CORSO di LAUREA in FISICA

GEOMETRIA (vecchio ordinamento)

Appello del 7/10/2002

Esercizio 1

Discutere al variare di $a \in \mathbb{C}$ l'esistenza e l'unicità delle soluzioni del sistema lineare

$$\begin{cases} x + (1 - a^2)y + (1 + a)z = 0 \\ 2x + (3 - a^2)y + (4 + 4a)z = 3 \\ x + 2y + (3 + a)z = 1 \end{cases}$$

Esercizio 2

Dimostrare che non esiste o costruitre, se esiste, $f:\mathbb{C}^4\to\mathbb{C}^4$ lineare tale che dim $\mathrm{Ker}\,(f-3id)=\mathrm{dim}\mathrm{Ker}\,(f-3id)^2=1\,,\;\;f(v)=w\,,\;\;f(w)=v\,,\;\;W$ sia f-invariante e $f_{|_W}$ non sia diagonalizzabile, dove $v=(1,0,1,0)\,,\;w=(0,0,0,2)$ e

- 1) $W = \{(x, y, z, t) \in \mathbb{C}^4 | 2x + y = x + 2z + t = 0\}$
- 2) $W = \{(x, y, z, t) \in \mathbb{C}^4 | x + y z t = 2y 3t = 0\}$
- 3) $W = \{(x, y, z, t) \in \mathbb{C}^4 | x + z + t = x + y z = 0\}$

Esercizio 3

Sia $V = {}_{n}\mathbb{R}_{n}$, e $\forall A, B \in V$ definiamo $\varphi(A, B) = \operatorname{tr}(AB)$.

- 1) Verificare che φ è un prodotto scalare non degenere su V .
- 2) Calcolarne la segnatura.
- 3) Rappresentare tramite φ il funzionale $L \in V^*$ definito da $L(A) = a_{11} + a_{nn}$ per ogni $A \in V$, dove $A = (a_{ij})$.

Esercizio 4

Per $a,b \in \mathbb{R}$ si consideri in \mathbb{R}^2 la conica $C_{a,b}$ di equazione

$$ax^2 + by^2 + 2xy + 2bx + 2y - a + b = 0$$

- 1) Trovare i punti appartenenti a $C_{a,b}$ per ogni $a,b \in \mathbb{R}$
- 2) Esistono $a,b\in\mathbb{R}$ tale che $C_{a,b}$ sia una parabola tangente alla retta y=x+1?
- 3) $C_{1,2}$ è isometrica alla conica di equazione $5x^2 + y^2 + 2xy + 2x = 1$?