ANNO ACCADEMICO 2002/2003 CORSO di LAUREA in FISICA GEOMETRIA I Primo compitino 5/11/2002

Esercizio 1

Al variare di $k \in \mathbb{R}$, sia U_k il sottospazio vettoriale di \mathbb{R}^4 definito da $U_k = \{(x,y,z,t) \in \mathbb{R}^4 \, | \, x+y+kz+kt = 0, 2x+(2-k)y+3kz = 0, (2-k)x+2y+4kt = 0 \} \, .$ Sia $W = \mathrm{Span} \, ((1,1,2,3), (1,0,-1,-1), (-2,1,1,1), (-2,2,4,5)) \subset \mathbb{R}^4 \, .$

- 1) Calcolare la dimensione di U_k al variare di k.
- 2) Per quali k, W e U_k sono isomorfi?
- 3) Costruire una base di $T = W \cap U_0$.
- 4) Trovare un sottospazio $Z \subset \mathbb{R}^4$ tale che $T \oplus Z = \mathbb{R}^4$

Esercizio 2

Sia $V=\mathbb{R}_2[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado minore o uguale a 2 e sia $W=\{(x,y,z)\in\mathbb{R}^3\,|\,-x+y+z=0\}$. Sia S l'insieme delle applicazioni lineari $f:V\to\mathbb{R}^3$ tali che $f(x^2+x-1)=(1,-1,2)$, $f(x^2+1)=(2,2,1)$ e $W\subset \mathrm{Im}\, f$.

- 1) Dimostrare che S è non vuoto.
- 2) Dimostrare che ogni $f \in S$ è un isomorfismo.
- 3) Esiste $f \in S$ tale che f(2x 4) = (0, 1, 1)?
- 4) Esiste $f \in S$ tale che f(x) = (0, -4, 3)?

Esercizio 3

Per ognuna delle affermazioni seguenti dire se sono vere o false, motivando la risposta.

a) Si considerino le due matrici reali
$$A = \begin{pmatrix} 3 & 1 & -4 \\ 0 & 1 & 2 \\ 9 & 0 & -1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

È possibile trasformare A in B attraverso un numero finito di operazioni elementari per riga.

- b) Esistono $A, B \in {}_{3}\mathbb{R}_{3}$ tali che rnk $A = \operatorname{rnk} B = 2$ e rnk AB = 3.
- c) Esistono $A, B \in {}_{3}\mathbb{R}_{3}$ tali che rnk $A = \operatorname{rnk} B = \operatorname{rnk} AB = 2$.

ANNO ACCADEMICO 2002/2003 CORSO di LAUREA in FISICA GEOMETRIA I Primo compitino 5/11/2002

Esercizio 1

Al variare di $k \in \mathbb{R}$, sia U_k il sottospazio vettoriale di \mathbb{R}^4 definito da $U_k = \{(x,y,z,t) \in \mathbb{R}^4 \mid x+y+kz+kt = 0, 2x+(2-k)y+3kz = 0, (2-k)x+2y+4kt = 0\}.$ Sia $W = \mathrm{Span}\,((1,1,2,3), (1,0,-1,-1), (-2,1,1,1), (-2,2,4,5)) \subset \mathbb{R}^4$.

- 1) Calcolare la dimensione di U_k al variare di k.
- 2) Per quali k, W e U_k sono isomorfi?
- 3) Costruire una base di $T = W \cap U_0$.
- 4) Trovare un sottospazio $Z \subset \mathbb{R}^4$ tale che $T \oplus Z = \mathbb{R}^4$

Esercizio 2

Sia $V=\mathbb{R}_2[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado minore o uguale a 2 e sia $W=\{(x,y,z)\in\mathbb{R}^3\,|\,-x+y+z=0\}$. Sia S l'insieme delle applicazioni lineari $f:V\to\mathbb{R}^3$ tali che $f(x^2+x-1)=(1,-1,2)$, $f(x^2+1)=(2,2,1)$ e $W\subset \mathrm{Im}\, f$.

- 1) Dimostrare che S è non vuoto.
- 2) Dimostrare che ogni $f \in S$ è un isomorfismo.
- 3) Esiste $f \in S$ tale che f(2x 4) = (0, 1, 1)?
- 4) Esiste $f \in S$ tale che f(x) = (0, -4, 3)?

Esercizio 3

Per ognuna delle affermazioni seguenti dire se sono vere o false, motivando la risposta.

a) Si considerino le due matrici reali
$$A = \begin{pmatrix} 3 & 1 & -4 \\ 0 & 1 & 2 \\ 9 & 0 & -1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

È possibile trasformare A in B attraverso un numero finito di operazioni elementari per riga.

- b) Esistono $A, B \in M(3, \mathbb{R})$ tali che rk $A = \operatorname{rk} B = 2$ e rk AB = 3.
- c) Esistono $A, B \in M(3, \mathbb{R})$ tali che rk $A = \operatorname{rk} B = \operatorname{rk} AB = 2$.