈ O(n) we have

f (A+ tB) = t(A+ tB)(A+ tB) = tAA+ t(tBA+ tAB) + t2 tBB

= I + t(tBA+ tAB) + o(t).

and hence
dfA(B) = tBA+ tAB.
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For every symmetric matrix S ∈ S(n) there is a B such that tBA+ tAB = S

(exercise). Therefore dfA is surjective for all A ∈ O(n) and hence I is a regular
value.

We deduce from Proposition 3.8.12 that O(n) = f −1(I) is a smooth
manifold of dimension dimM(n)− dimS(n) = (n−1)n

2 . Moreover, we have

TIO(n) = ker dfI = {B | tB + B = 0} = A(n).

The proof is complete. �

3.9.3. Fixed rank. We now exhibit some natural submanifolds in the
space M(m, n) of all m × n matrices. For every 0 ≤ k ≤ min{m, n}, we
define Mk(m, n) ⊂ M(m, n) to be the subset consisting of all the matrices
having rank k .

Proposition 3.9.2. The subspace Mk(m, n) is a submanifold in M(m, n) of
codimension (m − k)(n − k).

Proof. Consider a matrix P0 ∈ Mk(m, n). Up to permuting rows and
columns, we may suppose that P0 =

(
A0 B0

C0 D0

)
where A0 ∈ GL(k,R).

On an open neighbourhood of P0 every matrix P is also of this type P =(
A B
C D

)
with A ∈ GL(k,R) and if we set Q =

(
A−1 −A−1B

0 In−k

)
∈ GL(n,R) we find

PQ =

(
Ik 0

CA−1 D − CA−1B

)
.

Since rkP = rkPQ, we deduce that

rkP = k ⇐⇒ D = CA−1B.

Therefore Mk(m, n) is a manifold parametrised locally by (A,B, C), of codi-
mension (m − k)(n − k). �

3.9.4. Square roots. Let S+(n) ⊂ S(n) be the open subset of all positive-
definite symmetric matrices. We will neeed the following.

Proposition 3.9.3. Every S ∈ S+(n) has a unique square root
√
S ∈ S+(n),

that depends smoothly on S.

Proof. The existence and uniqueness of
√
S are consequences of the spec-

tral theorem. Smoothness may be proved by showing that the map f : S+(n)→
S+(n), A 7→ A2 is a submersion: being a 1-1 correspondence, it is then a dif-
feomorphism.

To show that f is a submersion, up to conjugacy we may suppose that D
is diagonal, and write

f (D + tM) = (D + tM)2 = D2 + t(DM +MD) + o(t).

We have

(DM +MD)i j = Di iMi j +Mi jDj j = (Di i +Dj j)Mi j .
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Since Di i > 0 for all i , if M 6= 0 then DM +MD 6= 0, so dfD is injective and
hence invertible. �

3.9.5. Some matrix decompositions. It is often useful to decompose a
matrix into a product of matrices of some special types. Let T (n) be the set
of all upper triangular matrices with positive entries on the diagonal.

Proposition 3.9.4. For every A ∈ GL(n,R) there are unique O ∈ O(n) and
T ∈ T (n) such that A = OT . Both O and T depend smoothly on A.

Proof. Write A = (v1 . . . vn) and orthonormalise its columns via the Gram–
Schmidt algorithm to get O = (w1 . . . wn). The algorithm may in fact be
interpreted as a multiplication by some T . Conversely, if A = OT then O is
uniquely determined: the vector w i+1 must be the unit vector orthogonal to
Span(v1, . . . , v i) on the same side as v i+1. �

Corollary 3.9.5. We have the diffeomorphisms

GL(n,R) ∼= O(n)× T (n) ∼= O(n)× R
n(n+1)

2 .

In particular there is a smooth strong deformation retraction of GL(n,R)

onto the compact subset O(n). The decomposition M = OT is nice, but we
will need one that is “more invariant”.

Proposition 3.9.6. For every A ∈ GL(n,R) there are unique O ∈ O(n) and
S ∈ S+(n) such that A = OS. Both O and S depend smoothly on A.

Proof. Pick S =
√

tAA. Write O = AS−1 and note that O is orthogonal:
tOO = tS−1 tAAS−1 = S−1S2S−1 = I.

Conversely, if A = OS then tAA = tS tOOS = S2. �

The decomposition A = OS is also known as the polar decomposition and
is “more invariant” than A = OT because it satisfies the following property:

Proposition 3.9.7. If A′ = PAQ for some orthogonal matrices P,Q ∈
O(n), then the corresponding O′ and S′ are O′ = POQ and S′ = Q−1SQ.

Proof. From A = OS we deduce

PAQ = (POQ)(Q−1SQ).

Here POQ ∈ O(n) and Q−1SQ ∈ S+(n). �

3.9.6. Connected components. Recall that every A ∈ O(n) has detA =

±1. We define
SO(n) =

{
A ∈ O(n) | detA = 1

}
Proposition 3.9.8. The manifold O(n) has two connected components,

one of which is SO(n).
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Proof. We first prove that SO(n) is path-connected. Let Rθ be the θ-
rotation 2 × 2 matrix. Linear algebra shows that every matrix A ∈ SO(n) is
similar A = M−1BM via a matrix M ∈ SO(n) to a B ∈ SO(n) of type

B =

Rθ1
. . . 0

...
. . .

...
0 . . . Rθm

 or B =


Rθ1

. . . 0 0
...

. . .
...

...
0 . . . Rθm 0

0 . . . 0 1


depending on whether n = 2m or n = 2m+ 1, for some angles θ1, . . . , θm. By
sending continuously the angles to zero we get a path connecting B to In and
by conjugating everything with M we get one connecting A to In.

Finally, two matrices in O(n) with determinant 1 and −1 cannot be path-
connected because the determinant is a continuous function. �

Corollary 3.9.9. The manifold GL(n,R) has two connected components,
consisting of matrices with positive and negative determinant, respectively.

3.9.7. Grassmannians. Let V be a real vector space of dimension n, and
fix 1 ≤ k ≤ n. We introduced and studied the Grassmannian Grk(V ) in Section
2.5. We now show that Grk(V ) has a natural smooth manifold structure.

We consider Grk(V ) as a subset of P
(

Λk(V )
)
via the Plücker embedding.

Proposition 3.9.10. The Grassmannian Grk(V ) is a compact smooth sub-
manifold of P

(
Λk(V )

)
of dimension (n − k)k .

Proof. Consider any k-plane W ∈ Grk(V ), and pick a basis v1, . . . , vk for
W , so that in fact W = [v1 ∧ . . . ∧ vk ] via the Plücker embedding. Complete
to a basis v1, . . . , vn for V . Set Z = Span(vk+1, . . . , vn). Then W ⊕ Z = V .

Define the open subset U ⊂ Λk(V ) as

U =
{

[T ]
∣∣ T ∧ vk+1 ∧ . . . ∧ vn 6= 0

}
.

The open set U containsW . Clearly U∩Grk(V ) consists of all the k-subspaces
W ′ such that W ′ ⊕ Z = V .

Consider now the map

F : Z × · · · × Z︸ ︷︷ ︸
k

−→ U

(z1, . . . , zk) 7−→
[
(v1 + z1) ∧ . . . ∧ (vk + zk)

]
.

Linear algebra shows that F is injective and its image is U ∩ Grk(V ). The
map F is an immersion at W (exercise: use on both sides the basis induced
by v1, . . . , vn) and F is proper (exercise). Therefore Grk(V ) is a submanifold
near W of dimension k(n − k). Since W is generic, the subset Grk(V ) is a
submanifold. It is compact because it is the image of the map

G : O(n) −→ P
(

Λk(V )
)

A 7−→
[
A1 ∧ . . . ∧ Ak

]
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where Ai is the i-th column of A. The proof is complete. �

Exercise 3.9.11. Show that the Grassmannian Grk(V ) is connected.

3.10. Homotopy and isotopy

There are plenty of smooth mapsM → N between two given smooth man-
ifolds, and in some cases it is natural to consider them up to some equivalence
relation. We introduce here a quite mild relation called smooth homotopy and
a stronger one, that works only for embeddings, called isotopy.

3.10.1. Smooth homotopy. We introduce the following notion.

Definition 3.10.1. A smooth homotopy between two given smooth maps
f , g : M → N is a smooth map F : M × R→ N such that F (x, 0) = f (x) and
F (x, 1) = g(x) for all x ∈ M.

In general topology, a homotopy is just a continuous map F : X×[0, 1]→ Y

where X, Y are topological spaces. In this smooth setting we must (a bit
reluctantly) substitute [0, 1] with R because we need the domain to be a
smooth manifold. Anyway, the behaviour of F (x, t) when t 6∈ [0, 1] is of no
interest for us, and we may require F (x, ·) to be constant outside that interval:

Proposition 3.10.2. If F is a smooth homotopy between f and g, then
there is another smooth homotopy F ′ such that F ′(x, t) equals f (x) for all
t ≤ 0 and g(x) for all t ≥ 1.

Proof. Take a smooth transition function Ψ: R→ R as in Section 1.3.6,
such that Ψ(t) = 0 for all t ≤ 0 and Ψ(t) = 1 for all t ≥ 1. Define
F ′(x, t) = F

(
x,Ψ(t)

)
. �

Two smooth maps f , g : M → N are smoothly homotopic if there is a
smooth homotopy between them.

Proposition 3.10.3. Being smoothly homotopic is an equivalence relation.

Proof. The only non-trivial part is the transitive property. Let F be a
smooth homotopy between f and g, and G be a smooth homotopy between g
and h. We must glue them to an isotopy H between f and g.

To do this smoothly, we first modify F and G as in the proof of Proposition
3.10.2, taking a transition function Ψ such that Ψ(x) = 0 for all x ≤ 1

3 and
Ψ(x) = 1 for all x ≥ 2

3 . Now F (x, ·) and G(x, ·) are constant outside
[

1
3 ,

2
3

]
and can be glued by writing

H(x, t) =

 F (x, 2t) for t ≤ 1
2 ,

G(x, 2t − 1) for t ≥ 1
2 .

The map H is smooth and the proof is complete. �
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Example 3.10.4. Let M be a smooth manifold. Any two maps f , g : M →
Rn are smoothly homotopic: indeed, every f : M → Rn is smoothly homotopic
to the constant map c(x) = 0, simply by taking

F (x, t) = tf (x).

3.10.2. Isotopy. We now introduce an enhanced version of smooth ho-
motopy, called isotopy, that is nicely suited to embeddings.

Definition 3.10.5. An isotopy between two embeddings f , g : M → N is a
smooth homotopy F : M × R→ N between them, such that Ft(x) = F (x, t)

is an embedding Ft : M → N for all t ∈ [0, 1].

We can prove as above that the isotopy between embeddings is an equiv-
alence relation. Being isotopic is much stronger than being homotopic: for
instance two embeddings f , g : M → Rn are always smoothly homotopic, but
they may not be isotopic in many interesting cases.

As an example, two knots f , g : S1 ↪→ R3 may not be isotopic. The knot
theory is an area of topology that studies precisely this phenomenon: its main
(and still unachieved) goal would be to classify all knots up to isotopy in a
satisfactory way.

Another interesting challenge is to study the set of all self-diffeomorphisms
M → M of one fixed manifoldM up to isotopy. Note that ifM is compact and
connected, every level Ft in one such isotopy is a diffeomorphism by Exercise
3.8.9. This is already a fundamental and non-trivial problem when M = Sn is
a sphere; the one-dimensional case is the only one that can be solved easily:

Proposition 3.10.6. Every self-diffeomorphism ϕ : S1 → S1 is isotopic ei-
ther to the identity or to a reflection z 7→ z̄ , depending on whether ϕ is
orientation-preserving or not.

Proof. Suppose that ϕ : S1 → S1 is orientation-preserving. We lift ϕ to
a map ϕ̃ : R → R between universal covers, and note that ϕ̃′(x) > 0 for all
x ∈ R. Consider the map

F̃t(x) = tϕ̃(x) + (1− t)x.

Since F̃t(x + 2kπ) = F̃t(x) + 2kπ the map descends to a map Ft : S1 → S1.
When t ∈ [0, 1] we get F̃ ′t(x) = tϕ̃′(x) + (1 − t) > 0, hence each Ft is an
embedding. Therefore Ft is an isotopy between id and ϕ. �

Here is another interesting question, that we will be able to solve in the
positive in the next chapters.

Question 3.10.7. Let M be a connected n-manifold. Are two orientation-
preserving embeddings f , g : Rn ↪→ M always isotopic?
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3.11. The Whitney embedding

We now show that every manifold may be embedded in some Euclidean
space. This result was proved by Whitney in the 1930s.

3.11.1. Borel and zero-measure subsets. We start with some prelimi-
naries that are of independent interest.

Let M be a smooth n-manifold. As in every topological space, a Borel
subset of M is any subspace S ⊂ M that can be constructed from the open
sets through the operations of relative complement, countable unions and
intersections.

Exercise 3.11.1. A subset S ⊂ M is Borel ⇐⇒ its image along any chart
is a Borel subset of Rn.

Let S ⊂ M be a Borel set. Although there is no notion of measure for
S, we may still say that S has measure zero if the image ϕ(U ∩ S) along any
chart ϕ : U → V has measure zero, with respect to the Lebesgue measure in
Rn. Note that any diffeomorphism sends zero-measure sets to zero-measure
sets (Remark 1.3.6), so it suffices to check this for a set of charts covering S.

Proposition 3.11.2. Let f : M → N be a smooth map between manifolds
of dimensions m, n. If m < n, the image of f is a zero-measure set.

Proof. This holds on charts by Corollary 1.3.8. �

In particular, the image of f has non-empty interior.

3.11.2. The compact case. We now prove that every compact manifold
embeds in some Euclidean space. Not only the statement seems very strong,
but its proof is actually relatively easy.

Theorem 3.11.3. Every compact smooth manifold M embeds in some Rn.

Proof. Since M is compact, it has a finite adequate atlas
{
ϕi : Ui → Rm

}
that consists of some k charts (see Section 3.3.1). The open subsets Vi =

ϕ−1
i (Bn) also cover M. Let λ : Rm → R be a bump function with λ(x) = 1 if
‖x‖ ≤ 1, see Section 1.3.5.

For every i = 1, . . . , k we define the smooth map λi : M → R by setting
λi(p) = λ

(
ϕi(p)

)
if p ∈ Ui and zero otherwise. Note that λi ≡ 1 on Vi and

λi ≡ 0 outside Ui . Analogously we define the smooth map ψi : M → Rm by
setting ψi(p) = λi(p)ϕi(p) when p ∈ Ui and zero otherwise.

Let n = k(m + 1). We define F : M → Rn by setting

F (p) =
(
ψ1(p), . . . , ψk(p), λ1(p), . . . , λk(p)

)
.

The codomain is indeed Rm× . . .×Rm×R× . . .×R = Rn. We now show that
F is an injective immersion, and hence an embedding since M is compact.
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Since the covering is adequate, for every p ∈ M there is at least one i
such that λi = 1 on a neighbourhood of p. In particular ψi = ϕi is a local
diffeomorphism at p, its differential has rank m, and hence also the differential
of F has rank m. Therefore F is an immersion.

If λi(p) = λi(q) = 1, then ψi = ϕi and therefore ψi(p) = ψi(q) implies
p = q. This shows injectivity. �

We now want to improve the theorem in two directions: we remove the
compactness hypothesis, and we prove that the dimension n = 2m+1 suffices.

3.11.3. Immersions. LetM be a manifold of dimensionm, not necessarily
compact. We know from Proposition 3.3.8 that every continuous map f : M →
Rn into a Euclidean space can be perturbed to a smooth map. We now show
that if n ≥ 2m the map can be perturbed to an immersion.

Theorem 3.11.4. Let f : M → Rn be a continuous map, and n ≥ 2m. For
every ε > 0 there is an immersion F : M → Rn with ‖F (p)−f (p)‖ < ε ∀p ∈ M.

Proof. By Proposition 3.3.8, we may suppose that f is smooth.
Let

{
ϕi : Ui → Rm

}
be an adequate atlas, with countably many indices

i = 1, 2, . . . The open subsets Vi = ϕ−1
i (Bm) also form a covering of M. Let

ψi : M → Rm be defined as in the proof of Theorem 3.11.3, so that ψi = ϕi
on Vi and ψi ≡ 0 outside Ui . We set

Mi =

i⋃
j=1

Vj

and note that
{
M̄i

}
is a covering of M with compact subsets.

We define a sequence F 0, F 1, . . . of maps F i : M → Rn such that:
(1) ‖F i(p)− f (p)‖ < ε for all p ∈ M,
(2) F i ≡ F i−1 outside of Ui ,
(3) dF ip is injective for all p ∈ M̄i .

See Figure 3.12. Since {Ui} is locally finite, the maps F i stabilise on every
compact set and converge to an immersion F : M → Rn as required.

We define F i inductively on i as follows. We set F 0 = f and

F i = F i−1 + Aiψi

for some appropriate matrix A = Ai ∈ M(n,m) that we now choose accurately
so that the conditions (1-3) will be satisfied.

We note that F i satisfies (2). Condition (1) is also fine as long as ‖A‖
is sufficiently small. To get (3) we need a bit of work. By the inductive
hypothesis dF i−1

p is injective for all p ∈ M̄i−1, and it will keep being so if ‖A‖
is sufficiently small. It remains to consider the points p ∈ M̄i \ M̄i−1.

At every p ∈ V̄i we have ψi = ϕi and

dF ip = dF i−1
p + Ad(ϕi)p.
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Figure 3.12. We pass from F i−1 to F i by modifying the function only
in Ui , with the purpose to get an immersion on V̄i .

Therefore dF ip is not surjective if and only if

A = B − d(F i−1 ◦ ϕ−1
i )ϕi (p)

for some matrix B ∈ M(n,m) of rank k < m.
By Proposition 3.9.2, the space Mk(m, n) of all rank-k matrices is a man-

ifold of dimension mn − (m − k)(n − k). For every k < m consider the map

Ψ: Bm ×Mk(n,m) −→ M(n,m)

(x, B) 7−→ B − d(F i−1 ◦ ϕ−1
i )x .

The dimensions of the domain and codomain are

m +mn − (m − k)(n − k), mn.

Since n ≥ 2m and k ≤ m − 1 we have

m − (m − k)(n − k) ≤ m − 1 · (n −m + 1) = 2m − n − 1 < 0.

By Proposition 3.11.2 the image of Ψ has zero measure for all k . Therefore it
suffices to pick A with small ‖A‖ and away from these zero-measure sets. �

In particular, every continuous map R→ R2 or S1 → R2 can be perturbed
to an immersion. If S is a surface, every continuous map S → R4 can be
perturbed to an immersion.

We cannot remove the condition n ≥ 2m in general. For instance, no map
S1 → R can be perturbed to an immersion, because there are no immersions
S1 → R at all. The dimensions m = 2 and n = 3 seem also problematic:
as a challenging example, consider the continuous map f : S2 → R3 drawn in
Figure 3.13. Can you perturb f to an immersion?

Remark 3.11.5. The proof of Theorem 3.11.4, especially in the choice of
the matrix A, suggests that any “generic” smooth perturbation of f should be
an immersion. This suggestion can be made precise by endowing the space of
all maps M → Rn with the appropriate topology: we do not pursue this here.

Corollary 3.11.6. Every m-manifold M immerses in R2m.
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Figure 3.13. Can you perturb this continuous map f : S2 → R3 to an
immersion? At every horizontal level except the poles, the map is as in
Figure 3.14 below. The map f is an immersion everywhere except at the
poles, but it seems hard to eliminate the singular points at the poles just
by perturbing f . If we are allowed to raise the dimension of the target,
then f can certainly be perturbed to an immersion S2 → R4 and to an
embedding S2 → R5 by Whitney’s Theorems 3.11.4 and 3.11.7, although
both perturbations may be hard to see...

Figure 3.14. This immersion S1 → R2 cannot be perturbed to an embedding.

Figure 3.15. It suffices to raise the dimension of the target by one, and
the immersion can now be perturbed to an injective immersion.

Proof. Pick a constant map f : M → R2m and apply Theorem 3.11.4. �

3.11.4. Injective immersions. Can we perturb an immersion Mm → Rn
to an injective immersion? This may not be possible in some cases, see Figure
3.14. In fact, Figure 3.15 suggests that we could achieve injectivity just by
adding one dimension to the codomain: the immersion can be perturbed to be
injective in R3, not in R2. We now show that this is a general principle.

Theorem 3.11.7. Let f : M → Rn be an immersion, and n ≥ 2m + 1. For
every ε > 0 there is an injective immersion F : M → Rn with ‖F (p)− f (p)‖ <
ε ∀p ∈ M.

Proof. We adapt the proof of Theorem 3.11.4 to this context. By Propo-
sition 3.8.1 the map f is locally injective, so by Proposition 3.3.1 we can find
an adequate atlas

{
ϕi : Ui → Rm

}
such that f |Ui is injective for all i .
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We define again Vi = ϕ−1
i (Bm) and Mi = ∪j≤iVj . Let λi : M → R be a

bump function with λi ≡ 1 on Vi and λi ≡ 0 outside Ui .
We now construct a sequence F 0, F 1, . . . of immersions F i : M → Rn,

that satisfy the following conditions:

(1) ‖F i(p)− f (p)‖ < ε for all p ∈ M,
(2) F i ≡ F i−1 outside of Ui ,
(3) F i |Uj is injective for all j ,
(4) F i is injective on M̄i .

Again, we conclude that F i converge to some F , that is an injective immersion.
We set F 0 = f . Given F i−1, we define

F i = F i−1 + λivi

where v = vi ∈ Rn is some vector that we now determine. If ‖v‖ is sufficiently
small, then F i is an immersion and (1) is satisfied. Moreover (2) is automatic.

Now let U ⊂ M ×M be the open subset

U =
{

(p, q) ∈ M ×M
∣∣ λi(p) 6= λi(q)

}
.

We define Ψ: U → Rn by setting

Ψ(p, q) = −
F i−1(p)− F i−1(q)

λi(p)− λi(q)
.

We deduce that F i(p) = F i(q) if and only if one of the following holds:

(a) (p, q) ∈ U and v = Ψ(p, q), or
(b) (p, q) 6∈ U and F i−1(p) = F i−1(q).

Since dimU = 2m, the image Ψ(U) form a zero-measure subset and we may
require that v be disjoint from it. This excludes (a) and therefore F i is injective
where F i−1 is injective: we get (3).

To show (4), suppose that F i(p) = F i(q) for some p, q ∈ M̄i . We must
have λi(p) = λi(q) and F i−1(p) = F i−1(q). If λi(p) = 0, then p, q ∈ M̄i−1

and we get p = q by the induction hypothesis. If λi(p) > 0, then p, q ∈ Ui
and we get p = q by the induction hypothesis again. �

3.11.5. Embeddings. We now want to make one step further, and pro-
mote injective immersions to embeddings. The following result is the main
achievement of this section.

Theorem 3.11.8 (Whitney embedding Theorem). For every smooth m-
manifold M there is a proper embedding M ↪→ R2m+1.

Proof. Pick a smooth exhaustion g : M → R>0 from Proposition 3.3.9 and
consider the proper map f : M → R2m, f (p) =

(
g(p), 0, . . . , 0

)
. By applying

Theorems 3.11.4 and 3.11.7 with any fixed ε > 0 we can perturb f to an
injective immersion, that is easily seen to be still proper. Being proper, it is an
embedding by Exercise 3.8.5. �
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Concerning properness, we note the following.

Exercise 3.11.9. An embedding i : M ↪→ Rn is proper⇐⇒ i(M) is a closed
subset of Rn.

Corollary 3.11.10. Every m-manifold M is diffeomorphic to a closed sub-
manifold of R2m+1.

For instance, every surface embeds properly in R5.



CHAPTER 4

Bundles

We introduce here a notion that is ubiquitous in modern geometry, that
of a bundle. We start with the more general concept of fibre bundle, and then
we turn to vector bundles.

4.1. Fibre bundles

In the previous chapter we have introduced the immersions M → N, and
we have proved that they behave nicely near each point p ∈ M. After that,
we have discussed the enhanced notion of embedding that is also nice at every
point q ∈ N.

Here we do more or less the same thing with submersions. These are maps
that behave nicely at every point p ∈ M, and we would like them to be nice
also at every point q ∈ N. We are led quite naturally to the notion of fibre
bundle.

4.1.1. Definition. We work as usual in the smooth manifolds context.

Definition 4.1.1. Let F be a smooth manifold. A smooth fibre bundle with
fibre F is a smooth map

π : E −→ B

between two smooth manifolds E,B called the total space and the base space,
that satisfies the following local triviality condition. Every p ∈ B has an open
trivialising neighbourhood U ⊂ B whose counterimage π−1(U) is diffeomorphic
to a product U × F , via a map ϕ : π−1(U) → U × F such that the following
diagram commute:

π−1(U)
ϕ //

π

��

U × F

π1
yy

U

where π1 : U × F → U is the projection onto the first factor.

The definition might look slightly technical, but on the contrary is indeed
very natural: in a fibre bundle E → B, every fibre is diffeomorphic to F , and
locally the fibration looks like a product U×F projecting onto the first factor.

Example 4.1.2. The trivial bundle is the product E = B × F , with the
projection π : E → B onto the first factor.

85
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Figure 4.1. The Möbius strip is the total space of a fibre bundle with
base a circle and fibre R. Although it is locally trivial (as every fibre bundle),
it is globally non-trivial: the fibre R makes a “twist” when transported all
through the base circle.

immersion submersion local diffeomorphism smooth homotopy

embedding fibre bundle smooth covering isotopy

Table 4.1. We summarise here some of the most important definitions
in differential topology. Every notion in the second row is an improvement
of the one above.

The prototype of a non-trivial fibre bundle is the Möbius strip shown in
Figure 4.1, which is the total space of a fibre bundle with F = R and B = S1.

If the fibre F is diffeomorphic to the line R, the circle S1, the sphere Sn,
the torus T , etc. we say correspondingly that E is a line, circle, sphere, or
torus bundle over B. For instance, the Möbius strip is a line bundle over S1.

Two fibre bundles π : E → B and π′ : E′ → B are isomorphic if there is a
diffeomorphism ψ : E → E′ such that π = π′ ◦ ψ. We say that a fibre bundle
is trivial if it is isomorphic to the trivial bundle.

Remark 4.1.3. Every fibre bundle is a submersion, but not every submer-
sion is a fibre bundle. Table 4.1 summarises some important definitions that
we have introduced up to now. Recall that immersions and submersions are
somehow dual notions, and every concept in the second row is an improvement
of the one lying above.

Example 4.1.4. Both the torus T and the Klein bottle K are total spaces of
fibre bundles over S1 with fibre S1. A fibration on the torus is (e iθ, e iϕ) 7→ e iθ

and is clearly trivial. Recall from Section 3.6.5 that K = T/ι with ι
(
e iθ, e iϕ

)
=(

e i(θ+π), e−iϕ). A fibration on the Klein bottle is (e iθ, e iϕ) 7→ e2iθ. It is not
trivial, because K is not diffeomorphic to S1 × S1. See Figure 4.2.
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Figure 4.2. The torus and the Klein bottles are both total spaces of
circle fibrations over the circle. The first is trivial, the second is not.

4.1.2. Sections. A section of a fibre bundle E → B is a smooth map
s : B → E such that π ◦ s = idB.

Example 4.1.5. On a trivial fibre bundle B×F → B every map f : B → F

determines a section s(p) =
(
p, f (p)

)
, and every section is obtained in this

way, so sections and maps B → F are roughly the same thing.

On non-trivial bundles sections are more subtle: there are fibre bundles
that have no sections at all. We will often confuse a section s with its image
s(B); we can do this without creating any ambiguity since s(B) determines s.

Exercise 4.1.6. Show that any two sections on the Möbius strip bundle
intersect. This also implies that the bundle is non-trivial.

4.2. Vector bundles

A vector bundle is a particular fibre bundle where every fibre has a structure
of finite-dimensional real vector space. This is an extremely useful concept in
differential topology and geometry.

4.2.1. Definition. A smooth vector bundle is a smooth fibre bundle E →
M where the fibre Ep = π−1(p) of every point p ∈ M has an additional
structure of a real vector space of some dimension k , compatible with the
smooth structure in the following way: every p ∈ M must have a trivialising
open neighbourhood U such that the following diagram commutes

π−1(U)
ϕ //

π

��

U × Rk

π1

yy
U

via a diffeomorphism ϕ that sends every fibre Ep to Rk × {p} isomorphically
as vector spaces. Note that the dimensions k and n of the fibre and of M may
be arbitrary.

The simplest example of a vector bundle over M is the trivial one M×Rk .
In general, the natural number k > 0 is the rank of the vector bundle. A
vector bundle with rank k = 1 is called a line bundle. Vector bundles arise
quite naturally in various contexts, as we will soon see.
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Exercise 4.2.1. Recall that RPn may be interpreted as the space of all the
vector lines l ⊂ Rn+1. Consider the space

E =
{

(l , v) ∈ RPn × Rn+1
∣∣ v ∈ l}.

This is a smooth (n+1)-submanifold of RPn×Rn+1 and the map π : E → RPn
that sends (l , v) to l is a smooth line bundle with fibre F = R, called the
tautological line bundle.

4.2.2. Morphisms. A morphism between two vector bundles E → M and
E′ → M ′ is a commutative diagram

E
F //

π
��

E′

π
��

M
f
// M ′

where F and f are smooth maps, and F is a linear map on each fibre (that is
F |Ep : Ep → E′f (p) is linear for each p ∈ M).

Note that the dimensions of the manifolds M,M ′ and of their fibres are
arbitrary, so this is a quite general notion. As usual, we say that a morphism
is an isomorphism if it is invertible on both sides: this is in fact equivalent to
requiring that both maps f and F be diffeomorphisms.

In some cases we might prefer to consider vector bundles on a fixed base
manifold M, and in that setting it is natural to consider only morphisms where
f is the identity map on M.

4.2.3. The zero-section. As opposite to more general fibre bundles, every
vector bundle E → M has a canonical section s : M → E, called the zero-
section, defined as s(p) = 0 where 0 is the zero in the vector space Ep, for all
p ∈ M. It is convenient to identify the image s(M) of the zero-section with
M itself.

We will always consider the base space M embedded canonically in E
through its zero-section.

4.2.4. Manipulations of vector bundles. Roughly speaking, every oper-
ation on vector spaces translates into one on vector bundles over a fixed base
manifold M. For instance, given two vector bundles E → M and E′ → M we
may define:

• their sum E ⊕ E′ → M,
• the dual E∗ → M,
• their tensor product E ⊗ E′ → M.

To do so we simply need to perform these operations fibrewise. If Ep, E′p are
the fibres over p in E,E′, then the fibre of E ⊕ E′ is by definition Ep ⊕ E′p.

Of course, to complete the construction we need to build a natural smooth
structure on E ⊕ E′, and this is done as follows: if U × Rn and U × Rn are
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local trivialisations of E and E′, then U × (Rn⊕Rn) is a local trivialisation for
E ⊕ E′ and we equip it with the obvious product smooth structure.

The dual and tensor product bundles are defined analogously.

4.2.5. Subbundle and quotient bundle. The notion of vector subspace
translates into that of subbundle. A h-dimensional subbundle of a given vector
bundle π : E → M is a submanifold E′ ⊂ E that is also a h-dimensional vector
bundle over M. That is, we require that E′p = Ep ∩ E′ be a vector subspace
of Ep for every p ∈ M, and the projection π|E′ : E′ → M be a vector bundle.

Example 4.2.2. The line bundle of Exercise 4.2.1 is a subbundle of the
trivial bundle RPn × Rn+1.

If E′ is a subbundle of E, we can define the quotient bundle E/E′ → M,
whose fibre over p ∈ M is the quotient vector space Ep/E′p . The smooth
structure may not look obvious at this point: we will return on this later in
Section 4.4. The resulting maps

E′ //

π

��

E //

π

��

E/E′

π

��
M

id
// M

id
// M

are bundle morphisms.

4.2.6. Restriction and pull-back. Up to now we have described some
manipulations of vector bundles on a fixed base manifold M. Some interesting
operations arise also by varying the base manifold.

For instance we can change the base while keeping the fibres fixed: if
N ⊂ M is a submanifold, then every vector bundle E → M restricts to a
vector bundle E|N → N with the same fibres Ep in the obvious way. We call
this operation the restriction to a submanifold. We get a bundle morphism

E|N //

π

��

E

π

��
N
� � // M

More generally, let f : N → M be any smooth map and E → M be a
bundle. The pull-back of f is a new bundle f ∗E → N constructed as follows:
the total space is

f ∗E =
{

(p, v) ∈ N × E
∣∣ f (p) = π(v)

}
⊂ N × E.

The map π : f ∗E → N is π(p, v) = p. The fibre (f ∗E)p over p is naturally
identified with Ef (p) and is hence a vector space.

Exercise 4.2.3. The total space f ∗E is a smooth submanifold of N × E
and f ∗E → N is a vector bundle.
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We draw the commutative diagram

f ∗E //

��

E

π
��

N
f
// M

The dotted arrows indicate the maps that are induced by pulling-back π along
f . The restriction is a particular kind of pull-back where N ⊂ M is a subman-
ifold and f is the inclusion map.

Exercise 4.2.4. If f is constant, then f ∗E is trivial.

4.3. Tangent bundle

We now introduce the most important vector bundle on a smooth n-
manifold M, the tangent bundle. We will also define some of its relatives,
like the cotangent, the normal, and the more general tensor bundle.

4.3.1. Definition. Let M be a smooth manifold. As a set, the tangent
bundle of M is the union

TM =
⋃
p∈M

TpM

of all its tangent spaces. There is an obvious projection π : TM → M that
sends TpM to p.

The set TM has a natural structure of smooth manifold induced from
that of M as follows: every chart ϕ : U → V of M induces an isomorphism
dϕp : TpM → Rn for every p ∈ U. Therefore it induces an overall identification
ϕ∗ : π−1(U)→ V × Rn via

ϕ∗(v) =
(
ϕ(p), dϕp(v)

)
where p = π(v), for every v ∈ π−1(U). We define an atlas on TM by taking
all the charts ϕ∗ of this type. We have just defined the tangent bundle

TM −→ M

of M. If dimM = n, then dimTM = 2n. We think of M embedded in TM as
the zero-section, as usual with vector bundles.

Example 4.3.1. The tangent bundle of an open subset U ⊂ Rn is canoni-
cally identified with the trivial bundle

TU = U × Rn

because every tangent space in U is canonically identified with Rn.

More generally, we can write the tangent bundle TM of a submanifold
M ⊂ Rn of any dimension m < n quite explicitly:
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Figure 4.3. The tangent bundle of S1 is isomorphic to the trivial one.

Example 4.3.2. The tangent bundle of a submanifold M ⊂ Rn is naturally
a submanifold TM ⊂ Rn × Rn = R2n, defined by

TM =
{

(p, v)
∣∣ p ∈ M, v ∈ TpM}.

For instance, we have

TSn =
{

(x, v)
∣∣ ‖x‖ = 1, v ∈ x⊥

}
.

Example 4.3.3. As suggested by Figure 4.3, the tangent bundle of S1 is
trivial. A bundle isomorphism f : S1 × R→ TS1 is the following:

f (e iθ, t) =
(
e iθ, te i(θ+ π

2
)
)

Is the tangent bundle of S2 also trivial? And that of S3?

Exercise 4.3.4. The tangent bundle TM is always an orientable manifold
(even when M is not!).

Every smooth map f : M → N induces a morphism of tangent bundles

TM
f∗ //

π
��

TN

π
��

M
f
// N

by setting f∗(v) = dfp(v) where p = π(v) for all v ∈ TM. The restriction of
f∗ to each fibre TpM is the differential dfp : TpM → Tf (p)N.

Exercise 4.3.5. If f is a diffeomorphism, then f∗ is an isomorphism.

4.3.2. Cotangent bundle. The cotangent bundle T ∗M of a smooth man-
ifold M is by definition the dual of the tangent bundle TM. The fibre T ∗pM
at p ∈ M is the dual of the tangent space TpM and is called the cotangent
space at p.
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The cotangent bundle has some curious features that are lacking in the
tangent bundle. One is the following: every smooth function f : M → R
induces a differential dfp : TpM → R at every p ∈ M, which is an element

dfp ∈ T ∗pM

of the cotangent space. We can therefore interpret the family of differentials
{dfp}p∈M as a section of the cotangent bundle, and call it simply df .

We have discovered that every smooth function f : M → R induces a
section df of the cotangent bundle called its differential.

Remark 4.3.6. When M = Rn, both the tangent and the cotangent space
at every p ∈ M are identified to Rn and the differential df is simply the gradient
∇f , that assigns a vector (∇f )p ∈ Rn to every point p ∈ Rn. Note however
that the tangent and cotangent spaces at a point p ∈ M are not canonically
identified on a general smooth manifold M. A map f : M → R induces a
section of the cotangent bundle, not of the tangent bundle!

4.3.3. Normal bundle. Let M be a smooth manifold and N ⊂ M a sub-
manifold. We can find two natural vector bundles based on N: the tangent
bundle TN and the restriction TM|N of the tangent bundle of M to N. The
first is naturally a subbundle of the second, since at every p ∈ N we have a
natural inclusion TpN ⊂ TpM.

The normal bundle at N is the quotient

νN = TM|N/TN .

An interesting feature of the normal bundle is that the total space νN has the
same dimension of the ambient spaceM. Indeed if dimM = m and dimN = n,

dim νN = (m − n) + n = m.

This preludes to an important topological application of νN that we will dis-
cover in the next chapters.

Example 4.3.7. On a submanifoldM ⊂ Rn we may use the Euclidean scalar
product to identify νpM with TpM⊥ for every p ∈ N. We get an orthogonal
decomposition

TpM ⊕ νpM = Rn

for every p. Therefore

νM =
{

(p, v)
∣∣ p ∈ M, v ∈ νpM} ⊂ Rn × Rn.

For instance we have

νSn =
{

(x, v)
∣∣ ‖x‖ = 1, v ∈ Span(x)

}
.

It is easy to deduce that the normal bundle of Sn inside Rn+1 is trivial. There-
fore we get a connected sum of bundles

TSn ⊕ νSn = Sn × Rn+1
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where two of them νSn and Sn ×Rn+1 are trivial, but the third one TSn may
not be trivial, as we will see.

4.3.4. Tensor bundle. For every h, k ≥ 0 we may construct the tensor
bundle T kh (M) via tensor products of the tangent and cotangent bundles:

T kh (M) = T (M)⊗ · · · ⊗ T (M)︸ ︷︷ ︸
h

⊗T ∗(M)⊗ · · · ⊗ T ∗(M)︸ ︷︷ ︸
k

.

The fiber over p is the tensor space T kh (TpM). We define analogously the
symmetric and antisymmetric tensor bundles

Sk(M), Λk(M)

whose fibres over p are Sk(TpM) and Λk(TpM). In particular T1(M) is the
tangent bundle and T 1(M) = S1(M) = Λ1(M) is the cotangent bundle. We
also define the trivial tensor bundle T 0

0 (M) = M×R, coherently with the fact
that a tensor of type (0, 0) is just a scalar in R.

4.4. Sections

The most important feature of vector bundles is that they contain plenty
of sections. Sections are not as exoteric as they might look like: in fact, many
mathematical entities that will be introduced in this book – like vector fields,
differential forms, and metric tensors – are sections in some appropriate vector
bundles, so it makes perfectly sense to study them in more detail. The effort
we are making now in treating these abstract objects in full generality will be
soon rewarded.

4.4.1. Vector space. Let π : E → M be a vector bundle. The space of
all sections s : M → E is usually denoted by

Γ(E).

This space is naturally a vector space: the sum s + s ′ of two sections s and
s ′ is defined by setting (s + s ′)(p) = s(p) + s ′(p) for every p ∈ M, using the
vector space structure of Ep, and the product with scalars is analogous. The
zero of Γ(E) is of course the zero-section.

Moreover, for every smooth function f : M → R and every section s we
can define a new section f s by setting (f s)(p) = f (p)s(p). Therefore Γ(E)

is also a module over the ring C∞(M).
If E and E′ are two bundles over M, with sections s and s ′, then one can

define the sections s ⊕ s ′ and s ⊗ s ′ of E ⊕E′ and E ⊗E′ in the obvious way,
by setting (s ⊕ s ′)(p) =

(
s(p), s ′(p)

)
and (s ⊗ s ′)(p) = s(p)⊗ s ′(p).
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4.4.2. Extensions of sections. We now show that vector bundles have
plenty of sections, and we do this by proving that every “locally defined” section
may be extended to a global one.

Let π : E → M be a vector bundle and s be a section. On a trivialising
neighbourhood U, we get a diffeomorphism ϕ : π−1(U)→ U × Rk and hence

ϕ
(
s(p)

)
=
(
p, s ′(p)

)
for some smooth map s ′ : U → Rn. In other words, every smooth section s
can be read as a function s ′ : U → Rn on every trivalising neighbourhood U.

The fact that sections look locally like functions has some interesting con-
sequences: for instance, we now show that sections defined only partially may
be extended globally.

Let S ⊂ M be any subset. We say that a smooth map s : S → E is a
partial section if π ◦ s = idS. Recall from Definition 3.3.4 the correct meaning
of “smooth” here.

Proposition 4.4.1. If S ⊂ M is a closed subset, every partial section s : S →
E may be extended to a global one M → E.

Proof. We adapt the proof Proposition 3.3.5 to this context. Locally,
sections are like maps U → Rk and can hence be extended. Therefore for
every p ∈ S there are an open trivialising neighbourhood U and a local extension
gp : Up → E of s. We then proceed with a partition of unity following the same
proof of Proposition 3.3.5. �

Remark 4.4.2. By construction, we may suppose (if needed) that s van-
ishes outside of any given neighbourhood of S.

Exercise 4.4.3. Let E → M be a vector bundle of rank k ≥ 1. If M is not
a finite collection of points, the vector space Γ(E) has infinite dimension.

4.4.3. Zeroes. Let π : E → M be a vector bundle over some smooth
manifold M. We say that a section s : M → E vanishes at a point p ∈ M if
s(p) = 0. In that case p is called a zero of s. The section is nowhere vanishing
if s(p) 6= 0 for all p ∈ M.

Here is one important thing to keep in mind about sections of vector
bundles: although there are plenty of them, it may be hard – and sometimes
impossible – to construct one that is nowhere vanishing. As an example:

Exercise 4.4.4. The Möbius strip line bundle E → S1 has no nowhere-
vanishing section.

4.4.4. Frames. Let π : E → M be a rank-k vector bundle. A frame for
π consists of k sections s1, . . . , sk such that the vectors s1(p), . . . , sk(p) are
independent, and hence form a basis for Ep, for every p ∈ M.

On a frame, every si is in particular a nowhere-vanishing section: therefore
finding a frame is even harder than constructing a nowhere-vanishing section.
In fact, the following shows that frames exist only on very specific bundles.
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Proposition 4.4.5. A bundle has a frame ⇐⇒ the bundle is trivial.

Proof. On a trivial bundle E = M × Rn, the sections si(p) = (p, ei) with
i = 1, . . . , k form a frame. Conversely, a frame s1, . . . , sk on π : E → M

provides a bundle isomorphism F : M × Rk → E by writing

F
(
p, (λ1, . . . , λk)

)
= λ1s1(p) + . . .+ λksk(p).

The proof is complete. �

In light of this result, a frame is also called a trivialisation of the bundle.
A nontrivial bundle E → M has no global frame, but it has many local frames:
we define a local frame to be a frame on a trivialising open set U ⊂ M. Every
trivialising open set has a local frame, induced by the trivialising chart.

4.4.5. Subbundles demystified. Frames are useful tools, for instance we
use them now to clarify a little the notion of subbundle.

Lemma 4.4.6. Let E → M be a bundle and E′ ⊂ E a subset. Define
E′p = Ep ∩ E′. The following are equivalent:

(1) E′ is a rank-h subbundle;
(2) every p ∈ M has a trivialising neighbourhood U and a frame s1, . . . , sk

for E|U such that E′q = Span
(
s1(q), . . . , sh(q)

)
for all q ∈ U;

Proof. (1)⇒(2). Pick a neighbourhood U that trivialises both E and E′.
The bundle E|U is like U × Rk . Since E′|U is also trivial, it has a frame
s1, . . . , sh in U. Choose some fixed vectors sh+1, . . . , sk ∈ Rn so that the k
vectors s1(p), . . . , sh(p), sh+1, . . . , sk are independent. After shrinking U, the
vectors s1(q), . . . , sh(q), sh+1, . . . , sk remain independent for all q ∈ U and
thus s1, . . . , sk is a frame for E|U .

(2)⇐(1). The neighbourhood U trivialises also E′. �

This shows in particular that a subbundle E′ ⊂ E looks locally like U ×
Rh × {0} ⊂ U × Rh × Rk−h above U ⊂ M. In particular the quotient bundle
E/E′ looks locally as U×Rk−h, and these identifications may be used to assign
a smooth atlas to E/E′ , as we mentioned in Section 4.2.5.

4.4.6. Tensor fields. We now introduce the most important types of sec-
tions in differential topology and geometry: these appear everywhere, and will
be ubiquitous also in this book.

Let M be a smooth manifold. A tensor field of type (h, k) is a section s
of the tensor bundle T kh (M) of M, that is

s ∈ Γ
(
T kh (M)

)
.

In other words, we have a tensor s(p) ∈ T kh (TpM) that varies smoothly with
the point p ∈ M.

Since T 0
0 (M) = M×R is the trivial line bundle, a tensor field of type (0, 0)

is just a smooth function s : M → R.
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A tensor field of type (1, 0) assigns a tangent vector at every point and
is called a vector field : vector fields are extremely important in differential
topology and we will study them in the next chapter with some detail.

A tensor field of type (0, 1) may be called a covector field, but the term
1-form is more often employed. More generally, a k-form is a section of the
antisymmetric tensor bundle Λk(M). These are also important objects and we
will dedicate Chapter 6 to them.

A symmetric tensor field of type (0, 2) assigns a bilinear symmetric form to
every tangent space: this notion will open the doors to differential geometry.

Most of the operations that we defined on tensors apply naturally to tensor
fields. For instance, the tensor product s ⊗ s ′ of two tensor fields s and s ′

of type (h, k) and (h′, k ′) is a tensor field of type (h + h′, k + k ′), and the
contraction of a tensor field of type (h, k) is a tensor field of type (h−1, k−1).

4.4.7. Coordinates. Let s be a tensor field of type (h, k) on M and let
ϕ : U → V be a chart. We now want to express s in coordinates with respect
to the chart ϕ.

As we already noticed, for every p ∈ U the differential dϕp identifies the
tangent space TpM with Rn, and we deduce from that an identification of the
tensor space T kh (TpM) with T kh (Rn). The tensor field s, restricted to U, may
therefore be represented as a smooth map

s ′ : V −→ T kh (Rn).

How can we write such a map? The vector space T kh (Rn) has a canonical
basis that consists of the elements

ei1 ⊗ · · · ⊗ eih ⊗ e
j1 ⊗ · · · ⊗ ejk

where 1 ≤ i1, . . . , ih, j1, . . . , jk ≤ n and e1, . . . , en is the canonical basis of Rn,
see Section 2.2.2. Therefore s ′ may be written uniquely as

s ′(x) = s i1,...,ihj1,...,jk
(x)ei1 ⊗ · · · ⊗ eih ⊗ e

j1 ⊗ · · · ⊗ ejk

where the coefficients vary smoothly with respect to x ∈ V . Shortly, the
coordinates of s with respect to ϕ are the coefficients

s i1,...,ihj1,...,jk

that depend smoothly on a point x .

4.4.8. Changes of coordinates. If we pick another chart around a point
p ∈ M, the same tensor field s is represented via different kinds of coordinates

ŝ i1,...,ihj1,...,jk

and the transformation law relating the two different coordinates is prescribed
by Proposition 2.2.11. It is convenient here to denote the coordinates of the
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two charts by x1, . . . , xn and x̂1, . . . , x̂n respectively, so that the differential of
the transition map may be written simply as

∂x̂i
∂xj

.

The transformation law says that

ŝ i1...ihj1...jk
=
∂x̂i1
∂xl1
· · ·

∂x̂ih
∂xlh

∂xm1

∂x̂j1
· · ·

∂xmk
∂x̂jk

s l1...lhm1...mk
.

For instance, for a vector field we have

ŝ i =
∂x̂i
∂xj

s j

while for a covector field we get

ŝj =
∂xi
∂x̂j

si .

Note that everything is designed so that every two repeated indices stay one
on the top and the other on the bottom, in every formula. This is a conven-
tion that helps us to prevent mistakes; another trick consists of replacing the
notations ei and ej with the symbols ∂

∂xi
and dx j . We will explain this in the

subsequent chapters.

4.5. Riemannian metric

It is sometimes useful to equip a vector bundle with some additional struc-
ture, called Riemannian metric. Not only this structure is interesting in its own
right, but it is also useful as an auxiliary tool.

4.5.1. Definition. Let π : E → M be a vector bundle. Consider the bun-
dle E∗⊗E∗ → M. Remember that the fibre above p ∈ M is the space E∗p⊗E∗p
of all tensors on Ep of type (0, 2). Remember also that scalar products are
particular kinds of symmetric tensors of type (0, 2).

Definition 4.5.1. A Riemannian metric in π is a section g of E∗⊗E∗ such
that g(p) is a positive-definite scalar product on Ep for every p ∈ M.

In other words, a Riemannian metric is a positive-definite scalar product
g(p) on each fibre Ep, that varies smoothly with p. On a trivialising chart
U the bundle E looks like U × Rk and g can be represented concretely as a
positive-definite symmetric basis gi j smoothly varying with p ∈ U.

Proposition 4.5.2. Every vector bundle has a Riemannian metric.

Proof. We fix an open covering Ui of trivialising sets. Above every Ui the
bundle is like Ui ×Rk , so we can identify Ep = Rk for every p ∈ Ui and assign
it the Euclidean scalar product, that we name g(p)i .
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To patch the g(p)i altogether, we pick a partition of unity {ρi} subordinate
to the covering. For every p ∈ M we define

g(p) =
∑
i

ρig(p)i .

This is a positive-definite scalar product, because a linear combination of pos-
itive definite scalar products with positive coefficients is always a positive-
definite scalar product. �

Example 4.5.3. The Euclidean metric on the trivial bundle M × Rk is the
assignment of the Euclidean scalar product on every fibre Rk .

If E → M has a Riemannian metric, then every subbundle and every
restriction to a submanifold also inherit a Riemannian metric.

4.5.2. Orthonormal frames. Let E → M be a vector bundle equipped
with a Riemannian metric. An orthonormal frame is a frame s1, . . . , sk where
s1(p), . . . , sk(p) form an orthonormal basis for every p ∈ M.

Proposition 4.5.4. Every frame transforms canonically into an orthonormal
frame via the Gram – Schmidt algorithm.

Proof. This sentence already says everything. The Gram – Schmidt al-
gorithm transforms s1(p), . . . , sk(p) into k orthonormal vectors in a way that
depends smoothly on p, as one can see on a chart. �

Corollary 4.5.5. A bundle has an orthonormal frame ⇐⇒ it is trivial.

Proof. We already know that a bundle has a frame ⇐⇒ it is trivial. �

4.5.3. Isotopies. We will soon need an appropriate notion of isotopy be-
tween bundle isomorphisms.

Let E → M and E′ → M be two vector bundles, and f , g : E → E′ be two
isomorphisms. An isotopy between f and g is a smooth map

F : E × R −→ E′

such that each Ft = F (·, t) is an isomorphism, and F0 = f , F1 = g.

4.5.4. Isometries. An isometry between vector bundles E,E′ with Rie-
mannian metrics g, g′ is an isomorphism F : E → E′ that preserves the metric,
that is with g′

(
F (v), F (w)

)
= g(v , w) for all v , w ∈ Ep and all p ∈ M.

The following proposition says that isometry is not a much stronger notion
than isomorphism. It extends the linear algebra fact that any two real vector
spaces equipped with positive definite scalar products are isometric.

Proposition 4.5.6. Two isomorphic vector bundles equipped with arbitrary
Riemannian metrics are always isometric, via an isometry that is isotopic to
the initial isomorphism.
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Proof. We may reduce to the case where π : E → M is a vector bundle
and g, g′ are two arbitrary Riemannian metrics on it; we must construct an
isomorphism E → E relating g and g′, isotopic to the identity.

Let U be a trivialising neighbourhood. Pick two orthonormal frames si and
s ′i for g and g′ on U. We may represent every isomorphism of E|U with respect
to these frames as a matrix A(p) ∈ GL(n,R) that depends smoothly on p ∈ U.
The isomorphism is an isometry ⇐⇒ A(p) ∈ O(n) for every p ∈ U.

Let A = A(p) represent the identity isomorphism in these basis. Use
Proposition 3.9.6 to decompose A as A = OS with O ∈ O(n) and S ∈ S+(n).
The matrix O(p) defines an isometry relating g and g′.

The remarkable aspect of this definition is that, by Proposition 3.9.7, the
isometry defined by O(p) does not depend on the chart chosen! Therefore by
covering M with charts we get a global isometry E → E relating g and g′.

An isotopy between O and the identity is B(p) = O(p)
(
tI+ (1− t)S(p)

)
,

using that S+(n) is convex. This is well defined again by Proposition 3.9.7. �

This shows in particular that every bundle E → M with any Riemannian
metric g is locally Euclidean: for every trivialising subset U ⊂ M the bundle
E|U is isometric to U × Rk equipped with the Euclidean metric.

4.5.5. Unitary sphere bundle. Let π : E → M be a vector bundle. Let
us equip it with a Riemannian metric g. Every fibre Ep has a positive-definite
scalar product g(p) and hence every vector v ∈ Ep has a norm

‖v‖ =
√
g(v , v).

The associated unitary sphere bundle is the submanifold

S(E) =
{
v ∈ E

∣∣ ‖v‖ = 1
}
.

The projection π restricts to a projection π : S(E)→ M whose fibre S(E)p is
the unitary sphere in Ep.

Proposition 4.5.7. The projection π : S(E)→ M is indeed a sphere bundle.
It does not depend, up to isotopy, on the metric g chosen.

By “isotopy” we mean that the sphere bundles constructed from two met-
rics g and g′ are related by a self-isomorphism of E → M isotopic to the
identity.

Proof. We have to prove the local triviality. On a trivialising open set U
the bundle E isometric to the Euclidean U × Rk , so S(E)|U is like U × Sk−1.

If we pick another metric g′, we get an E′ isometric to E by Proposition
4.5.6. Therefore S(E′) is isotopic to S(E). �



100 4. BUNDLES

4.5.6. Orthogonal bundle. Let E → M be a vector bundle equipped with
a Riemannian metric. For every subbundle E′ → M we have an orthogonal
bundle (E′)⊥ → M, whose fiber (E′)⊥p is the orthogonal subspace to E′p ⊂ Ep
with respect to the metric.

The orthogonal bundle is canonically isomorphic to the normal bundle E/E′
and may be seen as a realisation of it as a subbundle of E.

Example 4.5.8. If the tangent bundle TM of a manifold M is equipped
with a Riemannian metric, the normal bundle νN of any submanifold N ⊂ M
may be seen (using the metric) as a subbundle of TM|N , so that we have an
orthogonal sum

TM|N = TN ⊕ νN.

4.5.7. Dual vector bundle. Here is another instance where a Riemannian
metric may be used as an auxiliary tool, to prove theorems.

Proposition 4.5.9. Every vector bundle E → M is isomorphic to its dual
E∗ → M.

Proof. Pick a Riemannian metric on M. The scalar product on Ep may
be used to identify Ep with its dual E∗p as described in Section 2.3.3. This
furnishes the bundle isomorphism. �

Example 4.5.10. A Riemannian metric on the tangent bundle TM deter-
mines an identification of the tangent and the cotangent bundle overM. More
generally, it furnishes some bundle isomorphisms

T kh (Rn) ∼= Th+k(Rn) ∼= T h+k(Rn).

4.5.8. Shrinking vector bundles. A Riemannian metric may be used to
shrink a vector bundle as follows.

Lemma 4.5.11. Let E → M be a vector bundle. For every neighbourhood
W ⊂ E of the zero-section M, there is an embedding g : E → W with

• g|M = idM ,
• g(Ep) ⊂ Ep for every p ∈ M.

Proof. Fix a Riemannian metric on E. Using a partition of unity, we can
prove (exercise) that there is a smooth positive function ε : M → R such that
W contains all the vectors v ∈ Ep with ‖v‖ < ε(p), for all p ∈ M. Define

g(v) = ε
(
π(v)

) v√
1 + ‖v‖2

.

This map satisfies the requirements. �
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4.5.9. Trivialising sums. The tangent bundle TSn of a sphere is often
non-trivial, but it suffices to add the normal bundle of Sn in Rn+1 to get a
trivial bundle, that is:

TSn ⊕ νSn = Sn × Rn+1.

This is in fact an instance of a more general phenomenon:

Exercise 4.5.12. For any vector bundle E → M there is another vector
bundle E′ ⊕M such that E ⊕ E′ → M is trivial.

TBD





CHAPTER 5

The basic toolkit

We now introduce some fundamental notions that apply to every context
in differential topology: we start with vector fields, their flows and Lie brackets;
then we turn to foliations and the Fobenius Theorem; finally we pass to tubular
neighbourhoods, and to manifolds with boundary.

5.1. Vector fields

5.1.1. Definition. Let M be a smooth manifold. A section X : M → TM

of the tangent bundle is called a vector field : it assigns a tangent vector
X(p) ∈ Tp(M) to every point p ∈ M that varies smoothly with p.

Some vector fields on the torus are drawn in Figure 5.1. Recall that a zero
of X is a point p such that X(p) = 0. Note that the vector fields in the figure
have no zeroes.

Example 5.1.1. When n = 2m − 1 is odd, the following is a nowhere-
vanishing vector field on Sn ⊂ R2m:

(x1, . . . , x2m) 7−→ (−x2, x1, . . . ,−x2m, x2m−1).

Exercise 5.1.2. Write a smooth vector field on Sn that vanishes only at
the poles (±1, 0, . . . , 0).

We denote by X(M) the set of all the vector fields on M. Recall from
Section 4.4 that X(M) = Γ(TM) is a vector space and also a C∞(M)-module.

5.1.2. Diffeomorphisms. Many of the mathematical objects that we de-
fine are naturally transported along smooth maps f : M → N, either from M

Figure 5.1. Nowhere-vanishing vector fields on the torus.
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to N or vice-versa from N to M, but this is not the case with vector fields:
there is no meaningful way to transport a vector field along a generic map f ,
neither forward from M to N nor backwards from N to M.

On the other hand, every intrinsic (that is, coordinates-independent) no-
tion can be transported in both directions if f : M → N is a diffeomorphism.
In that case, every vector field X in M induces a vector field Y on N via
differentials, that is by imposing:

Y
(
f (p)

)
= dfp

(
X(p)

)
for every p ∈ M.

This gives an isomorphism between X(M) and X(N).

5.1.3. On charts. If X is a vector field on M and ϕ : U → V ⊂ Rn is a
chart, we can restrict X to a vector field on U and then transport it into a
vector field in V . As we noticed in Section 4.4.7, the transported vector field
assumes the familiar form of a smooth map V → Rn because T (V ) = V ×Rn,
and we may write it as a vector(

X1(x), . . . , Xn(x)
)

in Rn that varies smoothly on x ∈ V . Here X i is the i-coordinate of X in the
chosen chart, a real number that depend smoothly on x ∈ V . We can use the
Einstein notation and write the transported vector field in V more concisely as

X iei .

It turns out that it is more comfortable to use the symbol ∂
∂xi

instead of ei ,
and we write instead

X i
∂

∂xi
.

Why do we prefer the awkward notation ∂
∂xi

to ei? The partial derivative
symbol is appropriate here for three reasons: (i) it is coherent with the inter-
pretation of tangent vectors as derivations, (ii) there is no risk of confusing it
with anything else, and more importantly (iii) it helps us to write the coordi-
nate changes correctly via the chain rule. Indeed, if we pick another chart we
get different coordinates

X̄ i
∂

∂x̄i
and we know from Section 4.4.8 that the coordinates of a vector change
contravariantly, hence

(7) X̄ j = X i
∂x̄j
∂xi

.

Thanks to the partial derivative notation, there is no need to remember the
formula by heart: it suffices to apply formally the chain rule and we get

X i
∂

∂xi
= X i

∂x̄j
∂xi

∂

∂x̄j
.
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This gives (7). Beware that one possible source of confusion is that the
coordinates of a vector change contravariantly, while the vectors themselves
of the basis change covariantly : indeed we have

∂

∂x̄j
=
∂xi
∂x̄j

∂

∂xi

and the change of basis matrix here is the inverse of the one that we find in
(7). Luckily, we can relax: the partial derivative notation helps us to write the
correct form in any context.

5.1.4. Vector fields on subsets. Let M be a smooth manifold. It is
sometimes useful to have vector fields defined not on the whole of M, but only
on some subset S ⊂ M. By definition, a vector field in S is a smooth partial
section S → TM of the tangent bundle, see Section 4.4.2. The following
example may be quite common.

Example 5.1.3. If f : N ↪→ M is an embedding, every vector field X in N
induces a vector field Y on the image S = f (N) by setting

Y
(
f (p)

)
= dfp(X(p)).

We now rephrase Proposition 4.4.1 in this context:

Proposition 5.1.4. If S ⊂ M is a closed subset, every vector field on S
may be extended to a global one on M.

We may also require that the extended vector field vanishes outside of an
arbitrary neighbourhood of S.

Corollary 5.1.5. Let N ⊂ M be a compact submanifold. Every vector
field in N extends to a vector field in M that vanishes outside of any given
neighbourhood of N.

5.2. Flows

It is hard to overestimate the importance of vector fields in differential
topology: these appear naturally everywhere, not only as intrinsically interest-
ing objects, but also as very powerful tools to prove deep theorems.

In this section, we show that a vector field X on a smooth manifold M
defines an infinitesimal way to deform M through a flow which moves every
point of p along an integral curve, a curve that is tangent to X at every point.

Flows are powerful tools, and we will use them here to promote isotopies
to ambient isotopies on every compact manifold.

5.2.1. Integral curves. LetM be a smooth manifold and X a given vector
field on M. An integral curve of X is a curve γ : I → M such that

γ′(t) = X
(
γ(t)

)
for all t ∈ I.
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Example 5.2.1. The curve γ(t) = (cos t, sin t, . . . , cos t, sin t) is an inte-
gral curve of the vector field in Sn described in Example 5.1.1.

An integral curve γ : I → M is maximal if there is no other integral curve
η : J → M with I ( J and γ(t) = η(t) for all t ∈ I. Every integral curve can
be extended to a maximal one by enlarging the domain as much as possible.
A straightforward application of the Cauchy – Lipschitz Theorem 1.3.5 proves
the existence and uniqueness of maximal integral curves:

Proposition 5.2.2. Let X be a vector field in M. For every p ∈ M there is
a unique maximal integral curve γ : I → M with γ(0) = p.

Proof. Pick a chart ϕ : U → Rn and translate locally everything into Rn.
The vector field X transforms into a smooth map Rn −→ Rn, that we still
denote by X for simplicity. An integral curve γ satisfies γ′(t) = X

(
γ(t)

)
.

The local existence and uniqueness of γ follows from the Cauchy – Lipschitz
Theorem 1.3.5. The maximal integral curve is also clearly unique. �

5.2.2. Flows. One very nice feature of the Cauchy – Lipschitz Theorem
is that the unique solution depends smoothly on the initial data. In this topo-
logical context, this shows that all the integral curves on a fixed vector field
may be gathered into a single smooth family, as follows.

Let X be a vector field on a smooth manifold M.

Theorem 5.2.3. There is a unique open neighbourhood U ofM×{0} inside
M × R and a unique smooth map Φ: U → M such that the following holds:
for every p ∈ M the set Ip =

{
t ∈ R

∣∣ (p, t) ∈ U
}
is an open interval and

γp : Ip → M, γp(t) = Φ(p, t) is the maximal integral curve with γp(0) = p.

Proof. For every p ∈ M there is a maximal integral curve γp : Ip → M

with γp(0) = p. We define

U =
{

(p, t)
∣∣ t ∈ Ip}, Φ(p, t) = γp(t).

The Cauchy –Lipschitz Theorem 1.3.5, applied locally at every point (p, t),
implies that U is open and Φ is smooth. �

The map Φ is the flow associated to the vector fieldX. If the open maximal
set U is the whole of M × R we say that the vector field X is complete.

Example 5.2.4. Pick M = Rn and X = ∂
∂x1

constantly. In this case we
have U = M × R and Φ(x, t) = x + te1, so X is complete. If we remove
from M a random closed subset, the resulting vector field X is probably not
complete anymore.

Here is a simple completeness criterion.

Lemma 5.2.5. If M × (−ε, ε) ⊂ U for some ε > 0, then X is complete.
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Proof. We fix an arbitrary point p ∈ M and we must prove that Ip = R.
Pick any t ∈ Ip. The integral curves emanating from p and Φ(p, t) differ only
by a translation of the domain: hence Ip = IΦ(p,t) + t and

(8) Φ
(

Φ(p, t), u
)

= Φ(p, t + u)

for every u ∈ IΦ(p,t). By hypothesis (−ε, ε) ⊂ IΦ(p,t) and hence (t−ε, t+ε) ⊂
Ip. Since this holds for every t ∈ Ip we get Ip = R. �

Corollary 5.2.6. Every vector field on a compact M is complete.

Proof. By compactness any neighbourhood U of M × {0} in M ×R must
contain M × (−ε, ε) for some ε > 0. �

Let now X be a complete vector field on a smooth manifold M and Φ be
its flow. We denote by Φt : M → M the level map Φt(p) = Φ(p, t).

Proposition 5.2.7. The map Φt is a diffeomorphism for all t ∈ R. Moreover

Φ−t = Φ−1
t , Φt+s = Φt ◦Φs

for all t, s ∈ R.

Proof. The equality (8) implies that Φt+s = Φt ◦Φs for all t, s ∈ R. This
in turn gives Φ−t = Φ−1

t and hence Φt is a diffeomorphism. �

A smooth map Φ: M ×R→ M with these properties is also called a one-
parameter group of diffeomorphisms. Indeed we may consider this family as a
group homomorphism R→ Diffeo(M), t 7→ Φt where Diffeo(M) is the group
of all diffeomorphisms M → M.

It is indeed a remarkable fact that by constructing vector fields on a com-
pact manifold M we get plenty of one-parameter families of diffeomorphisms
for M.

Example 5.2.8. The vector field on Sn constructed in Example 5.1.1 gen-
erates the flow

Φ(x1, . . . , x2m, t) =
(
x1 cos t − x2 sin t, x2 cos t + x1 sin t, . . .).

5.3. Ambient isotopy

The previous discussion on flows and diffeomorphisms leads us naturally
to define a stronger form of isotopy, called ambient isotopy, that involves a
smooth distortion of the ambient space.

5.3.1. Definition. Let M be a smooth manifold.

Definition 5.3.1. An ambient isotopy in M is an isotopy F between the
identity id : M → M and some diffeomorphism ϕ : M → M, such that every
level Ft : M → M is a diffeomorphism.
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For instance, every flow Φ generated by some complete vector field X on
M is an ambient isotopy between the identity Φ0 and the diffeomorphism Φ1.

Let now M,N be two manifolds. We say that two embeddings f , g : M →
N are ambiently isotopic if there is an ambient isotopy F on N wth F0 = id

and F1 = ϕ such that g = ϕ ◦ f . We check that this notion is indeed stronger
than that of an isotopy.

Proposition 5.3.2. If f , g are ambiently isotopic, they are isotopic.

Proof. An isotopy Gt between f and g is Gt(x) = Ft(f (x)). �

Informally, two embeddings f and g are ambiently isotopic if they related
by an isotopy that “moves the whole of N”. We now use the flows to show
that, if M is compact, the two notions actually coincide.

Theorem 5.3.3. If M is compact, any two embeddings f , g : M → N are
isotopic ⇐⇒ they are ambiently isotopic.

Proof. Let F : M × R→ N be an isotopy relating f and g. We define

G : M × R −→ N × R

by setting G(p, t) =
(
F (p, t), t

)
. We note that G is time-preserving and

proper (because M is compact). Moreover

dG(p,t) =

(
d(Ft)p ∗

0 1

)
and hence G is an injective immersion. Being proper, the map G is an embed-
ding (see Exercise 3.8.5) and therefore its image G(M × R) is a submanifold
of N × R.

The vertical vector field X = ∂
∂t on M × [0, 1] transports via G into a

vector field Y defined only on the compact set B = G
(
M × [0, 1]

)
, by setting

Y
(
G(p, t)

)
= dG(p,t)

(
∂
∂t

)
as in Example 5.1.3.

The vector field Y is defined only on the compact subset B ⊂ N ×R, but
we may extend it to a vector field Y on the whole of N ×R with the property
that Y = ∂

∂t outside of some compact neighbourhood V of B. To show this,
we first extend Y to a vector field that vanishes outside V , and then modify
everywhere its t-coordinate to be constantly 1.

We now consider the flow Φ of Y in N×R. The vector field Y is complete:
to show this, we note that V is compact and Φt(p, u) = (p, u + t) outside V ,
and these two facts easily imply that there is an ε > 0 such that Φ is defined
at every time |t| < ε, so Lemma 5.2.5 applies.

Since the t-component of Y is constantly 1 we get

Φt(p, 0) =
(
H(p, t), t

)
for some smooth map H : N×R→ N. We write Ht(p) = H(p, t) and note that
Ht : N → N is diffeomorphism for every t, since Φt is. Moreover H0 = id and
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Figure 5.2. The trivial and the trefoil knot are not isotopic. This is
certainly true, but how can we prove it?

hence H furnishes an ambient isotopy. Finally, we have H
(
f (p), t

)
= G(p, t)

for every (p, t) ∈ M × [0, 1] because Y = dG
(
∂
∂t

)
on B. Therefore H is an

ambient isotopy relating f and g. �

Corollary 5.3.4. Every connected smooth manifold M is homogeneous,
that is for every two points p, q ∈ M there is a diffeomorphism f : M → M

isotopic to the identity such that f (p) = q.

Proof. There is a smooth arc γ : R → M with γ(0) = p and γ(1) = q

(exercise). This arc may be interpreted as an isotopy between two embeddings
{pt} → M that send a single point to p and to q, respectively. This isotopy
may be promoted to an ambient isotopy, that sends p to q. �

How can we prove that two given homotopic embeddings are actually not
isotopic? For instance, how can we prove the intuitive fact that the two knots
in Figure 5.2 are not isotopic? If they were isotopic, they would also be ambient
isotopic, and hence in particular they would have homeomorphic complements.
One can then try to calculate the fundamental groups of the complement and
prove that they are not isomorphic: this strategy actually works for the two
knots depicted in the figure.

5.4. Lie brackets

We now introduce an operation on vector fields called Lie bracket. The
Lie bracket [X, Y ] of two vector fields X and Y in M is a third vector field that
measures the “lack of commutativity” of X and Y .

5.4.1. Vector fields as derivations. Let X be a vector field on a smooth
manifold M. For every open subset U ⊂ M and every smooth function f ∈
C∞(U) we may define a new function Xf ∈ C∞(U) by setting

(Xf )(p) = X(p)(f )

for every p ∈ U. Recall that X(p) ∈ TpM is a derivation and hence transforms
any locally defined function f into a real number X(p)(f ), so the definition of
Xf makes sense.
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In coordinates, the vector field X is written as

X i
∂

∂xi

and the new function Xf is simply

X i
∂f

∂xi
.

This shows in particular that Xf is smooth.
We have just discovered that we can employ vector fields to “derive” func-

tions. We use the term “derivation” here, because the Leibnitz rule

X(f g) = (Xf )g + f (Xg)

is satisfied by construction for every functions f and g defined on some com-
mon open set U ⊂ M. Of course the derived function Xf depends heavily on
the vector field X.

Another way of seeing Xf is as the result of a contraction of the differential
df , a tensor field of type (0, 1), with X, a tensor field of type (1, 0). The result
is a tensor field Xf of type (0, 0), that is a smooth function.

5.4.2. Lie brackets. Let X and Y be two vector fields on a smooth man-
ifold M. The Lie bracket [X, Y ] of X and Y is a new vector field, uniquely
determined by requiring that

[X, Y ]f = XY f − Y Xf

for every function f defined on any open subset U ⊂ M.

Proposition 5.4.1. The vector field [X, Y ] is well-defined.

Proof. For the moment, the bracket [X, Y ] = XY −Y X is just an operator
on smooth functions defined on any open subset U ⊂ M. For every f , g ∈
C∞(U) we get

XY (f g) = X
(

(Y f )g
)

+X
(
f (Y g)

)
= (XY f )g + (Y f )(Xg) + (Xf )(Y g) + f (XY g),

Y X(f g) = (Y Xf )g + (Xf )(Y g) + (Y f )(Xg) + f (Y Xg)

from which we deduce that

[X, Y ](f g) =
(

[X, Y ]f
)
g + f

(
[X, Y ]g

)
.

We have proved that [X, Y ] is also a derivation. This allows us to define [X, Y ]

as a vector field, by setting

[X, Y ](p)(f ) = [X, Y ](f )(p)

for every p ∈ M and every f defined near p. The proof is complete. �
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5.4.3. Lie algebra. We introduce an important concept.

Definition 5.4.2. A Lie algebra is a real vector space A equipped with an
antisymmetric bilinear operation [, ] called Lie bracket that satisfies the Jacobi
identity [

[x, y ], z
]

+
[
[y , z ], x

]
+
[
[z, x ], y

]
= 0

for every x, y , z ∈ A.

Let M be a smooth manifold. Recall that X(M) is the vector space con-
sisting of all the vector fields in M.

Exercise 5.4.3. The space X(M) with the Lie bracket [, ] is a Lie algebra.

5.4.4. In coordinates. The definition of the Lie bracket is quite abstract
and is now due time to write an explicit formula that is valid in coordinates
with respect to any chart.

Exercise 5.4.4. In coordinates we get

[X, Y ]i = X j
∂Y i

∂xj
− Y j

∂X i

∂xj
.

The reader may also wish to define [X, Y ] directly via this formula, but in
that case she needs to verify that this definition is chart-independent, a fact
that is not immediately obvious: for instance if we eliminate one of the two
members then the definition is not chart-independent anymore.

In the definition of the Lie bracket of two vector fields we have seen the
appearance of a recurrent theme in differential topology and geometry: the
eternal quest for intrinsic (that is, chart-independent) definitions. One may ful-
fil this task either working entirely in coordinates, or using some more abstract
arguments as we just did. As usual, both viewpoints are important.

Exercise 5.4.5. For every X, Y ∈ X(M) and f , g ∈ C∞(M) we have

[f X, gY ] = f g[X, Y ] + f (Xg)Y − g(Y f )X.

Exercise 5.4.6. On an open set of Rn, for every i , j we have[
∂

∂xi
,
∂

∂xj

]
= 0.

More generally, we have[
∂

∂xi
, Y j

∂

∂xj

]
=
∂Y j

∂xi

∂

∂xj
=
∂Y

∂xi
.

We now introduce some more geometric interpretation of the Lie bracket.
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5.4.5. Non-commuting flows. Let X and Y be two vector fields on a
smooth manifold M, and let F,G be their corresponding flows. In general, the
two flows do not commute, that is Fs ◦Gt(p) may be different from Gt ◦Fs(p)

whenever they are defined. We now show that the Lie bracket [X, Y ] measures
this possible lack of commutation.

Proposition 5.4.7. On any chart, we have

Gt ◦ Fs(p)− Fs ◦ Gt(p) = st[X, Y ](p) + o(s2 + t2).

Note that the whole expression makes sense only on a chart, that is on
some open subset V ⊂ Rn with p ∈ V . On a general smooth manifold M the
points Gt(Fs(p)) and Fs(Gt(p)) are probably distinct points in M and there is
no way of estimating their “distance”. The expression is however very useful
because it holds on every possible chart.

Proof. We fix p and consider the smooth function

Ψ(s, t) = Gt ◦ Fs(p)− Fs ◦ Gt(p).

Consider its Taylor expansion

Ψ(s, t) =Ψ(0, 0) + s
∂Ψ

∂s
(0, 0) + t

∂Ψ

∂t
(0, 0)

+
s2

2

∂2Ψ

∂s2
(0, 0) + st

∂2Ψ

∂s∂t
(0, 0) +

t2

2

∂2Ψ

∂t2
(0, 0) + o(s2 + t2).

The crucial fact here is that Ψ(s, 0) = Ψ(0, t) = 0 for all s, t. Since Ψ ≡ 0 on
the axis s = 0 and t = 0, all the terms in the Taylor expansion above vanish
except the mixed one ∂2Ψ

∂s∂t (0, 0), that we now calculate. We have

∂

∂t

(
Gt ◦ Fs(p)

)
= Y

(
Gt ◦ Fs(p)

)
and hence (

∂

∂t
Gt ◦ Fs(p)

)
(s, 0) = Y

(
Fs(p)

)
which gives(

∂2

∂s∂t
Gt ◦ Fs(p)

)
(0, 0) =

∂

∂s
Y
(
Fs(p)

)
(0) = X j

∂Y

∂xj
.

Therefore
∂2Ψ

∂s∂t
(0, 0) = X j

∂Y

∂xj
− Y j

∂X

∂xj
= [X, Y ](p)

by Exercise 5.4.4. The proof is complete. �
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5.4.6. Straightening. Let X be a vector field on a smooth manifold M,
and p ∈ M a point. Among the infinitely many possible charts near p, is there
one that transports X into a reasonably nice vector field in Rn? The answer
is positive if X does not vanish at p.

Proposition 5.4.8 (Straightening vector fields). If X(p) 6= 0, there is a
chart U → V with p ∈ U that transports X into ∂

∂x1
.

Proof. By taking a chart we may suppose that M = Rn, p = 0, and
X(p) = ∂

∂x1
. We now use the flow F (x, t) to construct a chart that straightens

the field X. We set

ψ(x1, . . . , xn) = F
(

(0, x2, . . . , xn), x1

)
.

One checks easily that the differential dψ0 is the identity, hence ψ is a local
diffeomorphism. The chart ψ transforms the vector field X near 0 into ∂

∂x1
. �

5.4.7. Commuting vector fields. We say that two vector fields X and Y
on M commute if [X, Y ] = 0. Let now F and G be the flows of X and Y . We
say that the flows F and G commute if

Fs ◦ Gt(p) = Gt ◦ Fs(p)

whenever the members are defined. The two notions of commutativity actually
coincide:

Proposition 5.4.9. Two vector fields commute ⇐⇒ their flows do.

Proof. If the flows commute, then [X, Y ] = 0 because of Proposition
5.4.7. Conversely, suppose that [X, Y ] = 0.

Consider a point p ∈ M. If X(p) = Y (p) = 0, then we obviously get
Fs(p) = Gt(p) = p and we are done. Otherwise, suppose that X(p) 6= 0. On
a chart we can straighten X and get X = ∂

∂x1
and Fs(p) = p + se1.

Now [X, Y ] = 0 and Exercise 5.4.6 imply that

∂Y

∂x1
= 0.

The field Y is hence invariant by translations along e1. Therefore Gt(p+se1) =

Gt(p) + se1, that is Gt commutes with Fs .
We have proved that the flows commute for every p ∈ M when the times

s and t are sufficiently small. This implies easily that they commute at all
times s, t such that the flows are defined (exercise). �

5.4.8. Multiple straightenings. Can we straighten two or more vector
fields simultaneously? It should not be a surprise now that the answer depends
on their Lie brackets. Let X1, . . . , Xk be vector fields on a smooth manifold
M, and p ∈ M be a point.
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Proposition 5.4.10. Suppose that X1(p), . . . , Xk(p) are independent vec-
tors. There is a chart U → V that transports X1, . . . , Xk into ∂

∂x1
, . . . , ∂

∂xk
⇐⇒ [Xi , Xj ] = 0 for all i , j on some neighbourhood of p.

Proof. If there is a chart of this type, then clearly [Xi , Xj ] = 0. We now
prove the converse and suppose [Xi , Xj ] = 0 for all i , j .

By taking a chart we may suppose that M is an open set in Rn, p = 0,
and Xi(0) = ∂

∂xi
for all i = 1, . . . , k . Let F it be the flow of Xi . Define

ψ(x1, . . . , xn) = F kxk ◦ · · · ◦ F
1
x1

(0, . . . , 0, xk+1, . . . , xn).

Note that the different flows commute because [Xi , Xj ] = 0. This implies that
the differential dψ sends ∂

∂xi
to Xi . Moreover dψ0 is the identity and hence ψ

is a local diffeomorphism that straightens all the vector fields as required. �

5.4.9. Lie derivative. We have just noted that a vector field X may be
used to derive functions. Can we also use X to derive other objects, for
instance another vector field Y or more generally any tensor field s? The
answer is positive, and this operation is called the Lie derivative.

We first recall that every diffeomorphism f : M → N induces an isomor-
phism between the corresponding tensor bundles

f∗ : T hk M −→ T hk N

induced from that of the tangent bundles f∗ : TM → TN, and we may use f∗
to transfer tensor fields from M to N and viceversa.

Let now X be a vector field on a smooth manifold M, and let s be any
tensor field on M, of some type (h, k). The Lie derivative LXs is a new tensor
field of the same type (h, k), morally obtained by deriving s along X, and
defined as follows.

Let Ft be the flow generated by X. For every point p ∈ M, there is a
sufficiently small ε > 0 such that Ft(p) is defined and Ft is a local diffeomor-
phism at p for all |t| < ε. Therefore (Ft)∗(s) is another tensor field defined
on a neighbourhood of Ft(p), that varies smoothly in t, and we now want to
compare s and (Ft)∗(s).

We note that (F−t)∗ transports the tensor s
(
Ft(p)

)
that lies in T hk

(
Ft(p)

)
into T hk (p) and can hence be compared with s(p). Since everything is smooth
it makes sense to define(

LXs
)
p

=
d

dt

∣∣∣
t=0

(F−t)∗
(
s(Ft(p))

)
.

We have defined a linear map

LX : Γ
(
T hk (M)

)
−→ Γ

(
T hk (M)

)
that “derives” any tensor field along X.

Exercise 5.4.11. The following holds:
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• if f ∈ C∞(M), then LX(f ) = Xf ;
• if Y is a vector field, then LX(Y ) = [X, Y ];
• for every tensor fields S and T of any types we have

LX(S ⊗ T ) = LX(S)⊗ T + S ⊗ LX(T ).

The Lie derivative LX(s) measures how s changes along X, in fact it
follows readily from the definition that LXs ≡ 0 on M ⇐⇒ the tensor field s
is invariant under the flow Ft wherever it is defined.

It is important to note here that, as opposite to the directional derivative
in Rn, the value of LX(s) at at point p depends on the local behaviour of X
near p, but not on the directional vector X(p) alone! To get a derivation that,
like the directional derivative in Rn, depends in p only on the directional vector
based at p, we need to introduce a new structure called connection. We will
do this later on in this book.

5.5. Foliations

We now introduce some kinds of higher-dimensional analogues of vector
fields and integral curves, where we replace vectors with k-dimensional sub-
spaces, and integral curves with k-dimensional submanifolds.

5.5.1. Foliations. LetM be a smooth n-manifold. An immersed subman-
ifold in M is the image of an immersion S → M.

Definition 5.5.1. A k-dimensional foliation is a partition F of M into
injectively immersed k-dimensional connected submanifolds called leaves, such
that the following holds: for every p ∈ M there is a chart ϕ : U → Rn with
p ∈ U that sends the intersection of every leaf with U into a collection of
countably many parallel affine k-planes of type {xk+1 = ck+1, . . . , xn = cn}.

We say that such a chart ϕ is compatible with the foliation.

Example 5.5.2. The following are foliations:
(1) the partition of Rn into all the affine spaces parallel to a fixed vector

subspace L ⊂ Rn;
(2) if E → B is a fibre bundle, the partition of E into the fibres Ep;
(3) for a fixed slope λ ∈ R, the family of all curves α : R→ S1 × S1 of

type α(t) =
(
e2πit , e2πi(λt+µ)

)
as µ varies.

Exercise 5.5.3. In the last example, the leaves are compact ⇐⇒ λ ∈ Q.
If λ ∈ R \Q every leaf is dense.

We now furnish an equivalent definition of foliation.

Definition 5.5.4. A k-dimensional foliation inM is an atlas
{
ϕi : Ui → Rn

}
compatible with the smooth structure of M whose transition maps ϕi j are all
locally of the following form:

ϕi j(x, y) =
(
ϕ1
i j(x, y), ϕ2

i j(y)
)
.
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Here we represent Rn as Rk × Rn−k , both as a domain and as a codomain.

In other words, we require that the last n − k coordinates of ϕi j should
depend locally only on the last n− k coordinates of the point. By “locally” we
mean as usual that every point p in the domain of ϕi j has a neighbourhood
such that ϕi j is of that form.

The two definitions look very different but are indeed equivalent: if F is a
foliation in the partition sense, by considering only charts that are compatible
with F we get an atlas as in Definition 5.5.4. Conversely, given an atlas of this
kind, the transition maps preserve the k-dimensional affine subspaces {y = c}
which hence descend to immersed submanifolds in M.

5.5.2. Distributions. Let M be a smooth n-manifold. Here is another
natural geometric definition.

Definition 5.5.5. A k-distribution in M is a rank-k subbundle D of the
tangent bundle TM.

In other words, a distribution is a collection of k-subspaces Dp ⊂ TpM

that varies smoothly with p. See Lemma 4.4.6.

Example 5.5.6. If F is a k-dimensional foliation on M, the k-spaces tan-
gent to the leaves of F form a k-distribution.

A distribution that is tangent to some foliation F is called integrable.
Note that a diffeomorphism ϕ : M → M ′ transforms a distribution D on M
into one D′ on M ′ in the obvious way, by setting D′ϕ(p) = dϕp(Dp) ∀p ∈ M.
The integrability condition may also be expressed without using foliations:

Proposition 5.5.7. A distribution D is integrable ⇐⇒ ∀p ∈ M there is a
chart ϕ : U → Rn with p ∈ U that transforms D into a constant distribution.

A constant distribution in Rn is Dp ≡ L for some fixed subspace L ⊂ Rn.

Proof. (⇒). If D is tangent to a foliation F , any chart compatible with
F transforms D into a constant one.

(⇐). All these charts define a foliation in the sense of Definition 5.5.4. �

5.5.3. The Frobenius Theorem. We now state and prove a theorem that
characterises the integrable distributions via the Lie bracket of vector fields.

A vector field X on a manifold M is tangent to a distribution D if X(p) ∈
Dp for all p ∈ M. A distribution D is involutive if whenever X, Y are two
vector fields tangent to D, their Lie bracket [X, Y ] is also tangent.

Theorem 5.5.8 (Frobenius Theorem). A distribution D on a manifold M
is integrable ⇐⇒ it is involutive.
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x

y

z

Figure 5.3. A non-integrable plane distribution in R3.

Proof. If D is integrable, it is tangent to a foliation F . For every p ∈
M, a chart U → Rn compatible with F transforms the leaves of F into
horizontal leaves {xk+1 = ck+1, . . . , xn = cn} and hence it transforms D into
the constantly horizontal distribution Dp = {xk+1 = . . . = xn = 0}. If X, Y
are vector fields tangent to D, then read on U they are of the form

X =

k∑
i=1

X i
∂

∂xi
, Y =

k∑
i=1

Y i
∂

∂xi

and by Exercise 5.4.4 we get [X, Y ]i = 0 for all i > k . Therefore [X, Y ] is also
tangent to D and D is involutive.

Conversely, suppose that D is involutive. For every p ∈ M we pick a
chart ϕ : U → Rn that transforms p in 0 and Dp into the horizontal space
D0 = {xk+1 = . . . = xn = 0}. We can suppose that U is small enough so
that for every p ∈ U the chart ϕ transports Dp into a k-space Dϕ(p) that is
transverse to the vertical space V = {x1 = . . . = xk = 0}. Therefore we can
find a local frame on D that read on U is of the type

X1 =
∂

∂x1
+

n∑
i=k+1

X i1
∂

∂xi
, . . . , Xk =

∂

∂xk
+

n∑
i=k+1

X ik
∂

∂xi
.

Exercise 5.4.4 gives [Xi , Xj ]
l = 0 for all i , j, l = 1, . . . , k , hence [Xi , Xj ] is

tangent to the vertical space V at every point. Since D is involutive, the
vector field [Xi , Xj ] must be tangent to D and this implies that [Xi , Xj ] = 0.

We have discovered that X1, . . . , Xk are commuting vector fields and by
Proposition 5.4.10 we can transform them via a chart into the coordinate ones
Xi = ∂

∂xi
. In this chart the distribution is constant so Proposition 5.5.7 applies.

The proof is complete. �

As an example, the vector fields in R3

X1 =
∂

∂x
, X2 =

∂

∂y
+ x

∂

∂z
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Figure 5.4. A tubular neighbourhood of a curve on the plane.

do not commute since [X1, X2] = ∂
∂z . Therefore they generate a non-integrable

plane distribution in R3, drawn in Figure 5.3.

5.6. Tubular neighbourhoods

LetM be a compact smooth m-manifold. Among all open neighbourhoods
of a given point p ∈ M, the nicest ones are undoubtedly those that are diffeo-
morphic to Rm. These are certainly not unique, and there is no canonical way
to choose a preferred one; however, we will prove in this section that these
are unique up to isotopy, thus answering to Question 3.10.7.

This section is also aimed at showing that not only points, but any sub-
manifold N ⊂ M has a similar kind of nice open neighbourhood, called tubular
neighbourhood : the idea that we have in mind is that, for a curve on the
plane, a tubular neighbourhood should look like in Figure 5.4, and for a knot
K ⊂ R3 it should be a little open tube around K. As in Figure 5.4, a tubular
neighbourhood should be a bundle over N.

We prove here the existence and uniqueness (up to isotopy) of tubular
neighbourhoods for any submanifold N ⊂ M.

5.6.1. Definition. Let M be a m-manifold and N ⊂ M a n-submanifold.
A tubular neighbourhood for N is a vector bundle E → N together with an
embedding i : E ↪→ M such that:

• i |N = idN , where we identify N with the zero-section in E;
• i(E) is an open neighbourhood of N.

We usually call a tubular neighbourhood simply the image i(E) of E in N, but
keeping in mind that it has a bundle structure with base N.

The second hypothesis implies that dimE = dimM, so E must have rank
m − n. Recall that the normal bundle νN of N inside M has precisely that
rank, so it seems a promising candidate.

5.6.2. Existence. We now prove the existence of tubular neighbourhoods
in two steps: in the first we only consider the case M = Rm.

Proposition 5.6.1. Every submanifold N ⊂ Rm has a tubular neighbour-
hood with E = νN.
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Figure 5.5. To construct a tubular neighbourhood, we map the normal
bundle in Rn and pick a sufficiently small neighbourhood so that this map
is an embedding.

Proof. As shown in Example 4.3.7, we have

νN =
{

(p, v)
∣∣ p ∈ N, v ∈ νpN} ⊂ N × Rm ⊂ Rm × Rm.

We have identified νpN with TpN⊥. We now define the smooth map

f : νN −→ Rm,
(p, v) 7−→ p + v .

See Figure 5.5. We now study the differential df(p,0) at each p ∈ N. We have

T(p,0)νN = TpN ⊕ νpN

and with this identification the differential df(p,0) is just the identity. In par-
ticular, it is invertible, so f is an immersion at every point in N.

There is (exercise) a continuous positive function r : N → R such that f
is an embedding on B

(
p, r(p)

)
∩ νN, for every p ∈ N. Define

U =
{

(p, v) ∈ νN | ‖v‖ < 1
2 r(p)

}
.

One checks easily that f |U is an embedding. By shrinking νN as in Lemma
4.5.11 we can embed i : νN ↪→ U keeping N fixed, and the composition f ◦ i
is a tubular neighbourhood for N. �

We now turn to a more general case.

Theorem 5.6.2. Let M be a manifold. Every submanifold N ⊂ M has a
tubular neighbourhood with E = νN.

Proof. We may embed M in some Rk thanks to Whitney’s Theorem
3.11.8. Now for every p ∈ N we have the vector space inclusions

TpN ⊂ TpM ⊂ Rk .
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We identify νpN with the orthogonal complement of TpN inside TpM, so that

TpN ⊕ νpN = TpM ⊂ Rk .

We consider the smooth map

f : νN −→ Rk ,
(p, v) 7−→ p + v .

LetW be a tubular neighbourhood ofM in Rk , with bundle projection π : W →
M. We set U = f −1(W ) and define the map

f : U −→ M,

(p, v) 7−→ π(p + v).

As above, the differential is just the identity and we conclude that f ◦ i is a
tubular neighbourhood for N for some appropriate bundle shrinking i . �

5.6.3. Uniqueness. It is a remarkable and maybe surprising fact that, de-
spite their quite general definition, tubular neighbourhoods are actually unique
if one considers them up to isotopy.

We first clarify what we mean by “isotopy” here. Let M be a manifold
and N ⊂ M a submanifold. Two tubular neighbourhoods i0 : E0 → M and
i1 : E1 → M are isotopic if there are a bundle isomorphism ψ : E0 → E1 and
an isotopy F relating the embeddings i0 and i1 ◦ ψ that keeps N pointwise
fixed, that is such that F (p, t) = p for all p ∈ N and all t.

Note that each embedding Ft = F (·, t) is a tubular neighbourhood of N,
so F indeed describes a smooth path of varying tubular neighbourhoods.

Theorem 5.6.3. Let M be a manifold and N ⊂ M a submanifold. Every
two tubular neighbourhoods of N are isotopic.

To warm up, we start by proving the following.

Proposition 5.6.4. Every embedding f : Rn ↪→ Rn with f (0) = 0 is isotopic
to its differential df0 via an isotopy that fixes 0 at each time.

Proof. The isotopy for t ∈ (0, 1] is simply defined as follows:

F (x, t) =
f (tx)

t
.

We extend it to the time t = 0 by writing the first-order Taylor expansion

f (x) = h1(x)x1 + . . .+ hn(x)xn

where hi(0) = ∂f
∂xi

(0) for all i . For every t ∈ (0, 1] we get

F (x, t) = h1(tx)x1 + . . .+ hn(tx)xn
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and this expression makes sense also for t = 0, yielding the equality F (x, 0) =

df0(x). The proof is complete.1 �

We can now prove Theorem 5.6.3.

Proof. Let E0 and E1 be two tubular neighbourhoods of N. We see E1 as
embedded directly in M, and we want to modify the embedding f : E0 → M

via an isotopy so that matches it with E1.
We first prove that after an isotopy we may suppose that f (E0) ⊂ E1.

Indeed, Lemma 4.5.11 provides a shrinkage g : E0 → E0 with f ◦g(E0) ⊂ E1,
and we may construct an isotopy F between f and f ◦ g simply by writing
F (v , t) = f

(
(1− t)v + tg(v)

)
.

Now that f (E0) ⊂ E1, we can construct the isotopy F : E0 × [0, 1]→ M

by mimicking the proof of Proposition 5.6.4: we simply write

F (v , t) =
f (tv)

t
.

Here f (tv) is a particular vector in E1 and hence its division by t makes sense.
This is certainly an isotopy for t ∈ (0, 1], and we now extend it to t = 0

similarly to what we did above.
Consider a v ∈ E0, with p = π(v) ∈ M. The point p has an open

neighbourhood U above which E1 is trivialised as U × Rm−n. There is also a
smaller neighbourhood V ⊂ U and a r > 0 such that E0 is also trivialised as
V × Rm−n, and moreover

f
(
V × B(0, r)

)
⊂ U × Rm−n.

This holds by continuity. We may represent f on V × B(0, r) as a map

f (x, y) =
(
f1(x, y), f2(x, y)

)
.

We have f (x, 0) = (x, 0). Since f2(x, 0) = 0 we can write

f2(x, y) = h1(x, y)y1 + . . .+ hm−n(x, y)ym−n

with

hi(x, 0) =
∂f2
∂yj

(x, 0).

We can then represent F as

F (x, y , t) =

(
f1(x, ty),

1

t
f2(x, ty)

)
=
(
f1(x, ty), h1(x, ty)y1 + . . .+ hm−n(x, ty)ym−n

)
.

This map is well-defined and smooth also at t = 0. The map at t = 0 is

F0(x, y) = F (x, y , 0) =

(
x,
∂f2
∂y

(x, 0)y

)
.

1To be precise, we should substitute t with ρ(t) via a transition function ρ to get an
isotopy defined for all t ∈ R. We will tacitly assume this in other points in this book.
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It sends every fibre of E0 to a fibre of E1 via a linear map, which is in fact an
isomorphism because f is an embedding and hence

df(x,0) =

(
In ∗
0 ∂f2

∂y (x, 0)

)
is an isomorphism. Therefore F0 : E0 → E1 is a bundle isomorphism. �

We have proved that the tubular neighbourhood of a submanifold N ⊂ M
is unique up to isotopy and bundle isomorphisms: in particular, this shows that
every tubular neighbourhood of N is isomorphic to the normal bundle νN.

5.6.4. Embedding open balls. The uniqueness theorem for tubular neigh-
bourhoods is quite powerful, and it has some remarkable consequences already
when N is a point.

Proposition 5.6.5. Let M be a connected smooth n-manifold. Two em-
beddings f , g : Rn ↪→ M are always isotopic, possibly after pre-composing g
with a reflection in Rn.

Proof. We may see both f and g as tubular neighbourhoods of f (0) and
g(0). Since connected manifolds are homogeneous (Corollary 5.3.4), after
an ambient isotopy we may suppose that f (0) = g(0). By the uniqueness
of the tubular neighbourhood, the map f is isotopic to g ◦ ψ for some linear
isomorphism ψ : Rn → Rn. By Corollary 3.9.9 we may isotope ψ to be either
the identity or a reflection. �

The oriented case is more elegant:

Proposition 5.6.6. Let M be an oriented connected smooth n-manifold.
Two orientation-preserving embeddings f , g : Rn ↪→ M are always isotopic.

5.6.5. Hypersurfaces. Let M be a smooth manifold. A hypersurface in
M is a submanifold N ⊂ M of codimension 1.

Proposition 5.6.7. Let M be orientable. The normal bundle of a hypersu-
face N ⊂ M is trivial ⇐⇒ N is also orientable.

Proof. Fix an orientation for M. The normal bundle is a line bundle, and
it is trivial ⇐⇒ it has a nowhere-vanishing section.

If N is orientable, we fix an orientation. The two orientations of M and
N induce a locally coherent orientation on the normal line νNp for every p ∈
N, which distinguishes between “positive” and “negative” normal vectors, see
Exercise 2.6.2. Fix a Riemannian metric on νN, and pick all the positive
vectors of norm one: they form a nowhere-vanishing section.

On the other hand, if the normal bundle is trivial, the normal orientation
and the orientation of M induce an orientation on N. �
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5.6.6. Some applications. By combining the tubular neighbourhoods and
Whitney’s Embedding Theorem, we may now prove that every continuous map
between smooth manifolds is homotopic to a smooth map. Let M and N be
two smooth manifolds.

Proposition 5.6.8. Let f : M → N be a continuous map, whose restriction
to some (possibly empty) closed subset S ⊂ M is smooth. The map f is
continuously homotopic to a smooth map g : M → N with f (x) = g(x) for all
x ∈ S, via a homotopy that fixes S pointwise.

Proof. By Whitney’s Embedding Theorem 3.11.8 we may suppose that
N ⊂ Rn for some n. Let νN be a tubular neighbourhood of N. For every
p ∈ N we let r(p) be the distance from p to the boundary of the open set νN.

By Proposition 3.3.8 there is a smooth map h : M → Rn with |h(p) −
f (p)| < r(f (p)). The homotopy H(p, t) = (1 − t)f (p) + th(p) lies entirely
in νN and hence can be composed with the projection π : νN → N to give a
homotopy G(p, t) = π(H(p, t)) between f and the smooth g = π ◦ h. �

The proof shows also that g may be chosed to be arbitrarily close to f ,
but to express “closeness” rigorously we need to see N embedded in some Rn.

Corollary 5.6.9. Two smooth maps f , g : M → N are continuously homo-
topic ⇐⇒ they are smoothly homotopic.

Proof. Every continuous homotopy F : M × [0, 1] → N can be extended
to a continuous map F : M × R → N and then be homotoped to a smooth
map G : M × R→ N by keeping F |M×{0} and F |M×{1} fixed. �

5.7. Transversality

We now show that any two smooth maps (and in particular, submanifolds)
can be perturbed to cross nicely. The notion of “nice crossing” is surprisingly
simple to define and is called transversality.

5.7.1. Definition. Let f : M → N and g : W → N be two smooth maps
between manifolds, sharing the same target N.

Definition 5.7.1. We say that f and g are transverse if for every p ∈ M
and q ∈ W with f (p) = g(q) we have

Im dfp + Im dgq = Tf (p)N.

In this case we write f t g.

If M ⊂ N is a submanifold and f is the inclusion map, we say that g is
transverse to M and we write g t M. Similarly, if both f and g are inclusions,
we say that M is transverse to W and we write M t W .

Set m = dimM, w = dimW , and n = dimN. Note that if m + w < n

then f t g ⇐⇒ the maps f and g have disjoint images. See Figure 5.6.
If W = {q} is a point, then f t g ⇐⇒ g is a regular value for f .
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Figure 5.6. Transversality depends on the ambient space: the two curves
are transverse in R2, not in R3.

5.7.2. Fibre bundles. Here is a basic example.

Proposition 5.7.2. Let π : E → M be a fibre bundle. A map f : N → E is
transverse to a fibre Eq ⇐⇒ q is a regular value for π ◦ f .

Proof. Pick p ∈ N with f (p) ∈ Eq. We have Tf (p)Eq = ker dπf (p), so

Im dfp + Tf (p)Eq = Tf (p)E ⇐⇒ Im d(π ◦ f )p = Tπ(f (p))N.

The proof is complete. �

Exercise 5.7.3. A submanifoldW ⊂ E is the image of a section of a bundle
E → M ⇐⇒ it intersects transversely every fibre Eq in a single point.

5.7.3. Intersections. We now extend a theorem from the context of reg-
ular values to the wider one of transverse maps.

Proposition 5.7.4. Let M ⊂ N be a submanifold and g : W → N a smooth
map. If g t M then X = g−1(M) is a submanifold of codimension n −m.

Proof. Pick p ∈ X. We look only at a neighbourhood of q = g(p) ∈ M and
after taking a chart we may suppose that N = Rn, q = 0, and M = Rm ⊂ Rn
embedded as the first m coordinates.

Consider the projection π : Rn → Rn−m onto the last coordinates. Near p
we have X = (π ◦ g)−1(0) and by transversality π ◦ g is a submersion at p.
Therefore X is a submanifold in W , of codimension n −m. �

In particular, the intersection X = M ∩W of two transverse submanifolds
M,W ⊂ N is a submanifold with codimX = codimM + codimW . We may
write X = M t W . The intersection looks locally as expected:

Proposition 5.7.5. Every point p ∈ X has a neighbourhood U and a chart
ϕ : U → Rn that transforms U ∩M and U ∩W into the linear subspaces of the
first m and last w coordinates.

Proof. We work locally, so we can suppose N = Rn and p = 0. If dimX =

0, the map f : M ×W → Rn, (x, y) 7→ x + y has df(0,0) = id and hence is a
local diffeomorphism, whose local inverse furnishes the desired chart.
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In general, we follow a different proof. Locally, we may suppose that M =

Rm ⊂ Rn is the space of the first m coordinates. Then we can straighten N
keeping M and all its affine translates fixed: details are left as an exercise. �

5.7.4. Perturbations. We now show that two maps can always be per-
turbed to be transverse. We will use tubular neighbourhoods as an essential
tool: we start with the following case.

Lemma 5.7.6. Let π : E → M be a vector bundle and f : N → E a smooth
map. There is a section s : M → E transverse to f .

Proof. The product case E = M × Rk is particularly simple. Consider a
constant section s(p) = v with v ∈ Rk . We know that s t f ⇐⇒ v is a
regular value for the map π2 ◦ f where π2 : M × Rk → Rk is the projection
onto the second factor. By the Sard Lemma, there is a regular value v .

We have covered the product case and we now prove the lemma in general.
Exercise 4.5.12 furnishes a bundle π′ : E′ → M such that E⊕E′ → M is trivial.
We consider E ⊕ E′ as a bundle over E, and construct the pullback bundle
f ∗(E ⊕ E′)→ M and its induced map F : f ∗(E ⊕ E′)→ E ⊕ E′.

Since E ⊕ E′ → M is trivial, we know by the previous discussion that
there is a section s : M → E ⊕ E′ transverse to F . We get the commutative
diagram:

f ∗(E ⊕ E′) F //

π

��

E ⊕ E′

π

��

M
s
oo

s ′{{
N

f
// E

It only remains to prove that s ′ = π ◦ s is transverse to f . Suppose that
f (p) = s ′(q) for some p ∈ N and q ∈ M. Now s(q) = (f (p), v) for some v in
the fibre of f (p), and we also have F (p, v) = s(q). By hypothesis F t s so

Im dF(p,v) + Im dsq = T(f (p),v)(E ⊕ E′).

By projecting with the differential of π we get

Im dfp + Im ds ′q = Tf (p)E.

Therefore f t s ′. The proof is complete. �

We immediately get the following. Let M,N, and W be some manifolds.

Corollary 5.7.7. Let i : M ↪→ N be an embedding and f : W → N a smooth
map. There is an embedding j : M ↪→ N isotopic to i and transverse to f .

Proof. Let νM be a tubular neighbourhood of i(M). By the previous
lemma there is a section j : M → νM transverse to f , isotopic to i . �
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If M is compact we can promote the isotopy between i and j to an am-
bient isotopy of N, as usual. (Actually, it is possible to construct an ambient
isotopy between two sections of a tubular neighbourhood even without this
compactness hypothesis.) Here is a case of a particular interest:

Corollary 5.7.8. Any two submanifolds N,W ⊂ M can be made transverse
after modifying the embedding of anyone of them by an isotopy.

We can also prove a similar theorem when both maps f and g are arbitrary.
Of course we must replace “isotopy” by “homotopy” since these maps are
arbitrary and need not be embeddings.

Corollary 5.7.9. Let f : M → N and g : W → N be any two smooth maps
between manifolds. The map g is homotopic to a map h transverse to f .

Proof. Consider the commutative diagram:

M ×W
f1 //

π
��

N ×W
π
��

W
g1oo

g
{{

M
f

// N

where f1(p, q) =
(
f (p), q

)
, g1(q) =

(
g(q), q

)
, and each π is a projection onto

the first factor. The map g1 is an embedding and can hence be isotoped to
a map h1 that is transverse to f1. By composing with π we get a homotopy
between g and a map h = π ◦ h1 that is transverse to f . �

5.8. Manifolds with boundary

We introduce here a variation of the definition of smooth manifold that
allows the presence of some particular boundary points. This is a very natural
notion and is present everywhere in differential topology and geometry.

Most of the definitions and theorems about smooth manifolds also apply
to manifolds with boundary, with appropriate modifications.

5.8.1. Definition. Consider the upper half-space

Hn = {xn ≥ 0}

in Rn. Its boundary is the horizontal hyperplane ∂Hn = {xn = 0}, while its
interior is the open subset Hn \ ∂Hn = {xn > 0}.

We now redefine the notions of charts and atlases in a more general context
that allows the presence of boundary points: everything will be like in Section
3.1.1, only with Hn instead of Rn.

Let M be a topological space. A H-chart is a homeomorphism ϕ : U → V

from an open set U ⊂ M onto an open set V ⊂ H. A smooth H-atlas in M
is a set {ϕi} of H-charts with ∪Ui = M such that the transition maps ϕi j are
smooth where they are defined. Note that the domain of ϕi j is an open subset
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of Hn and may not be open in Rn, so the correct notion of smoothness is that
stated in Definition 3.3.4.

Definition 5.8.1. A smooth manifold with boundary is a topological space
M equipped with a smooth H-atlas.

We will drop the H from the notation. As in Section 3.1.1, two compatible
atlases are meant to give the same smooth structure.

5.8.2. The boundary. Let M be a smooth manifold with boundary. The
points p ∈ M that are sent to ∂Hn via some chart form the boundary ∂M.
There is no possible ambiguity here, since if one chart sends p inside ∂Hn,
then all charts do (exercise).

The boundary ∂M is naturally a (n − 1)-dimensional smooth manifold
without boundary. Indeed by restricting the charts to ∂M we get an atlas for
∂M with values onto some open sets of the hyperplane ∂Hn, that we identify
with Rn−1.

Example 5.8.2. Every open subset U ⊂ Hn is a smooth manifold with
boundary ∂U = U ∩ ∂Hn. The atlas consists of just the identity chart.

The notions of smooth maps and diffeomorphisms extend to this new
boundary context without any modification.

5.8.3. Regular domains. We now describe one important source of ex-
amples. Let M be a smooth n-manifold without boundary.

Definition 5.8.3. A regular domain is a subset D ⊂ M such that for every
p ∈ D there is a chart ϕ : U → V with p ∈ U and V ⊂ Rn that sends U ∩ D
onto an open subset of Hn.

Every regular domain D has a natural structure of manifold with boundary,
obtained by taking as an atlas all the charts ϕ of this type.

Exercise 5.8.4. For every a < b, the closed segment [a, b] is a domain in
R and hence a manifold with boundary consisting of the points a and b.

Here is a concrete way to construct regular domains:

Proposition 5.8.5. Let M be a manifold without boundary and f : M → R
a smooth function. If y0 is a regular value, then D = f −1(−∞, y0] is a regular
domain with ∂D = f −1(y0).

Proof. Consider a point p ∈ D. If f (p) < y0, the point p has an open
neighbourhood fully contained in D that can be sent inside the interior of Hn

via some chart.
If f (p) = y0, by Proposition 3.8.10 there are charts ϕ : U → Rn and

ψ : W → R with p ∈ U and f (U) ⊂ W such that ψ ◦ f ◦ ϕ−1(x1, . . . , xn) =

xn and we may also require that ϕ(p) = 0 and ψ is orientation-reversing.
Therefore ϕ(U ∩D) = Hn. �
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Corollary 5.8.6. The unit disc

Dn =
{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

is a domain in Rn with boundary ∂Dn = Sn−1.

Proof. We pick f (x) = ‖x‖2 and get Dn = f −1(−∞, 1]. Every non-zero
value is regular. �

Remark 5.8.7. The square [−1, 1]× [−1, 1] is not a regular domain in R2,
because it has corners. More generally, the product M × N of two manifolds
with boundary is not a manifold with boundary in general, because if ∂M 6= 0

and ∂N 6= ∅ then some corners arise. However, if ∂M = ∅ then M × N is
naturally a manifold with boundary and

∂(M × N) = M × ∂N.

For instance, the cylinder S1 × [−1, 1] is a surface with boundary, and the
boundary consists of the two circles S1 × {±1}. More generally Sm ×Dn is a
manifold with boundary and

∂
(
Sm ×Dn

)
= Sm × Sn−1.

5.8.4. Tangent space. The definition of tangent space via derivations
also extends verbatim to manifolds with boundary. For every point p ∈ Hn,
included those on the boundary, we get TpHn = Rn. For a general n-manifold
M with boundary, the space TpM is a n-dimensional vector space at every
p ∈ M, included the boundary points.

At every boundary point p ∈ ∂M the tangent space Tp∂M is naturally a
hyperplane inside TpM, that divides TpM into two components, the “interior”
and “exterior” tangent vectors, according to whether they point towards the
interior of M or the exterior. This subdivision between interior and exterior is
obvious in Hn and transferred to M unambiguously via charts.

As in the boundaryless case, every smooth map f : M → N induces a
differential dfp : TpM → Tf (p)N at every point p ∈ M. Note that a smooth
map f may send a boundary point to an interior point, or an interior point to
a boundary point.

5.8.5. Orientation. One nice feature of manifolds with boundary is that
an orientation on M induces one on its boundary ∂M.

Let M be an oriented manifold with boundary of dimension n ≥ 2. Recall
that an orientation on M is a locally coherent way of assigning an orientation
to all the tangent spaces TpM. For every p ∈ ∂M, we choose an exterior
vector v ∈ TpM and note that

TpM = Span(v)⊕ Tp∂M.

With this subdivision, the orientation on TpM induces one on Tp∂M: we
say that a basis v2. . . . .vn for Tp∂M is positive ⇐⇒ the basis v , v2, . . . , vn is
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Figure 5.7. The canonical orientation on the disc (given by the canonical
basis e1, e2) induces the counterclokwise orientation on the boundary circle
(left). We may write conveniently the orientations on a surface and on a
curve using (curved) arrows (right)

positive for TpM. By looking on a chart we see that this is a locally coherent
assignment that does not depend on the choice of the exterior vector v .

We now consider the one-dimensional case, that is slightly different. First,
we define an orientation on a point to be the assignment of a sign ±1. When
not mentioned, a point is equipped with the +1 orientation: points are in fact
the only manifolds that have a canonical orientation.

If M1 is an oriented 1-manifold, we orient every boundary point p ∈ ∂M1

as 1 or −1 depending on whether the vectors pointing outside in the line TpM
are positive or negative.

Every domain in Rn is canonically oriented by the canonical basis e1, . . . , en,
so for instance the disc Dn has a canonical orientation. This canonical orien-
tation induces an orientation on the boundary sphere Sn−1. The case n = 2

is shown in Figure 5.7.

5.8.6. Immersions, embeddings, submanifolds. Let M,N be manifolds
with boundary. We define an immersion as usual as a map f : M → N

with injective differentials, and then an embedding as an injective immersion
f : M → N that is a homeomorphism onto its image.

Definition 5.8.8. Let N be a manifold. A submanifold is the image of an
embedding f : M ↪→ N.

The reader should note that, as opposite to Definition 3.7.1, we are not
saying that a submanifold should look locally like some simple model. This is
by far not the case here: Figure 5.8 shows that many different kinds of local
configurations arise already when one embeds a segment in the half-plane H2.
In higher dimensions things may also get more complicated.

In some cases, we may require the submanifold to satisfy some require-
ments. For instance, a submanifold M ⊂ N is neat if

∂M = M ∩ ∂N
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Figure 5.8. Different kinds of compact 1-dimensional submanifolds in-
side the half-plane H2.

and moreoverM goes transversely (not tangently) to ∂N, that is every p ∈ ∂M
has an open neighbourhood U ⊂ N and a chart ϕ : U → Hn that sends U ∩M
into the subspace Rm ⊂ Rn formed by the last m coordinates.

5.8.7. Homotopy, isotopy, ambient isotopy. The notions of homotopy,
isotopy, and ambient isotopy also extend verbatim to manifolds with boundary.

Some important theorems also hold, with the same proofs, for manifolds
with boundary: ifM is a manifold with boundary, it may be embedded in Rn via
some proper map (Theorem 3.11.8), and if M is compact every two isotopic
embeddings f , g : M → N are also ambiently isotopic, for every N without
boundary (Theorem 5.3.3).

5.8.8. Fibre bundles. The theory of bundles extends to manifolds with
boundary with minor obvious modifications. On a fibre bundle E → M, we
can allow M to have boundary, and in that case the trivialising neighborhoods
will be diffeomorphic to open subsets of Hn, or we can allow the fibre F to
have boundary; however, we should not allow both M and F to have boundary,
because some corners would arise and E would not be a smooth manifold.

We now introduce an important case where the fibre F is a disc.

5.8.9. Unit disc bundle. Let E → M be a vector bundle over a manifold
M without boundary. Fix a Riemannian metric g for E. The unit disc bundle
is the submanifold with boundary

D(E) =
{
v ∈ E

∣∣ ‖v‖ ≤ 1
}
.

The projection π restricts to a projection π : D(E) → M and one sees as in
Proposition 4.5.7 that this is a disc bundle (a fibre bundle with F = Dk) and
that it does not depend on g up to isotopy (that is, up to an isomorphism of
E → M that is isotopic to the identity).

The boundary of D(E) is the unit sphere bundle S(E). The interior of
D(E) may be given a bundle structure isomorphic to E → M.

5.8.10. Closed tubular neighbourhoods. Let M be a m-manifold and
N ⊂ int(M) be a compact submanifold without boundary. Since N avoids
∂M, it has a tubular neighbourhood νN ⊂ M.

Definition 5.8.9. A closed tubular neighbourhood of N in M is the unit
disc bundle of any tubular neighbourhood of N.
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To better distinguish a tubular neighbourhood from a closed tubular neigh-
bourhood, we can call the first an open tubular neighbourhood. We will use the
notation νN for both; note that the interior of a closed tubular neighbourhood
may in turn be given the structure of an open tubular neighbourhood, so one
can switch easily from open to closed and vice-versa.

The closed tubular neighbourhood of a compact submanifold is also com-
pact: for this reason it is sometimes better to work with closed tubular neigh-
bourhoods; for instance, we may promote isotopy to ambient isotopy:

Proposition 5.8.10. A compact submanifoldM ⊂ int(N) without boundary
has a unique closed tubular neighbourhood up to ambient isotopy in N.

Proof. We already know that tubular neighbourhoods are isotopic, and
hence also the closed tubular neighbourhoods are. Since these are compact,
the isotopy may be promoted to an ambient isotopy. �

5.8.11. Collar. Let M be a manifold with boundary, and N be the union
of some connected components of ∂M. A collar of N in M is an embedding

i : N × [0, 1) ↪−→ M

such that i(p, 0) = p for every p ∈ N. The collars should be interpreted as
the tubular neighbourhoods of the boundary.

Proposition 5.8.11. If N is compact, it has a unique collar up to isotopy.

The proof is the same as that for tubular neighbourhoods, and we omit it.
We can define analogously a closed collar to be an embedding of N× [0, 1] as
above; a closed collar is unique also up to ambient isotopy of N.

5.8.12. Discs. Let M be a n-manifold. We define a disc in M to be an
embedding f : Dn ↪→ int(M). As an example, a closed tubular neighbourhood
of a point is a disc. We can now prove this remarkable theorem.

Theorem 5.8.12 (The Disc Theorem). Let M be a connected smooth n-
manifold. Two discs f , g : Dn ↪→ M are always ambiently isotopic, possibly
after pre-composing g with a reflection.

Proof. Since Bn = int(Dn) is diffeomorphic to Rn, the restrictions f |Bn
and g|Bn are isotopic by Proposition 5.6.5. Now we can shrink isotopically f
and g to the maps f ′(v) = f ( v2 ) and g′(v) = g( v2 ) and deduce that f and
g are also isotopic. Since Dn is compact, isotopy is promoted to ambient
isotopy. �

With a little abuse we sometimes call a disc the image of an embedding
f : Dn ↪→ M. With this interpretation, which disregards the parametrisation,
two discs are always ambiently isotopic. The reader should appreciate how
powerful is this theorem, already in the only apparently simpler case M = Rn,
for instance in dimension n = 2.

The Disc Theorem was proved by Palais in 1960.
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5.9. Cut and paste

Manifolds with boundary are nice because we may assemble them like bricks
to construct new manifolds. We now introduce here some “cut and paste”
operations of this kind.

5.9.1. Dig holes. LetM be a connected smooth n-manifold, possibly with
boundary. The simplest topological manipulation we can make on M is to dig
a hole: we pick a disc D ⊂ int(M) and we remove its interior, that is

M ′ = M \ int(D).

The space M ′ is a new manifold with boundary, that has the same boundary
components as M, plus one sphere ∂D.

Proposition 5.9.1. The manifold M ′ does not depend (up to diffeomor-
phisms) on the chosen disc D.

Proof. LetM ′1 andM
′
2 be obtained by removing two distinct discsD1, D2 ⊂

int(M). By the Disc Theorem, there is a diffeomorphism of M sending D1 to
D2, that restricts to a diffeomorphism M ′1 → M ′2. �

Example 5.9.2. If we dig a hole on Sn we get a manifold diffeomorphic
to Dn. Indeed, as a disc D ⊂ Sn we choose the lower hemisphere, and after
digging along D we are left with the upper hemisphere, diffeomorphic to Dn.

Exercise 5.9.3. If we dig a hole on Dn we get a manifold diffeomorphic to
Sn−1 × [−1, 1].

Exercise 5.9.4. Let M ′ be obtained by digging a hole from a connected M
of dimension n ≥ 3. We have π1(M ′) ∼= π1(M).

Hint. Use Van Kampen. �

A similar operation, called puncturing, consists of removing a single point
from M. This operation creates no boundary component, but it destroys the
compactness of M, if present.

Exercise 5.9.5. Let M1 and M2 be obtained from a connected manifold M
without boundary, by digging a hole and puncturing, respectively. Prove that
M2 is diffeomorphic to the interior of M1.

We now turn to some more sophisticated topological manipulations.

5.9.2. Cut along a two-sided hypersurface. Let M be a smooth mani-
fold, possibly with boundary, and N ⊂ int(M) be a submanifold without bound-
ary. We say that N is two-sided if its normal bundle νN is trivial: for instance,
this holds if both M and N are orientable, as asserted in Proposition 5.6.7.
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Figure 5.9. How to cut a manifold along a two-sided hypersurface.

If N is two-sided, we can cut M along N as in Figure 5.9. We identify a
closed tubular neighbourhood νN ⊂ M of N with N × [−1, 1], and we replace
it with the disjoint union

N × [−1, 0]
⊔
N × [0, 1].

We call M ′ the resulting space. The space M ′ is naturally a smooth manifold
with boundary: as an atlas, we take the union of the compatible atlases of
M \ N, N × (−1, 0], and N × [0, 1). The smooth manifold M ′ has the same
boundary components as M, plus two more, both diffeomorphic to N. The
manifolds M and M ′ can be disconnected.

Proposition 5.9.6. The smooth manifold M ′ depends (up to diffeomor-
phisms) only on M and N.

Proof. The tubular neighbourhood νN is unique up to ambient isotopy in
M, so in particular up to a diffeomorphism ofM, that would extend toM ′. �

Example 5.9.7. By cutting S1 along a point we get a compact segment.
By cutting Sn along its equator Sn−1 we get two discs.

If M is connected, the new manifold M ′ may be connected or not, depend-
ing on whether the complement M \ N of N is connected or not. In the first
case, we say that N is non-separating, and separating in the second.

5.9.3. Paste along the boundary. Pasting is of course the inverse of
cutting. Let M be a (possibly disconnected) manifold, let N1, N2 be two
boundary components of M, and ϕ : N1 → N2 be a diffeomorphism. We now
define a new manifold M ′ obtained by pasting M along ϕ.

A naïve construction would be to define M ′ as M/∼ where ∼ is the equiv-
alence relation that identifies p ∼ ϕ(p) for all p ∈ N1. However, it is not
straightforward to assign a smooth atlas to M/∼. So we abandon this route,
and we define M ′ instead by overlapping open collars as in Figure 5.10.

Here are the details. We identify two disjoint closed collars of N1 and N2

in M with N1× [0, 1] and N2× [0, 1], where Ni = Ni×{0}. The manifold M ′ is
obtained from M by first removing N1 and N2, and then identifying the open
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Figure 5.10. How to paste two boundary components N1 and N2 via
a diffeomorphism ϕ. To get a new smooth manifold, we pick two collars
and we make them overlap.

subsets N1 × (0, 1) and N2 × (0, 1) via the map Φ: (p, t) 7→
(
ϕ(p), 1 − t

)
.

The smooth structure on M ′ is now easily induced by that of M.

Proposition 5.9.8. The manifold M ′ depends (up to diffeomorphism) only
on M and on the isotopy class of ϕ.

Proof. Different closed collars are ambient isotopic and hence produce
diffeomorphic pasted manifolds M ′. If ϕ1 and ϕ2 are isotopic, the resulting
pasted manifolds M ′1 and M ′2 are diffeomorphic: this is left as an exercise. �

Remark 5.9.9. Suppose that M is oriented. Both N1 and N2 inherit an
orientation. If ϕ is orientation-reversing, then Φ is orientation-preserving and
hence the orientation of M induces naturally an orientation on M ′. If you want
orientations to extend, you need to glue along orientation-reversing maps.

5.9.4. Doubles. Here is a simple kind of pasting that applies to every
manifold with boundary.

The double DM of a manifold M with boundary is obtained by taking two
identical copies M1,M2 of M and defining ϕ : ∂M1 → ∂M2 as the map that
sends every point in ∂M1 to its corresponding point in ∂M2. Then DM is
obtained by pasting M1 tM2 along ϕ.

The doubled manifold DM has no boundary. IfM is connected or compact,
then DM also is.

Example 5.9.10. The double of Dn is Sn. The double of a cylinder S1 ×
[0, 1] is a torus S1 × S1. What is the double of a Möbius strip?

5.9.5. Connected sum. Let M and M ′ be two connected oriented n-
manifolds, possibly with boundary. We now define a new oriented manifold
M#M ′ called the connected sum of M and M ′.

The construction goes as follows. Let D ⊂ int(M) and D′ ⊂ int(M ′) be
two arbitrary discs, and ϕ : D → D′ an orientation-reversing diffeomorphism
between them. We first remove fromM andM ′ the interiors of D and D′, thus
digging two holes and creating two new spherical boundary components ∂D
and ∂D′. Then, we paste these new boundary components altogether along
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M M'

M#M'

Figure 5.11. The connected sum of two compact surfaces.

the diffeomorphism ϕ. Since ϕ is orientation-reversing, the new manifold
M#M ′ is oriented. You may visualise an example in Figure 5.11.

Proposition 5.9.11. The smooth oriented manifold M#M ′ depends (up to
diffeomorphisms) only on M and M ′.

Proof. By the Disc Theorem 5.8.12 any choice for the discs and ϕ would
be equivalent up to self-diffeomorphisms of M and M ′. �

Proposition 5.9.12. The connected sum is commutative and associative,
and Sn is the neutral element. That is, there are diffeomorphisms

M#N ∼= N#M, M#(N#P ) ∼= (M#N)#P, M#Sn ∼= M.

Proof. Commutativity is obvious. Associativity holds because we can sep-
arate the discs using isotopies, so that both connected sums can be performed
simultaneously.

To construct M#Sn, we may choose D′ ⊂ Sn to be a hemisphere. In that
way, the connected sum consists in digging the interior of D ⊂ M from M,
and then re-attaching another open ball Sn \ D′ along the same map ϕ. In
this way you get M back. �

Warning 5.9.13. Everything looks easy with discs and connected sums,
but some care is needed here. We warn the reader that it is not true that
by glueing two discs D and D′ along any orientation-reversing diffeomorphism
ϕ : ∂D → ∂D′ we get a manifold diffeomorphic to Sn. We only get a manifold
homeomorphic to Sn, but sometimes not diffeomorphic when n ≥ 7.

This strange phenomenon does not affect our construction, because we
have wisely used only diffeomorphisms ϕ between spheres that are restrictions
of diffeomorphisms of discs. The point is that in dimension n ≥ 7 there are
diffeomorphisms of spheres that do not extend to diffeomorphisms of discs.
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5.9.6. Compact surfaces. Enough for the theory, we need examples.
One-dimensional manifolds are not very exciting, so we turn to surfaces. We
already know some compact connected surfaces:

S2, RP2, D2, S1 × [0, 1], S1 × S1, M

whereM is the compact Möbius strip, considered with its (connected!) bound-
ary. Can we add more surfaces to this list?

Definition 5.9.14. The genus-g surface Sg is the connected sum

Sg = T# . . .#T︸ ︷︷ ︸
g

of g copies of the torus T = S1 × S1.

By convention, the surface of genus zero S0 is the sphere S2, and that of
genus one S1 is the torus. We have

Sg#Sh ∼= Sg+h.

Figure 5.11 shows that S2#S1
∼= S3.



CHAPTER 6

Differential forms

In a smooth manifold there is no notion of distance between points, angle
between intersecting curves, volume of domains, etc. To get all these natural
geometric concepts, we need to equip the manifold with an additional struc-
ture: as we will see in the next chapters, it suffices to choose a metric tensor
to recover them all. Here we study a somehow weaker, and quite different,
structure called differential form.

A differential may be used to talk about volumes, but not yet about dis-
tances or angles. This apparently weaker structure has however some impor-
tant applications that go beyond volumes and integration: it may be manipu-
lated quite easily – for instance, it can be pulled back via any smooth maps,
whereas metric tensors cannot – and can also be “differentiated” in a very
natural way. This differentiation will lead in the next chapter to a rich and
beautiful algebraic theory called De Rham cohomology.

6.1. Differential forms

We introduce the differential k-forms.

6.1.1. Definition. Let M be a smooth n-manifold. A differential k-form
(shortly, a k-form) is a section ω of the alternating bundle

Λk(M)

over M, see Section 4.3.4. In other words, for every p ∈ M we have an
antisymmetric bilinear form

ω(p) : TpM × · · · × TpM︸ ︷︷ ︸
k

−→ R

that varies smoothly with p ∈ M.

Example 6.1.1. A 1-form is a section of Λ1(M) = T ∗M, that is a field of
covectors. As an important example, the differential df of a smooth function
f : M → R is a 1-form, see Section 4.3.2. This example is not exhaustive: we
will see that some 1-forms are not the differential of any function.

By Corollary 2.4.10, every k-form with k > n is necessarily trivial. The
vector space of all the k-forms on M is denoted by

Ωk(M) = Γ(ΛkM).

137
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6.1.2. Exterior product. Recall from Section 2.4.3 that the exterior al-
gebra Λ∗(V ) of a real vector space V is equipped with the exterior product ∧.
Let now ω and η be a k-form and a h-form on a manifold M. Their exterior
product is the (k + h)-form ω ∧ η defined pointwise by setting

(ω ∧ η)(p) = ω(p) ∧ η(p).

As in Section 2.4.3, the space

Ω∗(M) =
⊕
k≥0

Ωk(M)

is an anticommutative associative algebra, that is

ω ∧ η = (−1)hkη ∧ ω

and if k is odd we get

ω ∧ ω = 0.

This holds in particular for every 1-form ω.

6.1.3. In coordinates. As usual, differential forms may be written quite
conveniently in coordinates.

Let U ⊂ Rn be an open set. Recall that for some notational reasons it is
preferable to denote the canonical basis of Rn by

∂

∂x1
, . . . ,

∂

∂xn
.

For similar reasons, we will now write the dual basis of (Rn)∗ = Rn as

dx1, . . . , dxn.

We have seen in Section 2.4.4 that the vector space Λk(Rn) has dimension(
n
k

)
and a basis consists of all the elements

dx i1 ∧ · · · ∧ dx ik

where 1 ≤ i1 < . . . < ik ≤ n vary. Therefore we can write any k-form ω in U
in the following way:

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

where fi1,...,ik is some smooth function on U. The notation is appropriate
because we can also interpret dx i as the differential of the linear map x 7→ xi .

Example 6.1.2. The differential of a function f : U → R is

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn.
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Example 6.1.3. The following are 1-forms in R3:

x2dy − xeydz, xdx + ydy + zdz

and the following are 2-forms:

xdx ∧ dy + x3dy ∧ dz, xdy ∧ dz − ydx ∧ dz + zdx ∧ dz.

Remark 6.1.4. Every n-form in U ⊂ Rn is of type

f dx1 ∧ · · · ∧ dxn

for some smooth function f : U → R. Therefore n-forms on open sets U ⊂ Rn
are somehow like smooth functions on U, but one should not go too far with
this analogy, because forms and functions are intrinsically different objects!

It is sometimes useful to write a form as a linear combination of elements
dx i1 ∧ · · · ∧ dx ik without the hypothesis i1 < . . . < ik . One has to take care
that the notation is not unique in this case, for instance

ω = dx ∧ dy = −dy ∧ dx =
1

2
dx ∧ dy −

1

2
dy ∧ dx.

It suffices to keep in mind the following relations:

dx i ∧ dx j = −dx j ∧ dx i , dx i ∧ dx i = 0.

Example 6.1.5. With these rules in mind, it is also easy to write the wedge
product of two differential forms. For instance:

(xz2dy + xdz) ∧ (eydx ∧ dz) = −xeyz2dx ∧ dy ∧ dz.

6.1.4. Change of coordinates. On a chart, every form ω may be ex-
pressed uniquely as a linear combination

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

If we use another chart, with variables x̄ , we get

ω =
∑

i1<···<ik

f̄i1,...,ikdx̄
i1 ∧ · · · ∧ dx̄ ik

for some new functions f̄ . How can we pass from one expression to the other?
The differentials dx i are elements of (Rn)∗ and hence change contravariantly,
that is we have

dx̄ i =
∂x̄ i

∂x j
dx j .

The notation dx i is designed to help us to write this equation correctly. We can
then plug this expression in the linear combination to pass from one notation
to the other.
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Example 6.1.6. Consider the 2-form ω = zdx ∧ dy on the open set U =

{x, y , z > 0}. We change the coordinates via x = x̄2, y = ȳ + z̄ , z = ȳ . Then

dx = 2x̄d x̄ , dy = dȳ + dz̄ , dz = dȳ

and by substituting we see that ω in the new coordinates is read as

ω = (ȳ)(2x̄d x̄) ∧ (dȳ − dz̄) = 2x̄ ȳ d x̄ ∧ dȳ − 2x̄ ȳ d x̄ ∧ dz̄ .

An interesting case occurs when we consider n-forms in a n-dimensional
manifold. Here on a chart we have

ω = f dx1 ∧ · · · ∧ dxn

and Proposition 2.4.15 yields the following simple formula:

(9) ω = f det

(
∂x i

∂x̄ j

)
dx̄1 ∧ · · · ∧ dx̄n.

This equality is very much similar to the change of coordinates formula for
integration given in Section 1.3.8, and this is in fact the most important feature
of differential forms: they can be meaningfully integrated on manifolds, as we
will soon see.

6.1.5. Support. Let M be a n-manifold and ω be a k-form on M. We
define the support of ω to be the closure in M of the set of all the points p
such that ω(p) 6= 0. Using bump functions, one can easy construct plenty of
non-trivial k-forms in Rn having compact support.

Moreover, for every k-form ω on M and every open covering Ui of M, we
can pick a partition of unity ρi subordinate to the covering and write

ω =
∑
i

ρiω.

The support of ρiω is contained in Ui for every i , and this possibly infinite sum
makes sense because it is finite at every point p ∈ M. One can in this way
write every k-form ω as a (possibly infinite, but locally finite) sum of compactly
supported k-forms ρiω. If ω is already compactly supported, the sum is finite.

6.1.6. Pull-back. When we introduced tensors in Chapter 2, the roles
of covariance and contravariance were somehow interchangeable, because one
can switch the spaces V and V ∗ thanks to the canonical isomorphism V = V ∗∗.
This symmetry is now broken when we talk about manifolds and tensor fields,
and it turns out that contravariant tensor fields are sometimes preferable.

We explain this phenomenon. Let f : M → N be any smooth map between
two manifolds. We have already alluded to the fact that a covariant tensor field
like a vector field cannot be transported along f in general, neither forward from
M to N nor backwards from N to M. On the other hand, every contravariant
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tensor field α of some type (0, k) on N may be transported back to a tensor
field f ∗α of the same type (0, k) on M, by setting

(10) f ∗α(p)(v1, . . . , vk) = α
(
f (p)

)(
dfp(v1), . . . , dfp(vk)

)
for every p ∈ M and every v1, . . . , vk ∈ TpM. The tensor field f ∗α is the
pull-back of α along f . If α is (anti-)symmetric, then f ∗α also is.

In particular, the pull-back of a k-form ω in N is a k-form f ∗ω in M. We
get a morphism of algebras

f ∗ : Ω∗(N) −→ Ω∗(M).

In particular, we have

(11) f ∗(ω ∧ η) = f ∗(ω) ∧ f ∗(η).

As usual, we can describe this operation in coordinates: let f : U → V be a
smooth map between two open subsets U ⊂ Rm and V ⊂ Rn, and

ω =
∑

i1<...<ik

gi1,...,ikdx
i1 ∧ . . . ∧ dx ik

be a k-form in V . We get

f ∗ω =
∑

i1<...<ik

(
gi1,...,ik ◦ f

)
dfi1 ∧ · · · ∧ dfik

where fi : U → R is the i-th coordinate of f and dfi its differential. This
equality is proved (exercise) by showing that it satisfies (10), using (11).

Example 6.1.7. Consider f : R3 → R2, f (x, y , z) = (xy , yz) and the 2-
form ω = xdx ∧ dy . We get

f ∗ω = xydf1 ∧ df2 = xy(ydx + xdy) ∧ (zdy + ydz)

= xy2zdx ∧ dy + xy3dx ∧ dz + x2y2dy ∧ dz.

6.2. Integration

We now show that k-forms are designed to be integrated along k-submanifolds.

6.2.1. Integration. Consider a n-form

ω = f dx1 ∧ · · · ∧ dxn

on some open subset V ⊂ Rn, having compact support. We define the integral
of ω over V simply and naïvely as∫

V

ω =

∫
V

f .

Let now ψ : V → V ′ be an orientation-preserving diffeomorphism between open
sets in Rn, and denote by ψ∗ω = (ψ−1)∗ω the n-form transported along ψ.
Here is the crucial property that characterises differential forms:
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Proposition 6.2.1. We have∫
V

ω =

∫
V ′
ψ∗ω.

Proof. Combine (9), where det > 0 since ψ is orientation-preserving, with
the change of coordinates law for multiple integrals, see Section 1.3.8. �

It is really important that ψ be orientation-preserving: if ψ is orientation-
reversing, then a minus sign appears in the equality. Encouraged by this result,
we now want to extend integration of forms from open subsets of Rn to
arbitrary oriented manifolds.

Let M be an oriented n-manifold and ω be a n-form over M with compact
support. We now define the integral of ω over M, that is a number∫

M

ω

as follows. If the support of ω is fully contained in the domain U of a chart
ϕ : U → V , then we set ∫

M

ω =

∫
V

ϕ∗ω.

The definition is well-posed because it is chart-independent thanks to
Proposition 6.2.1. More generally, if the support of ω is not contained in
the domain of any chart, we pick an oriented atlas {ϕi : Ui → Vi} on M and a
partition of unity ρi subordinated to the covering Ui . We decompose ω as a
finite sum ω =

∑
i ρiω and define∫

M

ω =
∑
i

∫
M

ρiω.

Proposition 6.2.2. This definition is well-posed.

Proof. Let ϕ′j : U ′j → V ′j be another compatible oriented atlas and ρ′j a
partition of unity subordinated to U ′j . For every i we find∫

M

ρiω =

∫
M

(∑
j

ρ′j

)
ρiω =

∑
j

∫
M

ρ′jρiω

and therefore ∑
i

∫
M

ρiω =
∑
i ,j

∫
M

ρ′jρiω.

Analogously we get ∑
j

∫
M

ρ′jω =
∑
i ,j

∫
M

ρ′jρiω

and therefore the definition is well-posed. �
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The following properties follow readily from the definitions. Let ω be a
compactly supported n-form on an oriented n-manifold M. We denote by −M
the manifold M with the opposed orientation.

Proposition 6.2.3. We have∫
−M

ω = −
∫
M

ω.

If f : M → N is an orientation-preserving diffeomorphism, then∫
M

ω =

∫
N

f∗ω.

Remark 6.2.4. In Remark 6.1.4 we observed that on a chart a n-form
looks like a function, but we warned the reader that the two notions are quite
different on a general manifold M. As opposite to n-forms, functions in M
cannot be integrated in any meaningful way; conversely, the value ω(p) of a n-
form ω at p ∈ M is not a number, in any reasonable sense. Shortly: functions
can be evaluated at points, and n-forms can be integrated on sets, but not
the converse.

6.2.2. Examples. In practice, nobody uses partitions of unity to integrate
a n-form on a manifold, because the formulas get too complicated. Instead,
we prefer to subdivide the manifold into small pieces where the n-form may be
integrated easily. We explain briefly the details.

Let M be a smooth n-manifold. Recall the notion of Borel subset from
Section 3.11.1. If ω is a compactly supported n-form on M, we can define
the integral

∫
S ω over a Borel set S ⊂ M using a partition of unity as we did

above.

Proposition 6.2.5. If the support of ω is contained in a Borel set S that is
a countable disjoint union of Borel sets Si , then∫

S

ω =
∑
i

∫
Si

ω.

Proof. The equality holds for Borel sets in Rn because it is a property of
Lebesgue integration; via a partition of unity we can extend it to M. �

Recall that having measure zero is a well-defined property for Borel subsets
of any smooth manifold. If the complement of S ⊂ M has measure zero, then∫

M

ω =

∫
S

ω

because the integral over M \ S is zero. So we can remove from M any
zero-measure set to get a more comfortable domain S and integrate ω there.
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Example 6.2.6. Consider the n-dimensional torus T = S1×· · ·×S1 where
every point has some coordinates (θ1, . . . , θn), and the n-form

ω = dθ1 ∧ · · · ∧ dθn.

We have ∫
T

ω =

∫
U

ω =

∫
(0,2π)×···×(0,2π)

1 = (2π)n

by using the open chart U = (0, 2π) × · · · × (0, 2π) whose complement has
measure zero.

In all our discussion we have implicitly considered only manifolds of dimen-
sion n ≥ 1. However, it will be soon important to consider also points: we
define the integral of a 0-form, that is of a function f , over an oriented point
p to be ±f (p) according to the orientation of p.

6.2.3. Integration on submanifolds. By combining pull-backs and inte-
gration, we get a nice new tool: we can integrate k-forms along compact
submanifolds.

Let M be a smooth manifold and ω be a fixed compactly supported k-form
on M. For every oriented submanifold S ⊂ M of dimension k , we may define
the integral of ω along S as follows:∫

S

ω =

∫
S

i∗ω

where i : S ↪→ M is the inclusion map. Shortly: functions can be evaluated at
points, and k-forms can be integrated along oriented compact k-submanifolds.

Exercise 6.2.7. Consider the torus T = S1 × S1 with coordinates (θ1, θ2)

and the 1-form ω = dθ1. Consider the 1-submanifold γi =
{
θi = 0

}
for

i = 1, 2, oriented like S1. We have∫
γ1

ω = 0,

∫
γ2

ω = 2π.

6.2.4. Volume form. As we anticipated in the introduction, a smooth
manifold is not equipped with any canonical notion of “volumes” for its Borel
subsets. We can add this geometric structure to the manifold, by selecting a
preferred differential form called volume form.

Let M be an oriented n-manifold.

Definition 6.2.8. A volume form in M is a n-form ω such that

ω(p)(v1, . . . , vn) > 0

for every p ∈ M and every positive basis v1, . . . , vn of TpM.



6.2. INTEGRATION 145

Let ω be a volume form on M and S ⊂ M be a Borel set with compact
closure. It makes sense to define the volume of S as

Vol(S) =

∫
S

ω.

Here is the crucial property of volume forms:

Proposition 6.2.9. We have Vol(S) ≥ 0. If S has non-empty interior, then
Vol(S) > 0.

Proof. If we use only orientation-preserving charts, the form ω transforms
into n-forms f dx1 ∧ · · · dxn with f (x) > 0 for every x . �

As in ordinary Lebesgue measure theory, we can now define Vol(S) for
every Borel set S, as the supremum of the volumes of the Borel sets with
compact closure contained in S. The volume may (or may not) be infinite if
S has not compact closure. We have obtained a measure on all the Borel sets
in M, that is we have the countable additivity

Vol(S) =
∑

Vol(Si)

whenever S is the disjoint union of countably many Borel sets Si .
Of course different selections of the volume form ω give rise to different

measures, and there is no way to choose a “preferred” volume form ω on an
arbitrary oriented manifold M.

Proposition 6.2.10. If ω is a volume form and f : M → R is a strictly
positive function, then ω′ = f ω is another volume form. Every volume form
ω′ may be constructed from ω in this way.

Proof. The first assertion is obvious, and the converse follows from the
fact that Λn(TpM) has dimension 1 and hence for every ω,ω′ we may define
f (p) as the unique positive number such that ω′(p) = f (p)ω(p). �

We also note that volume forms always exist:

Proposition 6.2.11. If M is oriented, there is always a volume form on M.

Proof. Pick an oriented atlas {ϕi : Ui → Vi} and a partition of unity ρi
subordinate to the covering {Ui}. We define

ω(p) =
∑
i

ρi(p)ϕ∗i (dx1 ∧ · · · ∧ dxn)

and get a volume form ω. Indeed for every p ∈ M and positive basis v1, . . . , vn
at TpM the number ω(p)(v1, . . . , vn) is a finite sum of strictly positive numbers
with strictly positive positive coefficients ρi(p), so it is strictly positive. �
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6.2.5. Euclidean volume form. The Euclidean volume form on Rn is

ωE = dx1 ∧ . . . ∧ dxn

which acts as
ωE(p)(v1, . . . , vn) = det

(
v1 · · · vn

)
at every p ∈ Rn. It has the characterising property that ωE(p)(v1, . . . , vn) = 1

for every positive orthonormal basis v1, . . . , vn. The measure it defines in Rn
is of course the ordinary Lebesgue measure.

More generally, we may define a Euclidean volume form ω on every oriented
k-submanifold M ⊂ Rn as follows: for every p ∈ M we set

ω(p)(v1, . . . , vk) = ωE(v1, . . . , vn) = det
(
v1 · · · vn

)
where vk+1, . . . , vn is any orthonormal basis of the normal space NpM. Again
ω(p) is characterised by the property that ω(p)(v1, . . . , vk) = 1 on every
positive orthonormal basis v1, . . . , vk for TpM.

Note that we are using the Euclidean scalar product here to define ω. A
volume form on a smooth manifold N does not induce in general a volume
form on lower-dimensional submanifolds M. Some scalar product is needed
here, as we will see in the next chapters.

Example 6.2.12. Consider the (n − 1)-form ω in Rn−1 \ {0} given by

ω =
1

r

n+1∑
i=1

(−1)i−1xidx
1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

where

r =
√
x2

1 + . . .+ x2
n+1.

Consider the sphere S(0, r) centred in 0 and of radius r > 0. We consider r
as a function on Rn+1 \ {0}, so dr is a 1-form, and we discover easily that

dr ∧ ω = dx1 ∧ · · · ∧ dxn+1.

This fact implies that the restriction of ω to S(0, r) is the Euclidean volume
form on the sphere, for every r > 0. So, the Euclidean volume form on S2 is

ω = dy ∧ dz + dz ∧ dx + dx ∧ dy.

6.3. Stokes’ Theorem

At various places in this book we introduce some objects, typically some
tensor fields, and then we try to “derive” them in a meaningful way. We now
show that differential forms can be derived quite easily, through an operation
called exterior derivative, that transforms k-forms into (k + 1)-forms and ex-
tends the differential of functions (that transform functions, that is 0-forms,
into 1-forms).



6.3. STOKES’ THEOREM 147

We end up by proving Stokes’ Theorem, that relates elegantly exterior
derivatives and integration along manifolds with boundary.

6.3.1. Exterior derivative. Let ω be a k-form in a smooth manifold M.
We now define the exterior derivative dω, a new (k + 1)-form on M.

We start by considering the case where M is an open set in Rn. We have

ω =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dx ik

and we define

dω =
∑

i1<···<ik

dfi1,...,ik ∧ dx
i1 ∧ · · · ∧ dx ik .

Recall that dfi1,...,ik is a 1-form, hence dω is a (k + 1)-form. When ω is a
0-form, that is a function ω = f , then dω is the ordinary differential.

Example 6.3.1. Consider the form ω = xydx + xydz in R3. We get

dω = xdy ∧ dx + ydx ∧ dz + xdy ∧ dz.

We now extend this definition to an arbitrary smooth manifold M, as usual
by considering charts: we just define dω on any open chart as above.

Proposition 6.3.2. The definition of dω using charts is well-posed. The
derivation induces a linear map

d : Ωk(M) −→ Ωk+1(M)

such that, for every ω ∈ Ωk(M) and η ∈ Ωh(M) the following holds:

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη,(12)

d(dω) = 0.(13)

Proof. We first prove the properties on a fixed chart, and later we use
these properties to show that the definition of dω is chart-independent and
hence well-posed.

Linearity of d is obvious, and using it we may suppose that ω = f dx I and
η = gdxJ where I, J are some multi-indices. We get

d(ω ∧ η) = d(f g) ∧ dx I ∧ dxJ = df ∧ dx I ∧ gdxJ + dg ∧ f dx I ∧ dxJ

= dω ∧ η + (−1)kω ∧ dη.

If ω = f dx I then

d(dω) =

n∑
i ,j=1

∂2f

∂xi∂xj
dx i ∧ dx j ∧ dx I = 0

because dx i ∧ dx j = −dx j ∧ dx i so the terms cancel in pairs.
Finally, we can prove that the definition is chart-independent, via the fol-

lowing trick: on open subsets U ⊂ Rn, the derivation d may be characterised
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(exercise) as the unique linear map d : Ωk(U) → Ωk+1(U) that is the ordi-
nary differential for k = 0 and that satisfies (12) and (13). Therefore two
definitions of d on overlapping charts must coincide in their intersection. �

The following exercise says that the exterior derivative commutes with the
pull-back.

Exercise 6.3.3. If ϕ : M → N is smooth and ω ∈ Ωk(N), we get

d(ϕ∗ω) = ϕ∗(dω).

Hint. Prove it when ω = f is a function, and when ω = df is the differ-
ential of a function. Use Proposition 6.3.2 to extend it to any ω = fIdx

I . �

6.3.2. Action on vector fields. We may characterise the exterior deriva-
tive of k-forms by describing their actions on vector fields. For instance, the
differential df of a function f acts on vector fields X ∈ X (M) as

df (X) = X(f ).

Concerning 1-forms, we get the following:

Exercise 6.3.4. If ω ∈ Ω1(M) is a 1-form and and X, Y ∈ X (M) are vector
fields, we get

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

(
[X, Y ]

)
.

Hint. Again, everything is local, so work in coordinates. �

A similar formula holds also for the differential dω of a k-form.

6.3.3. Gradient, curl, and divergence. We now show that the inspiring
formula d(dω) = 0 generalises a couple of familiar equalities about functions
and vector fields in R3.

Let U ⊂ R3 be an open set. Recall that the gradient of a function f : U →
R is the vector field

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

If X is a vector field in U, its divergence is the function

divX =
∂X1

∂x1
+
∂X2

∂x2
+
∂X3

∂x3

while its curl is the vector field

rotX =

(
∂X3

∂x2
−
∂X2

∂x3
,
∂X1

∂x3
−
∂X3

∂x1
,
∂X2

∂x1
−
∂X1

∂x2

)
.

In U we may interpret a vector field X as a 1-form

ω = X1dx1 +X2dx2 +X3dx3

and vice-versa. Similarly, we can interpret a 2-form as a function and viceversa.
Beware that this interpretation is not allowed in an arbitrary smooth manifold.
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Exercise 6.3.5. With this interpretation, the equality d(df ) = 0 for every
function f in U is equivalent to

rot(∇f ) = 0

while the equality d(dω) = 0 for every 1-form ω is equivalent to

div(rotX) = 0

for every vector field X on U.

6.3.4. Stokes’ Theorem. We first note that the whole theory of differ-
entiable forms and integration applies also to manifolds with boundary with
no modification. Then we remark a fascinating analogy: when we talk about
forms ω we have

d(dω) = 0

while when we deal with manifolds M with boundary we also get

∂(∂M) = 0.

Note also that d transforms a k-form into a (k + 1)-form, while ∂ transforms
a (k + 1)-manifold into a k-manifold. The operations d and ∂ are beautifully
connected by the Stokes’ Theorem.

Let M be an oriented (n + 1)-manifold with (possibly empty) boundary,
and equip ∂M with the orientation induced by M.

Theorem 6.3.6 (Stokes’ Theorem). For every compactly supported n-form
ω in an oriented (n + 1)-manifold M possibly with boundary, we have∫

M

dω =

∫
∂M

ω.

Proof. We first prove the theorem for M = Hn+1. We have

ω =

n+1∑
i=1

ωi

with
ωi = fidx

1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1

where the hat indicates that the i-th term is missing. By linearity it suffices
to prove the theorem for each ωi individually. We have

dωi = dfi ∧ dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxn+1 = (−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxn+1.

If i ≤ n, we have∫
Hn+1

dωi = (−1)i−1

∫
Hn+1

∂fi
∂xi

dx1 ∧ · · · ∧ dxn+1

= (−1)i−1

∫
Hn

(∫
R

∂fi
∂xi

dx i
)
dx1 · · · d̂x i · · · dxn = 0.
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When the ∧ is not present in the expression, it means that we are just doing
the usual Lebesgue integration of functions on some Euclidean space. In the
last equality we have used that∫

R

∂fi
∂xi

dx i = lim
t→∞

[
fi(x1, . . . , xi−1, t, xi+1, . . . , xn+1)

− fi(x1, . . . , xi−1,−t, xi+1, . . . , xn+1)
]

= 0− 0 = 0

because fi has compact support. On the other hand, we also have∫
∂Hn

ωi = 0

because ωi contains dxn+1 and hence its restriction to ∂Hn vanishes.
If i = n + 1, we get

dωn+1 = (−1)n
∫
Rn

(∫ +∞

0

∂fn+1

∂xn+1
dxn+1

)
dx1 · · · dxn

= (−1)n
∫
Rn

(
0− fn+1(x1, . . . , xn, 0)

)
dx1 · · · dxn

= (−1)n+1

∫
Rn
fn+1(x1, . . . , xn, 0)

)
dx1 · · · dxn

=

∫
∂Hn+1

fn+1dx
1 ∧ · · · ∧ dxn =

∫
∂Hn+1

ωi .

We must justify the suspicious disappearance of the (−1)n+1 sign in the
last equality. The space Rn is identified naturally to ∂Hn+1 via the map
(x1, . . . , xn) 7→ (x1, . . . , xn, 0). However, the orientation on ∂Hn+1 induced
by that of Hn+1 coincides with that of Rn only when n is odd, as one can
easily check. This explains the sign cancelation.

We have proved the theorem for M = Hn+1. In general, we pick an atlas
{ϕi : Ui → Vi} with Vi ⊂ Hn+1 and a partition of unity ρi subordinate to Ui ,
so that ω =

∑
i ρiω is a finite sum (because ω has compact support). By

linearity, it suffices to prove the theorem for each addendum ρiω, but in this
case via ϕi we can transport it to a form in Hn+1 and we are done. �

Corollary 6.3.7. If M is an oriented n-manifold without boundary, for every
compactly supported (n − 1)-form ω we have∫

M

dω = 0.

6.3.5. Some consequences. Some familiar theorems in multivariate anal-
ysis in R, R2, or R3 may be seen as particular instances of Stokes’ Theorem.

In the line R, Stokes’ Theorem is just the fundamental theorem of calculus.
A bit more generally, we may consider an embedded oriented arc γ ⊂ R3 with
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endpoints p and q and a smooth function f defined on it. Stokes says that∫
γ

df = f (q)− f (p).

So in particular the result depends only on the endpoints of γ, not of γ itself.
In the plane R2, we may consider a 1-form

ω = f dx + gdy

and calculate

dω =

(
∂g

∂x
−
∂f

∂y

)
dx ∧ dy.

For every compact domain D ⊂ R2 bounded by a simple closed curve C = ∂D,
Stokes’ Theorem transforms into Green’s Theorem:∫

C

f dx + gdy =

∫
D

(
∂g

∂x
−
∂f

∂y

)
dxdy.

In the space R3, the boundary ∂D of a compact domain D ⊂ R3 is some
surface, and we pick a vector field X on D. After interpreting X as a 2-form as
in Section 6.3.3, we apply Stokes’ Theorem and get the Divergence Theorem:∫

D

divX =

∫
∂D

X · n

where n is the normal vector to ∂D.
Finally, we can also consider an oriented surface S ⊂ R3 with some (pos-

sibly empty) boundary ∂S, and a vector field X in R3 supported on S. By
interpreting X as a 1-form and applying Stokes’ Theorem we get the Kelvin –
Stokes Theorem: ∫

S

rotX · n =

∫
∂S

X · t

where n is the unit normal field to S and t is the unit tangent field to ∂S,
both oriented coherently with the orientations of S and R3.

We have proudly proved all these theorems (and many more!) at one time.





CHAPTER 7

De Rham cohomology

We now exploit the relation d(dω) = 0 on differential forms to build an al-
gebraic construction called De Rham cohomology. This algebraic construction
has some similarities with the fundamental group: it assigns groups to mani-
folds, and it is functorial, that is smooth maps induce groups homomorphisms.
It can be used in particular to distinguish manifolds.

Cohomology is however different from fundamental groups, and may be
used to fulfill some tasks that the fundamental group is unable to accomplish.
For instance, we will use it to prove that the smooth manifolds

S4, S2 × S2, CP2

are pairwise non-homeomorphic, and not even homotopy equivalent, although
they are all simply-connected compact four-manifolds.

7.1. Definition

In all this chapter, manifolds are allowed to have boundary even when not
mentioned. When we want to consider manifolds without boundary, we will
say it explicitly.

7.1.1. Closed and exact forms. Let M be a smooth n-manifold.

Definition 7.1.1. A k-form ω on M is closed if dω = 0, and is exact if
there is a (k − 1)-form η such that ω = dη.

Since d(dη) = 0, every exact form is also closed, but the converse does
not always hold, and this is the key point that motivates everything that we
are going to say in this chapter. We now list some motivating examples.

Example 7.1.2. Every n-form ω in M is closed, since dω is a (n+ 1)-form,
and every (n + 1)-form is trivial on M. On the other hand, if M is compact,
oriented, and without boundary, and ω is a volume form, then ω is not exact:
if ω = dη by Stokes’ Theorem we would get∫

M

ω =

∫
M

dη = 0

but the integral of a volume form is always strictly positive, a contradiction.

153
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Example 7.1.3. On the torus T = S1 × S1 with coordinates θ1, θ2, the
1-form ω = dθ1 of Exercise 6.2.7 is closed but is not exact: indeed note that
θ1 is only a locally defined function (whose value has a 2π indeterminacy);
this suffices for getting closeness d(dθ1) = 0 but not for exactness. If we had
ω = df for a true function f , then the integral of ω over the curve γ2 would
vanish by Stokes’ Theorem, a contradiction.

Example 7.1.4. Pick U = R2 \ {0}. Using polar coordinates ρ, θ we may
define the closed non-exact form ω = dθ on U, like in the previous example.
In Euclidean coordinates the form is

ω =
xdy − ydx
x2 + y2

and the skeptic reader may check that dω = 0 via direct calculation. As above,
the 1-form is not exact because its integral above the curve S1 ⊂ U is 2π 6= 0.

In the last example, it is tempting to think that ω is not exact because
there is a “hole” in U where the origin has been removed (note that ω does not
extend to the origin). We will confirm this intuition in the next pages: closed
non-exact forms detect some kinds of topological holes in the manifold M,
and this precious information is efficiently organised into the more algebraic
De Rham cohomology.

7.1.2. De Rham cohomology. Let M be a smooth manifold. We define

Zk(M), Bk(M)

respectively as the vector subspaces of Ωk(M) consisting of all the closed and
all the exact k-forms.

As we said, we have the inclusion Bk(M) ⊂ Zk(M) and hence we may
define the De Rham cohomology group as the quotient

Hk(M) = Zk(M)/Bk(M).

This is actually a vector space, but the term “group” is usually employed in
analogy with some more general constructions where all these spaces are mod-
ules over some ring.

An element in Hk(M) is usually denoted as a k-form ω, and sometimes as
a class [ω] of k-forms when we feel the need to be more rigorous.

7.1.3. The Betti numbers. The k-th Betti number ofM is the dimension

bk = dimHk(M).

Of course this number may be infinite, but we will see that it is finite in the
most interesting cases. This is a remarkable and maybe unexpected fact, since
both Zk(M) and Bk(M) are infinite-dimensional when dimM ≥ 1.

The Betti number bk depends only onM and is hence a numerical invariant
of the smooth manifold M. That is, two diffeomorphic manifolds have the
same Betti numbers.
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Proposition 7.1.5. For every k > dimM we have bk = 0.

Proof. There are no k-forms on M for k > n. �

7.1.4. The Euler characteristic. Let M be a smooth n-manifold whose
Betti numbers bk are all finite. The Euler characteristic of M is the integer

χ(M) =

n∑
i=0

(−1)ibi .

This is an ubiquitous invariant, defined also for more general topological spaces.

7.1.5. The zeroest group. As a start, we may easily identify H0(M) for
any smooth manifold M.

We first make a general remark: if M has finitely many connected com-
ponents M1, . . . ,Mh, we naturally get

Hk(M) = Hk(M1)⊕ · · · ⊕Hk(Mh).

For this reason, we usually suppose that M be connected.

Proposition 7.1.6. If M is connected, there is a natural isomorphism

H0(M) ∼= R.

Proof. The space Z0(M) consists of all the functions f : M → R such that
df = 0, and B0(M) is trivial. By taking charts, we see that df = 0 ⇐⇒ f is
locally constant (that is, every p ∈ M has a neighbourhood where f is constant)
⇐⇒ f is constant, sinceM is connected. Therefore H0(M) = Z0(M) consists
of the constant functions and is hence naturally isomorphic to R. �

For a possibly disconnected M, we get the following.

Corollary 7.1.7. The Betti number b0(M) equals the number of connected
components of M.

7.1.6. The cohomology algebra. Let M be a smooth manifold. We may
define the vector space

H∗(M) =
⊕
k≥0

Hk(M).

Proposition 7.1.8. The exterior product ∧ descends to H∗(M) and gives
it the structure of an associative algebra.

Proof. If ω ∈ Zk(M) and η ∈ Zh(M) then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη = 0

and hence ω∧η ∈ Zk+h(M). If moreover ω ∈ Bk(M), that is ω = dζ, we get

ω ∧ η = dζ ∧ η = d(ζ ∧ η)− (−1)k−1ζ ∧ dη = d(ζ ∧ η)

and hence ω ∧ η ∈ Bk+h(M). Therefore the product passes to the quotients
Hk(M) and Hh(M). �
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If ω ∈ Hp(M) and η ∈ Hq(M), then ω ∧ η ∈ Hp+q(M). As for Ω∗(M),
the algebra H∗(M) is anticommutative, that is

ω ∧ η = (−1)pqη ∧ ω.

In particular, if p is odd we get

ω ∧ ω = 0.

7.1.7. Functoriality. Every smooth map f : M → N induces a linear map

f ∗ : Ωk(N) −→ Ωk(M)

by pull-back. The map commutes with d and hence it sends close forms to
close forms, and exact forms to exact forms. Therefore it induces a map

f ∗ : Hk(N) −→ Hk(M)

and more generally a morphism of algebras

f ∗ : H∗(N) −→ H∗(M).

We may say that cohomology is a contravariant functor, where contravariant
means that arrows are reversed (we go backwards from Hk(N) to Hk(M)),
and functor means that (f ◦ g)∗ = g∗ ◦ f ∗ and id∗M = idH∗(M).

The reader should compare this functor with the covariant functor fur-
nished by the fundamental group, that sends pointed topological spaces (X, x0)

to groups π1(X, x0).

7.1.8. The line. The De Rham cohomology of R can be calculated easily.

Proposition 7.1.9. We have H0(R) = R and Hk(R) = 0 for all k > 0.

Proof. There are no k-forms with k ≥ 2, so the only thing to prove is that
H1(R) = 0. Given a 1-form ω = f (x)dx , we can define

F (x) =

∫ x

0

f (t)dt

and we get ω = dF . Therefore every 1-form is exact and H1(R) = 0. �

We say that the cohomology of a manifold M is trivial if H0(M) = R and
Hk(M) = 0 for all k > 0. We will soon discover that the cohomology of Rn is
also trivial for every n.

7.1.9. Integration along submanifolds. Let M be a n-manifold and S ⊂
M an oriented compact k−submanifold without boundary. Remember that
every k-form ω ∈ Ωk(M) may be integrated over S, so furnishing a linear map∫

S

: Ωk(M) −→ R.
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By Stokes’ Theorem, the integral of an exact form vanishes, and hence this
linear map descends to a map in cohomology∫

S

: Hk(M) −→ R.

This shows in particular that if the integral of a k-form ω is non-zero on some
oriented compact k-submanifold S, then ω is non-trivial in Hk(M).

7.2. The Poincaré Lemma

One important feature of the fundamental group is that the it is unaffected
by homotopies. We prove here the same thing for the De Rham cohomology.
As a consequence, we will show that the cohomology of Rn is trivial, as that
of any contractible manifold. This fact is known as the Poincaré Lemma.

7.2.1. Cochain complexes. Some of the properties of De Rham coho-
mology may be deduced by purely algebraic means, and work in more general
contexts. For these reasons we now reintroduce cohomologies with a purely
algebraic language.

A cochain complex C is a sequence of vector spaces C0, C1, C2, . . . with
linear maps dk : Ck → Ck+1 such that dk+1 ◦ dk = 0 for all k . We usually
indicate dk by d and write the cochain complex as

C0 d−→ C1 d−→ C2 d−→ . . .

The elements in Zk = ker dk are called cocycles, and those in Bk = Im dk−1

are the coboundaries. The cohomology of C is constructed as above as Hk =

Zk/Bk for every k ≥ 0. We may indicate it as Hk(C) to stress its dependence
on the cochain complex C.

Of course when Ck = Ωk(M) we obtain the De Rham cohomology of M,
but this general construction applies to many other contexts, so it makes sense
to consider it abstractly.

Remark 7.2.1. A chain complex is a sequence of vector spaces C0, C1, . . .

equipped with maps dk : Ck → Ck−1 such that d ◦ d = 0. The theory of chain
complexes is similar and somehow dual to that of cochain complexes: one
defines the cycles as Zk = ker dk , the boundaries as Bk = Im dk+1, and the
homology group Hk = Zk/Bk .

A morphism between two cochain complexes C and D is a map f k : Ck →
Dk for all k ≥ 0 such that the following diagram commutes

· · · d // Ck−1

f
��

d // Ck

f
��

d // Ck+1

f
��

d // · · ·

· · · d // Dk−1 d // Dk
d // Dk+1 d // · · ·
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We have denoted f k simply by f . Since f commutes with d , it sends cocycles
to cocycles and coboundaries to coboundaries, and hence induces a homomor-
phism f∗ : Hk(C)→ Hk(D) for every k .

7.2.2. Cochain homotopy. We introduce an algebraic notion of homo-
topy that will reflect the notion of homotopy between maps. Let f , g : C → D

be two morphisms between cochain complexes. A cochain homotopy between
them is a linear map hk : Ck → Dk−1 for all k ≥ 0 such that

f k − gk = dk−1 ◦ hk + hk+1 ◦ dk

for all k ≥ 0. Shortly, we may write

(14) f − g = d ◦ h + h ◦ d.
We may visualise everything by drawing the following diagram:

· · · d // Ck−1

f
��

g
��

d //

h

||

Ck

f
��

g
��

d //

h

||

Ck+1

f
��

g
��

d //

h

||

· · ·
h

||
· · · d // Dk−1 d // Dk

d // Dk+1 d // · · ·
Note that this diagram is not commutative. Two cochain maps f , g are cochain
homotopic if there is a cochain homotopy between them. The relevance of
cochain homotopies relies in the following fact.

Proposition 7.2.2. If two cochain maps f , g are cochain homotopic, they
induce the same maps in cohomology.

Proof. For every a ∈ Ck we have

f (a)− g(a) = d(h(a)) + h(d(a)).

If a ∈ Zk(C) we get d(a) = 0 and hence

f (a)− g(a) = d(h(a)) ∈ Bk(D).

Therefore f and g induce the same maps on cohomology. �

Having settled the basic algebraic machinery, we now turn back to De
Rham cohomology.

7.2.3. Products with a line. We now prove that M and M×R have the
same cohomology. Since we already know the cohomology of R, this will imply
that Rn and R have the same cohomology.

Let M be a smooth manifold and t0 ∈ R a point. We have two maps

π : M × R −→ M, s : M −→ M × R.

The first is the projection, the second is s(p) = (p, t0). These induce

π∗ : H∗(M) −→ H∗(M × R), s∗ : H∗(M × R) −→ H∗(M).

Lemma 7.2.3. The maps s∗ and π∗ are isomorphisms and s∗ = (π∗)−1.
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Proof. We have π ◦ s = idM and functioriality gives s∗ ◦ π∗ = idH∗(M).
However s ◦ π 6= idM×R, and the map

π∗ ◦ s∗ : Ω∗(M × R)→ Ω∗(M × R)

is not the identity in general. We now construct a cochain homotopy

h : Ωk(M × R) −→ Ωk−1(M × R)

between π∗ ◦ s∗ and the identity: this implies by Proposition 7.2.2 that π∗ ◦ s∗
induces the identity map on cohomology, and concludes the proof.

We define h as follows:

(hω)(p, t)(v1, . . . , vk−1) =

∫ t

t0

ω(p, u)

(
∂

∂t
, v1, . . . , vk

)
du.

Here we have identified the tangent spaces of (p, t) and (p, u) in the obvious
way. We need to prove that h is a cochain homotopy, that is

(dh + hd)(ω) = (id− π∗ ◦ s∗)(ω)

for every k-form ω. Since this is a local property, we may pick a chart and
suppose that M = Rn. We use coordinates (x1, . . . , xn, t) for M × R. Every
k-form in M may be written uniquely as a linear combination of k-forms of
two types:

(1) f dx I ,
(2) gdt ∧ dxJ

where the multi-indices I and J have order k and k−1 respectively. By linearity
we may suppose that ω is of type (1) or (2). We get:

(π∗ ◦ s∗)(f dx I) = f (x, t0)dx I ,

(π∗ ◦ s∗)(gdt ∧ dxJ) = 0,

h(f dx I) = 0,

h(gdt ∧ dxJ) =

(∫ t

t0

g(x, u)du

)
dxJ .

There are two cases:

(1) We have ω = f dx I and hence

(dh + hd)(ω) = hdω = h
(
df ∧ dx I

)
= h

(
∂f

∂t
dt ∧ dx I

)
=
(
f (x, t)− f (x, t0)

)
dx I ,

(id− π∗ ◦ s∗)(ω) =
(
f (x, t)− f (x, t0)

)
dx I .
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(2) We have ω = gdt ∧ dxJ and hence

dh(ω) = d

((∫ t

t0

g(x, u)du

)
dxJ

)
= gdt ∧ dxJ +

n∑
i=1

∫ t

t0

∂g

∂xi
dx i ∧ dxJ ,

hd(ω) = h

(
−

n∑
i=1

∂g

∂xi
dt ∧ dx i ∧ dxJ

)

= −
n∑
i=1

∫ t

t0

∂g

∂xi
dx i ∧ dxJ ,

(dh + hd)(ω) = ω,

(id− π∗ ◦ s∗)(ω) = ω.

The proof is complete. �

We have proved with some effort that products with lines do not affect
the cohomology. This fact has many nice consequences.

7.2.4. Poincaré Lemma. The first immediate corollary of Lemma 7.2.3
is the following. Let k ≥ 1.

Corollary 7.2.4 (Poincaré’s Lemma). Every closed k-form in Rn is exact.

Proof. We know from Proposition 7.1.9 that the cohomology of R is trivial,
and Lemma 7.2.3 applied inductively on n gives Hk(Rn) = Hk(R) for all k . �

In other words, we have H0(Rn) = R and Hk(Rn) = 0 for all k > 0.

7.2.5. Homotopy invariance. Lemma 7.2.3 has applications that go far
beyond the Poincaré Lemma. Let M and N be two smooth manifolds of
dimensions m and n.

Corollary 7.2.5. Two homotopic smooth maps f , g : M → N induce the
same homomorphisms f ∗ = g∗ : H∗(N)→ H∗(M) in De Rham cohomology.

Proof. Let F be the homotopy between f and g. By Corollary 5.6.9 we
may suppose that F is smooth. We have

f = F ◦ s0, g = F ◦ s1

where st(p) = (p, t). In cohomology we have

f ∗ = s∗0 ◦ F ∗, g∗ = s∗1 ◦ F ∗.

From Lemma 7.2.3 we get s∗0 = (π∗)−1 = s∗1 and hence f ∗ = g∗. �

We discover in particular that cohomology is a homotopy invariant.
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Corollary 7.2.6. Two homotopically equivalent manifolds have isomorphic
De Rham cohomologies.

Proof. If f : M → N and g : N → M are homotopy equivalences, then
f ◦ g ∼ idN and g ◦ f = idM and hence f ∗ ◦ g∗ = id nd g∗ ◦ f ∗ = id. �

In particular, two homeomorphic manifolds have the same De Rham co-
homology. This is a quite remarkable fact: the cohomology groups H∗(M)

are defined in an analytic way through k-forms, but the result is in fact in-
dependent of the smooth structure. The following corollary strengthens the
Poincaré Lemma.

Corollary 7.2.7. Every contractible manifold has trivial cohomology.

Proof. The point (or R, if you prefer) has trivial cohomology. �

7.2.6. Closed orientable manifolds. We now use the De Rham coho-
mology to prove a non-trivial topological fact.

Proposition 7.2.8. A compact oriented manifold M without boundary with
dimM ≥ 1 is never contractible.

Proof. The manifold M has a volume form ω by Proposition 6.2.11, and
Example 7.1.2 shows that ω is closed but not exact. Therefore Hn(M) 6= 0

for n = dimM. In particular the cohomology of M is not trivial. �

Note that the hypothesis “compact” and “without boundary” are both nec-
essary, as the counterexamples Rn and Dn show. The orientability hypothesis
may be removed, but more work is needed for that (for instance, one may use
a different kind of cohomology).

With the same techniques, we can in fact prove more.

Proposition 7.2.9. A compact oriented manifold M without boundary is
never homotopy equivalent to any manifold N with dimN < dimM.

Proof. If m = dimM, we have Hm(M) 6= 0 and Hm(N) = 0. �

7.3. The Mayer – Vietoris sequence

We have calculated the De Rham cohomology of contractible spaces, and
we are ready for more complicated manifolds. The main tool for calculating
H∗(M) for general manifolds M is the Mayer – Vietoris sequence, and we
introduce it here.

7.3.1. Exact sequences. We now introduce some algebra. A (finite or
infinite) sequence of real vector spaces and linear maps

. . . −→ Vi−1
fi−1−→ Vi

fi−→ Vi+1 −→ . . .
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is exact if Im fi = ker fi+1 for all i such that fi and fi+1 are both defined.
The vector spaces Vi may have infinite dimension, although in most cases they
will be finite: see Section 2.1.6 for the appropriate definitions in the infinite-
dimensional case.

For instance, the following sequence

0 −→ V
f−→ W

is exact ⇐⇒ f is injective, and

V
f−→ W −→ 0

is exact ⇐⇒ g is surjective. The sequence

0 −→ U
f−→ V

g−→ W −→ 0

is exact⇐⇒ f is injective, g is surjective, and Im f = ker g. An exact sequence
of this type is called a short exact sequence.

Exercise 7.3.1. If a sequence

. . . −→ Vi−1
fi−1−→ Vi

fi−→ Vi+1 −→ . . .

is exact, then the following sequences are also exact:

. . .←− V ∗i−1

f ∗i−1←− V ∗i
f ∗i←− V ∗i+1 ←− . . .

. . . −→ Vi−1 ⊗W
fi−1⊗id−→ Vi ⊗W

fi⊗id−→ Vi+1 ⊗W −→ . . .

for every vector space W .

Exercise 7.3.2. For every finite exact sequence of finite-dimensional spaces

0 −→ V1
f1−→ V2

f2−→ . . .
fk−1−→ Vk −→ 0

we have
k∑
i=1

(−1)i dim Vi = 0.

7.3.2. The long exact sequence. The notion of exact sequence applies
also to other algebraic notions like groups, modules, etc. and also to cochain
complexes: a short exact sequence of cochain complexes is an exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

where A,B, C are cochain complexes and f , g are morphisms. Exactness means
that f is injective, g is surjective, and Im f = ker g. That is, we have a big



7.3. THE MAYER – VIETORIS SEQUENCE 163

planar commutative diagram of morphisms

(15)
...

d
��

...

d
��

...

d
��

0 // Ak−1

d
��

f // Bk−1

d
��

g // Ck−1

d
��

// 0

0 // Ak

d
��

f // Bk

d
��

g // Ck

d
��

// 0

0 // Ak+1

d��

f // Bk+1

d��

g // Ck+1

d��

// 0

...
...

...

where every horizontal line is a short exact sequence of vector spaces.

Theorem 7.3.3. Every short exact sequence of cochain complexes

(16) 0 −→ A
f−→ B

g−→ C −→ 0

induces naturally an exact sequence in cohomology

(17) · · · −→ Hk(A)
f∗−→ Hk(B)

g∗−→ Hk(C)
δ−→ Hk+1(A) −→ · · ·

for some appropriate morphism δ.

Proof. The morphism

δ : Hk(C) −→ Hk+1(A)

is defined as follows. Given a chain γ ∈ Ck , by surjectivity of g there is a
β ∈ Bk with g(β) = γ. We have

g(dβ) = dg(β) = dγ = 0

because γ is a cycle. Since Im f = ker g there is an α ∈ Ak+1 such that
f (α) = dβ, and we set

δ(γ) = α.

There are now a number of things to check, and we leave to the reader the
pleasure of proving all of them through “diagram chasing.” Here are they:

• α is a cycle, that is dα = 0;
• the class [α] ∈ Hk+1(A) does not depend on the choices of β and α;
• if γ is a boundary then α also is.

This shows that δ is well-defined. Finally, we have to show that the sequence
(17) is exact. Have fun! �
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The induced sequence (17) is called the long exact sequence associated
to the short exact sequence (16).

7.3.3. The Mayer – Vietoris sequence. It is now time to go back to
smooth manifolds and their De Rham cohomology.

Let M be a smooth manifold, and U, V ⊂ M be two open subsets covering
M, that is with U ∪ V = M. The inclusions

U
l

  
U ∩ V

i

<<

j ""

M

V

m

>>

induce the morphisms in cohomology

Hk(U)
dd

l∗

Hk(U ∩ V )
yy

i∗

ee

j∗

Hk(M)

Hk(V )
zz m∗

Theorem 7.3.4 (Mayer – Vietoris Theorem). There is an exact sequence

· · · −→ Hk(M)
(l∗,m∗)−→ Hk(U)⊕Hk(V )

i∗−j∗−→ Hk(U ∩ V )
δ−→ Hk+1(M) −→ · · ·

for some canonically defined map δ.

Proof. This is the long exact sequence obtained via Theorem 7.3.3 from
the short exact sequence of cochain complexes

0 −→ Ω∗(M)
(l∗,m∗)−→ Ω∗(U)⊕Ω∗(V )

j∗−i∗−→ Ω∗(U ∩ V ) −→ 0.

We only need to check that this short sequence is exact. Note that the
morphisms l∗, m∗, i∗, and j∗ are just restrictions of k-forms to open subsets.
There are three things to check:

• The map (l∗, m∗) is clearly injective.
• If (α, β) is such that i∗(α) = j∗(β), then α and β agree on U ∩ V
and hence are restrictions of a global form in M.
• To prove that i∗ − j∗ is surjective, pick a partition of unity ρU , ρV
subordinate to {U, V }. Given ω ∈ Ωk(U∩V ), note that ρV ω extends
smoothly to U simply by setting it constantly zero on U\V . Therefore
ρV ω ∈ Ωk(U) and ρUω ∈ Ωk(V ) and we can write

(j∗ − i∗)(−ρV ω, ρUω) = (ρU + ρV )ω = ω.
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The proof is complete. �

The exact sequence resulting from Theorem 7.3.4 is called the Mayer –
Vietoris long exact sequence induced by the covering {U, V } of M. Recall that
Hk(M) = 0 whenever k > n = dimM, so the Mayer – Vietoris sequence is
finite. It starts and ends as follows:

0 −→ H0(M) −→ H0(U)⊕H0(V ) −→ · · · −→ Hn(U ∩ V ) −→ 0.

The morphisms i∗, j∗, l∗, m∗ are simply restrictions of k-forms. The morphism
δ is a bit more complicated, and for many applications we do not really need
to understand it, so the reader may decide to jump to the next section. Just in
case, here is a description of δ. Let ρU , ρV be a partition of unity subordinated
to the covering {U, V }. Given a k-form ω in U ∩ V , we may consider the
(k + 1)-form

η = −dρV ∧ ω = dρU ∧ ω.
The forms dρV and dρU have their support in U ∩ V , hence the support of η
is also in U ∩ V . The two expressions coincide since dρU + dρV = 0.

Proposition 7.3.5. We have δ(ω) = η.

Proof. The proofs of Theorems 7.3.3 and 7.3.4 show that δ(ω) is con-
structed by picking the counterimage (−ρV ω, ρUω) of ω, then differentiating(

− d(ρV ω), d(ρUω)
)

= (−dρV ∧ ω, dρU ∧ ω)

using dω = 0, and finally noting that the pair is the image of η. �

7.3.4. Cohomology of spheres. As a reward for all the effort that we
made with short and long sequences, we can now easily calculate the De
Rham cohomology of spheres.

Proposition 7.3.6. For every n ≥ 1 we have

H0(Sn) ∼= Hn(Sn) ∼= R, Hk(Sn) = 0 ∀k 6= 0, n.

Proof. Using stereographic projections along opposite poles we may cover
Sn as Sn = U∪V with U ∼= V ∼= Rn and also U∩V ∼= Sn−1×R. By homotopy
equivalence, we have H∗(U ∩ V ) ∼= H∗(Sn−1).

We first examine the case n = 1. Remember that Hk(M) = 0 whenever
k > dimM. The Mayer – Vietoris sequence is

0 −→ H0(S1) −→ H0(R1)⊕H0(R1) −→ H0(S0)
δ−→ H1(S1) −→ 0

which translates as

0 −→ R −→ R⊕ R −→ R⊕ R −→ H1(S1) −→ 0.

since S0 has two connected components. Exercise 7.3.2 gives H1(S1) ∼= R.
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We now consider the case n ≥ 2. The Mayer – Vietoris sequence breaks
into pieces since Hk(Rn)⊕Hk(Rn) = 0 for all k > 0. It starts with

0 −→ H0(Sn) −→ H0(Rn)⊕H0(Rn) −→ H0(Sn−1)
δ−→ H1(Sn) −→ 0

which translates as

0 −→ R −→ R⊕ R −→ R −→ H1(Sn) −→ 0.

Therefore H1(Sn) = 0. Then for every 2 ≤ k ≤ n we get

0 −→ Hk−1(Sn−1)
δ−→ Hk(Sn) −→ 0

and therefore Hk(Sn) ∼= Hk−1(Sn−1). We conclude by induction on n. �

7.3.5. Complex projective spaces. The De Rham cohomology of the
complex projective spaces is quite different from that of the spheres, and is in
fact very interesting:

Proposition 7.3.7. We have

Hk(CPn) =

{
C if k is even and k ≤ 2n,

0 if n otherwise.

Proof. Consider a complex hyperplane H ⊂ CPn and a point p ∈ CPn not
contained in H. Pick the open sets

U = CPn \H, V = CPn \ {p}.

We have the diffeomorphisms

U ∼= R2n, U ∩ V ∼= R2n \ {p} ∼= S2n−1 × R.

The pencil of complex lines passing through p gives V the structure of a C-
bundle over H ∼= CPn−1. In particular, we have the homotopy equivalences

U ∼ {pt}, U ∩ V ∼ S2n−1, V ∼ CPn−1.

The Mayer – Vietoris sequence gives

Hk−1(S2n−1) −→ Hk(CPn) −→ Hk(CPn−1) −→ Hk(S2n−1)

for every k ≥ 1. When k < 2n − 1, we deduce that

Hk(CPn) ∼= Hk(CPn−1).

When k = 2n − 1 we get

0 = H2n−2(S2n−1) −→ H2n−1(CPn) −→ H2n−1(CPn−1) = 0

and therefore H2n−1(CPn) = 0. Finally, the sequence ends with

0 −→ H2n−1(S2n−1) −→ H2n(CPn) −→ 0

that gives H2n(CPn) = R. We conclude by induction on n, starting with
CP1 ∼= S2. �
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Corollary 7.3.8. The manifolds S2n and CPn are not diffeomorphic, and in
fact not even homotopy equivalent, when n > 1.

7.4. Compactly supported forms

We now introduce a variation of De Rham cohomology that considers only
forms with compact supports. We will see that this variation has a somehow
dual behaviour with respect to De Rham cohomology.

7.4.1. Definition. Let M be a smooth manifold. For every k ≥ 0 we
define the vector subspace

Ωk
c (M) ⊂ Ωk(M)

that consists of all the k-forms having compact support. Of course in M is
compact we have Ωk

c (M) = Ωk(M). The differential restrict to a map

d : Ωk
c (M) −→ Ωk+1

c (M)

with d2 = 0. As above, we get a cochain complex Ω∗c(M), and its cohomology
is called the De Rham cohomology with compact support

Hkc (M).

Of course when M is compact we get nothing new, but Hkc (M) may differ
from Hk(M) when M is not compact, as we now show.

7.4.2. The zeroest group. We now study H0
c (M) and notice immediately

a difference between the compact and the non compact case.
As with De Rham cohomology, if M has finitely many connected compo-

nents M1, . . . ,Mk we get H0
c (M) = H0

c (M1) ⊕ · · · ⊕ H0
c (Mk), so one usually

considers only connected manifolds.

Proposition 7.4.1. LetM be connected. IfM is compact then H0
c (M) = R,

while if M is not compact then H0
c (M) = 0.

Proof. The space H0
c consists of all the compactly supported constant

functions. Non-trivial such functions exist only if M is compact. �

As in the De Rham cohomology, we have Hkc (M) = 0 for every k > dimM.

7.4.3. The line. As usual we start by considering the line R.
Proposition 7.4.2. We have H1

c (R) ∼= R and Hkc (R) = 0 for all k 6= 1.

Proof. We already know that Hkc (R) = 0 for k = 0 and k ≥ 2, so we turn
to the case k = 1. The integration map∫

R
: H1

c (R) −→ R

is surjective. If ω = g(x)dx is such that
∫
ω = 0, we may define f (x) =∫ x

−∞ g(t)dt and get a compactly supported f with ω = df . Therefore the
integration map is also injective. �
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We note that Hic(R) ∼= H1−i(R). This is not an accident, as we will see.

7.4.4. Functoriality? If f : M → N is a proper map, then the pull-back
f ∗ω of ω ∈ Ωk

c (N) is compactly supported also in M and we get a morphism

f ∗ : Ωk
c (N) −→ Ωk

c (M).

However, if f is not proper the pull-back is not defined in this context. So we
can say that contravariant functoriality holds only for proper maps.

On the other hand, the compactly supported cohomology demonstrates
some covariant behaviour: every inclusion map i : U ↪→ M of some open
subset U induces the extension morphism

i∗ : Ωk
c (U) −→ Ωk

c (M)

defined simply by extending k-forms to be zero outside of U. This does not
work for general k-forms (extensions would not be smooth, nor continuous).

7.4.5. Integration along fibres. Let π : M → N be a submersion between
oriented manifolds without boundary of dimension m ≥ n.

For every p ∈ N the fibre F = π−1(p) is a manifold of dimension h = m−n,
with an orientation induced by that of M and N as follows: for every p ∈ M
we say that v1, . . . , vh ∈ TpF is a positive basis if it may be completed to a
positive basis v1, . . . , vn of TpM such that vh+1, . . . , vm project to a positive
basis of Tπ(p)N.

We now define a map

π∗ : Ωk
c (M) −→ Ωk−h

c (N)

called integration along fibres, as follows. For every p ∈ N and v1, . . . , vk−h ∈
Tp(N) we set

π∗(ω)(p)(v1, . . . , vk−h) =

∫
π−1(p)

β

where β is the k-form on the oriented k-submanifold F = π−1(p) defined as

β(q)(w1, . . . , wh) = ω(w1, . . . , wh, ṽ1, . . . , ṽk−h)

where ṽi is any vector in Tq(F ) such that dπq(ṽi) = vi .

Proposition 7.4.3. The form β is well-defined.

Proof. For any other lift ṽ ′i we get ṽ
′
i = ṽi +λ1w1 + . . .+λhwh and hence

ω(w1, . . . , wh, . . . , ṽ
′
i , . . .) = ω(w1, . . . , wh, . . . , ṽi , . . .)

since ω(w1, . . . , wh, . . . , λjwj , . . .) = 0. �

Proposition 7.4.4. The linear map π∗ commutes with differentials and
hence descends to a map in cohomology

π∗ : Hkc (M) −→ Hk−hc (N).
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Proof. We must prove that π∗(dω) = dπ∗(ω) for every ω ∈ Hkc (M). Via
some charts, the projection π is locally like a projection

π : U × V −→ U

where U ⊂ Rh and V ⊂ Rn are open subsets. As a start, we suppose that
the support of ω lies entirely in U × V . We use variables x1, . . . , xh for U and
y1, . . . , yn for V . We have

ω =
∑
I,J

fI,Jdx
I ∧ dyJ .

By linearity we may suppose

ω = f dx I ∧ dyJ .

If J = {1, . . . , n} we get

π∗(ω) =

(∫
V

f (x, y)dyJ

)
dx I

and hence

dπ∗(ω) =

h∑
i=1

∂

∂xi

(∫
V

f (x, y)dyJ

)
dx i ∧ dx I

=

(∫
V

h∑
i=1

∂

∂xi
f (x, y)dyJ

)
dx i ∧ dx I = π∗d(ω).

If J 6= {1, . . . , n} we get π∗(ω) = 0 and also π∗(dω) = 0 (exercise).
For a general form ω ∈ Ωk

c (M), the compact support of ω may be covered
by some r charts and one concludes with a partition of unity ρi since

dπ∗(ω) =

r∑
i=1

dπ∗(ρiω) =

r∑
i=1

π∗d(ρiω) = π∗dω.

We have only used that d and π∗ are linear. The proof is complete. �

We have discovered that every submersion f : M → N between oriented
manifolds induces a linear map

π∗ : Hkc (M) −→ Hk−hc (N).

The map π∗ is called integration along fibres.

7.4.6. Smooth coverings. Let M → N be a smooth covering between
smooth n-manifolds. A covering is a submersion, and the integration along
fibres is a map

π∗ : Hkc (M) −→ Hkc (N).

In this case the integration along the fibres is just a summation, that is

π∗(ω)(p)(v1, . . . , vn) =
∑

π(q)=p

ω(q)(ṽ1, . . . , ṽn)
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where vi ∈ TpN and ṽi = dπ−1
q (vi). Here is a remarkable application.

Proposition 7.4.5. If π : M → N is a covering of finite degree d , then
π∗ : Hkc (N)→ Hkc (M) is injective.

Proof. We have 1
dπ∗ ◦ π

∗ = id on Hkc (N). �

If the covering has infinite degree the maps in cohomology need not to be
injective, as the universal covering R→ S1 easily shows.

7.4.7. Poincaré Lemma. We now prove the appropriate version of the
Poincaré Lemma for Hkc (Rn).

Let M be a smooth manifold. Let η ∈ Ω1
c(R) have

∫
η = 1, so that in

particular it generates H1
c (R) = R. Consider the morphism

ι : Hkc (M) −→ Hk+1
c (M × R)

ω 7−→ ω ∧ η.

Lemma 7.4.6. This morphism is an isomorphism.

Proof. We consider the projection

π : M × R −→ M.

By integrating along fibres we get a map

π∗ : Hk+1
c (M × R) −→ Hkc (M).

We want to show that π∗ inverts ι. We have π∗ ◦ ι = id already in Ωk
c (M).

On forms, we have ι ◦ π∗ 6= id and we construct a chain homotopy to prove
that ι ◦ π∗ = id in cohomology. We need a map

h : Ωk
c (M × R) −→ Ωk−1

c (M × R).

The map is defined as follows:

(hω)(p, t)(v1, . . . , vk−1) =

∫ t

−∞
ω(p, u)

(
∂

∂t
, v1, . . . , vk−1

)
du

− E(t)

∫
R
ω(p, u)

(
∂

∂t
, v1, . . . , vk−1

)
du

where

η = e(t)dt, E(t) =

∫ t

−∞
e(u)du.

We now prove that

(18) dh + hd = id− ι ◦ π∗.

This will conclude the proof. Since this is a local property, we pick a chart and
use coordinates x1, . . . , xn, t. By linearity, there are two cases to consider:

(1) ω = f dx I ,
(2) ω = gdt ∧ dxJ .
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We get

(ι ◦ π∗)(f dx I) = 0,

(ι ◦ π∗)(gdt ∧ dxJ) =

(∫
R
g(p, u)du

)
dxJ ∧ η.

The map h sends the forms of type (1) to zero, and those of type (2) to

h(gdt ∧ dxJ) =

(∫ t

−∞
g(p, u)du − E(t)

∫
R
g(p, u)du

)
dxJ .

Here are the two cases:

(1) If ω = f dx I we get

(dh + hd)(ω) = hdω = h(df ∧ dx I) = h

(
∂f

∂t
dt ∧ dx I

)
=

(∫ t

−∞

∂f

∂t
(p, u)du − E(t)

∫
R

∂f

∂t
(p, u)du

)
dx I

= f (p, t)dx I = ω,

(id− ι ◦ π∗)(ω) = ω.

(2) If ω = gdt ∧ dxJ we get

dh(ω) = d

(∫ t

−∞
g(p, u)du − E(t)

∫
R
g(p, u)du

)
dxJ

= ω +

n∑
j=1

(∫ t

−∞

∂g

∂xj
(p, u)du

)
dx j ∧ dxJ

−
(∫

R
g(p, u)du

)
η ∧ dxJ

− E(t)

n∑
j=1

(∫
R

∂g

∂xj
(p, u)du

)
dx j ∧ dxJ ,

hd(ω) =

n∑
i=1

h

(
∂g

∂xi
dx i ∧ dt ∧ dxJ

)

=

n∑
j=1

(∫ t

−∞

∂g

∂xj
(p, u)du

)
dx j ∧ dxJ

− E(t)

n∑
j=1

(∫
R

∂g

∂xj
(p, u)du

)
dx j ∧ dxJ ,

(dh − hd)(ω) = ω −
(∫

R
g(p, u)du

)
η ∧ dxJ ,

(id− ι ◦ π∗)(ω) = ω −
(∫

R
g(p, u)du

)
η ∧ dxJ .
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The proof is complete. �

As a corollary, we can compute the compactly supported cohomology of
Euclidean spaces. This result is also known as the Poincaré Lemma.

Corollary 7.4.7. We have Hnc (Rn) = R and Hkc (Rn) = 0 for all k 6= n.

We keep observing that Hkc (Rn) = Hn−k(Rn) for all n and k . We also
note that the compactly supported cohomology is evidently not invariant under
homotopy equivalence.

7.4.8. The Mayer – Vietoris sequence. Proving the Poincaré Lemma in
this compactly supported context was not easy; on the other hand the Mayer
– Vietoris sequence is almost straightforward.

Let M be a smooth manifold, and U, V ⊂ M be two open subsets covering
M. The inclusions

U
l

  
U ∩ V

i

<<

j ""

M

V

m

>>

induce the extension morphisms in cohomology

Hkc (U)

l∗

$$
Hkc (U ∩ V )

i∗
99

j∗ %%

Hkc (M)

Hkc (V )

m∗

::

Theorem 7.4.8 (Mayer – Vietoris Theorem). There is an exact sequence

· · · −→ Hkc (U∩V )
(−i∗,j∗)−→ Hkc (U)⊕Hkc (V )

l∗+m∗−→ Hkc (M)
δ−→ Hk+1

c (U∩V ) −→ · · ·

for some canonically defined map δ.

Proof. The sequence of complexes

0 −→ Ω∗c(U ∩ V )
(−i∗,j∗)−→ Ω∗c(U)⊕Ω∗c(V )

l∗+m∗−→ Ω∗c(M) −→ 0

is easily seen to be exact: use a partition of unity to show that l∗ + m∗ is
surjective. �

Note that the arrows in this Mayer – Vietoris sequence are opposite to the
ones that we obtained from Theorem 7.3.4.
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Exercise 7.4.9. Use the Mayer – Vietoris sequence to confirm that

H0
c (Sn) = H0(Sn) = R, Hnc (Sn) = Hn(Sn) = R,

Hkc (Sn) = Hk(Sn) = 0 if k 6= 0, n.

We cannot refrain from noting again that Hkc (Sn) = Hn−k(Sn). As in
ordinary De Rham cohomology, we can write δ explicitly. Let ρU , ρV be a
partition of unity subordinate to U, V . Given ω ∈ Hkc (M) we can define

η = dρV ∧ ω = −dρU ∧ ω ∈ Hk+1
c (U ∩ V ).

Exercise 7.4.10. We have δ(ω) = η.

7.4.9. Countably many connected components. We end this section
by pointing out another difference between Hk(M) and Hkc (M).

Exercise 7.4.11. Let M have countably many connected components M1,
M2, . . . We have

Hk(M) =
∏
i

Hk(Mi), Hkc (M) =
⊕
i

Hkc (Mi).

Remember that
∏
i Vi is the space of all sequences (v1, v2, . . .) while ⊕iVi

is the subspace of all sequences having only finitely many non-zero elements.

7.5. Poincaré duality

We have already noted that Hk(M) ∼= Hn−kc (M) on many n-manifolds M,
and we now prove this equality in a much wider generality.

We stress the fact that all the manifolds considered in this section have
no boundary!

7.5.1. The Poincaré bilinear map. Let M be an oriented smooth mani-
fold without boundary. We define the Poincaré bilinear map

Hk(M)×Hn−kc (M) −→ R

by sending the pair (ω, η) to the real number

〈ω, η〉 =

∫
M

ω ∧ η.

The map is well-defined since ω ∧ η has compact support. As every bilinear
form, it induces a map

PD: Hk(M) −→ Hn−kc (M)∗

that sends ω to the functional η 7→ 〈ω, η〉. We dedicate this section to proving
the following.

Theorem 7.5.1 (Poincaré duality). The map PD is an isomorphism.

As usual, we will need a bit of homological algebra.
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7.5.2. The Five Lemma. The following lemma is solved by diagram chas-
ing, and we leave it to the reader as an exercise – there is certainly much more
fun in trying to solve it alone than in reading a boring sequence of implications.

Exercise 7.5.2 (The Five Lemma). Given the following commutative dia-
gram of abelian groups and morphisms

A
f //

α
��

B
g //

β
��

C
h //

γ
��

D
i //

δ
��

E

ε
��

A′
j
// B′

k
// C′

l
// D′

m
// E′

in which the rows are exact, if α, β, δ, ε are isomorphisms then γ also is.

7.5.3. Induction on open subsets. Let M be a smooth manifold. We
want to prove the Poincaré duality Theorem by induction on open subsets ofM,
starting with those diffeomorphic to Rn and then passing to more complicated
ones in a controlled way. We will need the following.

Let A be the collection of open subsets in M determined by the rules:

• A contains all the open subsets diffeomorphic to Rn,
• if U, V, U ∩ V ∈ A, then U ∪ V ∈ A,
• if Ui ∈ A are pairwise disjoint, then ∪Ui ∈ A.

Note that in the last point there can be infinitely many disjoint sets Ui (they
are always countable, since M is paracompact).

Lemma 7.5.3. We have M ∈ A.

Proof. The proof is subdivided into steps.

(1) If U1, . . . , Uk ∈ A and all their intersections lie in A, then also U1 ∪
· · · ∪ Uk ∈ A.

(2) If {Ui} ⊂ A is a locally finite countable family, with Ui compact for
all i , and such that all the finite intersections also lie in A, then
∪Ui ∈ A.

(3) If U ⊂ M is diffeomorphic to an open subset V ⊂ Rn, then U ∈ A.
(4) M ∈ A.

Point (1) is a simple exercise (prove it by induction on k). Concerning (2),
we may suppose that U = ∪Ui is connected, and note that every Ui intersects
only finitely many Uj .

We define some new open subsets by setting W0 = U0 and defining Wi+1

as the union of all the Uj that intersect Wi and are not contained in ∪a≤iWa.
Every Wi contains finitely many Uj and hence Wi ∈ A by (1). Note that
Wi ∩Wi+2 = ∅ for all i . We set

Z0 = tiW2i , Z1 = tiW2i+1.

We have Z0, Z1 ∈ A and also Z0 ∩ Z1 ∈ A, so U = Z0 ∪ Z1 ∈ A.
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About (3), we note that V is covered by products (a1, b1)× · · · × (an, bn)

whose closure is contained in V . Every finite intersection is again a product,
so all these sets and their intersections are diffeomorphic to Rn and hence lie
in A. This covering can be made locally finite using an exhaustion of V by
compact sets. Now (2) applies and we get U ∈ A.

Finally, by taking an adequate atlas for M (see Proposition 3.3.1) we find
a locally finite covering Ui such that every Ui is diffeomorphic to Rn and has
compact closure. The intersections are diffeomorphic to open subsets of Rn
and hence are in A by (3). We conclude again by (2). �

We have also proved that every open subset of M is contained in A.

7.5.4. Proof of the Poincaré duality. We can now prove Theorem 7.5.1.

Proof. Let B be the collection of the open subsets U of M where Poincaré
duality holds. Our aim is of course to prove that M ∈ B.

If U ∼= Rn, then U ∈ B. Indeed, we only have to prove that PD: H0(Rn)→
Hnc (Rn)∗ is an isomorphism. Both spaces have dimension one, so it suffices to
check that the map is not trivial: if η is a compactly supported 1-form over
Rn with

∫
η = 1 and 1 is the constant function we get 〈1, η〉 = 1 and hence

1 ∈ H0(Rn) is mapped to a nontrivial element PD(1) ∈ Hnc (Rn)∗.
If U, V, U∩V ∈ B, then U∪V ∈ B. To show this, we consider the following

diagram that contains both Mayer – Vietoris sequences:

· · · // Hk−1(U ∩ V )

PD
��

// Hk(U ∪ V )

PD
��

// Hk(U)⊕Hk(V )

PD
��

// · · ·

· · · // Hk−1
c (U ∩ V )∗ // Hkc (U ∪ V )∗ // Hkc (U)∗ ⊕Hkc (V )∗ // · · ·

The bottom row is obtained by dualising the exact sequence in the bounded
cohomology. We leave as an exercise to show that this diagram commutes up
to sign (use Proposition 7.3.5 and Exercise 7.4.10). By the Five Lemma, if
PD is an isomorphism for U, V , and U ∩ V , then it is so also for U ∪ V .

If U = tiUi and Ui ∈ B, then U ∈ B. This is a consequence of Exercise
7.4.11 and of the natural equality (⊕iVi)∗ =

∏
i V
∗
i .

By Proposition 7.5.3 we have M ∈ B and we are done. �

7.5.5. Betti numbers. As a first consequence of Poicaré Duality, for ev-
ery orientable manifold M we have

dimHk(M) = dimHn−kc .

When M is compact, this becomes

bk = dimHk(M) = dimHn−k(M) = bn−k .

In particular we have b0 = bn = 1. In fact we can prove that all these numbers
are finite.
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Proposition 7.5.4. If M is compact then bk is finite.

Proof. If M is orientable, we have the canonical Poincaré isomorphisms

Hk(M) ∼= Hn−k(M)∗, Hn−k(M) ∼= Hk(M)∗.

By combining them we deduce that the canonical embedding Hk(M) ↪→
Hk(M)∗∗ is an isomorphism, and we know that this holds if and only if V
is finite-dimensional. �

Proposition 7.5.5. If M is orientable and n is odd, then χ(M) = 0.

Proof. We have bi = bn−i , so everything cancels. �

7.5.6. Orientability. We now show that cohomology distinguishes be-
tween orientable and non-orientable manifolds. Let M be a connected smooth
n-manifold.

Proposition 7.5.6. If M is oriented, the map∫
M

: Hnc (M) −→ R

is an isomorphism.

Proof. We have R = H0(M) = Hnc (M)∗ = H0(M)∗ so Hnc (M) ∼= R.
Moreover

∫
M is surjective. �

Proposition 7.5.7. We have

Hnc (M) =

{
R if M is orientable,

0 otherwise.

Proof. IfM is not orientable, it has an orientable double cover π : M̃ → M,
with orientation-reversing deck involution ι : M̃ → M̃. The induced map

π∗ : Hnc (M)→ Hnc (M̃)

is injective by Proposition 7.4.5. Moreover, for every n-form ω ∈ Ωn(M), the
pull-back π∗ω is ι-invariant, but since ι reverses the orientation of M̃ we get∫

M̃

π∗ω =

∫
−M̃

ι∗π∗ω = −
∫
M̃

π∗ω.

Hence this integral vanishes, and by the previous proposition we get π∗ω = 0

in cohomology. Since π∗ is injective, we get Hnc (M) = 0. �

7.5.7. Real projective spaces. We can now easily calculate the De Rham
cohomology of RPn.

Proposition 7.5.8. We have H0(RPn) = R, Hk(RPn) = 0 ∀k 6= 0, n, and

Hn(RPn) =

{
R if n is odd,

0 if n is even.
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Proof. This works for every manifold M that is covered by Sn. Since the
pull-back π∗ : Hk(M) → Hk(Sn) is injective, the only indeterminacy is for
k = n and is determined by whether M is orientable or not. �

The proof also shows the following. Remember the lens spaces L(p, q).

Corollary 7.5.9. We have

H0
(
L(p, q)

)
= H3

(
L(p, q)

)
= R, H1

(
L(p, q)

)
= H2

(
L(p, q)

)
= 0.

7.5.8. Signature. IfM is an oriented compact manifold of even dimension
2n, Poincaré duality furnishes a non-degenerate bilinear form

Hn(M)×Hn(M) −→ R

that is symmetric or antisymmetric, according to whether n is even or odd.
This is because of the formula ω ∧ η = (−1)n

2
η ∧ ω.

When M has dimension 4m, the non-degenerate bilinear form on H2m is
symmetric and hence has a signature (p,m), see Section 2.3.1. The signature
of M is the integer

σ(M) = p −m.
A nice feature of this invariant is that it reacts to orientation reversals.

Proposition 7.5.10. We have σ(−M) = −σ(M)

Proof. We have
∫
M ω = −

∫
−M ω, hence the orientation reversal modifies

the bilinear form by a sign and its signature changes from (p,m) to (m, p). �

Recall that an orientable manifold M is mirrorable if it has an orientation-
reversing diffeomorphism.

Corollary 7.5.11. A mirrorable orientable 4m-manifold M has σ(M) = 0.

We deduce that for every m ≥ 1 the manifold CP2m is not mirrorable:
its middle Betti number is b2m = 1 and hence its signature is σ = ±1. In
particular the complex projective plane CP2 is not mirrorable (while the line
CP1 ∼= S2 is mirrorable).

7.5.9. The Künneth formula. We now prove an elegant formula that
relates the cohomology of a product M × N with the cohomologies of the
factors. This formula is known as the Künneth formula.

Let M and N be two smooth manifolds. The two projections

πM : M × N −→ M, πN : M × N −→ N

give rise to a bilinear map

Ωk(M)×Ωh(N) −→ Ωk+h(M × N)

(ω, η) 7−→ π∗Mω ∧ π∗Nη
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that passes to a bilinear map

Hk(M)×Hh(N) −→ Hk+h(M × N).

By the universal property of tensor products, this induces a linear map

Hk(M)⊗Hh(N) −→ Hk+h(M × N).

These linear maps when k and h vary can be grouped altogether as

Ψ: H∗(M)⊗H∗(N) −→ H∗(M × N).

We will henceforth suppose that the Betti numbers of N are all finite: this
holds for instance if N is compact, but also for many other manifolds.

Theorem 7.5.12 (Künneth’s formula). The map Ψ is an isomorphism.

Before entering into the proof, we note that this implies that

Hk(M × N) ∼=
⊕
p+q=k

Hp(M)⊗Hq(N).

Proof. As in the proof of Poincaré Duality, we define B to be the set of all
the open subsets U ⊂ M such that the theorem holds for the product U ×N.
Our aim is to show that M ∈ B.

If U ∼= Rn, this is the Poincaré Lemma, more specifically Lemma 7.2.3.
If U, V, U ∩V ∈ B, then U ∪V ∈ B. To show this, we fix k ≥ 0, pick p ≤ k

and consider the Mayer – Vietoris sequence

· · · −→ Hp−1(U ∩ V ) −→ Hp(U ∪ V ) −→ Hp(U)⊕Hp(V ) −→ · · ·

If we tensor it with Hk−p(N) and sum over p = 0, . . . , k we still get an exact
sequence by Exercise 7.3.1. Here it is:

· · · −→ ⊕kp=0

(
Hp−1(U ∩ V )⊗Hk−p(N)

)
−→ ⊕kp=0

(
Hk(U ∪ V )⊗Hk−p(N)

)
−→ ⊕kp=0

(
Hp(U)⊗Hk−p(N)

)
⊕⊕kp=0

(
Hp(V )⊗Hk−p(N)

)
−→ · · ·

We now send via Ψ this sequence to the Mayer – Vietoris sequence for M×N:

· · ·→Hk−1
(

(U∩V )×N
)
→Hk

(
(U∪V )×N

)
→Hk(U×N)⊗Hk(V ×N)→· · ·

The resulting diagram commutes (exercise) and has two exact rows. Using
the Five Lemma we conclude that U ∪ V ∈ B.

If U = tiUi and Ui ∈ B, then U ∈ B. This is a consequence of Exercise
2.1.16 and of the fact that dimHp(N) <∞ for all p.

By Proposition 7.5.3 we have M ∈ B and we are done. �

Remark 7.5.13. When M = N = Z, the map Ψ is not an isomorphism
(exercise). We really need one of the factor to have finite-dimensional coho-
mology here.
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Corollary 7.5.14. Let M and N be manifolds with finite cohomology (for
instance, they are compact). For every k we have:

bk(M × N) =

k∑
i=0

bi(M)bk−i(N).

Corollary 7.5.15. The torus T = S1 × S1 has Betti numbers

b0 = 1, b1 = 2, b2 = 1.

Exercise 7.5.16. The Betti numbers of T n = S1 × · · · × S1︸ ︷︷ ︸
n

are

bk(T n) =

(
n

k

)
.

Exercise 7.5.17. The Betti numbers of S2 × S2 are

b0 = 1, b1 = 0, b2 = 2, b3 = 0, b4 = 1.

We deduce from the exercise that the compact four-manifolds

S4, CP2, S2 × S2

are pairwise not homotopy equivalent (although they are all simply connected)
because their second Betti number is respectively 0, 1, and 2.

Exercise 7.5.18. If M and N are manifolds with finite Betti numbers, then

χ(M × N) = χ(M) · χ(N).

7.5.10. Connected sums. The following exercises can be solved using
the Mayer – Vietoris sequence carefully.

Exercise 7.5.19. LetM be a smooth connected n-manifold without bound-
ary and N be obtained from M by removing a point. We have:

bi(N) = bi(M) ∀i ≤ n − 2

bn−1(N) =

{
bn−1(M) if M is compact and oriented,

bn−1(M) + 1 otherwise,

bn(N) =

{
bn(M)− 1 if M is compact and oriented,

bn(M) otherwise,

Hint. Use the Mayer – Vietoris sequence with M = U ∪ V , U = N, and V
an open ball containing the removed point. �

Note that in all cases we get χ(N) = χ(M)− 1 when they are defined.

Exercise 7.5.20. Let M#N be the connected sum of two oriented con-
nected compact manifolds M and N without boundary. We have

bi(M#N) = 1 for i = 0, n,

bi(M#N) = bi(M) + bi(N) for 0 < i < n.
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We can finally calculate the cohomology of a genus-g surface Sg.

Corollary 7.5.21. The Betti numbers of Sg are

b0 = 1, b1 = 2g, b2 = 1.

Therefore χ(Sg) = 2− 2g.

7.6. Intersection theory

We now combine transversality and De Rham cohomology to build a geo-
metric theory on submanifolds called intersection theory.

As in the previous section, all the manifolds considered here are without
boundary. We will be mostly interested in compact ones.

7.6.1. Poincaré dual of an oriented subsurface. Let M be an oriented
compact connected smooth n-manifold without boundary. Let S ⊂ M be an
oriented compact k-dimensional submanifold. We have already observed that
integration along S yields a linear map∫

S

: Hk(M) −→ R.

By Poincaré Duality, this linear map corresponds to some cohomology element
ωS ∈ Hn−k(M) called the Poincaré dual of S, characterised by the equality∫

M

ωS ∧ η =

∫
S

η

for every η ∈ Hk(M). We have just discovered that we can naturally transform
oriented compact submanifolds S into cohomology classes ωS. For example:

• the Poincaré dual of M itself is ωM = 1 ∈ H0(M) = R,
• the Poincaré dual of a point p ∈ M is ωp = 1 ∈ Hn(M) = R.

We now want to construct the (n− k)-form ωS explicitly. To this purpose we
consider vector bundles.

7.6.2. Thom forms. Let π : E → N be an oriented rank-r vector bundle
over a connected compact n-manifold N. Consider a closed form ω ∈ Ωr

c(E).

Proposition 7.6.1. The integral ∫
Ep

ω

is independent of p ∈ N.

Proof. Two points p, q ∈ N are connected by an embedded arc α, and
π−1(α) is a manifold with boundary Ep ∪ Eq. Use Stokes. �

The closed form ω ∈ Ωr
c(E) is a Thom form if∫

Ep

ω = 1.
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Proposition 7.6.2. Thom forms exist.

Proof. We pick

η(x) = ρ
(
‖x‖2

)
dx1 ∧ · · · ∧ dx r ∈ Ωr (Rr )

where ρ is non-negative and compactly supported, rescaled so that
∫
Rr η = 1.

We fix a Riemannian metric on E. On a trivialising neighbourhood U the
bundle is isometric to U ×Rr and we equip it with the closed form π∗2η where
π2 is the projection onto Rr . Since η is O(r)-invariant, all these r -forms match
to a Thom form ω in E. �

We consider as usual N embedded in E via the zero-section i : N ↪→ E.
Here is the reason why we are interested in Thom forms:

Proposition 7.6.3. If ω ∈ Ωr
c(E) is a Thom form, then∫
E

ω ∧ η =

∫
N

η

for every closed form η ∈ Ωn(E).

Proof. The map i ◦ π : E → E is homotopic to the identity, hence in
cohomology we get [η] = (i ◦ π)∗[η] and therefore η = π∗i∗η + dφ. Then∫

E

ω ∧ η =

∫
E

ω ∧ π∗i∗η +

∫
E

ω ∧ dφ.

The second addendum vanishes because ω ∧ dφ = ±d(ω ∧ φ) and Stokes
applies. We study the first addendum locally. On a trivialising chart U → V

the bundle is like V ×Rr with V ⊂ Rm. We use the variables x i and y j for Rm
and Rr . We have

π∗i∗η =
∑
I

f I(x)dx I .

This gives ∫
V×Rr

ω ∧ η =

∫
V

(∫
Rr
ω

)∑
I

f I(x) =

∫
V

η

because ω is a Thom form, and therefore∫
E

ω ∧ η =

∫
N

η.

The proof is complete. �

We now turn back to our oriented compact connected n-manifold M and
compact oriented k-submanifold S ⊂ M. Let νS ⊂ M be any tubular neigh-
bourhood. Every Thom form in νS is compactly supported and hence extends
to a form in M, thus representing an element in Hn−k(M).

Corollary 7.6.4. Any Thom form in νS represents the Poincaré dual ωS.
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Proof. Let ω be a Thom form in νS. For every closed η ∈ Ωk(M) we get∫
M

ω ∧ η =

∫
E

ω ∧ η =

∫
S

η.

The proof is complete. �

Summing up, the Poincaré dual of a submanifold S ⊂ M may be repre-
sented as a (n−k)-form supported in an arbitrarily small tubular neighbourhood
of S, that gives 1 when integrated along any fibre: we should think at this as
a kind of “bump form” concentrated near S.

7.6.3. Transverse intersection. Let N be an oriented connected compact
manifold, and letM,W ⊂ N be two oriented compact transverse submanifolds.
Recall that X = M ∩ W is also a submanifold with codimX = codimM +

codimW . We also have

νX = νM ⊕ νW.
The manifold X is naturally oriented: the bundles νM and νW are oriented,
and hence so is the bundle νX and finally the manifold X.

The following proposition is the core of intersection theory: it shows that,
via Poincaré duality, transverse intersection of oriented submanifolds corre-
sponds to wedge products of forms:

Proposition 7.6.5. We have ωX = ωM ∧ ωW .

Proof. If ωM , ωW are Thom forms in νM, νW , the wedge product ωM∧ωW
in a Thom form in νX = νM ⊕ νW . �

Example 7.6.6. Let S, T ⊂ CPn be two transverse projective subspaces,
of complex codimension s and t. Their intersection is a projective subspace
X = S ∩T of complex codimension s + t. All these are naturally oriented and
their Poincaré dual forms are

ωS ∈ H2s(CPn) = R, ωT ∈ H2t(CPn) = R, ωX ∈ H2s+2t(CPn) = R.

The proposition says that

ωX = ωS ∧ ωT .
If s + t = n then X is a point and therefore ωX = 1. This shows in particular
that the class ωS is non-trivial, and is hence a generator of H2s(CPn).

7.6.4. Algebraic intersection. Let N and M,W ⊂ N be as above. The
case where M and W have complementary dimension is of particular interest.
Here X = M ∩W is a collection of oriented points p, each equipped with a
sign ±1 depending on whether the orientation of TpM ⊕ TpW matches with
that of TpN. We define the algebraic intersection i(M,W ) of M and W to be
the sum of these values ±1.
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Figure 7.1. A symplectic basis for H1(S3) ∼= R6 consists of the Poincaré
duals of the oriented curves α1, α2, α3 (red) and β1, β2, β3 (blue).

The n-form ωM ∧ ωW ∈ Hnc (N) = R may be considered canonically as a
real number. Proposition 7.6.5 says that

i(M,W ) = ωM ∧ ωW .
This relation is of the highest importance when N has even dimension 2k and
dimM = dimW = k , because it furnishes a concrete way to represent and
calculate the intersection form in Hk(N).

Example 7.6.7. We examine the genus-g surface Sg. The intersection
form on H1(Sg) ∼= R2g is non-degenerate and antisymmetric. Consider the 2g

oriented curves α1, . . . , αg, β1, . . . , βg, shown in Figure 7.1. Their algebraic
intersections are

i(αi , αj) = i(βi , βj) = 0 ∀i 6= j, i(αi , βj) = δi j .

The intersection form on their dual 2g classes is antisymmetric, and hence it
forms the antisymmetric matrix J =

(
0 I
−I 0

)
. Since J is an invertible matrix, we

can deduce by elementary linear algebra that these 2g classes form a basis of
H1(Sg). A basis with such an intersection matrix is called a symplectic basis.

7.6.5. Homotopy invariance. Let M be an oriented connected compact
n-manifold. The Poincaré dual may in fact be defined not only for submani-
folds, but also for every smooth map f : S → M where S is a k-dimensional
oriented manifold. Every such map f induces a linear functional

Hk(M) −→ R

η 7−→
∫
S

f ∗η

which is by Poincaré Duality an element ωf ∈ Hn−k(M). Two homotopic maps
f , g : S → M induce the same functional ωf = ωg. In particular, we get:

Corollary 7.6.8. Isotopic oriented submanifolds have equal Poincaré duals.

This has some important concrete consequences. Let S, T ⊂ M be two
compact submanifolds of complementary dimension. We may isotope them to
some transverse submanifolds S′, T ′, and define

i(S, T ) = i(S′, T ′).
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This map is independent of the S′, T ′ chosen since it equals ωS ∧ ωT .TBD Mettere a posto gli es-
empi.

Example 7.6.9. The algebra H∗(CPn) is isomorphic to

H∗(CPn) ∼= R[x ]/(xn+1)

where x = ωH ∈ H2(CPn) is the dual form to any hyperplane H ⊂ CPn. We
will soon prove that ωS does not depend on the particular choice of S.

Example 7.6.10. We know that M = S2 × S2 has H2(M) = R2. If we
pick S = S2 × {p} and S′ = {q} × S2 oriented as S2 we find two transverse
surfaces in M with algebraic intersection +1. The interse



CHAPTER 8

Riemannian manifolds

We have warned the reader multiple times that a smooth manifoldM lacks
many natural geometric notions, such as distance between points, length of
curves, volumes, angles, geodesics. It is now due time to introduce all these
concepts, by enriching M with an additional structure, called metric tensor.
The manifoldM equipped with a metric tensor is called a Riemannian manifold.

8.1. The metric tensor

It is a quite remarkable fact that all the various natural geometric notions
that we are longing for can be introduced by equipping a smooth manifold with
a single additional structure, that of a metric tensor.

8.1.1. Definition. Let M be a smooth manifold. A metric tensor is a
Riemannian metric g on the tangent bundle TM, see Section 4.5. That is, it
is a section g of the symmetric bundle

S2(M)

such that g(p) is positive-definite scalar product for every p ∈ M. Said again
in other words, for every p ∈ M we have a positive-definite scalar product

g(p) : TpM × TpM −→ R

that varies smoothly with p.

Example 8.1.1. The Euclidean metric tensor gE on Rn is

gE(x, y) =

n∑
i=1

xiyi

where we have identified TpRn with Rn, as usual.

Definition 8.1.2. A Riemannian manifold is a pair (M, g) where M is a
smooth manifold and g is a metric tensor on M.

For instance, the pair (Rn, gE) is a Riemannian manifold called the Eu-
clidean space.

Remark 8.1.3. We have shown in Section 4.5 that every bundle carries a
Riemannian metric. Therefore every smooth manifold M has a metric tensor.
The metric tensor is however not unique in any reasonable sense.

185
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8.1.2. In coordinates. Let (M, g) be a Riemannian manifold and ϕ : U →
V a chart. The tensor g on U may be transported along ϕ into a metric tensor
ϕ∗g on V , whose coordinates are denoted by

gi j(p).

Here gi j(p) is a positive-definite symmetric matrix that depends smoothly on
p. For instance, the Euclidean metric tensor is gi j = δi j .

8.1.3. Isometries. Every category has its own morphisms; in the presence
of Riemannian metrics, one typically introduces only isomorphisms.

Let (M, g) be a Riemannian manifold. At every point p ∈ M the tangent
space TpM is equipped with the scalar product g(p), that we also denote for
simplicity with the familiar symbol 〈, 〉.

Definition 8.1.4. A diffeomorphism f : M → N between two Riemannian
manifolds (M, g) and (N, h) is an isometry if

〈v , w〉 = 〈dfp(v), dfp(w)〉

for every p ∈ M and v , w ∈ TpM.

Two Riemannian manifolds M and N are isometric if there is an isometry
relating them. A smooth map f : M → N is a local isometry at p ∈ M if
there are open neighbourhoods U and V of p and f (p) such that f (U) = V

and f |U : U → V is an isometry.

8.1.4. Submanifolds. Let (M, g) be a Riemannian manifold. Here is a
simple albeit crucial observation: every submanifold N ⊂ M, of any dimension,
inherits a metric tensor g|N simply by restricting g to the subspace TpN ⊂ TpM
at every p ∈ N. Therefore every smooth submanifold of a Riemannian manifold
is itself naturally a Riemannian manifold.

In particular, every submanifold S ⊂ Rn inherits a Riemannian manifold
structure by restricting gE to S. Using Whitney’s Embedding Theorem, we
find here another proof that every manifold M carries a Riemannian structure.

A fundamental example is of course the sphere Sn ⊂ Rn+1.

8.1.5. Products. The productM×N of two Riemannian manifolds (M, g)

and (N, h) carries a natural Riemannian structure g×h. Recall that T(p,q)M×
N = TpM × TqN and define

〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉+ 〈w1, w2〉

for every v1, v2 ∈ TpM and w1, w2 ∈ TqN.

Example 8.1.5. The torus T = S1×S1 with the product metric is the flat
torus. It is important to note that the flat torus is not isometric to the torus
of Figure 3.3. The first is flat, but the second is not: we will introduce the
notion of curvature to explain that.
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8.1.6. Length of curves. As we promised, we now start to show how the
metric tensor alone generates a wealth of fundamental geometric concepts.
We start by defining the lengths of smooth curves.

Let γ : I → M be a smooth curve in a Riemannian manifold M. We define
its length as

L(γ) =

∫
I

‖γ′(t)‖dt.

Here of course the norm of a vector v ∈ TpM is

‖v‖ =
√
〈v , v〉.

A reparametrisation of the curve γ is obtained by picking an interval diffeo-
morphism ϕ : J → I and setting η = γ ◦ ϕ.

Proposition 8.1.6. The length of γ is independent of the parametrisation.

Proof. We have

L(γ) =

∫
I

‖γ′(t)‖dt =

∫
J

∥∥γ′(ϕ(u)
)∥∥|ϕ′(u)|du =

∫
J

‖η′(u)‖du = L(η).

The proof is complete. �

More generally, the length L(γ) is also invariant if we pre-compose γ with a
smooth surjective monotone map ϕ : J → I, that is with ϕ′(t) ≥ 0 everywhere
(or ϕ′(t) ≤ 0 everywhere). With some abuse of language we also call this
change of variables a reparametrisation.

8.1.7. Metric space. A connected Riemannian manifold (M, g) is also a
metric space, with the following distance: for every p, q ∈ M we define d(p, q)

as the infimum of the lengths of all the paths connecting p to q, that is

d(p, q) = inf
{
L(γ)

∣∣ γ : [a, b]→ M, γ(a) = p, γ(b) = q
}
.

Proposition 8.1.7. This is a distance, compatible with the topology of M.

Proof. We clearly have d(p, p) = 0. We now prove that p 6= q ⇒
d(p, q) > 0. Pick a small open chart ϕ : U → V with p ∈ U, ϕ(p) = 0,
and q 6∈ U. Choose a disc D ⊂ V of some small radius r centred at the origin.
The transported metric tensor on D is some gi j depending smoothly on p ∈ D.

For every p ∈ D and v ∈ TpRn, we indicate with ‖v‖E and ‖v‖g the
Euclidean and g-norm of v . Since D is compact, there are M > m > 0 with

m‖v‖E < ‖v‖g < M‖v‖E
for every p ∈ D and every v ∈ TpRn. Let γ be a curve in U that goes from 0

to some point in ∂D. We know that the Euclidean length of γ is > r , and we
deduce that the g-length of γ is > rm. Since every curve γ connecting p and
q must cross ϕ−1(∂D), we deduce that L(γ) > rm and hence d(p, q) > rm.

We clearly have d(p, q) = d(q, p). To show transitivity, we note that if γ
is a curve from p to q and η is a curve from q to r , we can concatenate γ
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and η to a smooth curve from p to r : to get smoothness it suffices to priorly
reparametrise γ and η using transition functions.

In our discussion, we have also shown that for every neighbourhood U of
p there is an ε > 0 such that the d-ball of radius ε is entirely contained in U.
Conversely, it is also clear that an open d-ball is open in the topology of M.
Therefore d is compatible with the topology of M. �

Remark 8.1.8. The infimum defining d(p, q) may not be a minimum! On
M = R2\{0} with the Euclidean metric tensor, we have d

(
(1, 0), (−1, 0)

)
= 2

but there is no curve in M joining (1, 0) and (−1, 0) having length precisely 2.

8.1.8. Volume form. An oriented Riemannian manifold (M, g) has a nat-
ural volume form ω, defined as follows. At every point p ∈ M, the tangent
space TpM is equipped with an orientation and a positive-definite scalar prod-
uct g(p), and as in Section 2.6.3 we define ω unambiguously by requiring

ω(p)(v1, . . . , vn) = 1

on every positive orthornormal basis v1, . . . , vn of TpM. To show that ω varies
smoothly with p, we calculate ω on coordinates.

Proposition 8.1.9. If gi j is a metric tensor on U ⊂ Rn, then

ω =
√

det gi jdx
1 ∧ . . . ∧ dxn.

Proof. Let v1, . . . , vn is a positive g-orthonormal basis for (Rn)∗. We get

ω = v1 ∧ . . . ∧ vn = detAdx1 ∧ . . . ∧ dxn

where v i = Aije
j . Now Alig

i jAkj = δlk gives (detA)2 det g−1 = 1 and hence we
get detA =

√
det g. �

In particular the volume of a Borel subset S ⊂ U is

Vol(S) =

∫
S

√
det gi jdx

1 · · · dxn.

This expression is of course chart-independent.

8.2. Connections

We now want to define geodesics. It would be natural to try to define them
as curves that minimise locally the distance; however, differential geometers
usually prefer to take a different perspective: they introduce geodesics as
curves whose tangent vectors do not “deviate” from the trajectory, that is that
go as “straight” as possible.

To formalise this notion of “deviation” we need somehow to connect nearby
tangent vectors via a structure called connection. This structure has many
interesting features that go beyond the definition of geodesics: it is also a
way to derive vector fields along tangent vectors, and for that reason it is also
called with another appropriate name: covariant derivative. The two notions
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– connection and covariant derivative – are in fact the same thing, a powerful
structure that can be employed for different purposes, whose application goes
even beyond the realm of riemannian manifolds.

8.2.1. Definition. As we said in the previous chapters, one of the main
themes in differential topology is the quest for a correct notion of derivation
of vector (more generally, tensor) fields on a smooth manifold M. Without
equipping M with an additional structure, the best thing that we can do is
to derive a vector field Y with respect to another vector field X via the Lie
derivative LX(Y ) = [X, Y ].

As we already noted, the definition of LX(Y ) is local, in the sense that its
value at p ∈ M depends only on the values of X and Y in any neighbourhood
of p, but is not a pointwise definition, in the sense that it does not depend on
the vector v = X(p) alone, as it happens in the usual directional derivative of
smooth functions in Rn. We are then urged to introduce a somehow stronger
notion of derivation that depends only on the tangent vector v = X(p).

Let M be a smooth manifold.

Definition 8.2.1. A connection ∇ is an operation that associates to every
v ∈ TpM at every p ∈ M, and to every vector field X defined on a neighbour-
hood of p, another tangent vector

∇vX ∈ TpM

called the covariant derivative of X along v , such that the following holds:

(1) if X and Y agree on a neighbourhood of p, then ∇vX = ∇vY ;
(2) we have linearity in both terms:

∇v (λX + µY ) = λ∇v (X) + µ∇v (Y ),

∇λv+µwX = λ∇v (X) + µ∇w (X),

where λ, µ ∈ R are arbitrary scalars;
(3) the Leibnitz rule holds:

∇v (f X) = v(f )X(p) + f (p)∇vX

for every function f defined in a neighbourhood of p;
(4) ∇ depends smoothly on p.

We explain the last condition. For every two vector fields X, Y defined in a
common open subset U ⊂ M, we require

∇Y X = ∇Y (p)X

to be another vector field in U. That is we require ∇Y (p)X to vary smoothly
with respect to the point p ∈ U.

We note that in fact (3) implies (1), as one sees easily by taking f to be
a bump function that is constantly 1 in a neighbourhood of p.
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8.2.2. Christoffel symbols. On a chart, we may consider the coordinate
vector fields ei = ∂

∂xi
. We get

∇ei ej = Γkijek

where we have used the Einstein summation convention, for some real numbers
Γkij that depend smoothly on p because of the smoothness assumption (4).

The smooth functions Γkij are called the Christoffel symbols of the con-
nection. On a chart, these determine the connection completely: indeed, for
every vector field X = X jej and tangent vector v = v iei at some point we get

∇vX = v i∇ei (X
jej) = v i

∂X j

∂xi
ej + v iX j∇ei ej

= v i
∂X j

∂xi
ej + v iX jΓkijek .

We may rewrite this equality as

(19) ∇vX =

(
v i
∂Xk

∂xi
+ v iX jΓkij

)
ek .

Therefore the covariant derivative ∇v is the usual directional derivative along
v plus a correction term that is encoded by the Christoffel symbols Γkij . In
particular we have

∇eiX =
∂X

∂xi
+X jΓkijek .

Note that the directional derivative is not a chart-independent operation!
You may think at Γkij as a correction term that transforms it into a chart-
independent one.

Conversely, on any open subset U ⊂ Rn, for every choice of smooth maps
Γkij : U → R there is a connection ∇ whose Christoffel symbols are Γkij . The
connection ∇ is defined via (19), and one readily verifies that the axioms (1-4)
are satisfied.

Of course when the connection is read on another chart the Christoffel
symbols modify in some appropriate way:

Exercise 8.2.2. If the coordinates change as

∂

∂x̂i
=
∂xk
∂x̂i

∂

∂xk

the Christoffel symbols modify accordingly as follows:

Γ̂kij =
∂xp
∂x̂i

∂xq
∂x̂j

Γrpq
∂x̂k
∂xr

+
∂x̂k
∂xm

∂2xm
∂x̂i∂x̂j

.

The second derivatives are there to warn us that the Christoffel symbols
Γkij are not the coordinates of some tensor. A connection is not a tensor field
in any sense.
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8.2.3. Curves suffice. We know that ∇vX ∈ TpM depends only on the
behaviour of X on any neighbourhood of p. In fact, its restriction to a smaller
subset suffices to determine ∇vX.

Proposition 8.2.3. The covariant derivative ∇vX ∈ TpM depends only on
v , X(p), and the restriction of X to any curve tangent to v .

Proof. On a chart (19) shows that ∇vX depends only on v ,X(p), and the
directional derivative of X along v . This proves the assertion. �

We have discovered in particular that two vector fields that coincide on
some curve tangent to v have the same covariant derivative along v .

8.2.4. Vector fields along curves. Proposition 8.2.3 leads us naturally
to the following definition.

Definition 8.2.4. Let M be a manifold and γ : I → M a curve. A vector
field along γ is a smooth map X : I → TM with X(t) ∈ Tγ(t)M for all t ∈ I.

The vector field X is tangent to γ if X(t) is a multiple of γ′(t) for all t.
For instance, the velocity field of γ is the vector field γ′(t) and is of course
tangent to γ.

If γ is an embedding, we may interpret X as a vector field on its support,
but this interpretation fails if γ is only an immersion.

Let ∇ be a fixed connection on M. Let γ : I → M be an immersed curve,
that is we have γ′(t) 6= 0 for all t ∈ I. For every vector field X along γ, we
define another vector field DX

dt on γ called its derivative, as follows.
If I is a compact interval and γ is an embedding, we consider X as a

vector field defined on γ(I), we extend X arbitrarily to an open neighbourhood
of γ(I), and for every t ∈ I we define

DX

dt
= ∇γ′(t)X.

The vector field DX
dt does not depend on the extension of X outside γ thanks

to Proposition 8.2.3.
In general, the curve γ is an immersion and hence it is an embedding on

every sufficiently small neighbourhood of every point t0 ∈ I. Therefore we may
define DX

dt (t0) as above for every t0 ∈ I.
Everything can be written more explicitly on a chart. On an open subset

V ⊂ Rn we have γ(t) = (γ1(t), . . . , γn(t)) and X = X i(t)ei . We get

(20)
DX

dt
=
dX

dt
+ γ′(t)iX j(t)Γkij(γ(t))ek .

Remark 8.2.5. One may use (20) to define DX
dt for any smooth curve γ,

not only immersions. We will not need this.
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8.2.5. Parallel transport. We have just defined a way to derive vector
fields along immersed curves, and we now investigate the vector fields whose
derivative vanishes at every point of the curve.

LetM be a smooth manifold equipped with a connection∇. Let γ : I → M

be an immersed curve. A vector field X along γ is parallel if
DX

dt
= 0

for all t ∈ I. Here is a very important existence and uniqueness property:

Proposition 8.2.6. For every t0 ∈ I and every v ∈ Tγ(t0)M there is a unique
parallel vector field X on γ with X(t0) = v .

Proof. We easily reduce to the case where γ(I) is entirely contained in the
domain U of a chart ϕ : U → V . Using (20), the problem reduces to solving a
system of n linear differential equations in Xk(t) with k = 1, . . . , n, that is:

(21)
dXk

dt
+ γ′(t)iX j(t)Γkij(γ(t)) = 0.

The system has a unique solution satisfying the initial condition Xk(t0) = v k

for all k . The solution exists for all t ∈ I because the system is linear. �

For every t ∈ I, we think at the vector X(t) as the one obtained from
v = X(t0) by parallel transport along γ. We have just discovered a very
nice (and maybe unexpected) feature of connections: they may be used to
transport tangent vectors along curves.

It is sometimes useful to denote the parallel-transported vector X(t) as

X(t) = Γ(γ)tt0 (v)

to stress the dependence on all the objects involved. We get a map

Γ(γ)tt0 : Tγ(t0)M −→ Tγ(t)M

called the parallel transport map.

Proposition 8.2.7. The parallel transport map is a linear isomorphism.

Proof. The map is linear because (21) is a linear system of differential
equations. It is an isomorphism because its inverse is Γ(γ)t0t . �

Note that
Γ(γ)t2t0 = Γ(γ)t2t1 ◦ Γ(γ)t1t0

for every triple t0, t1, t2 ∈ I. The smooth dependence on initial values tells us
that Γ(γ)t

′
t depends smoothly on t and t ′, when read on charts.

We now understand where the name “connection” comes from: the oper-
ator ∇ can be used to connect via isomorphisms all the tangent spaces TpM
at the points p = γ(t) visited by any immersed curve γ. It is important to
stress here that the isomorphisms depend heavily on the chosen curve γ: two
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Figure 8.1. By parallel-transporting a vector along the edges of a spher-
ical triangle in S2, from A to N to B and back to A, we transform it into a
new one rotated by some angle α. Here α is proportional to the area of the
triangle, and in general it is connected to the curvature of the manifold.
The connection ∇ that we are using here is the one naturally associated
to the metric, to be defined in Section 8.3.

distinct immersed curves γ1 and γ2, both connecting the same points p and
q, produce in general two different isomorphisms between the tangent spaces
TpM and TqM. This may hold also if γ1 and γ2 are homotopic. As we will
see, the curvature of ∇ measures precisely this discrepancy. See Figure 8.1.

Remark 8.2.8. A continuous map γ : I → M is a piecewise immersion if it
is a concatenation of finitely many immersions. Parallel transport extends to
piecewise smooth immersed curves in the obvious way, see Figure 8.1.

8.2.6. Connections form an affine space. Does every smooth manifold
admit some connection ∇? And if it does, how many connections are there?
The answer to the first question is positive but we postpone it to the next
section. We can easily answer the second here.

Recall that a tensor field T of type (1, 2) on M is a bilinear map

T (p) : TpM × TpM −→ TpM

that depends smoothly on p.

Proposition 8.2.9. If ∇ is a connection on M and T ∈ Γ
(
T 2

1 (M)
)
is a

tensor field of type (1, 2), then the operator ∇′ = ∇+ T , defined as

∇′vX = ∇vX + T (p)(v ,X(p))

is also a connection. Every connection ∇′ on M arises in this way.

In the expression we have p ∈ M, v ∈ TpM, and X is a vector field defined
in a neighbourhood of p, as usual.
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Proof. To prove that ∇′ is a connection, we show that it satisfies the
Leibnitz rule (the other axioms are obvious). We have:

∇′v (f X) = ∇v (f X) + T (p)
(
v , f (p)X(p)

)
= v(f )X + f (p)∇vX + f (p)T (p)

(
v ,X(p)

)
= ν(f )X + f (p)∇′vX.

Conversely, if ∇′ is another connection, we consider the expressions in coordi-
nates (19) for both ∇′vX and ∇vX and discover that

∇′vX −∇vX = v iX j
(

(Γ′)kij − Γkij
)
ek .

The right-hand expression describes a tangent vector at p that depends (lin-
early) only on the tangent vectors v and X(p). If we indicate this vector as
T (p)(v ,X(p)), we get a tensor field T of type (1,2). In coordinates, we have

T kij = (Γ′)kij − Γkij .

The proof is complete. �

We have just discovered that the space of all connections ∇ on M is
naturally an affine space on the (infinite-dimensional) space Γ

(
T 2

1 (M)
)
.

Remark 8.2.10. We can use Exercise 8.2.2 to confirm that T kij = (Γ′)kij−Γkij
are the coordinates of a tensor (the second partial derivatives cancel).

8.3. The Levi–Civita connection

We have already seen that on a Riemannian manifold M we can talk about
distances between points, length of curves, and volumes. We now show that
M also has a preferred connection, called the Levi-Civita connection. We will
then use it to define geodesics in the next section.

8.3.1. Introduction. As we have seen, a smooth manifoldM carries many
different connections, and we are now looking at some reasonable way to
discriminate between them. The main motivation is the following ambitious
question: if M has a metric tensor g, is there a connection ∇ that is somehow
more suited to g?

An elegant and useful way to understand a connection ∇ consists of ex-
amining some tensor fields that are associated canonically to ∇. We now
introduce one of these.

8.3.2. Torsion. Let ∇ be a connection on a smooth manifold M. The
torsion T of ∇ is a tensor field of type (1, 2) defined as follows. For every
p ∈ M and v , w ∈ TpM we set

T (p)(v , w) = ∇vY −∇wX − [X, Y ](p)
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where X and Y are any vector fields defined in a neighbourhood of p extending
the tangent vectors v and w . Of course we need to prove that this definition
is well-posed, a fact that is not evident at all at first sight.

Proposition 8.3.1. The tangent vector T (p)(v , w) is independent of the
extensions X and Y .

Proof. In coordinates we have

T (p)(v , w) =

(
v i
∂Y k

∂xi
+ v iY jΓkij − w i

∂Xk

∂xi
− w iX jΓkij − v i

∂Y k

∂xi
+ w i

∂Xk

∂xi

)
ek

=
(
v iw jΓkij − w iv jΓkij

)
ek = v iw j(Γkij − Γkji)ek .

The proof is complete. �

During the proof, we have also shown that in coordinates we have

T kij = Γkij − Γkji .

A connection ∇ is symmetric if its torsion vanishes, that is if Γi j = Γj i on
any coordinate chart. The torsion is clearly an antisymmetric tensor, that is
T (p)(v , w) = −T (p)(w, v) for all v , w . Finally, if we contract the torsion T
with two vector fields X and Y we get the elegant equality of vector fields:

T (X, Y ) = ∇XY −∇Y X − [X, Y ].

8.3.3. Bilinear operators on vector fields. We have already encountered
in this book three bilinear operators

X(M)× X(M) −→ X(M)

that are quite dissimilar in nature: these are [, ], ∇, and T . Given two vector
fields X and Y , then we can define a third one Z by setting it to be equal to

[X, Y ], ∇XY, or T (X, Y ).

The main difference between these three operators is the following:

• [X, Y ] at p depends on X and Y ;
• ∇YX at p depends on X(p) and Y ;
• T (X, Y ) at p depends on X(p) and Y (p).

This also expresses the fact that the operator T is the only one that arises
from a tensor field.

Remark 8.3.2. Some authors describe these differences by saying that the
operator T is C∞(M)-bilinear, that is T (f X, gY ) = f gT (X, Y ) for every f , g ∈
C∞(M). Analogously, ∇ is C∞(M)-linear on its left, that is ∇f XY = f∇XY .
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8.3.4. Compatible connections. Let (M, g) be a Riemannian manifold.
As we said, we would like to assign an appropriate conection ∇ to g. We start
by defining a reasonable compatibility condition.

We say that a connection ∇ is compatible with g if every parallel transport
isomorphism

Γ(γ)t1t0 : Tγ(t0)M −→ Tγ(t1)M

is actually an isometry, for every immersed curve γ : I → M and every t0, t1 ∈ I.
We now express this condition in three more equivalent ways.

Proposition 8.3.3. The connection ∇ is compatible if and only if

(22)
d

dt

〈
X, Y

〉
=

〈
DX

dt
, Y

〉
+

〈
X,
DY

dt

〉
for every immersed curve γ : I → M and vector fields X, Y on it.

Proof. If (22) holds, for every parallel vector fields X, Y on γ we get that〈
X(t), Y (t)

〉
is constant on t and hence the parallel transport along γ is an

isometry. Therefore ∇ is compatible.
Conversely, suppose that ∇ is compatible. Pick an orthonormal basis

e1, . . . , en of TpM and parallel-transport it along γ. Write

X(t) = X(γ(t)) = X iei , Y (t) = Y (γ(t)) = Y iei .

We deduce that

∇γ′(t)X =
dX i

dt
ei , ∇γ′(t)Y =

d Y i

dt
ei

and hence

d

dt

〈
X(t),Y (t)

〉
=
d

dt
(X iY i) =

dX i

dt
Y i+X i

d Y i

dt
=
〈
∇γ′(t)X,Y

〉
+
〈
X,∇γ′(v)Y

〉
.

The proof is complete. �

We can easily translate this into a local condition. We interpret v as a
derivation acting on the smooth function 〈X, Y 〉.

Corollary 8.3.4. The connection ∇ is compatible if and only if

(23) v〈X, Y 〉 =
〈
∇vX, Y

〉
+
〈
X,∇vY

〉
for every tangent vector v ∈ TpM and every vector fields X, Y defined in a
neighbourhood of p.

Expressed in coordinates, this is translated as follows.

Proposition 8.3.5. The connection ∇ is compatible if and only if

(24)
∂gi j
∂xk

= Γlkigl j + Γlkjgl i

in coordinates at every chart.
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Proof. We pick any chart and write (23). By linearity in v , we may suppose
that v = ek . We have X = X iei and Y = Y jej . The equation transforms into

∂

∂xk

(
gi jX

iY j
)

=

(
∂X i

∂xk
+X jΓikj

)
gi lY

l +

(
∂Y i

∂xk
+ Y jΓikj

)
gi lX

l .

After deriving the left member and simplifying this transforms into
∂gi j
∂xk

X iY j = X jΓikjgi lY
l + Y jΓikjgi lX

l .

After renaming indices, this holds for every X and Y precisely when
∂gi j
∂xk

= Γlkigl j + Γlkjgl i .

The proof is complete. �

The proof also shows that if (24) holds on all the charts of an atlas, then
it also does at any compatible chart.

8.3.5. The Levi-Civita connection. As promised, we now assign to any
Riemannian manifold (M, g) a canonical connection ∇, called the Levi-Civita
connection.

Theorem 8.3.6. Every Riemannian manifold (M, g) has a unique symmetric
compatible connection ∇. On any chart, its Christoffel symbols are

(25) Γli j =
1

2
gkl
(
∂gjk
∂xi

+
∂gki
∂xj
−
∂gi j
∂xk

)
.

Proof. We start by proving uniqueness. Let ∇ be a symmetric compat-
ible connection. On a chart, we use (24) three times with the indices i , j, k
permuted cyclically, and using symmetry Γkij = Γkji we get

∂gjk
∂xi

+
∂gki
∂xj
−
∂gi j
∂xk

= 2Γmij gmk .

By multiplying both members with the inverse matrix gkl we find

Γli j =
1

2
gkl
(
∂gjk
∂xi

+
∂gki
∂xj
−
∂gi j
∂xk

)
.

This shows that Γli j and hence ∇ are uniquely determined.
Concerning existence, we now use (25) to define ∇ locally on a chart.

The connection is clearly symmetric and one verifies easily that is also com-
patible using Proposition 8.3.5. Moreover, the resulting ∇ is actually chart-
independent: if not, we would get two different symmetric and compatible
connections on some open set, which is impossible. Therefore all the ∇ con-
structed along charts glue to a global ∇ on M. �

The unique symmetric compatible connection ∇ is called the Levi-Civita
connection.
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Example 8.3.7. If U ⊂ Rn is equipped with the Riemannian metric g, the
Christoffel symbols Γkij = 0 vanish everywhere and the Levi-Civita connection
coincides with the usual directional derivative.

We will since now equip every Riemannian manifold (M, g) with its Levi-
Civita connection ∇.

Remark 8.3.8. While the compatibility assumption looks natural, the rea-
sons for preferring a symmetric connection may look obscure at this point.
We can single out three arguments in its favour: (i) this seems the only (or at
least the simplest) way to get a canonical connection; (ii) we will see in the
next section that, thanks to symmetry, the Levi-Civita connection extends in a
very simple way to submanifolds; (iii) by picking a compatible connection with
non-vanishing torsion things do not change too much, since (as we will see)
we would get exactly the same geodesics (and defining geodesics is the main
reason for introducing connections).

TBD torsione dopo

8.3.6. Submanifolds. Let M be a Riemannian manifold and N ⊂ M a
submanifold. The manifold N has an induced Riemannian structure, and we
now investigate the relation between the corresponding Levi-Civita connections
∇M and ∇N . It turns out that ∇N is very easily determined by ∇M . This is
particularly useful when the ambient space isM = Rm with the Euclidean met-
ric tensor, since there ∇M is the usual directional derivative and ∇N assumes
a simple and intuitive form.

Let p ∈ N be a point and v ∈ TpN a tangent vector. Let X be a vector
field (tangent to N) defined on a neighbourhood of p in N. Extend X arbitrarily
to a vector field on a neighbourhood of p in M. Let π : TpM → TpN be the
orthogonal projection.

Proposition 8.3.9. The following holds:

∇Nv X = π
(
∇Mv X

)
.

Proof. We define a connection ∇ on N by setting ∇v (X) = π(∇Mv X) for
every vector field X in some open subset of N, using some local extension of
X in M. The vector ∇v (X) does not depend on the extension (exercise) and
∇ is indeed a connection on N. It is compatible: by Corollary 8.3.4 we get

v〈X, Y 〉 = 〈∇Mv X, Y 〉+ 〈X,∇Mv Y 〉 = 〈∇vX, Y 〉+ 〈X,∇vY 〉

for every vector fields X, Y on a neighbourhood of p in N, extended arbitrarily
to a neighbourhood in M. The connection is symmetric: analogously we have

T (v , w) = ∇vY −∇wX−[X, Y ](p) = π
(
∇Mv Y −∇Mw X−[X, Y ](p)

)
= π(0) = 0

where we have used that [X, Y ](p) is tangent to N since both X and Y are.
By the uniqueness of the Levi-Civita connection we have ∇ = ∇N . �
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Let γ : I → N be an immersed curve and X be a vector field on γ. We
denote analogously by DMX

dt and DNX
dt the derivatives of γ with respect to the

two connections ∇M and ∇N .

Corollary 8.3.10. The following holds:

DNX

dt
= π

(
DMX

dt

)
.

The case where M = Rm is equipped with the Euclidean metric and N ⊂
Rn is a submanifold is particularly interesting:

Corollary 8.3.11. A vector field X on γ : I → N is parallel (on N) if and
only if its derivative X ′(t) in Rm is orthogonal to Tγ(t)N for every t ∈ I.

8.4. Geodesics

We know that every Riemannian manifold g has a preferred connection
∇, and now we use ∇ to define geodesics. We end this section by showing
that geodesics are precisely the curves that minimise the path length, at least
locally (not necessarily globally).

8.4.1. Definition. Let M be a manifold equipped with a connection ∇.

Definition 8.4.1. A smooth immersed curve γ : I → M is a geodesic if the
velocity field γ′(t) is parallel along γ.

Recall that this means that Dγ
′

dt = 0 for every t ∈ I. A geodesic is maximal
if it is not the restriction of a longer geodesic η : J → M with I ( J. Geodesics
have many nice properties; the first important one is that they exist, and they
are also unique once a starting point and a direction are fixed:

Proposition 8.4.2. For every p ∈ M and v ∈ TpM there is a unique maximal
geodesic γ : I → M with 0 ∈ I, γ(0) = p, and γ′(0) = v .

In the proposition we also include the trivial constant geodesic γ : R→ M,
γ(t) = p, that corresponds to v = 0 (although this is not strictly speaking a
geodesic according to our definition). The unique maximal geodesic γ tangent
to v at t = 0 is sometimes denoted by γv .

Proof. In coordinates, an immersed curve γ(t) = x(t) is a geodesic if and
only if the following holds for all k , see (20):

(26)
d2xk
dt2

+
dxi
dt

dxj
dt

Γkij = 0.

This is a second-order system of ordinary differential equations. The Cauchy–
Lipschitz Theorem 1.3.5 ensures that the system has locally a unique solution
with prescribed initial data x(0) = p and dx

dt (0) = v . �
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To define geodesics we only need a connection∇, not a Riemannian metric;
however, we are of course mainly interested in the case where ∇ is the Levi-
Civita connection of a Riemannian metric g. In that case the speed ‖γ′(t)‖ of
a geodesic γ makes sense, and it is clearly constant along t by (22). One may
wonder if the same geodesic run at a different constant speed is still a geodesic:
this is true thanks to the following fact, that holds for all connections ∇.

Proposition 8.4.3. If γ is a geodesic, then η(t) = γ(ct) is also a geodesic,
for every non-zero c ∈ R.

Proof. If ∇vX = 0, then also

∇cvcX = c2∇vX = 0.

This concludes easily the proof. �

In particular, we have γcv (t) = γv (ct).

Example 8.4.4. On U ⊂ Rn with the Euclidean metric, we have Γi j = 0

and hence the geodesics are precisely the straight lines run at constant speed.

Example 8.4.5. Let N ⊂ Rm be a submanifold, equipped with the induced
Riemannian metric. By Corollary 8.3.11, an immersion γ : I → N is a geodesic
if and only if γ′′(t) is orthogonal to Tγ(t)N for all t ∈ I.

Example 8.4.6. By the previous example, every maximal circle on Sn run
at constant speed is a geodesic. In other words, for every p ∈ Sn, every unitary
vector v ∈ TpSn = p⊥, and every c > 0, the curve γ : R→ Sn defined as

γ(t) = cos(ct) · p + sin(ct) · v
is a geodesic that starts from p in the direction v at speed c . To prove this it
suffices to check that γ(t) ∈ Sn and γ′′(t) is parallel to γ(t), hence orthogonal
to Tγ(t)S

n. By Proposition 8.4.2 these are precisely all the maximal geodesics
in the sphere Sn.

8.4.2. Geodesic flow. Let M be a smooth manifold equipped with a con-
nection ∇. It would be nice if we could represent all the geodesics in M as the
integral curves of some fixed vector field on M. However, this is clearly im-
possible! On a vector field, there is only one integral curve crossing each point
p, but there are infinitely many geodesics through p, one for each direction
v ∈ TpM.

However, this strategy works if we just replace M with its tangent bundle
TM. We can define a vector field X in TM as follows: for every v ∈ TM, let
γv : Iv → M be the unique maximal geodesic with γ′v (0) = v . The derivative
γ′v : Iv → TM is a curve in TM, that we see as a canonical lift of γv from M

to TM. We define X(v) = d(γ′v )0.
The resulting vector field X on TM is smooth because the geodesic γv

depends smoothly on the initial data. It is called the geodesic vector field on
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TM. Its maximal integral curves are precisely all the lifts of all the maximal
geodesics in M. The vector field X generates a flow Φ on TM called the
geodesic flow. The flow Φ moves the points in TM along the lifted geodesics.

The geodesic flow Φ is defined on some maximal open subset U of TM×R
containing TM × {0}. We have U ∩

(
{v} × R

)
= {v} × Iv . With moderate

effort, mostly relying on theorems proved in the previous chapters, we have
defined a quite general and fascinating geometric flow on (the tangent bundle
of) every Riemannian manifold.

8.4.3. Exponential map. We now define a useful map that is tightly
connected with the geodesic flow, called the exponential map. We start by
defining the following subset of the tangent bundle:

V =
{
v ∈ TM

∣∣ 1 ∈ Iv
}
⊂ TM.

Recall that Iv ⊂ R is the domain of γv . The exponential map is

exp: V −→ M

v 7−→ γv (1).

For every p ∈ M we define

Vp = V ∩ TpM, expp = exp |Vp .

We see as usual M embedded in TM as the zero-section.

Proposition 8.4.7. The domain V is an open neighbourhood of M and exp

is smooth. Each Vp is open and star-shaped with respect to 0. We have

γv (t) = exp(tv)

for every v ∈ TM and t ∈ R such that both members are defined.

Proof. Let U be the open domain of the geodesic flow Φ. We have V =

{v ∈ TM | v×{1} ∈ U
}
and hence V is open. The map exp(v) = π(Φ(v , 1)) is

smooth. Star-shapeness and γv (t) = exp(tv) follow by Proposition 8.4.3. �

Here is one important fact about the exponential map:

Proposition 8.4.8. The map expp is a local diffeomorphism at 0 ∈ Vp.

Proof. We determine the endomorphism d(expp)0 : TpM → TpM. For
every v ∈ TpM we have expp(tv) = γv (t) for all sufficiently small t. Therefore
d(expp)0(v) = γ′v (0) = v . We have proved that d(expp)0 = id. In particular,
it is invertible and hence expp is a local diffeomorphism at 0. �

The proposition says that the exponential map expp may be used as a
parametrisation of a sufficiently small open neighbourhood of p. After many
pages, we recover here a very intuitive idea: the tangent space TpM should ap-
proximate the manifold near the point p. This idea may be realised concretely,
via the exponential map, only after fixing a Riemannian metric on M.
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Figure 8.2. If we model the Earth as S2 and look at the exponential
map from the north pole N, the disc D of radius π in TNS2 is mapped to
S2 as shown here. The points in ∂D are all sent to the south pole.

Example 8.4.9. Consider the sphere Sn. Example 8.4.6 shows that for this
Riemannian manifold we have V = TM and

exp(v) = cos |v | · p + sin |v | ·
v

|v |

for every p ∈ Sn and v ∈ TpSn. Note that when |v | = π we get exp(v) = −p.
The map expp sends the open disc D(0, π) ⊂ TpM of radius π diffeomor-

phically onto Sn \ {−p}, while its boundary sphere ∂D(0, π) goes entirely to
the antipodal point −p. See Figure 8.2. Note in particular that expp is not a
local diffeomorphism at the points in ∂D(0, π). In general, it is guaranteed to
be a local diffeomorphism only at the origin.

8.4.4. Normal coordinates. The exponential map furnishes some nice lo-
cal parametrisations called normal coordinates, that we now investigate. These
are very useful in many computations.

Let M be a Riemannian manifold and p ∈ M a point. We fix an isometric
isomorphism Rn ∼= TpM. Let r > 0 be a sufficiently small radius such that
the exponential map expp : B(0, r)→ M is defined and is an embedding. The
image of B(0, r) in M is called the geodesic ball of radius r centred at p
and the coordinates (x1, . . . , xn) furnished by the parametrisation expp are the
normal coordinates of the geodesic ball.

In normal coordinates, we represent a geodesic ball of radius r as B(0, r) ⊂
Rn with 0 corresponding to p. The metric gi j varies smoothly in B(0, r). The
following is an immediate consequence of Proposition 8.4.7.
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Figure 8.3. The Gauss Lemma says that, in normal coordinates, the
vectors x and y are orthogonal. To prove this, we extend x and y to
two commuting vector fields X (blue) and Y (green) defined on a (yellow)
pencil of radial geodesics. Then we show that 〈X, Y 〉 is constant along
the rays, and hence vanishes everywhere.

Proposition 8.4.10. The geodesics emanated from the origin with speed
c are Euclidean lines run with speed c . In particular at every x ∈ B(0, r) we
have the equality x igi j(x)x j = x ix i .

As a consequence, we get the following.

Proposition 8.4.11. At the origin gi j(0) = δi j ,
∂gi j
∂xk

= 0, and Γkij(0) = 0.

Proof. The first equality follows from the fact that d(expp)0 = id. The
third follows from the geodesic equation (26): since all euclidean lines at
constant speed through 0 are geodesics, we easily get Γkij = 0. For the second:

∂gi j
∂xk

=
∂

∂xk
〈ei , ej〉 = 〈∇ekei , ej〉+ 〈ei ,∇ekej〉 = 0 + 0 = 0.

The proof is complete. �

Of course the Christoffel symbols Γkij are guaranteed to vanish only at
the origin, and not at the other points of B(0, r). Proposition 8.4.10 can
be upgraded to a stronger statement that is universally known as the Gauss
Lemma.

Lemma 8.4.12 (Gauss Lemma). At every x ∈ B(0, r) we have the equality
x igi j(x)y j = x iy i for every y ∈ Rn. In particular the spheres ∂B(0, r ′) with
0 < r ′ < r are orthogonal to all the geodesics emanated from the origin.

Proof. By the previous proposition, it suffices to consider the case x iy i =

0, that is y is tangent to ∂B(0, x). We can also rescale y so that x ix i = y iy i .
We must prove that 〈x, y〉 = x igi j(x)y j = 0.
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We want to extend x and y to two vector fields as in Figure 8.3. To do
so, we define the curve γ : (−ε, ε)→ B(0, r),

γ(t) = cos t · x + sin t · y .

We have γ(0) = x and γ′(0) = y . Consider the embedding F : (−ε, ε) ×
(0, 1]→ B(0, r),

F (s, t) = sγ(t).

We extend x and y to the vector fields X = ∂F
∂s and Y = ∂F

∂t on the image
of F , see Figure 8.3. Note that [X, Y ] = 0. We think of both vector fields
depending on (s, t), so that x = X(1, 0) and y = Y (1, 0). At every point
(s, t) we get

∂

∂s
〈X, Y 〉 =

〈
∇XX, Y

〉
+
〈
X,∇XY

〉
.

We have ∇XX = 0 because X is the tangent field of the geodesic s 7→ sγ(t).
Since [X, Y ] = 0 and the torsion vanishes, we get ∇XY = ∇Y X. Therefore

∂

∂s
〈X, Y 〉 =

〈
X,∇Y X

〉
=

1

2

∂

∂t
〈X,X〉 = 0.

We have proved that ∂
∂s 〈X, Y 〉 = 0 and hence 〈X, Y 〉 is constant on the

geodesic s 7→ sx . Since we clearly have lims 7→0〈X, Y 〉 = 0 we deduce that
〈X, Y 〉 = 0 everywhere and in particular 〈x, y〉 = 0. The proof is complete. �

Every sphere ∂B(0, r ′) with 0 < r ′ < r is called a geodesic sphere of
radius r ′. The Gauss Lemma says that gi j at every point x 6= 0 decomposes
orthogonally into a radial part that coincides with the Euclidean metric, and a
tangential part, tangent to the geodesic sphere, that may however be arbitrary.

8.4.5. Minimising curves. We now start to study the tight connection
between geodesics and distance between points.

Let M be a Riemannian manifold and p, q ∈ M two points. We are
interested in the smooth curves that connect p to q, that is the γ : [a, b]→ M

with γ(a) = p and γ(b) = q. Recall that the length L(γ) of γ is independent
of its parametrisation. Recall also that d(p, q) is the infimum of all the lengths
of all the smooth curves connecting p and q. This infimum may not be realised
in some cases; if it does, that is if there is a curve γ with L(γ) = d(p, q), then
the curve γ is called minimising.

Let p ∈ M a point. Let B ⊂ M be a geodesic ball centred at p with some
radius r , and q ∈ B be any other point. We know that B contains a radial
geodesic γp,q : [0, 1]→ B connecting p to q.

Proposition 8.4.13. The geodesic γp,q is a minimising curve. Every other
minimising curve in M connecting p to q is obtained by reparametrising γp,q.
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Proof. Use the normal coordinates for B. Now B = B(0, r) and the points
p, q become 0, x ∈ B(0, r). Every curve γ in M connecting p to q contains an
initial subcurve γ∗ with support in B(0, ‖x‖) and connecting 0 to some point
in the sphere ∂B(0, ‖x‖).

By the Gauss Lemma the velocity γ∗(t)′ decomposes orthogonally into a
radial and a tangential component. The integral of the norm of the radial
component is at least r , since the radial component coincides with the Eu-
clidean one. Therefore L(γ∗) ≥ r = L(γp,q), and the equality holds if and
only if there is no tangential component and the radial component is never
decreasing, that is if γ∗(t) is obtained by reparametrising γp,q. �

Corollary 8.4.14. A geodesic sphere of radius r around p consists precisely
of all the points in M at distance r from p.

For the same reason a geodesic ball centred at p of radius r consists pre-
cisely of the set B(p, r) of all points in M at distance < r from p. Conversely,
if r is sufficiently small, every such set B(p, r) is a geodesic ball.

It is a remarkable fact that the metric balls B(p, r) with sufficiently small
radius r > 0 are precisely the images of the balls B(0, r) ⊂ TpM along the
exponential map.

8.4.6. Totally normal neighbourhoods. Let M be a Riemannian mani-
fold. We have discovered that every point p ∈ M has a neighbourhood U that
is nice with respect to p, and now we want to be more democratic and show
that we may pick a U that is also nice with respect to every point q ∈ U.

We say that an open subset U ⊂ M is totally normal if for every q ∈ U
there is a geodesic ball centred at q containing U.

Proposition 8.4.15. Every p ∈ M has a totally normal neighbourhood U.

Proof. Recall that exp: V → M is defined on some open neighbourhood
V ⊂ TM of M. We consider the map

F : V −→ M ×M
(p, v) 7−→ (p, expp(v)).

We already know that d(expp)0 = id. This implies easily that dF(p,0) is in-
vertible and hence F is a local diffeomorphism at (p, 0). Therefore there are
a neighbourhood W of p and a δ > 0 such that the restriction of F to

W ′ =
{

(p, v)
∣∣ p ∈ W, |v | < δ

}
is a diffeomorphism onto its image F (W ′). Pick a neighbourhood U of p such
that U × U ⊂ F (W ′). �

If U ⊂ M is a totally normal neighbourhood, then by Proposition 8.4.13 ev-
ery two distinct points p, q ∈ U are connected by a unique minimising geodesic
γp,q in M run at unit speed. The geodesic γp,q varies smoothly in p, q ∈ U.
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8.4.7. Locally minimising curves. We have defined geodesics as the so-
lution of certain differential equations, and we can finally characterise them
using only the distance between points.

Let M be a Riemannian manifold. We say that a curve γ : I → M is
locally minimising if every t ∈ I has a neighbourhood J ⊂ I such that for every
t0, t1 ∈ J with t0 < t1 the restriction γ|[t0,t1] is minimising.

Exercise 8.4.16. If γ is minimising, it is also locally minimising.

Theorem 8.4.17. A curve γ : I → M is locally minimising⇐⇒ it is obtained
by reparametrising a geodesic.

Proof. Let γ : I → M be a curve. For every t, pick a totally normal
neighbourhood U containing γ(t) and let J ⊂ I be a neighbourhood of t such
that γ(J) ⊂ U. Apply Proposition 8.4.13. �

The theorem is also true for piecewise immersions (see Remark 8.2.8),
since using transition functions these can be reparametrised as smooth curves
that have velocity zero at the angles. Geodesics are precisely the locally min-
imising curves, in a very robust manner.

8.4.8. Convex neighbourhoods. We now further improve the totally nor-
mal neighbourhoods by adding a quite natural requirement.

Definition 8.4.18. A subset S ⊂ M of a Riemannian manifold M is strictly
convex if any two points p, q in the closure S̄ of S are joined by a unique
minimising geodesic γ in M, and moreover its interior is contained in S.

We will prove that geodesic balls of sufficiently small radius are strictly
convex. To this purpose, we will need the following.

Lemma 8.4.19. For every point p ∈ M there is a r0 > 0 such that B(p, r0)

is a geodesic ball, and every geodesic tangent to the geodesic sphere ∂B(p, r)

stays locally outside B(p, r), for every 0 < r ≤ r0.

Proof. Use normal coordinates, that is represent B(p, r) as B(0, r) ⊂ Rn
for a small r > 0. For every (x, v) ∈ B(0, r) × Sn−1 we have a geodesic
γx,v : Jx,v → B(0, r) with 0 ∈ Jx,v and γ′x,v (0) = v . Consider the smooth
map

F (x, v) =
∂2

∂t2

(
|γx,v (t)|2

)∣∣∣
t=0
.

When x = 0, the geodesic is radial γ0,v (t) = tv and hence F (0, v) = 2.
Therefore there is a 0 < r0 < r such that F (x, v) > 0, and hence |γx,v (t)|2
has a local minimum at t = 0, whenever |x | ≤ r0. This proves the lemma. �

Proposition 8.4.20. For every point p ∈ M there is a r0 > 0 such that
B(p, r) is a strictly convex geodesic ball, for every 0 < r ≤ r0.
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Proof. We know that there is a r1 > 0 such that B(p, r1) is a geodesic
ball and every geodesic tangent to the geodesic sphere ∂B(p, r) stays locally
outside the ball, for every 0 < r ≤ r1.

Pick a 0 < r0 < r1/2 such that every minimising geodesic γq,q′ with
endpoints q, q′ ∈ B(p, r0) has length at most r1/2. (We can do this because on
a totally normal neighbourhood the minimising geodesic, and hence its length,
varies smoothly on the points.) In particular γq,q′ is contained in B(p, r1).

If we represent B(p, r1) in normal coordinates, we see that the maximum
of |γq,q′(t)|2 must be at one of its endpoints, otherwise γq,q′(t) would be
tangent to a geodesic sphere locally from inside. Therefore B(p, r) is strictly
convex for every r ≤ r0. �

Convex subsets have two nice properties: they are closed under intersec-
tion, and they are contractible (exercise). These imply the following.

Proposition 8.4.21. Every smooth manifold M has a locally finite covering
{Ui} such that every non-empty finite intersection of Ui ’s is contractible.

Proof. Put an arbitrary metric on M and use convex neighbourhoods. �

8.5. Completeness

A riemannian manifold M is also a metric space, so it makes perfectly
sense to consider whether it is complete or not – a notion that is senseless
for unstructured smooth manifolds. We prove here a theorem that shows that
completeness may actually be stated in various equivalent ways, one of which
involvies only geodesics.

8.5.1. Geodesically completeness. LetM be a riemannian manifold. We
say that M is complete if its underlying metric space is. We say that M is
geodesically complete if the exponential map expp is defined on the full tangent
space for all p ∈ M. Equivalently, we are asking that every maximal geodesic
γ(t) in M be defined for all times t ∈ R.

Recall that the distance d(p, q) of two points p, q ∈ M is the infimum of
the lengths of all the curves γ joining p and q; if such an infimum is realised by
γ, then γ is called minimising and we have discovered in the last section that it
must be a geodesic (after a reparametrisation). Here is one nice consequence
of geodesical completeness:

Proposition 8.5.1. If M is connected and geodesically complete, every two
points p, q ∈ M are joined by a minimising geodesic.

Proof. Pick a geodesic ball B(p, r) at p, with geodesic sphere ∂B(p, r).
If q ∈ B(p, r) we are done. Otherwise, let p0 ∈ ∂B(p, r) be a point at
minimum distance from q. Let v ∈ TpM be the unique vector with ‖v‖ = 1

and γv (r) = p0.
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By hypothesis, the geodesic γv (t) = expp(tv) exists for all t ∈ R. Set
d = d(p, q). We now show that γv (d) = q. To do so, let I ⊂ [0, d ] be the
subset of all times t such that d(γv (t), q) = d − t. This set is non-empty and
closed, and using Theorem 8.4.17 we easily see that it is also open (exercise).
Therefore I = [0, d ] and we are done. �

Corollary 8.5.2. If M is connected and geodesically complete, the expo-
nential map expp : TpM → M is surjective at every p ∈ M.

The exponential map expp of a geodesically complete riemannian manifold
M sends the tangent space TpM onto the whole manifold M; recall that expp
is a local diffeomorphism at the origin, but it may not be nice at the other
points.

8.5.2. Hopf – Rinow Theorem. We now state and prove the following.

Theorem 8.5.3 (Hopf – Rinow). Let M be a connected riemannian mani-
fold. The following are equivalent:

(1) M is geodesically complete,
(2) a subset K ⊂ M is compact ⇐⇒ it is closed and bounded;
(3) M is complete.

Proof. (1)⇒(2). Let K ⊂ M be a subset. Compact always implies closed
and bounded, so we prove the converse. Take a point p ∈ M. By hypothesis
expp : TpM → M is surjective. If K is closed and bounded, there is a r > 0 such
that K ⊂ B(p, r) and hence K is contained in the compact set expp(B(p, r)).
Since K is closed there, it is also compact.

(2)⇒(3). Every Cauchy sequence is bounded, so it has compact closure.
Therefore it contains a converging subsequence, and hence it converges.

(3)⇒(1). Let γ : I → M be a maximal geodesic. We know that I is open,
and since M is complete it is also closed: if ti ∈ I converges to some t ∈ R,
then γ(ti) is a Cauchy sequence and converges to some p ∈ M. Pick a totally
normal neighbourhood V containing p. Every geodesic in V intersects ∂V ; this
implies that γ can be pursued on and hence t ∈ I. �

Corollary 8.5.4. Compact riemannian manifolds are geodesically complete.

It is important to note that many interesting complete manifolds are not
compact, for instance Rn.

Corollary 8.5.5. Every closed submanifold of a geodesically complete rie-
mannian manifold is also geodesically complete.

This applies for instance to every closed submanifold M ⊂ Rn.
Corollary 8.5.6. Every smooth manifold has a geodesically complete rie-

mannian metric.

Proof. By Whitney’s Embedding Theorem, it is diffeomorphic to a closed
submanifold of Rn. �
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8.6. Curvature

How can we distinguish two riemannian manifolds? Globally, they may
have different topologies – and this could be hopefully detected for instance
by the fundamental group or De Rham cohomology – but are there also some
local invariants that describe their geometry? Can we measure locally how a
riemannian manifold differs from being the familiar Euclidean space?

The answer to all these questions is curvature, and the most complete
answer is a formidable tensor field called the Riemann curvature tensor. This
tensor field is pretty complicate and one sometimes wish to examine some
more reasonable tensor fields obtained from it via appropriate contractions:
these are the Ricci tensor and finally the scalar curvature.

8.6.1. The Riemann curvature tensor. LetM be a riemannian manifold,
equipped with its Levi-Civita connection ∇. We have already experienced with
the torsion tensor T that one of the most efficient and natural ways to encode
some information from ∇ is to build an appropriate tensor field. Tensor fields
are great because they furnish some precise data at every single point p ∈ M.
Of course the torsion tensor is useless here, since T ≡ 0 by assumption, so we
must look for something else.

Recall that a tensor field of type (1, n) on M is a multilinear map

TpM × · · · × Tp︸ ︷︷ ︸
n

−→ TpM

that depends smoothly on p.

Definition 8.6.1. The Riemann curvature tensor R is a tensor field on M
of type (1, 3) defined as follows. For every point p ∈ M and every vectors
u, v , w ∈ TpM we set

R(p)(u, v , w) = ∇u∇vZ −∇v∇uZ −∇[X,Y ](p)Z

where X, Y, Z are vector fields extending u, v , w on some neighbourhood of p.

Of course it is crucial here to prove that the definition is well-posed:

Proposition 8.6.2. The tangent vector R(p)(u, v , w) is independent of the
extensions X, Y, and Z.
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Proof. Armed with patience and optimism, we write everything in coordi-
nates and get

∇X∇Y Z = ∇X
(
Y i
∂Zk

∂xi
ek + Y iZjΓkijek

)
= X j

∂Y i

∂xj

∂Zk

∂xi
ek +X jY i

∂2Zk

∂xj∂xi
ek +X jY i

∂Zk

∂xi
Γljkel

+Xm
∂Y i

∂xm
ZjΓkijek +XmY i

∂Z j

∂xm
Γkijek +XmY iZj

∂Γkij
∂xm

ek

+XmY iZjΓkijΓ
l
kmel .

If we calculate the difference ∇X∇Y Z−∇Y∇XZ the terms number 2, 3, and
5 cancel, and the terms 1 and 4 form precisely the expression

[X, Y ]i
∂Zk

∂xi
ek + [X, Y ]iZjΓkijek = ∇[X,Y ]Z.

From this we deduce that R(p)(u, v , w) consists only of the terms number 6
and 7 that depend (linearly) on u, v , and w and not on their extensions. The
proof is complete. �

The tensor field R is therefore well-defined. To check that it is indeed
smooth, we work on a chart and note that during the proof we have also
found implicitly the coordinates of R in terms of the Christoffel symbols and
their derivatives. After renaming indices we get

(27) Rli jk =
∂Γljk
∂xi
−
∂Γlik
∂xj

+ ΓmjkΓlim − ΓmikΓljm.

In particular Rli jk depends smoothly on the point. The only example we make
for the moment is rather trivial.

Example 8.6.3. If an open set U ⊂ Rn is equipped with the Euclidean
metric, then Γkij = 0 and therefore Rli jk = 0 vanishes everywhere.

It is important to keep in mind that the definition of R is intrinsic, that is
it only depends on the metric g and on nothing else: this implies for instance
that the tensor field R is preserved by any isometry.

As every tensor field, the Riemann tensor gives a C∞(M)-multilinear map

R : X(M)× X(M)× X(M) −→ X(M)

that can be written elegantly as

R(X, Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is sometimes useful to consider another version of the Riemann tensor, where
all the indices are in lower position:

Ri jkl = Rmijkglm.
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In this version the Riemann tensor is a tensor of type (0, 4). Of course we can
transform it back to the original (1, 3) tensor using glm, so there is no loss of
information in using one version instead of the other.

8.6.2. Normal coordinates. Recall from Section 8.4.4 that the expo-
nential map expp furnishes some nice normal coordinates around each point
p ∈ M, such that gi j = δi j and Γkij = 0 at the point. In these coordinates the
expression (27) simplifies and we get

(28) Rli jk =
∂Γljk
∂xi
−
∂Γlik
∂xj

.

Of course this equation is valid only at the point p. We can also deduce a
reasonable expression for Ri jkl directly in terms of the metric tensor:

Proposition 8.6.4. At the point p, in normal coordinates we have

(29) Ri jkl =
1

2

(
∂2gik
∂xj∂xl

+
∂2gj l
∂xi∂xk

−
∂2gjk
∂xi∂xl

−
∂2gi l
∂xj∂xk

)
.

Proof. Recall that in normal coordinates the first derivative of g in p van-
ishes. We get

Ri jkl = glmR
m
ijk = glm

(
∂Γmjk
∂xi
−
∂Γmik
∂xj

)
=

1

2
glmg

hm

(
∂

∂xi

(
∂gkh
∂xj

+
∂ghj
∂xk

−
∂gjk
∂xh

)
−

∂

∂xj

(
∂gkh
∂xi

+
∂ghi
∂xk
−
∂gik
∂xh

))
=

1

2

(
∂2gl j
∂xi∂xk

−
∂2gjk
∂xi∂xl

−
∂2gl i
∂xj∂xk

+
∂2gik
∂xj∂xl

)
.

The proof is complete. �

Note the absence of repeated indices: the element Ri jkl is just the sum
of four second partial derivatives of the metric g. Of course the use of nor-
mal coordinates is crucial here. The expression for R has also some evident
symmetries in the indices that we now analyse.

8.6.3. Symmetries. Being a (1, 3)-tensor field, we expect the Riemann
tensor R to contain a tremendous amount of information on g, and this is
what really happens. To help mastering this huge amount of data, we start by
unraveling some symmetries.

Proposition 8.6.5. The following symmetries hold in any coordinate chart:

(1) Ri jkl = −Rj ikl = −Ri j lk ,
(2) Ri jkl = Rkl i j ,
(3) Rli jk + Rljki + Rlki j = 0.

Before entering in the proof, note that these symmetries may be stated
more intrinsically as follows: for every p ∈ M and u, v , w, z ∈ TpM we get
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(1) R(p)(u, v , w, z) = −R(p)(v , u, w, z) = −R(p)(u, v , z, w),
(2) R(p)(u, v , w, z) = R(p)(w, z, u, p),
(3) R(p)(u, v , w) + R(p)(v , w, u) + R(p)(w, u, v) = 0.

In the first two we interpret R as a (0, 4) tensor field, while in the last we take
the original (1, 3) tensor field. We will use R slightly ambiguously in this way.

Proof. To prove the intrinsic version of the symmetries, we may take some
normal coordinates at p. There Ri jkl has the convenient expression (29), which
displays (1) and (2) immediately. Analogously for Rli jk we use (28) to deduce
(3) easily. The proof is complete. �

8.6.4. Sectional curvature. What kind of geometric information can we
get from the Riemann tensor R? One answer to this question passes through
the definition of sectional curvature.

Let M as usual be a Riemannian manifold and R be its Riemann curvature
tensor field. Let p ∈ M be a point and σ ⊂ TpM be a two dimensional linear
subspace, that is a plane passing through the origin. We now assign to σ a
number K(σ) called the sectional curvature along σ, as follows.

Let u, v ∈ σ be arbitrary generators. We define

K(σ) =
R(p)(u, v , u, v)

A2(u, v)

where

A2(u, v) = ‖u‖2‖v‖2 − 〈u, v〉2

is the square of the area of the parallelogram spanned by u and v .

Proposition 8.6.6. The sectional curvature K(σ) is well-defined.

Proof. The quantity K(σ) does not change if we substitute (u, v) with
one of the following:

(v , u), (λu, v), (u + λv, v).

By composing such moves we can transform (u, v) into any other basis. �

The Riemann tensor of course determines the sectional curvatures by def-
inition; we now see that also the converse holds:

Proposition 8.6.7. The sectional curvatures K(σ) along planes σ ⊂ TpM
determine the Riemann tensor R(p).

Proof. The sectional curvatures determine R(p)(u, v , u, v) for all pairs
of vectors u, v ∈ TpM. The vector R(p)(u + w, v, u + w, v) is therefore
determined, and it equals

R(p)(u, v , u, v) + 2R(p)(u, v , w, v) + R(p)(w, v, w, v).
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Therefore the sectional curvatures also determine R(p)(u, v , w, v) ∀u, v , w .
Analogously, the vector R(p)(u, v + z, w, v + z) is determined and it equals

R(p)(u, v , w, v) + R(p)(u, v , w, z) + R(p)(u, z, w, v) + R(p)(u, z, w, z)

so the sectional curvatures determine the value of

R(p)(u, v , w, z) + R(p)(u, z, w, v) = R(p)(u, v , w, z)− R(p)(u, z, v , w)

for all u, v , w, z . If we look at the three numbers

R(p)(u, v , w, z), R(p)(u, w, z, v), R(p)(u, z, v , w)

we see that their sum is zero and their differences are determined: hence the
three numbers are also determined. �

Therefore we are not losing any information if we consider sectional cur-
vatures instead of the Riemann tensor. Sectional curvatures have a clear
geometric interpretation that we will describe soon. For the time being, we
keep on manipulating the Riemann tensor.

8.6.5. Ricci tensor. The Riemann curvature tensor R is a tensor of type
(1, 3) and it is of course natural to study its contractions, that are tensor fields
of type (0, 2). There are three possible contractions of Rli jk , namely:

Rii jk , Rji jk , and Rkijk .

Using the symmetries of R we see easily that the first two differ only by a sign
and the third vanishes. Therefore there is essentially only one way to get a
non-trivial tensor by contraction, and this yields the Ricci tensor :

Ri j = Rkkij .

This is a tensor field of type (2, 0). Since Ricci has the same initial as Riemann,
we still indicate it by R. To distinguish which is which it suffices to look at
the number of indices, or arguments. The Ricci tensor of course also defines
a C∞(M)-bilinear map

R : X(M)× X(M) −→ C∞(M).

Proposition 8.6.8. The Ricci tensor is symmetric.

Proof. We have

Ri j = Rkkij = Rkijhg
hk = Rhjikg

hk = Rhhji = Rj i .

The proof is complete. �

Like the metric tensor, the Ricci tensor is a symmetric tensor field of type
(0, 2). Note however that the Ricci tensor need not to be positive-definite and
not even non-degenerate: indeed, on an open set U ⊂ Rn with the Euclidean
metric, all the tensors that we introduce vanish, including Ricci.
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8.6.6. Scalar curvature. If you think that a tensor of type (0, 2) is yet
too complicated an invariant, you can still contract it and get an interesting
number, called the scalar curvature.

The scalar curvature of a Riemannian manifold M at a point p ∈ M is

R = gi jRi j .

This is the trace of the Ricci tensor; note that we need the metric g to raise
an index in order to define the trace of a tensor of type (0, 2) unambiguously.
The scalar curvature is still indicated with the same letter R as the Riemann
and Ricci curvature: the number of indices is enough to understand which is
which.

We have defined four metric invariants: the Riemann tensor, the sectional
curvatures, the Ricci tensor, and the scalar curvature. We now investigate
which geometric information can be recovered from each them: we start with
flatness.

8.6.7. Flatness. The first thing to note about the Riemann tensor is that
it measures completely the local deviation from the Euclidean metric.

We say that a Riemannian manifold M is Euclidean if it is locally isometric
to Rn, that is every p ∈ M has an open neighbourhood U(p) ⊂ M that is
isometric to some open subset of the Euclidean Rn.

We say that M is flat if its Riemann tensor Rli jk vanishes everywhere.

Theorem 8.6.9. A Riemannian manifold M is Euclidean ⇐⇒ it is flat.

Proof. We already know that Euclidean implies flat, so we prove the con-
verse. Pick a point in M and represent a small neighbourhood of it via normal
coordinates B(0, r) ⊂ Rn. Pick a small cube (−ε,+ε)n contained in B(0, r).

We now extend the orthonormal basis e1, . . . , en at 0 to a frame on the
cube, as follows: we first parallel-transport the basis along x1, then along x2,
and so on until xn. At the i-th step the frame is defined only on the slice Si =

{xi+1 = . . . = xn = 0} of the cube, and at the end it is defined everywhere.
It is smooth because parallel transport depends smoothly on the initial data.
We have thus constructed a frame X1, . . . , Xn that is an orthonormal basis at
every point, such that Xi(0) = ei . By construction we have

∇eiXk = 0 on Si ∀k.

We now prove that in fact

∇ejXk = 0 on Si ∀k,∀j ≤ i .

We show this by induction on i . The case i = 1 is done, so we suppose that it
holds for i and prove it for i + 1. We already know that ∇ei+1

Xk = 0 on Si+1.
If j ≤ i , by our induction hypothesis we have ∇ejXk = 0 on the hyperplane Si .
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To conclude it suffices to check that ∇ei+1
(∇ejXk) = 0 on Si . The coordinate

fields e1, . . . , en commute, hence flatness gives

∇ei+1
(∇ejXk) = ∇ej (∇ei+1

Xk) = 0.

The inductive proof is completed and when i = n it shows that

∇ejXk = 0 ∀k, j
everywhere on the cube. Since ∇ is symmetric we have

[Xi , Xj ] = ∇XiXj −∇XjXi = 0.

By Proposition 5.4.10 there is a chart ϕ : U → V with U ⊂ (−ε, ε)n that
straightens these vector fields, that is that transports Xi into ei . The map
ϕ is an isometry between U and V with its Euclidean metric, because it
sends pointwise an orthonormal basis X1, . . . , Xn into the orthonormal basis
e1, . . . , en. �


