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Introduction

The aim of this book is to introduce the reader to an area of mathe-
matics called geometric topology. The text should be suitable to a master
or PhD student in mathematics interested in geometry, and more generally
to any curious mathematician with a standard background in topology and
analysis.

We interpret the term “geometric topology” in a quite restrictive sense:
for us, this topic is the study of topological manifolds via the assignment
of a preferred “geometric structure,” that is some Riemannian metric of a
particular nice kind. It is one of the most important discoveries in modern
geometry that such preferred metrics exist on every compact manifold of
dimension two and three, and this is exactly what this book is about.

In other words, this book is an introduction to surfaces and three-
manifolds, and to their geometrisation, due to Poincaré and Koebe in
1907 in dimension two and to Thurston and Perelmann in 2002 in dimen-
sion three. Therefore this is also a textbook on low-dimensional topology,
except that we completely neglect four-manifolds, that form a relevant part
of this area but which do not (yet?) fit in any geometrisation perspective.

There are already many good textbooks on surfaces, so our main new
contribution is probably to furnish a complete introduction to Thurston’s
geometrisation of three-manifolds, that includes both the topological side
of the story (the decomposition of three-manifolds along spheres and tori,
the classification of Seifert manifolds) and the geometric side (hyperbolic
geometry, Thurston’s Dehn filling Theorem, Mostow rigidity, the eight
geometries).

This book is essentially self-contained: in the first chapter we recall
all the relevant background material in differential topology and geometry,
and from the second chapter on we never mention a theorem without giving
a proof – with only one important but unavoidable exception: Perelman’s
solution of the geometrisation conjecture, stated in Chapter 12.

Outline. Here is a brief outline of the material contained in each chap-
ter. The book is divided into three parts. In the first, we introduce hyper-
bolic geometry and its relatives, the elliptic and flat geometries. Hyperbolic
geometry is by far the richest, the most beautiful, and also the most im-
portant geometry in dimensions two and three: its relevance is witnessed
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2 INTRODUCTION

by the folk sentence that a “generic” manifold of dimension two or three
has a hyperbolic structure, that is a Riemannian structure locally isometric
to the hyperbolic plane or space.

Chapter 1 includes all the preliminaries that we will need: in particu-
lar, we quickly review various general notions of differential topology and
geometry that can be found in many excellent books.

Chapter 2 introduces the reader to the hyperbolic space Hn: as oppo-
site to the sphere Sn and to the euclidean space Rn, the hyperbolic space
may be represented in at least four different ways, none of which is preva-
lent: each representation is called a model. We introduce the models, and
then study the isometries, the compactification of Hn, and its subspaces.

Chapter 3 deals with hyperbolic manifolds. Maybe unexpectedly, these
objects are related to a number of different beautiful mathematical con-
cepts like discrete subgroups of Lie groups, polyhedra, and tessellations.
We also present some generalisations like manifolds with geodesic bound-
ary, cone manifolds, and orbifolds.

Chapter 4 introduces the thick-thin decomposition, a general struc-
tural theorem on hyperbolic manifolds that allows us to understand in par-
ticular the topology of the complete hyperbolic manifolds that have finite
volume but are not compact. It also contains various information on flat
and elliptic manifolds, including Bieberbach’s Theorem.

Chapter 5 introduces a variety of notions and results on hyperbolic
manifolds that are connected with the points at infinity of Hn.

The second part of the book deals with surfaces. We classify and
geometrise every surface of finite type in Chapter 6, where we also study
simple closed curves in surfaces and define the mapping class group.

Chapter 7 presents the Teichmüller space of a genus-g surface, as the
space of its hyperbolic structures. We use the Fenchel–Nielsen coordinates
to show that this space is in fact homeomorphic to R6g−6.

Chapter 8 introduces Thurston’s beautiful theory of diffeomorphisms
of surfaces. We introduce Thurston’s compactification of the Teichmüller
space, and the consequent classification of the elements of the mapping
class group into three classes. We define and study some intriguing objects
called geodesic currents and laminations.

The last (and longest) part of the book is devoted to three-manifolds.
In Chapter 9 we introduce the first topological facts, including the prime
decomposition, incompressible surfaces, and Haken manifolds.

Chapter 10 is entirely devoted to Seifert manifolds, a class of three-
manifolds that contains many interesting examples. We classify these man-
ifolds completely.

In Chapter 11 we present various techniques that topologists use every
day to construct three-manifolds: Heegaard splittings, knots and links,
Dehn surgery, and surface bundles. We end by stating and proving the
canonical torus decomposition.
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In Chapter 12 we finally move from topology to geometry: there are
eight relevant geometries in dimension three, and we introduce them with
some detail. We show in particular that the Seifert manifolds occupy
precisely six of them.

In Chapter 13 it is due time to start investigating the most interesting
of the three-dimensional geometries, the hyperbolic one: we prove that in
dimension three every manifold has at most one hyperbolic structure, and
this important fact is known as Mostow’s rigidity Theorem.

In Chapter 14 we construct many examples of hyperbolic 3-manifolds,
by introducing ideal triangulations and Thurston’s equations.

Chapter 15 contains a complete proof of Thurston’s hyperbolic Dehn
filling theorem and a discussion on the volumes of hyperbolic 3-manifolds.

As we mentioned above, this book is almost entirely self-contained
and the bibliography is minimised to the strict necessary: each chapter
ends with a short section containing the pertaining references, that consist
essentially in the sources that we have consulted for that chapter. Many of
the topics presented here have their origin in Thurston’s notes and papers
and are of course already covered by other books, that we have widely
used, so our bibliography consists mainly of secondary sources.
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Hyperbolic geometry





CHAPTER 1

Preliminaries

We expect the reader to be familiar with the mathematics usually
taught to undergraduates, like multivariable differential calculus, group
theory, topological spaces, and fundamental groups.

Some knowledge on differentiable and Riemannian manifolds would
also help, at least on an intuitive way: in any case, this chapter introduces
from scratch everything we need from differential topology and geometry.
We also include some important information on groups (like Lie groups
and group actions), and a few basic notions of measure theory and alge-
braic topology, with a very quick overview of homology theory. Finally, we
use these tools to introduce cell complexes, handle decompositions, and
triangulations: these are the main practical instruments that we have to
build manifolds concretely.

Most results stated here are given without a proof: details can be
found in various excellent books, some of which will be cited below.

1.1. Differential topology

We introduce manifolds, bundles, embeddings, tubular neighbourhoods,
isotopies, and connected sums. Throughout this book, we will always work
in the smooth category. The material contained in this section is carefully
explained in Differentiable manifolds of Kosinksi [34].

1.1.1. Differentiable manifolds. A topological manifold of dimension
n is a paracompact Hausdorff topological space M locally homeomorphic
to Rn. In other words, there is a covering {Ui} of M consisting of open
sets Ui homeomorphic to open sets Vi in Rn.

Topological manifolds are difficult to investigate, their definition is
too general and allows to directly define and prove only few things. Even
the notion of dimension is non-trivial: to prove that an open set of Rk
is not homeomorphic to an open set of Rh for different k and h we need
to use non-trivial constructions like homology. It is also difficult to treat
topological subspaces: for instance, the Alexander horned sphere shown in
Figure 1.1 is a subspace of R3 topologically homeomorphic to a 2-sphere.
It is a complicated object that has many points that are not “smooth” and
that cannot be “smoothened” in any reasonable way.
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8 1. PRELIMINARIES

Figure 1.1. The Alexander horned sphere is a subset of R3

homeomorphic to the 2-sphere S2. It divides R3 into two
connected components, none of which is homeomorphic to
an open ball. It was constructed by Alexander as a coun-
terexample to a natural three-dimensional generalisation of
Jordan’s curve theorem. The natural generalisation would
be the following: does every 2-sphere in R3 bound a ball?
If the 2-sphere is only topological, the answer is negative
as this counterexample shows. If the sphere is a differen-
tiable submanifold, the answer is however positive as proved
by Alexander himself.

We need to define some “smoother” objects, and for that purpose
we can luckily invoke the powerful multivariable infinitesimal calculus. Let
U ⊂ Rn be an open set: a map f : U → Rk is smooth if it is C∞, i.e. it has
partial derivatives of any order.

Definition 1.1.1. Let M be a topological manifold. A chart is a fixed
homeomorphism ϕi : Ui → Vi between an open set Ui of M and an open
set Vi of Rn. An atlas is a set of charts

{
(Ui , ϕi)

}
where the open sets Ui

cover M.
If Ui ∩ Uj 6= ∅ there is a transition map ϕj i = ϕj ◦ ϕ−1

i that sends
homeomorphically the open set ϕi(Ui ∩ Uj) onto the open set ϕj(Ui ∩ Uj).
Since these two open sets are in Rn, it makes sense to require ϕi j to be
smooth. The atlas is differentiable if all transition maps are smooth.

Definition 1.1.2. A differentiable manifold is a topological manifold
that is equipped with a differentiable atlas.
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Figure 1.2. The tangent space at p is defined as the set of
all curves γ with γ(0) = p seen up to an equivalent relation
that identifies two curves having (in some chart) the same
tangent vector at p. This is a chart-independent condition.

We will often use the word manifold to indicate a differentiable mani-
fold. The integer n is the dimension of the manifold. We have defined the
objects, so we now turn to their morphisms.

Definition 1.1.3. A map f : M → M ′ between differentiable manifolds
is smooth if it is smooth when read locally through charts. This means
that for every p ∈ M there are two charts (Ui , ϕi) of M and (U ′j , ϕ

′
j) of

N with p ∈ Ui and f (p) ∈ U ′j such that the composition ϕ′j ◦ f ◦ ϕ−1
i is

smooth wherever it is defined.

A diffeomorphism is a smooth map f : M → M ′ that admits a smooth
inverse g : M ′ → M. A curve in M is a smooth map γ : I → M defined on
some open interval I of the real line, which may be bounded or unbounded.

Definition 1.1.4. A differentiable manifold is oriented if it is equipped
with an atlas where all transition functions are orientation-preserving (that
is, the determinant of their differential at any point is positive).

A manifold which can be oriented is called orientable.

1.1.2. Tangent space. Let M be a differentiable manifold of dimen-
sion n. We may define for every point p ∈ M a n-dimensional vector space
TpM called the tangent space.

The space TpM may be defined as the set of all curves γ : (−a, a)→
M such that γ(0) = p and a > 0 is arbitrary, considered up to some
equivalence relation. The relation is the following: we identify two curves
that, read on some chart (Ui , ϕi), have the same tangent vector at ϕi(p).
The definition does not depend on the chart chosen.

A chart identifies TpM with the usual tangent space Rn at ϕi(p) in
the open set Vi = ϕi(Ui). Two distinct charts ϕi and ϕj provide different
identifications with Rn, which differ by a linear isomorphism: the differential
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dϕj i of the transition map ϕi j . The structure of TpM as a vector space is
then well-defined, while its identification with Rn is not.

Every smooth map f : M → N between differentiable manifolds in-
duces at each point p ∈ M a linear map dfp : TpM → Tf (p)N between
tangent spaces in the simplest way: the curve γ is sent to the curve f ◦ γ.

Definition 1.1.5. A smooth map f : M → N is a local diffeomorphism
at a point p ∈ M if there are two open sets U ⊂ M and V ⊂ N containing
respectively p and f (p) such that f |U : U → V is a diffeomorphism.

The inverse function theorem in Rn implies easily the following fact,
that demonstrates the importance of tangent spaces.

Theorem 1.1.6. Let f : M → N be a smooth map between manifolds
of the same dimension. The map is a local diffeomorphism at p ∈ M if
and only if the differential dfp : TpM → Tf (p)N is invertible.

In this theorem a condition satisfied at a single point (differential
invertible at p) implies a local property (local diffeomorphism). Later on,
we will see that in Riemannian geometry a condition satisfied at a single
point may also imply a global property.

If γ : I → M is a curve, its velocity γ ′(t) in t ∈ I is the tangent vector
γ ′(t) = dγt(1). Here “1” means the vector 1 in the tangent space Tt I = R.
We note that the velocity is a vector and not a number: the modulus of
a tangent vector is not defined in a differentiable manifold (because the
tangent space is just a real vector space, without a norm).

1.1.3. Differentiable submanifolds. Let N be a differentiable mani-
fold of dimension n.

Definition 1.1.7. A subset M ⊂ N is a differentiable submanifold of
dimension m 6 n if every p ∈ M has an open neighbourhood U ⊂ N

diffeomorphic to an open set V ⊂ Rn via a map ϕ : U → V that sends
U ∩M onto V ∩ L, where L is a linear subspace of dimension m.

The pairs {(U ∩ M,ϕ|U∩M)} form an atlas for M, which inherits a
structure of m-dimensional differentiable manifold. At every point p ∈ M
the tangent space TpM is a linear subspace of TpN.

1.1.4. Fibre bundles. We introduce a particularly nice kind of maps.

Definition 1.1.8. A smooth fibre bundle is a smooth map

π : E −→ B

such that every fibre π−1(p) is diffeomorphic to a fixed manifold F and π
looks locally like a projection. This means that B is covered by open sets
Ui equipped with diffeomorphisms ψi : Ui × F → π−1(Ui) such that π ◦ ψi
is the projection on the first factor.
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The manifolds E and B are called the total and base manifold, respec-
tively. The manifold F is the fibre of the bundle. A section of the bundle
is a smooth map s : B → E such that π ◦ s = idB. Two fibre bundles
π : E → B and π′ : E ′ → B are isomorphic if there is a diffeomorphism
ψ : E → E ′ such that π = π′ ◦ ψ.

1.1.5. Vector bundles. A smooth vector bundle is a smooth fibre
bundle where every fibre π−1(p) has the structure of a n-dimensional real
vector space which varies smoothly with p. Formally, we require that
F = Rn and ψi(p, ·) : F → π−1(p) be an isomorphism of vector spaces for
every ψi as above.

The zero-section of a smooth vector bundle is the section s : B → E

that sends p to s(p) = 0, the zero in the vector space π−1(p). The image
s(B) of the zero-section is typically identified with B via s.

Two vector bundles are isomorphic if there is a diffeomorphism ψ as
above, which restricts to an isomorphism of vector spaces on each fibre. As
every manifold here is differentiable, likewise every bundle will be smooth
and we will hence often omit this word.

1.1.6. Tangent and normal bundle. Let M be a differentiable mani-
fold of dimension n. The union of all tangent spaces

TM =
⋃
p∈M

TpM

is naturally a differentiable manifold of double dimension 2n, called the
tangent bundle. The tangent bundle TM is naturally a vector bundle over
M, the fibre over p ∈ M being the tangent space TpM.

Let M ⊂ N be a smooth submanifold of N. The normal space at a
point p ∈ M is the quotient vector space νpM = TpN/TpM . The normal
bundle νM is the union

νM =
⋃
p∈M

νpM

and is also naturally a smooth vector bundle over M. The normal bundle is
not canonically contained in TN like the tangent bundle, but (even more
usefully) it may be embedded directly in N, as we will soon see.

1.1.7. Vector fields. A vector field X on a smooth manifold M is
a section of its tangent bundle. A point p determines an integral curve
α : I → M starting from p, that is a smooth curve with α(0) = p and
α′(t) = X(α(t)) for all t ∈ I. The curve α is unique if we require the
interval I to be maximal. It depends smoothly on p.

1.1.8. Immersions and embeddings. A smooth map f : M → N be-
tween manifolds is an immersion if its differential is everywhere injective:
note that this does not imply that f is injective. The map is an embedding
if it is a diffeomorphism onto its image: this means that f is injective, its
image is a submanifold, and f : M → f (M) is a diffeomorphism.
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Theorem 1.1.9. IfM is compact, every injective immersion f : M → N

is an embedding.

1.1.9. Isotopy and ambient isotopy. Let X and Y be two topolog-
ical spaces. We recall that a homotopy between two continuous maps
ϕ,ψ : X → Y is a continuous map F : X × [0, 1] → Y such that F0 = ϕ

and F1 = ψ, where Ft = F (·, t).
Let M and N be differentiable manifolds. A smooth isotopy between

two embeddings ϕ,ψ : M → N is a smooth homotopy F between them,
such that every map Ft is an embedding. Again, we will shortly use the
word isotopy to mean a smooth isotopy. We note that many authors do
not require an isotopy to be smooth, but we do.

Being isotopic is an equivalence relation for smooth maps M → N:
two isotopies Ft and Gu can be glued if F1 = G0, and since we want a
smooth map we priorly modify F and G so that they are constant near
t = 1 and u = 0. This can be done easily by reparametrising t and u.

An ambient isotopy on N is an isotopy between idN and some other
diffeomorphism ϕ : N → N, such that every level is a diffeomorphism. Two
embeddings ϕ,ψ : M → N are ambiently isotopic if there is an ambient
isotopy F of N such that ψ = F1 ◦ ϕ.

Theorem 1.1.10. If M is compact, two embeddings ϕ,ψ : M → N are
isotopic if and only if they are ambiently isotopic.

1.1.10. Tubular neighbourhood. Let M ⊂ N be a differentiable sub-
manifold. A tubular neighbourhood of M is an open subset U ⊂ N with a
diffeomorphism νM → U sending identically the zero-section onto M.

Theorem 1.1.11. Let M ⊂ N be a closed differentiable submanifold.
A tubular neighbourhood for M exists and is unique up to an isotopy fixing
M and up to pre-composing with a bundle isomorphism of νM.

If we are only interested in the open set U and not its parametrisation,
we can of course disregard the bundle isomorphisms of νM.

Vector bundles are hence useful (among other things) to understand
neighbourhoods of submanifolds. Since we will be interested essentially in
manifolds of dimension at most 3, two simple cases will be important.

Proposition 1.1.12. A connected compact manifold M has a unique
line bundle E → M up to isomorphism with orientable total space E.

The orientable line bundle on M is a product M×R precisely when M
is also orientable. If M is not orientable, the unique orientable line bundle
is indicated by M ×∼ R.

Proposition 1.1.13. For every n, there are exactly two vector bundles
of dimension n over S1 up to isomorphism, one of which is orientable.



1.1. DIFFERENTIAL TOPOLOGY 13

Again, the orientable vector bundle is S1 ×Rn and the non-orientable
one is denoted by S1 ×∼ Rn. These simple facts allow us to fully under-
stand the possible neighbourhoods of curves in surfaces, and of curves and
surfaces inside orientable 3-manifolds.

1.1.11. Manifolds with boundary. Let a differentiable manifold M
with boundary be a topological space with charts on a fixed closed half-
space of Rn instead of Rn, forming a smooth atlas. (By definition, maps
from subsets of Rn are smooth if they locally admit extensions to smooth
functions defined on open domains.)

The points corresponding to the boundary of the half-space form a
subset of M denoted by ∂M and called boundary. The boundary of a
n-manifold is naturally a (n − 1)-dimensional manifold without boundary.
The interior of M is M \ ∂M.

We can define the tangent space TpM at a point p ∈ ∂M as the set
of all curves in M starting from or arriving to p, with the same equivalence
relation as above. The space TpM is a vector space that contains the
hyperplane Tp∂M. Most of the notions introduced for manifolds extend
in an appropriate way to manifolds with boundary. A submanifold of a
manifold with boundary M is the image of an embedding N ↪→ M, where
N is another manifold with boundary.

The most important manifold with boundary is certainly the disc

Dn =
{
x
∣∣ ‖x‖ 6 1

}
⊂ Rn.

More generally, a disc in a n-manifold N is a submanifold D ⊂ N with
boundary diffeomorphic to Dn. Since a disc is in fact a (closed) tubu-
lar neighbourhood of any point in its interior, the uniqueness of tubular
neighbourhoods implies the following.

Theorem 1.1.14 (Cerf – Palais). Let N be a connected and oriented
smooth n-manifold. Two orientation-preserving embeddings f , g : Dn →
int(N) are ambiently isotopic.

A boundary component N of M is a connected component of ∂M. A
collar for N is an open neighbourhood diffeomorphic to N × [0, 1). As for
tubular neighbourhoods, every compact boundary component has a collar,
unique up to isotopy.

A closed manifold is a compact manifold without boundary.

1.1.12. Cut and paste. If M ⊂ N is a closed and orientable (n− 1)-
submanifold in the interior of an orientable n-manifold N, it has a tubular
neighbourhood diffeomorphic to M×R. The operation of cutting N along
M consists of the removal of the portion M × (−1, 1). The resulting
manifold N ′ has two new boundary components M × {−1} and M × {1},
both diffeomorphic toM. By the uniqueness of the tubular neighbourhood,
the manifold N ′ depends (up to diffeomorphisms) only on the isotopy class
of M ⊂ N.
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M M'

M#M'

Figure 1.3. A connected sum of closed surfaces.

Let M and N be connected. The submanifold M is separating if its
complement consists of two connected components. The cut manifold has
two or one components depending on whether M is separating or not.

Conversely, let M and N be two n-manifolds with boundary, and let
ϕ : ∂M → ∂N be a diffeomorphism. It is possible to glue M and N along
ϕ and obtain a new n-manifold as follows.

A naïve approach would consist in taking the topological space MtN
and identify p with ϕ(p) for all p ∈ ∂M. The resulting quotient space is
indeed a topological manifold, but the construction of a smooth atlas is
not immediate. A quicker method consists of taking two collars ∂M×[0, 1)

and ∂N × [0, 1) of the boundaries and then consider the topological space

(M \ ∂M) t (N \ ∂N).

Now we identify the points (p, t) and (ϕ(p), 1 − t) of the open collars,
for all p ∈ ∂M and all t ∈ (0, 1). Having now identified two open subsets
of M \ ∂M and N \ ∂N, a differentiable atlas for the new manifold is
immediately derived from the atlases of M and N.

Proposition 1.1.15. The resulting smooth manifold depends (up to
diffeomorphism) only on the isotopy class of ϕ.

1.1.13. Connected sum. We introduce an important cut-and-paste
operation. The connected sum of two connected oriented n-manifolds M
and M ′ is a new n-manifold obtained by choosing two n-discs D ⊂ int(M)

andD′ ⊂ int(M ′) and an orientation-reversing diffeomorphism ϕ : D → D′.
The new manifold is constructed in two steps: we first remove the interiors
of D and D′ from M tM ′, thus creating two new boundary components
∂D and ∂D′, and then glue these boundary components along ϕ|∂D. See
Figure 1.3.

We denote the resulting manifold by M#M ′. Since ϕ is orientation-
reversing, the manifold M#M ′ is oriented coherently with M and M ′.
Theorem 1.1.14 implies the following.
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Proposition 1.1.16. The oriented smooth manifold M#M ′ depends
(up to diffeomorphism) only on M and M ′. The connected sum operation
# is commutative, associative, and Sn serves as the identity element.

We can invert a connected sum as follows. Suppose a n-manifold M
contains a separating (n−1)-sphere N ⊂ int(M). We fix a diffeomorphism
ϕ : N → ∂Dn. By cutting M along N we get two new boundary compo-
nents diffeomorphic to N and we glue two discs to them via the map ϕ.
We get two manifolds N1, N2 such that M = N1#N2.

1.1.14. Transversality. Let f : M → N be a smooth map between
manifolds and X ⊂ N be a submanifold. We say that f is transverse to X
if for any p ∈ f −1X the following condition holds:

Im (dfp) + Tf (p)X = Tf (p)N.

The maps transverse to a fixed X are generic, that is they form an open
dense subset in the space of all smooth maps from X to Y , with respect
to an appropriate topology. In particular the following holds.

Theorem 1.1.17. Let f : M → N be a continuous map and d a dis-
tance on N compatible with the topology of N. For every ε > 0 there is
a smooth map g transverse to X, homotopic to f , with d(f (p), g(p)) < ε

for all p ∈ M.

1.2. Riemannian geometry

We briefly introduce Riemannian manifolds and their geometric prop-
erties: distance, geodesics, volume, exponential map, injectivity radius,
completeness, curvature, and isometries. These notions are carefully ex-
plained in do Carmo’s Riemannian Geometry [16].

1.2.1. Metric tensor. A differentiable manifold lacks many natural
geometric notions, such as distance between points, angle between vectors,
path lengths, geodesics, volumes, etc. It is a quite remarkable fact that the
introduction of a single additional mathematical entity suffices to recover
all these geometric notions: this miraculous object is the metric tensor.

A metric tensor for a differentiable manifold M is the datum of a
scalar product on each tangent space TpM of M, which varies smoothly
on p. More specifically, on a chart the scalar product may be expressed as
a matrix, and we require that its coefficients vary smoothly on p.

Definition 1.2.1. A Riemannian manifold is a differentiable manifold
with a metric tensor that is positive definite at every point.

A Riemannian manifold is usually denoted as a pair (M, g), where M
is the manifold and g is the metric tensor.

Example 1.2.2. The Euclidean space is Rn with the Euclidean metric
tensor g(x, y) =

∑n
i=1 xiyi at every tangent space TpRn = Rn.
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Example 1.2.3. Every differential submanifold N in a Riemannian man-
ifold M is also Riemannian: it suffices to restrict at every p ∈ N the metric
tensor on TpM to the linear subspace TpN.

In particular, the sphere

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}

is a submanifold of Rn+1 and is hence Riemannian.

The metric tensor g defines in particular a norm for every tangent
vector, and an angle between tangent vectors with the same basepoint.
The velocity γ ′(t) of a curve γ : I → M at time t ∈ I now has a norm
‖γ ′(t)‖ > 0 called speed, and two curves that meet at a point with non-
zero velocities form a well-defined angle. The length of γ is defined as

L(γ) =

∫
I

‖γ ′(t)‖dt

and can be finite or infinite. A reparametrisation of γ is the curve η : J →
M obtained as η = γ ◦ϕ where ϕ : J → I is a diffeomorphism of intervals.
The length is invariant under reparametrisations, that is L(γ) = L(η).

1.2.2. Distance and geodesics. Let (M, g) be a connected Riemann-
ian manifold. The curves in M now have a length and hence may be used
to define a distance on M.

Definition 1.2.4. The distance d(p, q) between p, q ∈ M is

d(p, q) = inf
γ
L(γ)

where γ varies among all curves γ : [0, 1]→ M with γ(0) = p, γ(1) = q.

The manifold M equipped with the distance d is a metric space (com-
patible with the initial topology of M).

Definition 1.2.5. A geodesic is a curve γ : I → M with constant speed
k that realises locally the distance. This means that every t ∈ I has a closed
neighbourhood [t0, t1] ⊂ I with d(γ(t0), γ(t1)) = L(γ|[t0,t1]) = k(t1 − t0).

Note that with this definition the constant curve γ(t) = p0 is a geo-
desic with constant speed k = 0. Such a geodesic is called trivial. A curve
that realises the distance locally may not realise it globally.

Example 1.2.6. The non-trivial geodesics in Euclidean space Rn are
affine lines run at constant speed. The non-trivial geodesics in the sphere
Sn are portions of great circles, run at constant speed.

A geodesic γ : I → M ismaximal if it cannot be extended to a geodesic
on a strictly larger interval J ⊃ I. Maximal geodesics are determined by
some first-order conditions:

Theorem 1.2.7. Let p ∈ M be a point and v ∈ TpM a tangent vector.
There exists a unique maximal geodesic γ : I → M with γ(0) = p and
γ ′(0) = v . The interval I is open and contains 0.
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1.2.3. Volume. If the differentiable manifold M is oriented, the met-
ric tensor also induces a volume form.

The best method to define volumes on a n-manifold M is to construct
an appropriate n-form. A n-form ω is an alternating multilinear form

ωp : TpM × . . .× TpM︸ ︷︷ ︸
n

−→ R

at each point p ∈ M, which varies smoothly with p. The alternating
condition means that if we swap two vectors the result changes by a sign.
The n-forms are designed to be integrated: it makes sense to write∫

D

ω

on any open set D. A volume form on an oriented manifold M is a n-form
ω such that ωp(v1, . . . , vn) > 0 for every positive basis v1, . . . , vn of Tp and
every p ∈ M.

The metric tensor defines a volume form as follows: it suffices to set
ωp(e1, . . . , en) = 1 on every positive orthonormal basis e1, . . . , en. With
this definition every open set D of M has a well-defined volume

Vol(D) =

∫
D

ω

which is a positive number or infinity. If D has compact closure the volume
is necessarily finite; in particular, a compact Riemannian manifold M has
finite volume Vol(M).

On a chart, the volume form can be calculated from the metric tensor
g via the following formula:

ω =
√

det g · dx1 · · · dxn.

1.2.4. Completeness. A Riemannian manifold (M, g) is also a metric
space, and as such it may be complete or not. For instance, a compact
Riemannian manifold is always complete; on the other hand, by remov-
ing a point from a Riemannian manifold we always get a non-complete
space. Non-compact manifolds like Rn typically admit both complete and
non-complete Riemannian structures. The completeness of a Riemannian
manifold may be expressed in various ways:

Theorem 1.2.8 (Hopf – Rinow). Let (M, g) be a connected Riemann-
ian manifold. The following are equivalent:

(1) M is complete,
(2) a subset of M is compact if and only if it is closed and bounded,
(3) every geodesic can be extended on the whole R.

If M is complete, any two points p, q ∈ M are joined by a minimising
geodesic γ, i.e. a curve such that L(γ) = d(p, q).
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1.2.5. Exponential map. LetM be a complete Riemannian manifold.
The fact that geodesics are determined by first-order conditions allows us
to introduce the following.

Definition 1.2.9. Let p ∈ M be a point. The exponential map

expp : TpM −→ M

is defined as follows. A vector v ∈ TpM determines a maximal geodesic
γv : R→ M with γv (0) = p and γ ′v (0) = v . We set expp(v) = γv (1).

Theorem 1.2.10. The differential of the exponential map expp at the
origin is the identity and hence expp is a local diffeomorphism at the origin.

Via the exponential map, a small neighborhood of the origin in TpM
can be used as a chart near p: we recover here the intuitive idea that the
tangent space approximates the manifold near p.

When M is not complete, the exponential map is only defined in some
open star-shaped neighbourhood Vp ⊂ TpM of the origin, and Theorem
1.2.10 holds also in this case.

1.2.6. Injectivity radius. Let M be a complete Riemannian manifold.
We introduce the following.

Definition 1.2.11. The injectivity radius injpM > 0 of M at a point
p ∈ M is the supremum of all r > 0 such that expp |B0(r) is a diffeomorphism
onto its image.

Here B0(r) is the open ball with centre 0 and radius r in the tangent
space TpM. The injectivity radius is positive by Theorem 1.2.10. For every
r < injpM the exponential map transforms the ball of radius r in Tp(M)

into the metric ball of radius r in M. That is, the following equality holds:

expp(B0(r)) = Bp(r)

and the metric ball Bp(r) is indeed diffeomorphic to an open ball in Rn.
When r ≥ injpM this may not be true: for instance if M is compact there
is a R > 0 such that Bp(R) = M.

The injectivity radius injp(M) varies continuously with respect to p ∈
M; the injectivity radius inj(M) of M is defined as

inj(M) = inf
p∈M

injpM.

Proposition 1.2.12. A compact Riemannian manifold has positive in-
jectivity radius.

Proof. The injectivity radius injpM is positive and varies continuously
with p, hence it has a positive minimum on the compact M. �

Finally we note the following. A loop is a curve γ : [a, b] → M with
γ(a) = γ(b).
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Proposition 1.2.13. LetM be a complete Riemannian manifold. Every
loop γ in M shorter than 2 · inj(M) is homotopically trivial.

Proof. Set p = γ(a) = γ(b). Since γ is shorter than 2 · inj(M), it
cannot escape the ball Bp(r) for some r < inj(M) 6 injpM. This ball is
diffeomorphic to a ball in Rn, hence in particular it is contractible, so γ is
homotopically trivial. �

A proof of the continuity of injp(M) can be found in [35].

1.2.7. Curvature. The curvature of a Riemannian manifold (M, g) is
some mathematical entity that measures how distorted g is when compared
to the familiar Euclidean structure on Rn. The curvature is encoded by
various kinds of mathematical objects, and some of them may be frustrat-
ingly complicated when n = dimM > 3. Luckily, most of the Riemannian
manifolds that we will encounter in this book have “constant curvature”
and these objects will simplify dramatically. We briefly recall them here.

The metric tensor g induces the Levi-Civita connection ∇, which can
be used to differentiate any vector field with respect to a tangent vector
at any point of M. We concentrate on an open chart and suppose that
M = U is an open set of Rn; let e1, . . . , en be the coordinate vector fields
on U and ∇i be the Levi-Civita differentiation with respect to ei . We have

∇iej = Γkijek

for some smooth functions Γkij : U → R called the Chistoffel symbols. Here
we use the Einstein notation: repeated indices should be added from 1 to
n. The Christoffel symbols are determined by g via the formula:

Γkij =
1

2
gk`
(
∂g`i
∂x j

+
∂g`j
∂x i
− ∂gi j
∂x `

)
.

Here gk` is just the inverse matrix of g = gk`. Christoffel symbols are very
useful but depend heavily on the chosen chart; a more intrinsic object is
the Riemann tensor that may be defined (quite obscurely) as

Ri jk` = ∂kΓi`j − ∂`Γikj + ΓikmΓm`j − Γi`mΓmkj .

By contracting two indices we get the Ricci tensor

Ri j = Rk ikj = ∂kΓkji − ∂jΓkki + ΓkkmΓmji − ΓkjmΓmki .

The Ricci tensor is symmetric, and by further contracting we get the scalar
curvature

R = g i jRi j .
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Figure 1.4. Three surfaces in space (hyperboloid with one
sheet, cylinder, sphere) whose gaussian curvature is respec-
tively negative, null, and positive at each point. The curva-
ture on the sphere is constant, while the curvature on the
hyperboloid varies: a complete surface in R3 cannot have
constant negative curvature.

1.2.8. Scalar curvature. What kind of geometric information is con-
tained in the tensors introduced above? The scalar curvature R is the
simplest curvature detector, and it measures the local discrepancy between
volumes in M and in Rn. Let Bp(ε) ⊂ M be the ε-ball in M centred at p
and B0(ε) ⊂ Rn be the ε-ball in the Euclidean Rn. We have

Vol
(
Bp(ε)

)
= Vol

(
B0(ε)

)
·
(

1− R

6(n + 2)
ε2

)
+ O(ε4).

We note in particular that R is positive (negative) if Bp(ε) has smaller
(bigger) volume than the usual Euclidean volume.

If M has dimension 2, that is it is a surface, the Riemann and Ricci
tensors simplify dramatically and are fully determined by the scalar curva-
ture R, which is in turn equal to twice the gaussian curvature K: if M is
contained in R3 the gaussian curvature is defined as the product of its two
principal curvatures, but when M is abstract principal curvatures make no
sense. On surfaces, the formula above reads as

Area(Bp(ε)) = πε2 − πε4

12
K + O(ε4).

1.2.9. Sectional curvature. If (M, g) has dimension n > 3 the scalar
curvature is a weak curvature detector when compared to the Ricci and
Riemann tensors. Moreover, there is yet another curvature detector which
encodes the same amount of information of the full Riemann tensor, but
in a more geometric way: this is the sectional curvature.

Definition 1.2.14. Let (M, g) be a Riemannian manifold. Let p ∈ M
be a point andW ⊂ TpM be a 2-dimensional vector subspace. By Theorem
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1.2.10 there exists an open neighbourhood Up ⊂ TpM of the origin where
expp is a diffeomorphism onto its image. In particular S = expp(Up ∩W )

is a smooth surface in M passing through p, with tangent plane W . As a
submanifold of M, the surface S inherits a Riemannian structure from g.

The sectional curvature of (M, g) along W is defined as the gaussian
curvature of S in p.

We can use the sectional curvature to unveil the geometric nature of
the Ricci tensor: the Ricci tensor Ri j in p measures the average sectional
curvature along axes, that is for every unit vector v ∈ Tp(M) the number
Ri jv

iv j is (n − 1) times the average sectional curvature of the planes
W ⊂ Tp(M) containing v .

The Riemann tensor is determined by the sectional curvatures and
vice-versa. In dimension n = 3 the Ricci tensor fully determines the sec-
tional curvatures and hence also the Riemann tensor. This is not true in
dimension n > 4.

1.2.10. Constant sectional curvature. A Riemannian manifold (M, g)

has constant sectional curvature K if the sectional curvature of every 2-
dimensional vector space W ⊂ TpM at every point p ∈ M is always K.

Remark 1.2.15. On a Riemannian manifold (M, g) one may rescale
the metric by some factor λ > 0 substituting g with the tensor λg. At
every point the scalar product is rescaled by λ. Consequently, lengths of
curves are rescaled by

√
λ and volumes are rescaled by λ

n
2 . The sectional

curvature is rescaled by 1/λ.

By rescaling the metric we may transform every Riemannian mani-
fold with constant sectional curvature K into one with constant sectional
curvature −1, 0, or 1.

Example 1.2.16. Euclidean space Rn has constant curvature zero. A
sphere of radius R has constant curvature 1/R2.

1.2.11. Isometries. Every honest category has its morphisms. Rie-
mannian manifolds are so rigid, that in fact one typically introduces only
isomorphisms: these are called isometries.

Definition 1.2.17. A diffeomorphism f : M → N between two Rie-
mannian manifolds (M, g) and (N, h) is an isometry if it preserves the
scalar product. That is, the equality

〈v, w〉 = 〈dfp(v), dfp(w)〉

holds for all p ∈ M and every pair of vectors v, w ∈ TpM. The symbols
〈, 〉 indicate the scalar products in TpM and Tf (p)N.

As we said, isometries are extremely rigid. These are determined by
their first-order behaviour at any single point.
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Theorem 1.2.18. Let f , g : M → N be two isometries between two
connected Riemannian manifolds. If there is a point p ∈ M such that
f (p) = g(p) and dfp = dgp, then f = g everywhere.

Proof. Let us show that the subset S ⊂ M of the points p such that
f (p) = g(p) and dfp = dgp is open and closed.

The locus where two functions coincide is typically closed, and this
holds also here (to prove it, take a chart). We prove that it is open: pick
p ∈ S. By Theorem 1.2.10 there is an open neighbourhood Up ⊂ TpM of
the origin where the exponential map is a diffeomorphism onto its image.
We show that the open set expp(Up) is entirely contained in S.

A point q ∈ expp(Up) is the image q = exp(v) of a vector v ∈ Up
and hence q = γ(1) for the geodesic γ determined by the data γ(0) =

p, γ ′(0) = v . The maps f and g are isometries and hence send geodesics
to geodesics: here f ◦ γ and g ◦ γ are geodesics starting from f (p) = g(p)

with the same initial velocities and thus they coincide. This implies that
f (q) = g(q). Since f and g coincide on the open set expp(Up), also their
differentials do. �

1.2.12. Local isometries. A local isometry f : M → N between Rie-
mannian manifolds is a map where every p ∈ M has an open neighbourhood
U such that f |U is an isometry onto its image. Theorem 1.2.18 applies
with the same proof to local isometries.

The following proposition relates nicely the notions of local isometry,
topological covering, and completeness.

Proposition 1.2.19. Let f : M → N be a local isometry.
(1) If M is complete, the map f is a covering.
(2) If f is a covering, then M is complete ⇐⇒ N is complete.

Proof. Since f is a local isometry, every geodesic in M projects to a
geodesic in N. If f is also a covering, the converse holds: every geodesic
in N lifts to a geodesic in M (at any starting point).

If f is a covering we can thus project and lift geodesics via f : therefore
every geodesic in M can be extended to R if and only if every geodesic in
N can; this proves (2) using the Hopf – Rinow Theorem 1.2.8.

We prove (1) by showing that the ball B = B(p, injpN) is well-covered
for all p ∈ N. Since M is complete, every geodesic in N can be lifted to
a geodesic in M (at any starting point). For every p̃ ∈ f −1(p) the map f
sends the geodesics exiting from p̃ to geodesics exiting from p and hence
sends isometrically B(p̃, injpN) onto B. On the other hand, given a point
q ∈ f −1(B), the geodesic in B connecting f (q) to p lifts to a geodesic
connecting q to some point p̃ ∈ f −1(p). Therefore

f −1
(
B(p, injpN)

)
=

⊔
p̃∈f −1(p)

B(p̃, injpN)

and f is a covering. �
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Proposition 1.2.20. Let f : M → N be a local isometry and a degree-d
covering. We have

Vol(M) = d · Vol(N).

Sketch of the proof. We may find a disjoint union of well-covered
open sets in N whose complement has zero measure. Every such open
set lifts to d copies of it in M, and the zero-measure set lifts to a zero-
measure set. �

The formula makes sense also when some of the quantities Vol(M),
Vol(N), and d are infinite.

1.2.13. Totally geodesic submanifolds. A differentiable submanifold
M in a Riemannian manifold N is totally geodesic if every geodesic in M
with the induced metric is also a geodesic in N.

When dimM = 1 this notion is equivalent to that of an unparametrized
embedded geodesic; if dimM > 2 thenM is a quite peculiar object: generic
Riemannian manifolds do not contain totally geodesic surfaces at all. An
equivalent condition is that, for every p ∈ M and every v ∈ Tp(M), the
unique geodesic in N passing through p with velocity v stays inM for some
interval (−ε, ε).

1.2.14. Riemannian manifolds with boundary. Many geometric no-
tions in Riemannian geometry extend easily to manifolds M with boundary.
The boundary ∂M of a Riemannian manifold M is naturally a Riemannian
manifold without boundary. A particularly nice (and exceptional) case is
when ∂M is totally geodesic.

1.3. Measure theory

We will use some basic measure theory only in Chapter 8.

1.3.1. Borel measure. A Borel set in a topological space X is any
subset obtained from open sets through the operations of countable union,
countable intersection, and relative complement. Let F denote the set of
all Borel sets. A Borel measure on X is a function µ : F → [0,+∞] which
is additive on any countable collection of disjoint sets.

The measure is locally finite if every point has a neighbourhood of
finite measure and is trivial if µ(S) = 0 for all S ∈ F .

Exercise 1.3.1. If µ is a locally finite Borel measure then µ(X) < +∞
for any compact Borel set K ⊂ X.

Example 1.3.2. Let D ⊂ X be a discrete set. The Dirac measure δD
concentrated in D is the measure

δD(S) = #(S ∩D).

Since D is discrete, the measure δD is locally finite.
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The support of a measure is the set of all points x ∈ X such that
µ(U) > 0 for any open set U containing x . The support is a closed subset
of X. The measure is fully supported if its support is X. The support of
δD is of course D. A point x ∈ X is an atom for µ if µ({x}) > 0.

1.3.2. Construction by local data. A measure can be defined using
local data in the following way.

Proposition 1.3.3. Let {Ui}i∈I be a countable, locally finite open cov-
ering of X and for any i ∈ I let µi be a locally finite Borel measure on
Ui . If µi |Ui∩Uj = µj |Ui∩Uj for all i , j ∈ I there is a unique locally finite Borel
measure µ on X whose restriction to Ui is µi for all i .

Proof. For every finite subset J ⊂ I we define

XJ =
(
∩j∈J Uj

)
\
(
∪i∈I\J Ui

)
.

The sets XJ form a countable partition of X into Borel sets and every XJ
is equipped with a measure µJ = µj |Xj for any j ∈ J. Define µ by setting

µ(S) =
∑
j∈J

µ(S ∩ Xj)

on any Borel S ⊂ X. �

When X is a reasonable space some hypothesis may be dropped.

Proposition 1.3.4. If X is paracompact and separable, Proposition
1.3.3 holds for any open covering {Ui}i∈I .

Proof. By paracompactness and separability the open covering {Ui}
has a refinement that is locally finite and countable: apply Proposition
1.3.3 to the refinement to get a measure µ. To prove that indeed µ|Ui = µi
apply Proposition 1.3.3 again to the covering of Ui given by the refinement.

�

1.3.3. Topology on the measures space. In what follows we suppose
for simplicity that X is a finite-dimensional topological manifold, although
everything is valid in a much wider generality. We indicate by M (X) the
space of all locally finite Borel measures on X and by Cc(X) the space of
all continuous functions X → R with compact support: the space Cc(X)

is not a Banach space, but it is a topological vector space.
Recall that the topological dual of a topological vector space V is the

vector space V ∗ formed by all continuous linear functionals V → R. A
measure µ ∈M (X) acts like a continuous functional on Cc(X) as follows

µ : f 7−→
∫
µ

f

and hence defines an element of C∗c (X). A functional in C∗c (X) is positive
if it assumes non-negative values on non-negative functions.
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Theorem 1.3.5 (Riesz representation). The space M (X) may be iden-
tified in this way to the subset in Cc(X)∗ of all positive functionals.

The space M (X) in Cc(X)∗ is closed with respect to sum and product
with a positive scalar. We now use the embedding of M (X) into Cc(X)∗

to define a natural topology on M (X).

Definition 1.3.6. Let V be a real topological vector space. Every
vector v ∈ V defines a functional in V ∗ as f 7→ f (v). The weak-* topology
on V ∗ is the weakest topology among those where these functionals are
continuous.

We give Cc(X)∗, and hence M (X), the weak-* topology.

1.3.4. Sequences of measures. By definition, a sequence of mea-
sures µi converges to µ if and only if

∫
µi
f →

∫
µ
f for any f ∈ Cc(X). This

type of weak convergence is usually denoted with the symbol µi ⇀ µ.

Exercise 1.3.7. Let xi be a sequence of points in X that tend to x ∈ X:
we get δxi ⇀ δx .

It is important to note that µi ⇀ µ does not imply µi(U)→ µ(U) for
any open (or closed) set U: consider for instance a sequence µi = δxi with
xi exiting from (or entering into) the set U. We can get this convergence
on compact sets if we can control their topological boundary.

Proposition 1.3.8. Let K ⊂ X be a Borel compact subset. If µi ⇀ µ

and µ(∂K) = 0 then µi(K)→ µ(K).

On Banach spaces, the unitary ball is compact in the weak-* topology.
Here M (X) is not a Banach space, but we have an analogous compactness
theorem.

Theorem 1.3.9. A sequence of measures µi such that µi(K) is bounded
on every Borel compact set K ⊂ X converges on a subsequence.

1.4. Groups

We recall some basic definitions and properties of groups.

1.4.1. Presentations. Recall that a finite presentation of a group G
is a description of G as

〈g1, . . . , gk | r1, . . . , rs〉
where g1, . . . , gk ∈ G are the generators and r1, . . . , rs are words in g±1

i

called relations, such that

G ∼= F (gi)/N(rj )

where F (gi) is the free group generated by the gi ’s and N(rj)/F (gi) is the
normal closure of the rj ’s, the smallest normal subgroup containing them.

Not every group G has a finite presentation: a necessary (but not
sufficient) condition is that G must be finitely generated.
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1.4.2. Commutators. Let G be a group. The commutator of two
elements h, k ∈ G is the element

[h, k] = hkh−1k−1.

The commutator [h, k] is trivial if and only if h and k commute. Commu-
tators do not form a subgroup in general, but we can use them to generate
one.

More generally, let H,K < G be two subgroups. We define [H,K]

as the subgroup of G generated by all commutators [h, k] where h and
k vary in H and K, respectively. Every element in [H,K] is a product of
commutators [h, k] and of their inverses [h, k]−1 = [k, h], and we have
[H,K] = [K,H].

Proposition 1.4.1. IfH andK are normal subgroups of G then [H,K] <

H ∩K and [H,K] is a normal subgroup of G.

Proof. If H and K are normal we get [h, k] = hkh−1k−1 ∈ H ∩ K.
Moreover, for every g ∈ G we have

g−1 · [h1, k1]±1 · · · [hi , ki ]±1 · g = [g−1h1g, g
−1k1g]±1 · · · [g−1hig, g

−1kig]±1

hence [H,K] is normal in G if H and K are. �

The group [G,G] is the commutator subgroup of G. It is trivial if and
only if G is abelian.

1.4.3. Series. We can use commutators iteratively to create some
characteristic subgroups of G. There are two natural ways to do this, and
they produce two nested sequences of subgroups.

The lower central series of G is the sequence of normal subgroups

G = G0 > G1 > . . . > Gn > . . .

defined iteratively by setting

Gn+1 = [Gn, G].

The derived series is the sequence of normal subgroups

G = G(0) . G(1) . . . . . G(n) . . . .

defined by setting
G(n+1) = [G(n), G(n)].

We clearly have G(n) < Gn for all n.

Definition 1.4.2. A group G is nilpotent if Gn is trivial for some n. It
is solvable if G(n) is trivial for some n.

The following implications are obvious:

G abelian =⇒ G nilpotent =⇒ G solvable.

The converses are false, as we will see.
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Proposition 1.4.3. Subgroups and quotients of abelian (nilpotent,
solvable) groups are also abelian (nilpotent, solvable).

Proof. If H < G then Hn < Gn and H(n) < G(n). If H = G/N , then
Hn = Gn/N and H(n) = G(n)/N . This is proved by induction on n. �

1.4.4. Nilpotent groups. Every abelian group G is obviously nilpotent
since G1 is trivial.

Exercise 1.4.4. Let the Heisenberg group Nil consist of all matrices1 x z

0 1 y

0 0 1


where x, y , and z vary in R, with the multiplication operation. Prove that
the Heisenberg group is non-abelian and nilpotent. Indeed the matrices
with x = y = 0 form an abelian subgroup R < Nil and we have

[Nil,Nil] = R, [R,Nil] = {e}.

We will use at some point the following criterion.

Proposition 1.4.5. Let G be a group generated by some set S and
n > 0 a number. Suppose that

[a1, . . . [an−1, [an, b]] · · · ]

is trivial for all a1, . . . , an, b ∈ S. Then Gn = {e} and thus G is nilpotent.

Proof. We claim that Gn is generated by some elements of type

[a1, . . . [am−1, [am, b]] · · · ]

with m > n and a1, . . . , am, b ∈ S: this clearly implies the proposition.
The claim is proved by induction on n using the formula

[a, bc] = [a, b] · [b, [a, c]] · [a, c]

which holds in every group. �

We note the following.

Proposition 1.4.6. A nilpotent non-trivial group has non-trivial centre.

Proof. Let Gn be the last non-trivial group in the lower central series.
Since Gn+1 = [Gn, G] is trivial, the centre of G contains Gn. �
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1.4.5. Solvable groups. Solvable groups form a strictly larger class
than nilpotent groups.

Exercise 1.4.7. The permutation group S3 is solvable but not nilpo-
tent.

Exercise 1.4.8. The group Aff(R) = {x 7→ ax + b | a ∈ R∗, b ∈ R} of
affine transformations is solvable but not nilpotent. Indeed the subgroup
[Aff(R),Aff(R)] = R consists of all translations and

[R,Aff(R)] = R, [R,R] = {e}.

Exercise 1.4.9. The permutation group Sn is not solvable for n > 5.

The latter fact is related to the existence of polynomials of degree
n > 5 that are not solvable by radicals.

Solvable groups are farther from being abelian than nilpotent groups:
for instance, they may have trivial centre (like S3). However, they still
share some nice properties with the abelian world:

Proposition 1.4.10. A solvable group contains a non-trivial normal
abelian subgroup.

Proof. Let G(n) be the last non-trivial group in the derived series. It
is normal in G and abelian, since [G(n), G(n)] is trivial. �

1.4.6. Lie groups. A Lie group is a smooth manifold G which is also
a group, such that the operations

G × G → G, (a, b) 7→ ab

G → G, a 7→ a−1

are smooth.

Example 1.4.11. The basic examples are GL(n,R) and GL(n,C) con-
sisting of invertible real and complex n×n matrices, with the multiplication
operation. These contain many interesting Lie subgroups:

• SL(n,R) and SL(n,C), the matrices with determinant 1;
• O(n) and U(n), the orthogonal and unitary matrices;
• SO(n) = SL(n,R) ∩O(n) and SU(n) = SL(n,C) ∩ U(n).

The Lie groups O(n) and U(n) are compact.

Exercise 1.4.12. The following Lie groups are isomorphic:

S1 ∼= U(1) ∼= SO(2).

Here are some ways to construct more examples:

• the product of two Lie groups is a Lie group,
• a closed subgroup of a Lie group is a Lie group,
• the universal cover of a Lie group is a Lie group.
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A Lie group G is often not connected, and we denote by G◦ the
connected component of G containing the identity. The subset G◦ is a
normal Lie subgroup of G. For instance O(n) has two components and
O(n)◦ = SO(n).

Another important example is the Lie group

O(m, n) =
{
A ∈ GL(m + n,R)

∣∣ t
AIm,nA = Im,n

}
defined for any pair m, n > 0 of integers, where Im,n is the diagonal matrix

Im,n =

(
Im 0

0 −In

)
.

The Lie group O(m, n) has two connected components if either m or n is
zero (in that case we recover the orthogonal group) and has four connected
components otherwise.

Remark 1.4.13. Not all the Lie groups are subgroups of GL(n,C): for
instance, the universal cover of SL(2,R) is not.

A homomorphism ϕ : G → H of Lie groups is a smooth group homo-
morphism. The kernel of ϕ is a closed subgroup and hence a Lie subgroup
of G. An isomorphism of Lie groups is a group isomorphism that is also a
diffeomorphism.

1.4.7. Vector fields, metrics, and differential forms. A Lie group G
acts on itself in two ways: by left and right multiplication. Both actions
are smooth, free, and transitive.

A geometric object on G is left-invariant if it is invariant by left mul-
tiplication. Right-invariance is defined analogously. In general, it is easy
to find objects that are either left- or right-invariant, but not necessarily
both.

There is a natural 1-1 correspondence between:

• vectors in TeG and left-invariant vector fields on G,
• scalar products on TeG and left-invariant Riemannian metrics on
G,

• n-forms on TeG and left-invariant n-forms on G,
• orientations on TeG and left-invariant orientations on G.

This holds because left-multiplication by an element g ∈ G is a diffeo-
morphism that transports everything from TeG to TgG. The same holds
for right-invariant objects.

Every basis of TeG extends in this way to n independent left-invariant
vector fields: this shows that G is parallelizable, i.e. the tangent bundle of
G is trivial.

1.4.8. Simple Lie groups. A simple Lie group G is a connected, non-
abelian Lie group G that does not contain any non-trivial connected normal
subgroup (the trivial cases being of course {e} and G itself).
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The classification of simple Lie groups is due to E. Cartan. The
following theorem furnishes many examples.

Theorem 1.4.14. The groups O(m, n)◦ are all simple when m+n > 3,
except the cases (m, n) = (4, 0), (2, 2), (0, 4).

1.4.9. Haar measures. Let G be a Lie group. As we just said, non-
vanishing left-invariant n-forms ω on G are in 1-1 correspondence with
non-trivial n-forms on TeG, and since the latter are all proportional, the
form ω is unique up to multiplication by a non-zero scalar.

The form ω defines a left-invariant orientation (a basis v1, . . . , vn is
positive when ω(v1, . . . , vn) > 0); it is a volume form and hence defines a
left-invariant locally finite Borel measure on G, called the Haar measure of
G. Summing up, the Haar measure depends only on G up to rescaling.

Since left- and right-multiplications commute, right-multiplication by
an element g ∈ G transforms ω into another non-vanishing left-invariant
form which must be equal to λ(g)ω for some positive real number λ(g).
This defines a Lie group homomorphism λ : G → R>0 to the multiplicative
group of positive real numbers, called the modular function.

The Lie group G is unimodular if the left-invariant Haar measures are
also right-invariant, that is if the modular function λ is trivial. Recall that
a group G is simple if its normal subgroups are {e} and G.

Proposition 1.4.15. Compact, abelian, and simple Lie groups are uni-
modular.

Proof. If G is compact, the image of λ is compact in R>0 and hence
trivial. If G is abelian, left- and right-multiplications coincide. If G is
simple, the connected normal Lie subgroup (kerλ)◦ must be G. �

Corollary 1.4.16. The group O(m, n) is unimodular if (m, n) is distinct
from (4, 0), (2, 2), (0, 4).

Proof. The identity component O(m, n)◦ is simple and hence unimod-
ular. The modular function λ : O(m, n) → R is trivial on the finite-index
subgroup O(m, n)◦ and is hence trivial. �

Remark 1.4.17. When (m, n) = (4, 0), (2, 2), (0, 4) the group O(m, n)

is semisimple, which means that it looks roughly like a product of simple
groups, and is in fact unimodular also in this case. We will not need to
introduce this concept rigorously here.

The solvable Lie group Aff(R) is not unimodular.

1.4.10. Discrete subgroups. Let G be a Lie group. A closed sub-
group H < G is discrete if it forms a discrete topological subset, that is if
every point in H is isolated.

Exercise 1.4.18. A subgroup H < G is discrete if and only if e ∈ G is
an isolated point in G.
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1.4.11. The Selberg Lemma. The group GL(n,C) is the prototypical
Lie group, since it contains many Lie groups. A couple of purely algebraic
facts about this group will have some important geometric consequences
in this book. The first is the Selberg Lemma. Recall that a group has no
torsion if every non-trivial element in it has infinite order.

Lemma 1.4.19 (Selberg’s Lemma). Every finitely generated subgroup
G < GL(n,C) has a finite-index normal subgroup H / G without torsion.

The second fact is quite related. A group G is residually finite if one
of the following equivalent conditions holds:

• for every non-trivial element g ∈ G there is a finite group F and
a surjective homomorphism ϕ : G → F with ϕ(g) 6= e;

• for every non-trivial element g ∈ G there is a finite-index normal
subgroup H / G which does not contain g;

• the intersection of all finite-index normal subgroups in G is trivial.

Lemma 1.4.20. Every finitely generated subgroup of GL(n,C) is resid-
ually finite.

The proof of these two lemmas is not particularly hard (see for instance
[49, Chapter 7.6]) but it employs some purely algebraic techniques that
are distant from the scope of this book. Their geometric consequences,
as we will see, are quite remarkable.

1.4.12. Lie algebras. A Lie algebra g is a real vector space equipped
with an alternate bilinear product

[, ] : g× g→ g

called Lie bracket that satisfies the Jacobi identity

[x, [y, z ]] + [y, [z, x ]] + [z, [x, y ]] = 0

for all x, y , z ∈ g.
The tangent space TeG at e ∈ G of a Lie group G has a natural Lie

algebra structure and is denoted by g. It is equipped with a natural expo-
nential map exp: g → G that sends 0 to e and is a local diffeomorphism
at 0.

The differential dϕe : g→ h of a Lie group homomorphism ϕ : G → H

is a Lie algebra homomorphism and is denoted by ϕ∗. The diagram

g
ϕ∗ //

exp

��

h

exp

��
G

ϕ
// H

commutes. The basic example is the following: the Lie algebra gl(n,C)

of GL(n,C) is the vector space M(n,C) of all n × n matrices; here the
map exp is the usual matrix exponential and [A,B] = AB − BA is the
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usual commutator bracket. The Lie algebras of GL(n,R), SL(n,R), O(n),
SO(n) are:

gl(n,R) = M(n,R),

sl(n,R) = {A ∈ M(n,R) | trA = 0},
o(n) = {A ∈ M(n,R) | A+ t

A = 0},
so(n) = {A ∈ M(n,R) | A+ t

A = 0, trA = 0}.

Proposition 1.4.21. Let G and H be connected. A Lie group ho-
momorphism ϕ : G → H is a topological covering if and only if ϕ∗ is an
isomorphism.

1.5. Group actions

Groups acting of spaces are so important in geometry, that they are
sometimes used as a definition of “geometry” itself.

1.5.1. Definitions. The action of a group G on a topological space
X is a homomorphism

G → Homeo(X)

where Homeo(X) is the group of all self-homeomorphisms of X. The
quotient set X/G is the set of all orbits in X and we give it the usual
quotient topology. We denote by g(x) the image of x ∈ X along the
homeomorphism determined by g ∈ G. The action is:

• free if g(x) 6= x for all non-trivial g ∈ G and all x ∈ X;
• properly discontinuous if any two points x, y ∈ X have neigh-
bourhoods Ux and Uy such that the set{

g ∈ G
∣∣ g(Ux) ∩ Uy 6= ∅

}
is finite.

The relevance of these definitions is due to the following.

Proposition 1.5.1. Let G act on a Hausdorff connected space X. The
following are equivalent:

(1) G acts freely and properly discontinuously;
(2) the quotient X/G is Hausdorff and X → X/G is a covering.

A covering of type X → X/G is called regular. A covering X → Y is
regular if and only if the image of π1(X) in π1(Y ) is normal, and in that
case G is the quotient of the two groups. In particular every universal cover
is regular. Summing up:

Corollary 1.5.2. Every path-connected locally contractible Hausdorff
topological space X is the quotient X̃/G of its universal cover by the action
of some group G acting freely and properly discontinuously.

The group G is isomorphic to π1(X).
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Exercise 1.5.3. Let a discrete group G act on a locally compact space
X. The following are equivalent:

• the action is properly discontinuous;
• for every compact K ⊂ X, the set

{
g | g(K)∩K 6= ∅

}
is finite;

• the map G×X → X×X that sends (g, x) to (g(x), x) is proper.

1.5.2. Isometry group. We now want to consider the case where a
group G acts by isometries on a Riemannian manifold M. In this case we
have a homomorphism

G → Isom(M)

with values in the isometry group Isom(M) ofM, i.e. the group of all isome-
tries f : M → M. The group Isom(M) is much smaller than Homeo(M).

Theorem 1.5.4 (Myers – Steenrod). The group Isom(M) has a natural
Lie group structure compatible with the compact-open topology. The map
F : Isom(M)×M → M ×M that sends (ϕ, p) to (ϕ(p), p) is proper.

Corollary 1.5.5. If M is compact then Isom(M) is compact.

Proposition 1.5.6. The stabilizer of any point x ∈ M is a compact Lie
subgroup of Isom(M).

Proof. The stabilizer of x is closed and hence is a Lie subgroup of
Isom(M). The isometries that fix x are determined by their orthogonal
action on TxM and therefore form a compact Lie subgroup of O(n). �

The hard part of the Myers – Steenrod Theorem is to endow Isom(M)

with a Lie group structure. In fact, in all the concrete cases that we will
encounter, the Lie group structure of Isom(M) will be evident from the
context, so we will not need the full strength of Theorem 1.5.4. The rest
of the theorem is not difficult to prove and we can leave it as an exercise.

Exercise 1.5.7. Prove that F is proper.

We denote by Isom+(M) the subgroup of Isom(M) consisting of all
the orientation-preserving isometries. It has index one or two in Isom(M).

1.5.3. Discrete groups. LetM be a Riemannian manifold. The group
Isom(M) is a Lie group, so it makes sense to consider discrete subgroups.

Proposition 1.5.8. A group Γ < Isom(M) acts properly discontinu-
ously on M if and only if it is discrete.

Proof. If Γ is discrete, Theorem 1.5.4 and Exercise 1.5.3 imply that it
acts properly discontinuously. Conversely, if Γ acts properly discontinuously
then e ∈ Γ is easily seen to be isolated, and we apply Exercise 1.4.18. �

If Γ < Isom(M) is discrete and acts freely, the map M → M/Γ is a
covering. Moreover, the Riemannian structure projects from M to M/Γ.
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Proposition 1.5.9. Let Γ < Isom(M) act freely and properly discon-
tinuously on M. There is a unique Riemannian structure on the manifold
M/Γ such that the covering π : M → M/Γ is a local isometry.

Proof. Let U ⊂ M/Γ be a well-covered set: we have π−1(U) = ti∈IUi
and π|Ui : Ui → U is a homeomorphism. Pick an i ∈ I and assign to U the
smooth and Riemannian structure of Ui transported along π. The resulting
structure on U does not depend on i since the open sets Ui are related by
isometries in Γ. We get a Riemannian structure on M/Γ, determined by
the fact that π is a local isometry. �

1.5.4. Measures. The case where a group G acts by preserving some
measure instead of a Riemannian metric is also very interesting, although
quite different. This situation will occur only in Chapter 8.

Let a group G act on a manifold M. A Borel measure µ on M is
G-invariant if µ(S) = µ(g(S)) for every Borel set S ⊂ M.

If G acts on M freely and properly discontinuously, then M → M/G is
a covering and every G-invariant measure µ on M descends to a natural
measure on the quotient M/G which we still indicate by µ. The measure
on M/G is defined as follows: for every well-covered open set U ⊂ M/G
we have π−1(U) = ti∈IUi and we assign to U the measure of Ui for any
i ∈ I. This assignment extends to a unique Borel measure on M/G by
Proposition 1.3.4.

Note that the measure on M/G is not the push-forward of µ, namely
it is not true that µ(U) = µ(π−1(U)).

1.6. Homology

The singular homology theory needed in this book is not very deep:
all the homology groups of the manifolds that we consider are boringly
determined by their fundamental group. The theory is quickly reviewed in
this section, a standard introduction is Hatcher’s Algebraic Topology [25].

1.6.1. Definition. Let X be a topological space and R be a ring. The
cases R = Z, R, or Z/2Z are typically the most interesting ones.

A singular k-simplex is a continuous map α : ∆k → X from the stan-
dard k-dimensional simplex ∆k into X. A k-chain is an abstract linear
combination

λ1α1 + . . .+ λhαh

of singular k-simplexes α1, . . . , αh with coefficients λ1, . . . , λh ∈ R. The
set Ck(X,R) of all k-chains is a R-module. There is a linear boundary
map ∂k : Ck(X,R)→ Ck−1(X,R) such that ∂k−1 ◦ ∂k = 0. The cycles and
boundaries are the elements of the submodules

Zk(X,R) = ker ∂k , Bk(X,R) = Im ∂k+1.

The k-th homology group is the quotient

Hk(X,R) = Zk(X,R)/Bk (X,R).
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We sometimes omit R and write Hk(X) instead of Hk(X,R).
By taking the dual spaces Ck(X,R) = Hom(Ck(X,R), R) we define

analogously the cohomology group Hk(X,R). (Co-)homology groups are
also defined for pairs (X, Y ) with Y ⊂ X. When X = U ∪ V and U, V are
open we get the exact Mayer – Vietoris sequence:

. . . −→ Hn+1(X) −→ Hn(U ∩ V ) −→ Hn(U)⊕Hn(V ) −→ Hn(X) −→ . . .

(Co-)homology groups are functorial in the sense that continuous maps
induce natural homomorphisms of groups. Homotopic maps induce the
same homomorphisms.

If X is path-connected, then H0(X,R) = R and there is a canonical
homomorphism

π1(X) −→ H1(X,Z).

The homomorphism is surjective and its kernel is generated by the commu-
tators of π1(X): in other words H1(X,Z) is the abelianization of π1(X).
Concerning cohomology, we have

H1(X,Z) = Hom
(
H1(X,Z),Z

)
= Hom(π1(X),Z).

The relation between Hi(X,Z) and Hi(X,Z) for i > 1 is not so immediate.

1.6.2. Dualities. LetM be a compact oriented connected n-manifold
with (possibly empty) boundary. The abelian group Hk(M,Z) is finitely
generated and hence decomposes as

Hk(M,Z) ∼= Fk ⊕ Tk

where Fk = Zbk is free and Tk is finite. The torsion subgroup Tk consists
of all finite-order elements in Hk(M,Z). The rank bk of Fk is the k-th
Betti number of M. In cohomology things change only a little:

Hk(M,Z) ∼= Fk ⊕ Tk−1.

All these groups vanish when k > n. Even when the torsion vanishes, there
is no canonical isomorphism between Hk(M) and Hk(M). On the other
hand, the Lefschetz duality provides a canonical identification

Hk(M) = Hn−k(M, ∂M)

for any ring R. When ∂M = ∅ this is the Poincaré duality Hk(M) =

Hn−k(M). In particular we get

Hn(M, ∂M,Z) = H0(M,Z) ∼= Z

and the choice of an orientation for M is equivalent to a choice of a
generator [M] ∈ Hn(M, ∂M,Z) called the fundamental class of M.

An important exact sequence for M is the following:

. . . −→ Hn(M) −→ Hn(M, ∂M) −→ Hn−1(∂M) −→ Hn−1(M) −→ . . .
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1.6.3. Intersection form. Let G and H be finitely generated abelian
groups, seen as Z-modules. A bilinear form

ω : G ×H −→ Z

is non-degenerate if for every infinite-order element g ∈ G there is a h ∈ H
such that ω(g, h) 6= 0. If G = H, we say that ω is symmetric (resp. skew-
symmetric) if ω(g1, g2) equals ω(g2, g1) (resp. −ω(g2, g1)) for all g1, g2 ∈
G. A skew-symmetric non-degenerate form is called symplectic.

Let M be a compact oriented connected n-manifold with (possibly
empty) boundary. The Lefschetz duality furnishes a non-degenerate bilin-
ear form

ω : Hk(M,Z)×Hn−k(M, ∂M,Z) −→ Z
called the intersection form. It has the following geometric interpretation.

An oriented closed k-submanifold S ⊂ M defines a class [S] ∈ Hk(M)

as the image of its fundamental class via the map i∗ : Hk(S) → Hk(M)

induced by the inclusion. If S has boundary and is properly embedded
(that is, ∂S = ∂M ∩ S), it defines a class [S] ∈ Hk(M, ∂M).

Suppose two oriented submanifolds S and S′ have complementary
dimensions k and n−k and intersect transversely: every intersection point
x is isolated and has a sign ±1, defined by comparing the orientations of
TxS ⊕ TxS′ and TxM. The algebraic intersection S · S′ of S and S′ is the
sum of these signs.

Theorem 1.6.1. Let S, S′ be transverse and represent two classes
[S] ∈ Hk(M) and [S′] ∈ Hn−k(M, ∂M). We have

ω([S], [S′]) = S · S′.
Corollary 1.6.2. The intersection number of two transverse oriented

submanifolds of complementary dimension depends only on their homology
classes.

When M is closed and has even dimension 2n, the central form

ω : Hn(M,Z)×Hn(M,Z) −→ Z

is symmetric or skew-symmetric, depending on whether n is even or odd.
Everything we said about fundamental classes, Lefschetz duality, and

intersection forms holds for non-orientable manifolds as well, provided that
we pick R = Z/2Z and consider bilinear forms and intersections in Z/2Z.

1.7. Cells and handle decompositions

Many nice topological spaces can be constructed iteratively starting
from finitely many points and then attaching some discs of increasing di-
mension called cells. When the topological space is a differentiable mani-
fold one typically thickens the cells to handles.

Cells and handles are beautifully introduced by Hatcher [25] and Kosinksi
[34], respectively.
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1.7.1. Cell complexes. A finite cell complex of dimension n (briefly,
a n-complex) is a topological space obtained iteratively in the following
manner:

• a 0-complex X0 is a finite set of points,
• a n-complex Xn is obtained from a (n − 1)-complex Xn−1 by
attaching finitely many n-cells, that is copies of Dn glued along
continuous maps ϕ : ∂Dn → Xn−1.

The closed subset Xk ⊂ Xn is the k-skeleton of Xn, for all k < n.

Proposition 1.7.1. Let X be a n-complex. The inclusion map Xk ↪→ X

induces an isomorphism πj(X
k)→ πj(X) for all j < k.

Proof. By transversality, maps Sj → X and homotopies between them
can be homotoped away from cells of dimension > j + 2. �

In particular, the space X is connected if and only if X1 is, and its
fundamental group is captured by X2.

Theorem 1.7.2. Every differentiable compact n-manifold may be re-
alised topologically as a finite n-complex.

A presentation for the fundamental group of a cell complex X can be
constructed as follows. If x0 ∈ X0, we fix a maximal tree T ⊂ X1 con-
taining x0 and equip the k arcs in X1 \ T with some arbitrary orientations.
These arcs determine some generators g1, . . . , gk ∈ π1(X, x0). The bound-
ary of a 2-cell makes a circular path in X1: every time it crosses an arc
gi in some direction (entering from one side and exiting from the other)
we write the corresponding letter g±1

i and get a word. The s two-cells
produce s word relations. We have constructed a presentation for π1(X).

1.7.2. Euler characteristic. The Euler characteristic of a n-complex
X is the integer

χ(X) =

n∑
i=0

(−1)iCi

where Ci is the number of i-cells in X. It is also equal to

χ(X) =

n∑
i=0

(−1)ibi(X)

where bi(X) is the i-th Betti number of X. Therefore χ(X) is a number
which depends only on the topology of X, that can be easily calculated
from any cell decomposition of X.

Proposition 1.7.3. If X̃ → X is a degree-d covering of finite complexes
then χ(X̃) = d · χ(X).

Proof. A k-cell in X is simply-connected and hence lifts to d distinct
k-cells in X̃. A cell decomposition of X thus induces one of X̃ where the
numbers Ci are all multiplied by d . �
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It is much harder to control homology under coverings. The Euler
characteristic of a closed manifold measures the obstruction of construct-
ing a nowhere-vanishing vector field.

Theorem 1.7.4. A closed differentiable manifold M has a nowhere-
vanishing vector field if and only if χ(M) = 0.

1.7.3. Aspherical cell-complexes. A finite cell complex is locally con-
tractible and hence has a universal cover X̃. If X̃ is contractible the com-
plex X is called aspherical.

Example 1.7.5. Every closed manifold M covered by Rn is aspherical.

By a theorem of Whitehead, a finite cell complex X is aspherical if
and only if all its higher homotopy groups πi(X) with i > 2 vanish.

The following theorem says that maps to aspherical spaces are deter-
mined (up to homotopy) by homomorphisms between fundamental groups.

Theorem 1.7.6. Let (X, x0), (Y, y0) be pointed connected finite cellular
complexes. If Y is aspherical, every homomorphism π1(X, x0)→ π1(Y, y0)

is induced by a continuous map (X, x0)→ (Y, y0), unique up to homotopy.

Proof. We construct a continuous map f : Xk → Y k iteratively on
the k-skeleta, starting from k = 1.

Let T be a maximal tree in X1. The oriented 1-cells g1, . . . , gk in
X1 \ T define generators in π1(X, x0). We define f : X1 → Y 1 by sending
T to y0 and each gi to any loop in Y representing the image of gi along
the given homomorphism π1(X, x0)→ π1(Y, y0).

The map f sends the boundary of each 2-cell to a homotopically trivial
loop in Y and hence extends to a map f : X2 → Y 2. Since Y is aspherical,
the higher homotopy groups πi(Y ) with i > 2 vanish and hence f extends
to a map f : Xk → Y k iteratively for all k > 3.

We prove that f is unique up to homotopy. Let f ′ be a map that re-
alises the given homomorphism on fundamental groups. We can construct
a homotopy between f and f ′ iteratively on Xk as follows.

For k = 1, we can suppose that both f and f ′ send T to y0. By
hypothesis they send the generators gi to homotopic loops, hence we can
homotope f ′ to f on X1. For k > 2, the maps f and f ′ on each k-cell are
homotopic because they glue to a map Sk → Y , which is null-homotopic
because πk(Y ) is trivial. �

Corollary 1.7.7. Let X and Y be connected finite aspherical com-
plexes. Every isomorphism π1(X) → π1(Y ) is realised by a homotopic
equivalence X → Y , unique up to homotopy.

In particular the homotopy type of an aspherical manifold is fully de-
termined by its fundamental group.

Corollary 1.7.8. Two aspherical closed manifolds of distinct dimension
have non-isomorphic fundamental groups.
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Proof. Two closed manifolds of different dimension cannot be homo-
topically equivalent because they have non-isomorphic homology groups.

�

We cite for completeness this result, although we will never use it.

Theorem 1.7.9 (Cartan–Hadamard). A complete Riemannian mani-
fold M with sectional curvature everywhere 6 0 has a universal covering
diffeomorphic to Rn and is hence aspherical.

Sketch of the proof. Pick a point x ∈ M. Since M is complete, the
exponential map expx : TxM → M is defined on TxM. The fact that the
sectional curvatures are 6 0 imply that (d expx)y is invertible for any y ∈ Tx
and expx is a covering. �

At a single point in this book we will need the following theorem.

Theorem 1.7.10. The fundamental group of an aspherical manifold
M has no torsion.

Sketch of the proof. Up to passing to a cover, it suffices to consider
the case π1(M) ∼= Z/nZ for some n > 2. This case is excluded because
the cohomology of M is isomorphic to the (suitably defined) cohomology
of Z/nZ, which has however infinite dimension. �

1.7.4. Gluing portion of boundaries. Every compact differentiable
n-manifold M can be obtained topologically as a finite complex. The
finite complex structure is however not designed to describe the smooth
structure of M, and for that purpose it is better to replace k-cells with
some thickened objects called k-handles. These handles are n-discs glued
iteratively along portions of their boundaries. Before describing them, we
briefly explain how smooth manifolds can be glued along portions of their
boundaries.

LetM and N be two n-manifolds with boundary and X ⊂ ∂M, Y ⊂ ∂N
be two compact (n − 1)-submanifolds with boundary. A diffeomorphism
ϕ : X → Y defines a topological space

M ∪ϕ N

that may be promoted to a differentiable manifold: it suffices to use a
collar as in Section 1.1.12, see Figure 1.5. The glued manifold depends
(up to diffeomorphism) only on the isotopy class of ϕ.

1.7.5. Handles. Let M be a (possibly empty or disconnected) n-
manifold with boundary and 0 6 k 6 n. A k-handle is a manifoldDk×Dn−k

attached to M along some diffeomorphism ϕ : ∂Dk × Dn−k → Y ⊂ ∂M,
hence producing a new manifold M ′.

For instance, a 0-handle is a D0×Dn = Dn attached to nothing, since
∂D0 = ∅. This means that attaching a 0-handle to M consists of adding
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M N

X Y

M

X Y

N M N

Figure 1.5. To glue two smooth manifolds along portions
of their boundaries (left) we pick a collar for these portions
(centre), then we remove X, Y and identify the interiors of
the collars (right).

Figure 1.6. Two 0-handles (yellow), two 1-handles (or-
ange), one 2-handle (red) in dimension 2 (left). Two 0-
handles (yellow), a 1-handle (orange) in dimension 3 (right).

a disjoint disc Dn to it. For instance, by attaching a 0-handle to the empty
set we create a disc Dn out of nothing.

A 1-handle is a D1 ×Dn−1 attached along ∂D1 ×Dn−1 = S0 ×Dn−1,
that is two copies of Dn−1. Some examples in dimension n = 2, 3 are shown
in Figure 1.6. A 2-handle is a D2 × Dn−2 attached along ∂D2 × Dn−2 =

S1 × Dn−2. When n = 2 this is a disc attached along its boundary, see
Figure 1.6-(left).

1.7.6. Handle decompositions. A sequence of handle attachments

∅ M1  . . . Mk = M

starting from the empty set and producing a compact manifold M with
(possibly empty) boundary is called a handle decomposition for M. Using
Morse theory one proves the following.

Theorem 1.7.11. Every compact manifold (possibly with boundary)
can be obtained from a handle decomposition.

Example 1.7.12. The disc Dn has an obvious handle decomposition
consisting of a single 0-handle. It also has more complicate handle decom-
positions, as Figure 1.6 shows.

By transversality, handles may always be reordered so that the lower
index handles are attached first, and handles of the same index are attached
simultaneously. So we can think of a decomposition as the appearing of
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Figure 1.7. A triangulated torus.

some 0-handles, then the simultaneous attaching of some 1-handles, then
of some 2-handles, and so on.

A handle decomposition of a closed manifold may be turned upside
down, by reversing all arrows and interpreting every k-handle as a (n− k)-
handle.

Proposition 1.7.13. Every compact connected manifold M has a han-
dle decomposition with one 0-handle and at most one n-handle.

If M has a handle decomposition with ni handles of index i then

χ(M) =

n∑
i=0

(−1)ini .

1.7.7. Triangulations. Instead of decomposing a manifold into han-
dles, one may decide to decompose it into simplexes as in Figure 1.7.
One such decomposition is called a triangulation: we now give a formal
definition.

An (abstract and finite) simplicial complex is a finite set S of vertices
together with a set X of subsets of S, called faces, which contains all
singletons and such that every subset of a face is also a face. A face of
cardinality k + 1 has dimension k.

A simplicial complex X has a topological realisation |X|, in which every
face F ∈ X of dimension k transforms into a k-simplex with vertices in F
(we get a cell complex). The complex X is purely n-dimensional if every
face is contained in a face of dimension n. This implies that |X| is the
union of its n-simplexes.

Let now M be a differentiable n-manifold. A smooth k-simplex in
M is a subset ∆ ⊂ M diffeomorphic to a k-simplex in Rn (we mean that
there is a diffeomorphism between open neighbourhoods of ∆ and of the
simplex sending the first to the second). A smooth triangulation of M is a
pure n-dimensional simplicial complex X together with a homeomorphism
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between |X| and M that transforms every k-simplex in X into a smooth
k-simplex in M.

Theorem 1.7.14. Every compact manifold with (possibly empty) bound-
ary has a smooth triangulation.

Handle decompositions are often more flexible and efficient than trian-
gulations, but triangulations have a more combinatorial nature and can for
instance be handled by a computer. Both constructions are widely used.

On a simplicial complex X, the star of a vertex v is the set of all sim-
plexes containing v plus all their sub-simplexes; the link of v is the subset
of the star consisting of the simplexes that do not contain v . Topologically,
the star of v is a closed neighbourhood of v homeomorphic to a cone on
its link.

1.7.8. Hypersurfaces and cohomology. The techniques introduced
in this chapter furnish another characterisation of the first cohomology
group of a manifold. Let [X, Y ] denote the homotopy classes of continuous
maps X → Y .

Proposition 1.7.15. Let X be a cell complex. There is a canonical
identification

H1(X;Z) = [X,S1].

Proof. We know that H1(X;Z) = Hom(π1(X),Z). The circle S1 is
aspherical with π1(S1) = Z, so by Theorem 1.7.6 every homomorphism
π1(X)→ π1(S1) is realised by a map X → S1, unique up to homotopy. �

We have noted that an oriented k-submanifold S ⊂ M determines a
class [S] ∈ Hk(M,Z). It is natural to ask whether every homology class
may be represented by an oriented submanifold: this is false in general, but
it is true in codimension one.

Proposition 1.7.16. Let M be a compact oriented n-manifold with
(possibly empty) boundary. Every class in Hn−1(M, ∂M;Z) is represented
by an oriented properly embedded hypersurface S ⊂ M.

Proof. We have

Hn−1(M, ∂M;Z) = H1(M;Z) = Hom(π1(M),Z) = [M,S1].

Every map M → S1 is homotopic to a smooth map, hence each class
α ∈ H1(M,Z) is represented by a smooth map f : M → S1. By Sard’s
lemma there is a regular value x ∈ S1, whose counter-image S = f −1(x)

is a hypersurface, transversely oriented by f and hence oriented (because
M is).

To prove that [S] = α we verify that [S] and α act on π1(M) in the
same way. Pick a loop γ ∈ π1(M) transverse to S. The number α(γ) is
the degree of f ◦ γ, that is the number of times f ◦ γ crosses x counted
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with signs, which equals the number of times γ crosses S counted with
signs. �

Proposition 1.7.17. An oriented connected properly embedded hyper-
surface S ⊂ M is separating if and only if [S] ∈ Hn−1(M, ∂M;Z) is trivial.

Proof. The surface S is separating if and only if S · α = 0 for every
loop α transverse to S (exercise). Since ω([S], [α]) = S · α and ω is
non-degenerate (see Section 1.6.3), this holds precisely when [S] = 0. �

1.7.9. Topological discs. Finally, we mention a purely topological
theorem that will be used only at one point in this book, in Chapter 8.

Theorem 1.7.18. LetM be a compact topological manifold, whose in-
terior and boundary are homeomorphic respectively to Bn and Sn−1. Then
M is homeomorphic to Dn.

Proof. We use two important theorems on topological manifolds,
whose proofs can be found in the first chapter of the book Topological
embeddings of Rushing [51].

As in every compact topological manifold, the boundary ∂M has a
topological collar by a theorem of Brown (see Theorem 1.7.4 in that book).
The interior boundary sphere of the collar is contained in int(M) ∼= Bn and
hence bounds a closed disc by the Generalised Schönflies Theorem (see
Theorem 1.8.2 there). The manifold M is obtained by collaring a closed
disc and is hence a closed disc. �





CHAPTER 2

Hyperbolic space

In every dimension n > 2 there exists a unique simply connected
complete Riemannian manifold with constant sectional curvature 1, 0, or
−1. These are the sphere Sn, the Euclidean space Rn, and the hyperbolic
space Hn.

These manifolds are the three most important spaces in Riemannian
geometry. We introduce in this chapter the least familiar and the most
interesting of the three: hyperbolic space.

2.1. The models of hyperbolic space

In contrast with Sn and Rn, the hyperbolic space Hn may be described
in various different ways, no-one of which is prevalent in the literature.
Each description is a model for Hn. We first introduce the hyperboloid
model, which has a more algebraic flavour, and then we turn to the disc
and half-space models that are somehow more geometric (and easier to
visualise in dimensions n = 2 and 3).

2.1.1. Hyperboloid. The sphere Sn is the set of all points with norm
1 in Rn+1, equipped with the Euclidean scalar product. Analogously, we
may define Hn as the set of all points of norm −1 in Rn+1, equipped with
the usual Lorentzian scalar product. This set forms a hyperboloid with two
sheets, and we choose one.

Definition 2.1.1. The Lorentzian scalar product on Rn+1 is:

〈x, y〉 =

n∑
i=1

xiyi − xn+1yn+1.

It has signature (n, 1). A vector x ∈ Rn+1 is time-like, light-like, or space-
like if 〈x, x〉 is negative, null, or positive respectively. The hyperboloid
model In is defined as follows:

In =
{
x ∈ Rn+1

∣∣ 〈x, x〉 = −1, xn+1 > 0
}
.

The set of points x with 〈x, x〉 = −1 is a hyperboloid with two sheets,
and In is the connected component (sheet) with xn+1 > 0. Let us prove a
general fact. For us, a scalar product is a real non-degenerate symmetric
bilinear form.

45
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Figure 2.1. The hyperboloid with two sheets defined by the
equation 〈x, x〉 = −1. The model In for Hn is the upper
sheet.

Proposition 2.1.2. Let 〈, 〉 be a scalar product on Rn+1. The function
f : Rn → R given by

f (x) = 〈x, x〉

is everywhere smooth and has differential

dfx(y) = 2〈x, y〉.

Proof. The following equality holds:

〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉.

The component 〈x, y〉 is linear in y while 〈y, y〉 is quadratic. �

Corollary 2.1.3. The hyperboloid In is a Riemannian manifold.

Proof. The hyperboloid is the set of points with f (x) = 〈x, x〉 = −1.
For all x ∈ In the differential y 7→ 2〈x, y〉 is surjective and hence the
hyperboloid is a differentiable submanifold of codimension 1.

The tangent space Tx In at x ∈ In is the hyperplane

Tx = ker dfx =
{
y
∣∣ 〈x, y〉 = 0

}
= x⊥

orthogonal to x in the Lorentzian scalar product. Since x is time-like, the
restriction of the Lorentzian scalar product to x⊥ is positive definite and
hence defines a metric tensor on In. �

The hyperboloid In is a model for hyperbolic space Hn. We will prove
that it is simply connected, complete, and has constant curvature −1.
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2.1.2. Isometries of the hyperboloid. The isometries of In are easily
classified using linear algebra.

Let O(n, 1) be the group of linear isomorphisms f of Rn+1 that pre-
serve the Lorentzian scalar product, i.e. such that 〈v, w〉 = 〈f (v), f (w)〉
for any v, w ∈ Rn. An element in O(n, 1) preserves the hyperboloid with
two sheets, and the elements preserving the upper sheet In form a subgroup
of index two in O(n, 1) that we indicate with O+(n, 1).

Proposition 2.1.4. The following equality holds:

Isom(In) = O+(n, 1).

Proof. Pick f ∈ O+(n, 1). If x ∈ In then f (x) ∈ In and f sends x⊥ to
f (x)⊥ isometrically, hence f ∈ Isom(In). Therefore O+(n, 1) ⊆ Isom(In).

To prove the converse inclusion we show that for every pair x, y ∈ In
and every linear isometry g : x⊥ → y⊥ there is an element f ∈ O+(n, 1)

such that f (x) = y and f |x⊥ = g. Since isometries are determined by their
first-order behaviour at a point x , this implies Isom(In) ⊆ O+(n, 1).

Via elementary linear algebra we prove that O+(n, 1) acts transitively
on In and hence we may suppose that x = y = (0, . . . , 0, 1). Now x⊥ = y⊥

is the horizontal hyperplane and g ∈ O(n). To define f simply take

f =

(
g 0

0 1

)
.

The proof is complete. �

The isometry groups of Sn and Rn are described analogously:

Proposition 2.1.5. The following equalities hold:

Isom(Sn) = O(n + 1),

Isom(Rn) =
{
x 7→ Ax + b

∣∣ A ∈ O(n), b ∈ Rn
}
.

Proof. The proof is analogous to the one above. �

We have also proved the following fact. A frame at a point p in a
Riemannian manifold M is an orthonormal basis for TpM.

Corollary 2.1.6. Let M = Sn, Rn, or Hn. Given two points p, q ∈ M
and two frames at p and q, there is a unique isometry that carries the first
frame to the second.

2.1.3. Subspaces. We introduce the following natural objects.

Definition 2.1.7. A k-dimensional subspace of Rn, Sn, In is:
• an affine k-dimensional space in Rn,
• the intersection of a (k+1)-dimensional vector subspace of Rn+1

with Sn,
• the intersection of a (k+1)-dimensional vector subspace of Rn+1

with In, when it is non-empty.
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Remark 2.1.8. Elementary linear algebra shows that the following
conditions are equivalent for any (k + 1)-dimensional vector subspace
W ⊂ Rn+1:

(1) W ∩ In 6= ∅,
(2) W contains at least a time-like vector,
(3) the signature of 〈, 〉|W is (k, 1).

A k-subspace in Rn, Sn,Hn is itself isometric to Rk , Sk ,Hk . The non-
empty intersection of two subspaces is always a subspace. An isometry of
Rn, Sn,Hn sends k-subspaces to k-subspaces.

Exercise 2.1.9. Let S be a k-subspace in Rn, Sn, or Hn and p ∈ S a
point. There is a unique (n − k)-subspace S′ intersecting S orthogonally
in p.

2.1.4. Reflections. We now introduce a basic kind of isometry. The
reflection rS along a subspace S in In is an isometry of In defined as
follows. By definition S = In ∩ W with 〈, 〉|W non-degenerate, hence
Rn+1 = W ⊕ W⊥ and we set rS|W = id and rS|W⊥ = −id. Analogous
definitions work for subspaces of Sn and Rn.

Exercise 2.1.10. The reflection rS has fixed set S and preserves all
the subspaces orthogonal to S. It is orientation-preserving if and only if S
has even codimension.

Proposition 2.1.11. Reflections along hyperplanes generate the isom-
etry groups of Sn, Rn, and Hn.

Proof. It is a standard linear algebra fact that orthogonal reflections
along vector hyperspaces generate O(n). This proves the case Sn and
shows that reflections generate the stabiliser of any point in Rn and Hn.
To conclude it suffices to check that reflections act transitively on points:
to send x to y , reflect along the hyperplane orthogonal to the segment
connecting x to y in its midpoint. �

2.1.5. Lines. A 1-subspace is a line. We show that lines and geodesics
are the same thing. Recall the hyperbolic trigonometric functions:

sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.

Proposition 2.1.12. A non-trivial complete geodesic in Sn, Rn, or Hn

is a line run at constant speed. Concretely, let p ∈ M be a point and
v ∈ TpM a unit vector. The geodesic γ exiting from p with velocity v is:

• γ(t) = cos(t) · p + sin(t) · v if M = Sn,
• γ(t) = p + tv if M = Rn,
• γ(t) = cosh(t) · p + sinh(t) · v if M = In.

Proof. Let p ∈ In be a point, v ∈ TpM a unit vector, and γ the
geodesic exiting from p with velocity v . The plane W ⊂ Rn+1 generated
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by p and v intersects In into a line l containing p and tangent to v . To
prove that l is the support of γ we use a symmetry argument: the reflection
rl fixes p and v and hence γ, therefore γ is forced to be contained in its
fixed locus, which is l . This shows that non-trivial geodesics are lines run
at constant speed.

We now consider the curve α(t) = cosh(t) · p + sinh(t) · v . We have
α(0) = p and α′(0) = v . It remains to prove that α parametrizes l with
unit speed, and from this we deduce that γ = α. We note that

〈α(t), α(t)〉 = cosh2(t)〈p, p〉+ 2 cosh(t) sinh(t)〈p, v〉+ sinh2(t)〈v, v〉

= − cosh2(t) + sinh2(t) = −1.

Therefore α parametrizes l . Its velocity is

α′(t) = cosh′(t) · p + sinh′(t) · v = sinh(t) · p + cosh(t) · v

whose squared norm is − sinh2(t) + cosh2(t) = 1. Therefore γ = α. The
proofs for Sn and Rn are analogous. �

Corollary 2.1.13. The spaces Sn, Rn, and Hn are complete.

Proof. The previous proposition shows that geodesics are defined on
R, hence the space is complete by the Hopf – Rinow Theorem 1.2.8. �

It is easy to show that two points in Hn are contained in a unique line.

Remark 2.1.14. Euclid’s fifth postulate holds only in R2. Given a line
r and a point P 6∈ r , there is exactly one line passing through P and disjoint
from r in R2, there is no-one in S2, and there are infinitely many in H2.

We can easily calculate the distance between two points.

Proposition 2.1.15. Let p, q ∈ M be two points. We have

• cos(d(p, q)) = 〈p, q〉 if M = Sn,
• cosh(d(p, q)) = −〈p, q〉 if M = In.

Proof. Let γ be a geodesic that goes from p to q at unit speed. We
have γ(0) = p and γ(t) = q with t = d(p, q). Set v = γ ′(0) and use
Proposition 2.1.12 to conclude. �

2.1.6. The Poincaré disc. We introduce two models of Hn, the disc
and the half-space, that are easier to visualise especially in the dimensions
n = 2, 3 we are interested in. The first model is the Poincaré disc

Dn =
{
x ∈ Rn

∣∣ ‖x‖ < 1
}
.

The metric tensor on Dn is obviously not the Euclidean one of Rn,
but instead is induced by a particular diffeomorphism between In and Dn

that we construct now. We identify Rn with the horizontal hyperplane
xn+1 = 0 in Rn+1 and note that the projection towards P = (0, . . . , 0,−1)
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P

Dn

I n

Figure 2.2. The projection towards P = (0, . . . , 0,−1) in-
duces a bijection between the hyperboloid model In and the
disc model Dn.

depicted in Figure 2.2 induces a bijection between In and the horizontal
disc Dn ⊂ Rn. The projection p may be written as:

p(x1, . . . , xn+1) =
(x1, . . . , xn)

xn+1 + 1

and is indeed a diffeomorphism p : In → Dn that transports the metric
tensor on In to some metric tensor g on Dn.

Proposition 2.1.16. The metric tensor g at x ∈ Dn is:

gx =

(
2

1− ‖x‖2

)2

· gEx

where gE is the Euclidean metric tensor on Dn ⊂ Rn.

Proof. The inverse q : Dn → In of p is:

q(x) =

(
2x1

1− ‖x‖2
, . . . ,

2xn
1− ‖x‖2

,
1 + ‖x‖2

1− ‖x‖2

)
.

Pick x ∈ Dn. Rotations around the xn+1 axis are isometries of In and
commute with p, therefore they are isometries of (Dn, g) too. Up to
rotating we may take x = (x1, 0, . . . , 0) and find

dqx =
2

1− x2
1

·



1+x2
1

1−x2
1

0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

2 x1

1−x2
1

0 · · · 0


.

The column vectors form an orthonormal basis of Tq(x)I
n. Hence dqx

stretches all vectors of a constant 2

1−x2
1
. Therefore gx = 4

(1−x2
1 )2 g

E
x . �
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g

a
b

Figure 2.3. Three lines that determine a hyperbolic triangle
in the Poincaré disc. The inner angles α, β, and γ coincide
with the Euclidean ones, and we have α+ β + γ < π.

The Poincaré disc is a conformal model of Hn: it is a model where
the metric differs from the Euclidean metric only by multiplication by a
positive scalar

(
2

1−‖x‖2

)2
that depends smoothly on x . We note that the

scalar tends to infinity when x tends to ∂Dn. On a conformal model the
lengths of vectors are different from the Euclidean lengths, but the angles
formed by two adjacent vectors coincide with the Euclidean ones. Shortly:
lengths are distorted but angles are preserved.

Let us see how we can easily visualise k-subspaces in the disc model.

Proposition 2.1.17. The k-subspaces in Dn are the intersections of
Dn with k-spheres and k-planes of Rn orthogonal to ∂Dn.

Proof. Since every k-subspace is an intersection of hyperplanes, we
easily restrict to the case k = n−1. A hyperplane in In is In ∩v⊥ for some
space-like vector v . If v is horizontal (i.e. its last coordinate is zero) then
v⊥ is vertical and p(In ∩ v⊥) = Dn ∩ v⊥, a hyperplane orthogonal to ∂Dn.

If v is not horizontal, up to rescaling and rotating around xn+1 we may
suppose v = (α, 0, . . . , 0, 1) with α > 1. The hyperplane is{

x2
1 + . . .+ x2

n − x2
n+1 = −1

}
∩
{
xn+1 = αx1

}
.

On the other hand the sphere in Rn of centre (α, 0, . . . , 0) and radius√
α2 − 1 is orthogonal to ∂Dn and is described by the equation{
(y1 − α)2 + y 2

2 + . . .+ y 2
n = α2 − 1

}
=
{
y 2

1 + . . .+ y 2
n − 2αy1 = −1

}
which is equivalent to ||y ||2 = −1 + 2αy1. If y = p(x) the relations

y1 =
x1

xn+1 + 1
, ‖y‖2 =

xn+1 − 1

xn+1 + 1

transform the latter equation in xn+1 = αx1. �

Three lines in D2 delimiting a hyperbolic triangle are drawn in Figure
2.3. Since the disc is a conformal model, the inner angles α, β, γ are the
ones we see on the picture. In particular we verify easily that α+β+γ < π.
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Figure 2.4. A tessellation of S2, R2 o H2 is a subdivision of
the plane into polygons. The tessellation of H2 shown here
is obtained by drawing infinitely many lines in the plane. The
triangles have inner angles π

2
, π

5
, π

5
and are all isometric.

Exercise 2.1.18. For any triple of positive angles α, β, γ with α+β+

γ < π there is a triangle with inner angles α, β, γ. This triangle is unique
up to isometry.

2.1.7. Inversions. To construct our second conformal model we need
to introduce a geometric transformation called inversion.

Definition 2.1.19. Let S = S(x0, r) be the sphere in Rn centred in
x0 and with radius r . The inversion along S is the map ϕ : Rn \ {x0} →
Rn \ {x0} defined as follows:

ϕ(x) = x0 + r 2 x − x0

‖x − x0‖2
.

The map may be extended continuously on the whole sphere Sn,
identified with Rn ∪ {∞} through the stereographic projection, by set-
ting ϕ(x0) = ∞ and ϕ(∞) = x0. A geometric description is shown in
Figure 2.5.

We have already talked about conformal models. More generally, a
diffeomorphism f : M → N between two oriented Riemannian manifolds is
conformal (respectively, anticonformal) if for any p ∈ M the differential
dfp is the product of a scalar dilation λp > 0 and an isometry that preserves
(respectively, inverts) the orientation. The scalar λp depends smoothly on
p. A conformal map preserves the angle between two tangent vectors but
multiplies their lengths by

√
λp.

Exercise 2.1.20. The stereographic projection is conformal.

Proposition 2.1.21. The following hold:
(1) every inversion is a smooth and anticonformal map;
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Figure 2.5. The inversion trough a sphere of centre O and
radius r moves P to P ′ so that OP × OP ′ = r2 (left). It
transforms a k-sphere S (blue) into a k-plane (green) if O ∈
S (centre) or into a k-sphere (green) if O 6∈ S (right).

(2) inversions send k-spheres and k-planes to k-spheres and k-planes.

Proof. Up to conjugating with translations and dilations we may sup-
pose x0 = 0 and r = 1. The inversion is ϕ(x) = x

‖x‖2 and we show that
dϕx is 1

‖x‖2 times a reflection with respect to the hyperplane orthogonal to
x . We may suppose x = (x1, 0, . . . , 0) and calculate the partial derivatives:

ϕ(x1, . . . , xn) =
(x1, . . . , xn)

‖x‖2
,

∂ϕi
∂xj

=
δi j‖x‖2 − 2xixj

‖x‖4
.

The partial derivatives at x = (x1, 0, . . . , 0) are

∂ϕ1

∂x1
= − 1

x2
1

,
∂ϕi
∂xi

=
1

x2
1

,
∂ϕj
∂xk

= 0

for all i > 1 and j 6= k. This proves our assertion.
The fact that an inversion preserves sphere and planes may be easily

reduced to the two-dimensional case (with circles and lines), a classical
fact of Euclidean geometry. �

2.1.8. The half-space model. We introduce another conformal model.
The half-space model is the space

Hn =
{

(x1, . . . , xn) ∈ Rn
∣∣ xn > 0

}
.

It is obtained from the disc model Dn by an inversion in Rn with centre
C = (0, . . . , 0,−1) and radius

√
2 as shown in Figure 2.6. The boundary

∂Hn is the horizontal hyperplane {xn = 0}, to which we add the point ∞
at infinity to get a bijective correspondence between ∂Hn and ∂Dn through
the inversion.

Proposition 2.1.22. The half-space Hn is a conformal model for Hn.
Its k-subspaces are the k-planes and k-spheres in Rn orthogonal to ∂Hn.
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C

Dn

Hn

O

Figure 2.6. The inversion along the sphere with centre C =

(0, . . . , 0,−1) and radius
√

2 transforms the Poincaré disc
Dn into the half-space model Hn. Here n = 2.

Figure 2.7. Lines and planes in the half-space model for H3.

Proof. The inversion is anticonformal and hence preserve angles, more-
over it transforms k-spheres and k-planes in Dn orthogonal to ∂Dn into
k-spheres and k-planes in Hn orthogonal to ∂Hn. �

Some lines and planes in H3 are drawn in Figure 2.7. The metric
tensor g on Hn has a particularly nice form.

Proposition 2.1.23. The metric tensor on Hn is:

gx =
1

x2
n
· gE

where gE is the Euclidean metric tensor on Hn ⊂ Rn.

Proof. The inversion ϕ : Dn → Hn is the function

ϕ(x1, . . . , xn) = (0, . . . , 0,−1) + 2
(x1, . . . , xn−1, xn + 1)

‖(x1, . . . , xn−1, xn + 1)‖2

=
(2x1, . . . , 2xn−1, 1− ‖x‖2)

‖x‖2 + 2xn + 1
.
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As seen in the proof of Proposition 2.1.21, the inversion ϕ is anticonformal
with scalar dilation

2

‖(x1, . . . , xn−1, xn + 1)‖2
=

2

‖x‖2 + 2xn + 1
.

The map ϕ hence transforms the metric tensor
(

2
1−‖x‖2

)2

· gE in x ∈ Dn

into the following metric tensor in ϕ(x) ∈ Hn:(
2

1− ‖x‖2

)2

·
(
‖x‖2 + 2xn + 1

2

)2

· gE =
1

ϕn(x)2
· gE .

The proof is complete. �

2.1.9. Geodesics in the conformal models. The disc Dn and the
half-space Hn are conformal models for Hn. In both models the hyperbolic
metric differs from the Euclidean one only by a multiplication with some
function.

In the half-space Hn the lines are Euclidean vertical half-lines or half-
circles orthogonal to ∂Hn as in Figure 2.7. Vertical geodesics have a
particularly simple form.

Proposition 2.1.24. The vertical geodesic in Hn passing through the
point (x1, . . . , xn−1, 1) at time t = 0 pointing upward with unit speed is:

γ(t) = (x1, . . . , xn−1, e
t).

Proof. A tangent vector v at (x1, . . . , xn) ∈ Hn has norm ‖v‖E
xn

where
‖v‖E indicates the Euclidean norm. We get

‖γ ′(t)‖ = ‖(0, . . . , 0, et)‖ =
et

et
= 1.

Therefore γ(t) runs on a line at unit speed. �

We can easily deduce a parametrisation for the geodesics inDn passing
through the origin. Recall the hyperbolic tangent:

tanh(t) =
sinh(t)

cosh(t)
=
et − e−t

et + e−t
=
e2t − 1

e2t + 1
.

Proposition 2.1.25. The geodesic in Dn passing through the origin at
time t = 0 and pointing towards x ∈ Sn−1 at unit speed is:

γ(t) =
et − 1

et + 1
· x =

(
tanh t

2

)
· x.

Proof. We can suppose x = (0, . . . , 0, 1) and obtain this parametri-
sation from that of the vertical line in Hn through inversion. �

We obtain in particular:
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Corollary 2.1.26. The exponential map exp0 : T0D
n → Dn at the origin

0 ∈ Dn is the diffeomorphism:

exp0(x) =
e‖x‖ − 1

e‖x‖ + 1
· x

‖x‖ =
(

tanh ‖x‖
2

)
· x

‖x‖ .

Since the isometries of Hn act transitively on points, we deduce that
the exponential map at any p ∈ Hn is a diffeomorphism. As a consequence,
the injectivity radius of Hn is ∞, as in the Euclidean Rn.

2.1.10. Isometries of the conformal models. In the half-space model
it is easy to identify some isometries:

Proposition 2.1.27. The following are isometries of Hn:

• horizontal translations x 7→ x + b with b = (b1, . . . , bn−1, 0),
• dilations x 7→ λx with λ > 0,
• inversions with respect to spheres orthogonal to ∂Hn.

Proof. Horizontal translations obviously preserve the metric tensor
g = 1

x2
n
· gE . We indicate by ‖ · ‖ and ‖ · ‖E the hyperbolic and Euclidean

norm of tangent vectors. On a dilation ϕ(x) = λx we get

‖dϕx(v)‖ =
‖dϕx(v)‖E

ϕ(x)n
=
λ‖v‖E

λxn
=
‖v‖E

xn
= ‖v‖.

Concerning inversions, up to conjugating by translations and dilations
it suffices to consider the map ϕ(x) = x

‖x‖2 . We have already seen that
dϕx is 1

‖x‖2 times a linear reflection. Therefore

‖dϕx(v)‖ =
‖dϕx(v)‖E

ϕ(x)n
=
‖v‖E/‖x‖2

xn/‖x‖2
=
‖v‖E

xn
= ‖v‖.

This completes the proof. �

In the disc model we can easily write the isometries that fix the origin:

Proposition 2.1.28. The group O(n) acts isometrically on Dn.

Proof. The metric tensor on Dn has a spherical symmetry. �

It is harder to write the isometries that fix another point of Dn or Hn.

Proposition 2.1.29. On the conformal models Dn and Hn, the isom-
etry group is generated by inversions along spheres and reflections along
Euclidean planes orthogonal to the boundary.

Proof. We know from Proposition 2.1.27 that these maps are isome-
tries of Hn. One such isometry fixes a hyperplane S, hence it is the
hyperbolic reflection rS (which is the unique non-trivial isometry fixing S).
Hyperbolic reflections generate the isometry group by Proposition 2.1.11.

In Dn the proof is the same, we leave as an exercise to prove that a
sphere inversion preserves the metric tensor and is hence an isometry. �
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Figure 2.8. A tessellation of H2 into regular triangles and
heptagons in the Klein model.

2.1.11. Balls in the conformal models. How does a metric ball in
the hyperbolic space look like? The answer in the conformal models is
surprisingly simple.

Proposition 2.1.30. In the conformal models balls are Euclidean balls.

Proof. In the disc model B(0, r) is a ball centred at 0 by symmetry.
The ball B(x0, r) at another point x0 is obtained from B(0, r) by composing
inversions, which send spheres to spheres and hence balls to balls. The
inversion Dn → Hn also sends balls to balls. �

The centre of the ball is not its Euclidean centre in general!

2.1.12. The Klein model. There is a fourth model for the hyperbolic
space that is some kind of intermediate version between the hyperboloid
and the Poincaré disc model.

The Klein or projective model for Hn is obtained by embedding the
hyperboloid In inside RPn via the projection Rn+1 \{0} → RPn. The image
of this embedding is an open disc Kn ⊂ RPn bounded by the quadric
x2

1 + . . .+ x2
n − x2

n+1 = 0. We equip Kn with the metric tensor transported
from In , so that Kn is indeed a model for Hn.

When read in the chart xn+1 = 1, the Klein model Kn becomes the
open disc x2

1 + . . . + x2
n < 1. It is like the Poincaré disc Dn, but with a

different metric tensor!
The Klein model Kn is not conformal and its metric tensor is a bit more

complicated than that of Dn or Hn. On the other hand, the subspaces
in Kn are easier to identify: by definition, these are just the projective
subspaces of RPn intersected with the open disc Kn. Therefore lines are
straight lines, but the angles and distances are distorted. Note also that
the isometries of Kn are projective transformations. The distance function
is particularly nice:
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Exercise 2.1.31. The distance of two distinct points p, q in Kn is

d(p, q) =
1

2
| logβ(p, q, r, s)|

where r, s are the intersections of the projective line l containing p and q
with ∂Kn, and β(p, q, r, s) is the cross-ratio of the four points.

2.2. Compactification and isometries of hyperbolic space

In this section we compactify the hyperbolic space Hn by adding some
“points at infinity”. The compactification will then be used to classify the
isometries of Hn into three types. We also study the mutual position of two
subspaces and define some peculiar hyperbolic objects: the horospheres.

2.2.1. Points at infinity. Let a geodesic half-line in Hn be a geodesic
γ : [0,+∞)→ Hn with constant unit speed.

Definition 2.2.1. The set ∂Hn of the points at infinity in Hn is the set
of all geodesic half-lines, taken up to the following equivalence relation:

γ1 ∼ γ2 ⇐⇒ sup
t∈[0,+∞)

{
d
(
γ1(t), γ2(t)

)}
< +∞.

We add its points at infinity to Hn by defining

Hn = Hn ∪ ∂Hn.

Proposition 2.2.2. On the disc model there is a natural 1-1 correspon-
dence between ∂Dn and ∂Hn and hence between Dn and Hn.

Proof. A geodesic half-line γ in Dn is a circle or line arc orthogonal to
∂Dn and hence the Euclidean limit limt→∞ γ(t) is a point in ∂Dn. We now
prove that two half-lines converge to the same point if and only if they lie
in the same equivalence class.

Suppose that two half-geodesics γ1, γ2 converge to the same point
p ∈ ∂Dn. Up to isometries and inversions, we can change the conformal
model to Hn and take p = ∞. In this nicer setting γ1 and γ2 are vertical
lines:

γ1(t) = (x1, . . . , xn−1, xne
t), γ2(t) = (y1, . . . , yn−1, yne

t).

The geodesic
γ3(t) = (y1, . . . , yn−1, xne

t)

is equivalent to γ2 since d(γ2(t), γ3(t)) = | ln yn
xn
| for all t and is also

equivalent to γ1 because d(γ1(t), γ3(t))→ 0 as shown in Figure 2.9.
Suppose that γ1 and γ2 converge to distinct points in ∂Dn. We can

use the half-space model again and suppose that γ1 is upwards vertical and
γ2 tends to some other point in {xn = 0}. In that case we easily see that
d(γ1(t), γ2(t)) → ∞: for any M > 0 there is a t0 > 0 such that γ1(t)

and γ2(t) lie respectively in {xn+1 > M} and
{
xn <

1
M

}
for all t > t0.

Whatever curve connects these two open sets, it has length at least lnM2,
hence d(γ1(t), γ2(t)) > lnM2 for all t > t0. �
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Figure 2.9. Two vertical lines γ1 and γ3 in the half-space
model Hn at Euclidean distance d . The hyperbolic length of
the horizontal segment between them at height xn is d

xn
and

hence tends to zero as xn →∞ (left). Using as a height pa-
rameter the more intrinsic hyperbolic arc-length, we see that
the two vertical geodesics γ1 and γ3 approach at exponential
rate, since d(γ1(t), γ3(t)) 6 de−t (right).

2.2.2. The compactification. We can give Hn the topology of Dn,
and in that way we have compactified Hn by adding its points at infinity.
The interior of Hn is Hn, and the points at infinity form a sphere ∂Hn.

The topology on Hn may also be defined intrinsically: for any p ∈ ∂Hn

we define a system of open neighbourhoods of p in Hn as follows. Let γ
be a half-line with [γ] = p and V be an open neighbourhood of the vector
γ ′(0) in the unitary sphere in Tγ(0)Hn. Pick r > 0 and define the following
subset of Hn:

U(γ, V, r) =
{
α(t)

∣∣ α(0) = γ(0), α′(0) ∈ V, t > r
}⋃{

[α]
∣∣ α(0) = γ(0), α′(0) ∈ V

}
where α indicates a half-line in Hn and [α] ∈ ∂Hn its class, see Figure 2.10.
We define an open neighbourhoods system {U(γ, V, r)} for p by letting γ,
V , and r vary. The resulting topology on Hn coincides with that of Dn.

Note that Hn is a complete Riemannian manifold (and hence a com-
plete metric space), while its compactification Hn is only a topological
space: a point in ∂Hn has infinite distance from any other point in Hn.

2.2.3. Klein model. In the Klein model Kn ⊂ RPn, the compactifica-
tion is obtained by adding the quadric ∂Kn = {x2

1 + . . .+ x2
n − x2

n+1 = 0},
which is the image of the light cone in Rn+1. Analogously, in the hy-
perboloid model In we may represent ∂In as the set of rays in the light
cone.

A nice feature of the Klein model is that the points x ∈ RPn that
lie “beyond the infinity”, that is outside Kn, can also be given a natural
geometric interpretation. One such x ∈ RPn \ Kn is a space-like ray in
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p
g(0)

g

Figure 2.10. An open neighbourhood U(γ, V, r) of p ∈ ∂Hn
(in yellow). We use the Klein model here.

Figure 2.11. Two incident, asymptotic parallel, and ultra-
parallel lines.

Rn+1 and as such it defines a hyperplane x⊥ of signature (n−1, 1) in Rn+1,
which projects to a hyperbolic hyperplane in Kn. The points beyond the
infinity are in 1-1 correspondence with the hyperbolic hyperplanes in Kn.

2.2.4. Incident, parallel, and ultraparallel subspaces. A k-subspace
S ⊂ Hn has a topological closure S in the compactification Hn. The
boundary ∂S = S ∩ ∂Hn of S is a (k − 1)-sphere.

For instance, the boundary of a line l consists of two distinct points,
the endpoints of l . The boundary of a plane is a circle. Two distinct points
in ∂Hn are the endpoints of a unique line. A circle in the sphere ∂D3 is
the boundary of a unique plane in the disc model.

The usual distance d(A,B) between two subsets A,B in a metric
space is defined as

d(A,B) = inf
x∈A,y∈B

{
d(x, y)

}
.

There are three types of configurations for two subspaces in Hn, de-
picted in Figure 2.11.

Proposition 2.2.3. Let S and S′ be subspaces in Hn of arbitrary di-
mension. Precisely one of the following holds:
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Figure 2.12. Two ultraparallel subspaces S, S′ and a line γ
orthogonal to both.

(1) S ∩ S′ 6= ∅,
(2) S ∩S′ = ∅ and S ∩S′ is a point in ∂Hn; moreover d(S, S′) = 0

and there is no geodesic orthogonal to both S and S′,
(3) S ∩ S′ = ∅; moreover d = d(S, S′) > 0 and there is a unique

geodesic γ orthogonal to both S, S′: the segment of γ between
S and S′ is the unique arc connecting them of length d .

Proof. If S∩S′ contains two points then it contains the line connecting
them and hence S ∩ S′ 6= ∅.

In (2) we use the half-space model and send S ∩ S′ at infinity. Then
S and S′ are Euclidean vertical subspaces and Figure 2.9 shows that
d(S, S′) = 0. Geodesics are vertical or half-circles and cannot be or-
thogonal to both S and S′.

In (3), let xi ∈ S and x ′i ∈ S′ be such that d(xi , x
′
i )→ d . Since Hn is

compact, on a subsequence xi → x ∈ S and x ′i → x ′ ∈ S′. By hypothesis
x 6= x ′ and hence x, x ′ ∈ Hn since d <∞. Therefore d > 0.

Let γ be the line passing through x and x ′. The segment between x
and x ′ has length d(x, x ′) = d . The line is orthogonal to S and S′: if it had
an angle smaller than π

2
with S′ we could find another point x ′′ ∈ S′ near

x ′ with d(x, x ′′) < d . We can draw S, S′, γ as in Figure 2.12 by placing
the origin between x and x ′: no other line can be orthogonal to both S
and S′. �

Two subspaces of type (1), (2) or (3) are called respectively incident,
asymptotically parallel, and ultra-parallel.

2.2.5. The conformal sphere at infinity. The sphere at infinity ∂Hn

has no metric structure, but it has instead a conformal structure, that is a
Riemannian structure considered up to conformal transformations. Before
defining it we note the following.
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Proposition 2.2.4. Every isometry ϕ : Hn → Hn extends to a unique
homeomorphism ϕ : Hn → Hn. An isometry ϕ is determined by its trace
ϕ|∂Hn at the boundary.

Proof. The extension of ϕ to ∂Hn is defined intrinsically: a boundary
point is a class [γ] of geodesic half-lines and we set ϕ([γ]) = [ϕ(γ)].

To prove the second assertion we show that an isometry ϕ that fixes
the points at infinity is the identity. The isometry ϕ fixes every line as a set
(because it fixes its endpoints), and since every point is the intersection of
two lines it fixes also every point. �

We give ∂Hn the conformal structure of the sphere ∂Dn. The group
Isom(Hn) is generated by sphere inversions, which act conformally: al-
though the metric tensor of ∂Dn is not preserved by this action, its con-
formal class is preserved and hence the conformal structure on ∂Hn is
well-defined.

2.2.6. Elliptic, parabolic, and hyperbolic isometries. It is convenient
to classify the isometries of Hn into three types.

Proposition 2.2.5. Let ϕ be a non-trivial isometry of Hn. Precisely
one of the following holds:

(1) ϕ has at least one fixed point in Hn,
(2) ϕ has no fixed points in Hn and has exactly one in ∂Hn,
(3) ϕ has no fixed points in Hn and has exactly two in ∂Hn.

Proof. The extension ϕ : Hn → Hn is continuous and has a fixed
point by Brouwer’s Theorem. We only need to prove that if ϕ has three
fixed points P1, P2, P3 at the boundary then it has some fixed point in the
interior. The isometry ϕ fixes the line r with endpoints P1 and P2. There
is only one line s with endpoint P3 and orthogonal to r (exercise): the
isometry ϕ must also fix s and hence fixes the point r ∩ s. �

Isometries of type (1), (2), and (3) are called respectively elliptic,
parabolic, and hyperbolic. A hyperbolic isometry fixes two points p, q ∈
∂Hn and hence preserves the unique line l with endpoints p and q. The line
l is the axis of the hyperbolic isometry, which acts on l as a translation.

2.2.7. Horospheres. Parabolic transformations are related to some
objects in Hn called horospheres.

Definition 2.2.6. Let p be a point in ∂Hn. A horosphere centred in
p is a connected complete hypersurface orthogonal to all the lines exiting
from p.

Horospheres may be easily visualised in the half-space model Hn by
sending p at infinity. The lines exiting from p are the Euclidean vertical lines
and the horospheres centred at p are precisely the horizontal hyperplanes
{xn = k} with k > 0.
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Figure 2.13. A horocycle in H2 centred in p ∈ ∂H2 is a
circle tangent to p. It is orthogonal to all the lines exiting
from p.

Remark 2.2.7. Since the metric tensor g = 1

x2
n
gE is constant on each

hyperplane {xn = k}, each horosphere is isometric to the Euclidean Rn.

The horospheres centred at p 6= ∞ in ∂Hn or at any point p ∈ ∂Dn

are precisely the Euclidean spheres tangent in p to the sphere at infinity.
The horospheres in H2 are circles and are called horocycles, see Figure
2.13. The portion of Hn delimited by a horosphere is called a horoball.

Let us go back to the isometries of Hn. We sometimes write a point
in the half-space Hn as a pair (x, t) with x ∈ Rn−1 and t > 0. Isometries
with nice fixed points have nice expressions in the conformal models.

Proposition 2.2.8. Let ϕ be an isometry of Hn:

(1) if ϕ is elliptic with fixed point 0 ∈ Dn then

ϕ(x) = Ax

for some matrix A ∈ O(n);
(2) if ϕ is parabolic with fixed point ∞ in Hn then

ϕ(x, t) = (Ax + b, t)

for some matrix A ∈ O(n − 1) and some vector b;
(3) if ϕ is hyperbolic with fixed points 0 and ∞ in Hn then

ϕ(x, t) = λ(Ax, t)

for some matrix A ∈ O(n − 1) and some positive scalar λ 6= 1.

Proof. Point (1) is obvious. In (2) the isometry ϕ fixes ∞ and hence
permutes the horospheres centred at ∞: we first prove that this permu-
tation is trivial. The map ϕ sends a horosphere O0 at height t = t0 to a
horosphere O1 at some height t = t1. If t1 6= t0, up to changing ϕ with
its inverse we may suppose that t1 < t0.
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We know that the map ψ : O1 → O0 sending (x, t1) to (x, t0) is a
contraction: hence ϕ ◦ ψ : O1 → O1 is a contraction and thus has a fixed
point (x, t1). Therefore ϕ(x, t0) = (x, t1). Since ϕ(∞) =∞, the vertical
geodesic passing through (x, t0) and (x, t1) is preserved by ϕ, and hence
we have found another fixed point (x, 0) ∈ ∂Hn, a contradiction.

We now know that ϕ preserves the horosphere O at height t, for all t.
The metric tensor on O is Euclidean (rescaled by 1

t2 ), hence ϕ acts on O
like an isometry x 7→ Ax + b. Since ϕ sends vertical geodesics to vertical
geodesics, it acts with the same formula on each horosphere and we are
done.

Concerning (3), the axis l of ϕ is the vertical line with endpoints
0 = (0, 0) and ∞, and ϕ acts on l by translations: hence it sends (0, 1)

to some (0, λ). The differential dϕ at (0, 1) is necessarily
(
A 0
0 λ

)
for some

A ∈ O(n−1) and hence ϕ is globally as stated. The case λ = 1 is excluded
because (0, 1) would be a fixed point in Hn. �

The minimum displacement d = d(ϕ) of an isometry ϕ of Hn is

d(ϕ) = inf
x∈Hn

d
(
x, ϕ(x)

)
.

A point x realises the minimum displacement if d(x, ϕ(x)) = d(ϕ).

Corollary 2.2.9. The following hold:

(1) an elliptic transformation ϕ has d = 0 realised on its fixed points;
(2) a parabolic transformation ϕ with fixed point p ∈ ∂Hn has d = 0

realised nowhere and fixes every horosphere centred in p;
(3) a hyperbolic transformation ϕ with fixed points p, q ∈ ∂Hn has

d > 0 realised on its axis.

Proof. Point (1) is obvious. Point (2) was already noticed while prov-
ing Proposition 2.2.8. Concerning (3), let l be the axis of the hyperbolic
transformation ϕ. The hyperplane orthogonal to l at a point x ∈ l is
sent to the hyperplane orthogonal to l in ϕ(x). The two hyerplanes are
ultraparallel and by Proposition 2.2.3 their minimum distance is realised
at the points x and ϕ(x). Hence the points on l realise the minimum
displacement for ϕ. �

2.3. Isometry groups in dimensions two and three

With the hyperboloid model the isometry group Isom(Hn) is the matrix
group O+(n, 1). We now see that in dimensions n = 2 and 3 the group
Isom+(Hn) is also isomorphic to some familiar groups of 2× 2 matrices.

We start with a concise tour on Möbius transformations.

2.3.1. Möbius transformations. Let the Riemann sphere be S = C∪
{∞}, homeomorphic to S2. Consider the group

PSL2(C) = SL2(C)/±I = GL2(C)/{λI} = PGL2(C)
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of all 2× 2 invertible complex matrices considered up to scalar multiplica-
tion. The group PSL2(C) acts on S as follows: a matrix

(
a b
c d

)
∈ PSL2(C)

determines the Möbius transformation

z 7→ az + b

cz + d

which is an orientation-preserving self-diffeomorphism of S, and in fact
also a biolomorphism.

Exercise 2.3.1. Möbius transformations act freely and transitively on
triples of distinct points in S.

A matrix
(
a b
c d

)
∈ PSL2(C) also determines aMöbius anti-transformation

z 7→ az̄ + b

cz̄ + d

which is an orientation-reversing self-diffeomorphism of S. The compo-
sition of two anti-transformations is a Möbius transformation. Transfor-
mations and anti-transformations together form a group Conf(S) which
contains the Möbius transformations as an index-two subgroup.

Proposition 2.3.2. Circle inversions and line reflections are both Möbius
anti-transformations and generate Conf(S).

Proof. By conjugating with translations z 7→ z + b and complex dila-
tions z 7→ az every circle inversion transforms into the inversion along the
unit circle z 7→ 1

z̄
, and every line reflection transforms into z 7→ z̄ .

By composing line reflections we get all translations and rotations, and
by composing circle inversions we get all dilations. With these operations
and the inversion z 7→ 1

z̄
one can easily act transitively on triples of points.

They generate Conf(S) by Exercise 2.3.1. �

2.3.2. Möbius transformations of H2. We consider the half-plane
H2 ⊂ C as H2 = {z | =z > 0} and denote by Conf(H2) the subgroup of
Conf(S) consisting of all maps that preserve H2.

Remark 2.3.3. By standard results in complex analysis, the two groups
Conf(S) and Conf(H2) contain precisely all the conformal diffeomorphisms
of S and H2, whence their names. We will not use this fact here.

Proposition 2.3.4. The maps in Conf(H2) are of the form

z 7→ az + b

cz + d
and z 7→ az̄ + b

cz̄ + d

with a, b, c, d ∈ R and having ad − bc equal to 1 and −1, respectively.

Proof. The transformations listed have real coefficients and hence
preserve the line R ∪ ∞ and permute the two half-planes in C \ R. The
sign condition on ad − bc = ±1 ensures precisely that i is sent to some
point in H2 and hence H2 is preserved.
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On the other hand, a transformation that preserves H2 must preserve
∂H2 = R ∪ ∞ and it is easy to see that since the images of 0, 1,∞ are
real all the coefficients a, b, c, d can be taken in R. �

The Möbius transformations in Conf(H2) form a subgroup of index
two which is naturally isomorphic to

PSL2(R) = SL2(R)/±I .

An ordered triple of distinct points in R ∪ ∞ is positive if they are
oriented counterclockwise, like 0, 1,∞.

Exercise 2.3.5. The group PSL2(R) acts freely and transitively on
positive triples of points in R ∪∞.

Let C ⊂ C be a circle or line orthogonal to R. The inversion or
reflection along C preserves H2 and is hence an element of Conf(H2).

Proposition 2.3.6. Inversions along circles and reflections along lines
orthogonal to R generate Conf(H2).

Proof. Composing reflections we obtain all horizontal translations z 7→
z+b with b ∈ R, composing inversions we obtain all dilations z 7→ λz with
λ ∈ R∗. These maps together with the inversion z 7→ 1

z̄
act transitively on

positive triples of points in R ∪∞. �

Exercise 2.3.7. The inversion sending H2 to D2 is

z 7→ z̄ + i

i z̄ + 1
.

2.3.3. Isometries of H2. After this short detour on Möbius transfor-
mations, we turn back to our hyperbolic spaces. We can characterise the
isometry group of H2.

Proposition 2.3.8. We have Isom(H2) = Conf(H2).

Proof. Both groups are generated by inversions along circles and re-
flections along lines orthogonal to ∂H2 = R by Propositions 2.1.29 and
2.3.6. �

In particular we have

Isom+(H2) = PSL2(R).

We will henceforth identify these two groups. The trace of an element in
PSL2(R) is well-defined up to sign and carries some relevant information:

Proposition 2.3.9. A non-trivial isometry A ∈ PSL2(R) is elliptic, par-
abolic, hyperbolic ⇐⇒ respectively |trA| < 2, |trA| = 2, |trA| > 2.
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Proof. Take A =
(
a b
c d

)
with detA = ad − bc = 1. The Möbius

transformation z 7→ az+b
cz+d

has a fixed point z ∈ C if and only if

az + b

cz + d
= z ⇐⇒ cz2 + (d − a)z − b = 0.

We find
∆ = (d − a)2 + 4bc = (d + a)2 − 4 = tr2A− 4.

There is a fixed point in H2 if and only if ∆ < 0; if ∆ > 0 we find two fixed
points in R ∪ {∞} and if ∆ = 0 only one. �

2.3.4. Isometries of H3. We have proved that Isom+(H2) = PSL2(R).
Quite surprisingly, the isometry group Isom+(H3) is also isomorphic to a
group of 2× 2 matrices! To prove this, we make the following identifica-
tions:

R3 = C× R = {(z, t) | z ∈ C, t ∈ R}
hence H3 = {(z, t) | t > 0}. We also write C for C× {0}. The boundary
trace of an isometry of H3 is a homeomorphism of the Riemann sphere

∂H3 = C ∪ {∞} = S.

Proposition 2.3.10. The boundary trace induces an identification

Isom(H3) = Conf(S).

Proof. The group Isom(H3) is generated by inversions along spheres
and reflections along planes orthogonal to ∂H3. Their traces are inversions
along circles and reflections along lines in S. These generate Conf(S). �

In particular we have

Isom+(H3) = PSL2(C).

We will also henceforth identify these two groups. As above, the trace of an
element in PSL2(C) is well-defined up to sign and carries some information:

Proposition 2.3.11. A non-trivial isometry A ∈ PSL2(C) is elliptic,
parabolic, hyperbolic if and only if respectively trA ∈ (−2, 2), trA = ±2,
trA ∈ C \ [−2, 2].

Proof. Every non-trivial matrix A ∈ SL2(C) is conjugate to one of:

±
(

1 1

0 1

)
,

(
λ 0

0 λ−1

)
for some λ ∈ C∗, and these represent the following isometries:

(z, t) 7−→ (z + 1, t), (z, t) 7−→ (λ2z, |λ|2t).

In the first case trA = ±2 and A is parabolic with fixed point ∞, in the
second case A has a fixed point in H3 if and only if |λ| = 1, i.e. trA =

λ + λ−1 ∈ (−2, 2), the fixed point being (0, 1). If |λ| 6= 1 there are two
fixed points 0 and ∞ at infinity and hence A is hyperbolic. �
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Summing up, we have

Isom+(H2) = PSL2(R), Isom+(H3) = PSL2(C).

The group PSL2(R) acts directly on H2, while PSL2(C) acts on the bound-
ary sphere of H3.

2.4. Geometry of hyperbolic space

We study the geometry of Hn. We prove that Hn has constant sec-
tional curvature −1, that the distance function along lines is convex, we
define convex combinations and barycenters, and study parallel transport
along lines. Finally, we prove that Isom(Hn) is a unimodular Lie group.

2.4.1. Area and curvature. We can verify that Hn has constant sec-
tional curvature −1. It should be no surprise that Hn has constant cur-
vature, since it has many symmetries (i.e. isometries). To calculate its
sectional curvature we compute the area of a disc.

Proposition 2.4.1. The disc of radius r in H2 has area

A(r) = π
(
e
r
2 − e−

r
2

)2

= 4π sinh2 r
2

= 2π(cosh r − 1).

Proof. Recall that the volume form is

ω =
√

det g · dx1 · · · dxn.

Let D(r) be a disc in H2 of radius r . If we centre it in 0 in the disc model,
its Euclidean radius is tanh r

2
by Corollary 2.1.26 and we get

A(r) =

∫
D(r)

√
det g · dxdy =

∫
D(r)

(
2

1− x2 − y 2

)2

dxdy

=

∫ 2π

0

∫ tanh r
2

0

(
2

1− ρ2

)2

ρ · dρdθ = 2π

[
2

1− ρ2

]tanh r
2

0

= 4π

(
1

1− tanh2 r
2

− 1

)
= 4π sinh2 r

2
.

The proof is complete. �

Corollary 2.4.2. The hyperbolic space Hn has sectional curvature −1.

Proof. Pick p ∈ Hn and W ⊂ Tp a 2-dimensional subspace. The
image expp(W ) is the hyperbolic plane tangent to W in p. On a hyperbolic
plane

A(r) = 2π(cosh r − 1) = 2π

(
r 2

2!
+
r 4

4!
+ o(r 4)

)
= πr 2 +

πr 4

12
+ o(r 4)

and hence K = −1 following the area formula in Section 1.2.8. �
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Figure 2.14. Distance between points in disjoint lines is a
strictly convex function in hyperbolic space.

2.4.2. Convexity of the distance function. We recall that a function
f : Rn → R is strictly convex if

f (tv + (1− t)w) < tf (v) + (1− t)f (w)

for any pair v, w ∈ Rn of distinct points and any t ∈ (0, 1).

Exercise 2.4.3. A positive strictly convex function is continuous and
admits a minimum if and only if it is proper.

We now prove that the distance function is strictly convex on disjoint
lines of Hn. Given two lines l , l ′ ⊂ Hn, we fix an isometry of each line with
R and we get an identification of l × l ′ with the Euclidean plane R× R.

Proposition 2.4.4. Let l , l ′ ⊂ Hn be two disjoint lines. The map

l × l ′ −→ R>0

(x, y) 7−→ d(x, y)

is strictly convex; it is proper if and only if the lines are ultraparallel.

Proof. With our identifications we have (x, y) ∈ R×R. The function
d is clearly continuous, hence to prove its convexity it suffices to show that

d

(
x1 + x2

2
,
y1 + y2

2

)
<
d(x1, y1) + d(x2, y2)

2

for any pair of distinct points (x1, y1), (x2, y2) ∈ l × l ′. Suppose x1 6= x2

and denote by m and n the midpoints x1+x2
2

and y1+y2
2

as in Figure 2.14.
Let σp be the reflection at the point p ∈ Hn. The isometry τ = σn◦σm

translates the line r containing the segment mn by the quantity 2d(m, n):
hence it is a hyperbolic transformation with axis r . We draw the points
o = τ(m) and zi = τ(xi) in the figure and note that z1 = σn(x2), hence
d(x2, y2) = d(z1, y1). The triangular inequality implies that

d(x1, z1) 6 d(x1, y1) + d(y1, z1) = d(x1, y1) + d(x2, y2).
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A hyperbolic transformation has minimum displacement on its axis r and
x1 6= m is not in r , hence

2d(m, n) = d(m, o) = d(m, τ(m)) < d(x1, τ(x1)) = d(x1, z1).

Finally we get 2d(m, n) < d(x1, y1) + d(x2, y2) and hence d is convex.
The function d is proper, that is it has minimum, if and only if the

two lines are ultraparallel by Proposition 2.2.3. �

Exercise 2.4.5. The distance function on parallel lines in Rn is not
strictly convex (it is only convex).

2.4.3. Convex combinations. Let p1, . . . , pk be k points in Hn,Rn,
or Sn and t1, . . . , tk be non-negative numbers with t1 + . . .+ tk = 1. The
convex combination

p = t1p1 + . . .+ tkpk

is another point in the space defined as follows:

in Rn : p = t1p1 + . . .+ tkpk

in In, Sn : p =
t1p1 + . . .+ tkpk
‖t1p1 + . . .+ tkpk‖

where ‖v‖ =
√
−〈v, v〉 on In. Using convex combination we may define

the barycenter of the points as 1
k
p1 + . . . + 1

k
pk . The barycenter may in

turn be used to prove the following.

Proposition 2.4.6. Let ϕ : Hn → Hn be a non-trivial isometry and
k > 2. Then:

• if ϕ is elliptic then ϕk is elliptic or trivial;
• if ϕ is parabolic then ϕk is parabolic;
• if ϕ is hyperbolic then ϕk is hyperbolic.

Proof. If ϕ : Hn → Hn is an isometry with no fixed points, then ϕk

also is: if ϕk(x) = x then ϕ fixes the finite set {x, ϕ(x), . . . , ϕk−1(x)} and
hence also its barycenter.

If ϕ is parabolic then it fixes the horospheres centred at some point p ∈
∂Hn and also ϕk does, hence it is still parabolic (it cannot be hyperbolic).
If ϕ is hyperbolic it has two fixed points at infinity, and ϕk too. �

Proposition 2.4.7. Every finite subgroup Γ < Isom(Hn) fixes a p ∈ Hn.

Proof. The barycenter of any orbit is fixed by Γ. �

2.4.4. Parallel transport. On Riemannian manifolds, the parallel trans-
port is a way to slide frames along geodesics. On Hn we can do this simply
as follows: for every geodesic γ, we put γ into vertical position in the
half-space model Hn, and slide the frames vertically in the obvious way.

This construction furnishes in particular, for every pair x, y ∈ Hn of
points, a canonical isometry between TxHn and TyHn, obtained by sliding
frames along the unique geodesic γ containing x and y .
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This canonical identification is of course not transitive on a triple of
non-collinear points x, y , z : the curvature of Hn is responsible for that.

2.4.5. Unimodularity. This is a consequence of Corollary 1.4.16.

Corollary 2.4.8. The isometry group Isom(Hn) is unimodular.

Remark 2.4.9. A Haar measure for Isom(Hn) may be constructed
concretely as follows: fix a point x ∈ Hn and define the measure of a
Borel set S ⊂ Isom(Hn) as the measure of S(x) = ∪ϕ∈Sϕ(x) ⊂ Hn. This
measure is obviously left-invariant, and is hence also right-invariant since
Isom(Hn) is unimodular. As a consequence, it does not depend on the
choice of x .

2.4.6. References. The hyperbolic space is introduced in many books:
two standard references are Benedetti – Petronio [4] and Ratcliffe [49],
and most of the arguments presented here were borrowed from these two
sources. The proof of Proposition 2.4.4 was taken from Farb – Margalit
[18]. Thurston’s notes contain some useful trigonometric formulae that
we have omitted, see [56, Chapter 2].





CHAPTER 3

Hyperbolic manifolds

A hyperbolic manifold is a Riemannian manifold locally isometric to
the hyperbolic space Hn. Maybe the most striking aspect of geometric
topology is that, despite this quite restrictive definition, there are plenty of
hyperbolic manifolds around, especially in the dimensions n = 2 and 3. For
that reason hyperbolic manifolds (and hence hyperbolic geometry) play a
central role in the topology of surfaces and three-manifolds.

The study of complete hyperbolic manifolds is tightly connected to
that of discrete subgroups in the Lie group Isom(Hn) and of polyhedra in
Hn, so it has both an algebraic and geometric flavour. We start this chapter
by describing these connections; then we show some examples and discuss
some important variations: non-complete hyperbolic manifolds, hyperbolic
manifolds with geodesic boundary, cone manifolds, and orbifolds.

3.1. Discrete groups of isometries

We define hyperbolic manifolds and prove a crucial theorem, that says
that every complete hyperbolic manifold is isometric to a quotient Hn/Γ

for some discrete group Γ < Isom(Hn) acting freely on Hn.

3.1.1. Hyperbolic, flat, and elliptic manifolds. We introduce three
important classes of Riemannian manifolds.

Definition 3.1.1. A hyperbolic (resp. flat or elliptic) manifold is a con-
nected Riemannian n-manifold that may be covered by open sets isometric
to open sets of Hn (resp. Rn o Sn).

A hyperbolic (resp. flat or elliptic) manifold has constant sectional
curvature −1 (resp. 0 or +1). We show that the model Hn is indeed
unique.

Theorem 3.1.2. Every complete simply connected hyperbolic manifold
M is isometric to Hn.

Proof. Pick a point x ∈ M and choose an isometry D : U → V be-
tween an open ball U containing x and an open ball V ⊂ Hn. We show
that D extends (uniquely) to an isometry D : M → Hn.

For every y ∈ M, choose an arc α : [0, 1] → M from x to y . By
compactness there is a partition 0 = t0 < t1 < . . . < tk = 1 and for

73
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each i = 0, . . . , k − 1 an isometry Di : Ui → Vi from an open ball Ui in M
containing α([ti , ti+1]) to an open ball Vi ⊂ Hn.

We may suppose that U0 ⊂ U and D0 = D|U0 . Inductively on i ,
we now modify Di so that Di−1 and Di coincide on the component C of
Ui−1 ∩ Ui containing α(ti). To do so, note that

Di−1 ◦D−1
i : Di(C) −→ Di−1(C)

is an isometry of open connected sets in Hn and hence extends to an
isometry of Hn. Then it makes sense to compose Di with Di−1 ◦ D−1

i ,
so that the new maps Di−1 and Di coincide on C. Finally, we define
D(y) = Dk−1(y).

The proof that D(y) is well-defined is a standard argument. First, it
is easy to check that different partitions 0 = t0 < . . . < tk = 1 do not
vary D(y), just by considering a common refinement. Then we consider
another path β connecting x to y . Since M is simply-connected, there is
a homotopy connecting α and β. The image of the homotopy is compact
and is hence covered by finitely many open balls Ui isometric to open balls
Vi ⊂ Hn via some maps Di . By the Lebesgue number theorem, there is
a N > 0 such that in the grid in [0, 1] × [0, 1] of 1

N
× 1

N
squares, the

image of every square is entirely contained in at least one Ui . We can now
modify as above the isometries Di inductively on the grid, starting from
the bottom-left square, so that they all glue up and show that D(y) does
not depend on α or β.

The resulting map D : M → Hn is a local isometry by construction.
Since M is complete, the map D is a covering by Proposition 1.2.19.
Since Hn is simply connected, the covering D is a homeomorphism and D
is actually an isometry. �

The isometry D : M → Hn constructed in the proof is called a devel-
oping map. The same proof shows that every complete simply connected
flat (or elliptic) n-manifold is isometric to Rn (or Sn).

3.1.2. Complete hyperbolic manifolds. We have determined the unique
complete simply connected hyperbolic n-manifold, and we now look at
complete hyperbolic manifolds with arbitrary fundamental group. We first
note that if Γ < Isom(Hn) is a group of isometries that acts freely and
properly discontinuously on Hn, the quotient manifold Hn/Γ has a natural
Riemannian structure that promotes the covering

π : Hn −→ Hn/Γ

to a local isometry, see Proposition 1.5.9. The quotient Hn/Γ is a com-
plete hyperbolic manifold. We now show that every complete hyperbolic
manifold is realised in this way:

Proposition 3.1.3. Every complete hyperbolic n-manifoldM is isomet-
ric to Hn/Γ for some subgroup Γ < Isom(Hn) acting freely and properly
discontinuously.
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Proof. The universal cover of M inherits a Riemannian structure that
is complete (by Proposition 1.2.19), hyperbolic, and simply connected:
hence it is isometric to Hn by Theorem 3.1.2. The deck transforma-
tions Γ of the covering Hn → M are necessarily locally isometries, hence
isometries. We conclude that M = Hn/Γ and Γ acts freely and properly
discontinuously using Proposition 1.5.1. �

Note that Γ is isomorphic to the fundamental group π1(M).

Remark 3.1.4. A group Γ < Isom(Hn) acts freely if and only if it does
not contain elliptic isometries: that is, every non-trivial isometry in Γ is
either hyperbolic or parabolic.

Note also that Γ acts properly discontinuously if and only if it is dis-
crete, see Proposition 1.5.8.

Remark 3.1.5. The same proofs show that every complete flat or
spherical n-manifold is isometric to Rn/Γ or Sn/Γ for some discrete group
Γ of isometries acting freely on Rn or Sn.

Corollary 3.1.6. There is a natural 1-1 correspondence
complete hyperbolic

manifolds M

up to isometry

←→


discrete subgroups Γ < Isom(Hn)

without elliptics

up to conjugation


Proof. When passing from the complete hyperbolic manifold M to

the group Γ, the only choice we made is an isometry between the universal
cover of M and Hn. Different choices produce conjugate groups Γ. �

3.1.3. Discrete groups. We investigate some basic properties of dis-
crete groups Γ of isometries of Hn.

Exercise 3.1.7. If Γ < Isom(Hn) is discrete then it is countable.

Note that Γ is not necessarily finitely generated. We denote by Γp < Γ

the stabiliser of a point p ∈ Hn.

Proposition 3.1.8. Let Γ < Isom(Hn) be discrete and p ∈ Hn a point.
The stabiliser Γp is finite and the orbit Γ(p) = {g(p) | g ∈ Γ} is discrete.

Proof. Both are obvious consequence of the fact that Γ acts properly
discontinuously. �

Of course Γ acts freely on Hn if and only if Γp is trivial for all p ∈ Hn.
A set of subspaces in Hn is locally finite if every compact subset in Hn

intersects only finitely many of them.

Proposition 3.1.9. Let Γ < Isom(Hn) be discrete. The points p ∈ Hn

with trivial stabiliser Γp form an open dense set in Hn.
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Proof. The fixed-points set Fix(g) of a non-trivial isometry g is a
proper subspace of Hn. The subspaces Fix(g) with g ∈ Γ are locally finite:
if infinitely many of them intersect a compact set they accumulate and Γ

does not act properly discontinuously. The complement of a locally finite
set of proper subspaces is open and dense. �

Recall that a group has no torsion if every non-trivial element has
infinite order.

Proposition 3.1.10. A discrete group Γ < Isom(Hn) acts freely on Hn

if and only if it has no torsion.

Proof. By Proposition 2.4.6 parabolic and hyperbolic elements have
infinite order. On the other hand, an elliptic element g ∈ Γ has finite order
since Γp is finite for p ∈ Fix(g). �

Corollary 3.1.11. The fundamental group of a complete hyperbolic
manifold has no torsion.

It is now time to exhibit some examples. Recall that H2 is the half-
plane model, see Section 2.3.

Example 3.1.12. The modular group

Γ = PSL2(Z) < PSL2(R) = Isom+(H2)

consists of all matrices in PSL2(R) having integer entries and is clearly a
discrete subgroup. It does not act freely on H2, however: the matrix

(
0 1
−1 0

)
represents the elliptic transformation z 7→ − 1

z
with fixed point i .

3.1.4. Coverings. We now make a simple but crucial observation: if
Γ < Isom(Hn) acts freely and properly discontinuously, then also every
subgroup Γ′ < Γ does; we get a manifolds covering

Hn/Γ′ −→ Hn/Γ

whose degree d is precisely the index of Γ′ in Γ. Recall from Proposition
1.2.20 that we get

Vol
(
Hn/Γ′

)
= d · Vol

(
Hn/Γ

)
where some of the terms in the formula may be infinite. Moreover, every
covering of a hyperbolic complete M = Hn/Γ is constructed in this way:
there is a nice bijective correspondence{

coverings of M
}
←→

{
subgroups of Γ

}
.

This holds of course also for flat and spherical manifolds.
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3.1.5. Congruence subgroups. We can now exhibit a family of two-
dimensional hyperbolic manifolds.

Pick an integer m > 2. Let SL2(Z/mZ) be the group of 2×2 matrices
with coefficients in Z/mZ and determinant 1. We define the quotient

PSL2(Z/mZ) = SL2(Z/mZ)/{±I}.

The reduction modulo m homomorphism Z → Z/mZ induces the group
homomorphisms SL2(Z)→ SL2(Z/mZ) and

PSL2(Z) −→ PSL2(Z/mZ).

The kernel of this homomorphism is the principal congruence subgroup
Γ(m) of PSL2(Z). It is clearly discrete, since PSL2(Z) is. It has finite
index in PSL2(Z) because PSL2(Z/mZ) is finite.

Proposition 3.1.13. If m > 4 the group Γ(m) acts freely on H2.

Proof. An element A ∈ Γ(m) is a matrix
(
a b
c d

)
congruent to

(
1 0
0 1

)
modulo m. In particular a + d is congruent to 2 modulo m, and hence is
not −1, 0, 1. Therefore A is never elliptic. �

The quotient H2/Γ(m) is a hyperbolic surface. We will construct many
hyperbolic surfaces in Section 6.2 via some more geometric methods.

3.1.6. Selberg’s lemma. The discrete group Γ = PSL2(Z) does not
act freely on H2, but its finite-index normal subgroup Γ(m) does as soon
as m > 4. Is this the instance of a more general principle? Yes, it is.

Proposition 3.1.14. Every finitely generated discrete subgroup Γ <

Isom(Hn) has a finite-index normal subgroup Γ′ / Γ that acts freely on Hn.

Proof. The group Isom(Hn) is isomorphic to O+(n, 1) < GL(n +

1,C), so Selberg’s Lemma 1.4.19 applies to Γ, and it furnishes a finite-
index torsion-free normal subgroup Γ′ / Γ. This subgroup acts freely by
Proposition 3.1.10. �

Every finitely generated discrete group Γ < Isom(Hn) contains at least
one finite-index subgroup that acts freely. But how many such subgroups
does it contain? Quite a lot, in fact.

Proposition 3.1.15. Every finitely generated discrete subgroup Γ <

Isom(Hn) is residually finite.

Proof. See Lemma 1.4.20. �

The following corollary shows that there is an abundance of torsion-
free subgroups. Although algebraic in nature, it has some remarkable geo-
metric consequences, that will be revealed soon in Section 4.3.5.

Corollary 3.1.16. Let Γ < Isom(Hn) be discrete and finitely generated.
For every non-trivial g ∈ Γ there is a finite-index normal subgroup Γ′ / Γ

that acts freely on Hn and does not contain g.
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3.2. Polyhedra

A polyhedron in Hn is a natural geometric object, that may be used to
visualise discrete groups in Isom(Hn) and hyperbolic manifolds. Polyhedra
may sometimes be combined to form some tessellations of the space.

3.2.1. Polyhedra. A half-space in Hn is the closure of one of the
two portions of space delimited by a hyperplane. We say that a set of
half-spaces is locally finite if their boundary hyperplanes are.

Definition 3.2.1. A n-dimensional polyhedron P in Hn is the inter-
section of a locally finite set of half-spaces. We also assume that P has
non-empty interior.

A subset S ⊂ Hn is convex if x, y ∈ S implies that the segment
connecting x, y is also contained in S (such a segment is a half-line or a
line if one or both points lie in ∂Hn). Every polyhedron P is clearly convex
because it is the intersection of convex sets. Its closure P in Hn is also
convex.

Let H ⊂ Hn be a half-space containing the polyhedron P . If non-
empty, the intersection F = ∂H ∩ P is called a face of P . The supporting
subspace of F is the smallest subspace of Hn containing F ; the dimension
of a face is the dimension of its supporting subspace. A face of dimension
0, 1, and n − 1 is called a vertex, an edge, and a facet.

Exercise 3.2.2. If non-empty, the intersection of faces of P is a face.

Exercise 3.2.3. Every k-dimensional face is a polyhedron in its sup-
porting k-dimensional space.

The convex hull of a set S ⊂ Hn is the intersection of all the convex
sets containing S.

Exercise 3.2.4. The convex hull of finitely many points in Hn that are
not contained in a hyperplane is a compact polyhedron. Conversely, every
compact polyhedron has finitely many vertices and is the convex hull of
them.

Everything we said holds with no modifications for Rn. On Sn some
care should be taken: some definitions need to be modified slightly to take
into account the annoying presence of antipodal points. We gloss over this
technical point.

3.2.2. Finite polyhedra. We now enlarge slightly the class of com-
pact polyhedra by admitting finitely many vertices at infinity.

Definition 3.2.5. A finite polyhedron is the convex hull of finitely many
points x1, . . . , xk ∈ Hn that are not contained in the closure of a hyperplane.

The xi ’s that lie in ∂Hn are called ideal vertices, while the usual vertices
of P are the finite or actual vertices. The ideal vertices form the set P \P .
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Figure 3.1. The cone C over a domain D ⊂ O has volume
proportional to the area ofD (left). If the domain is compact,
the cone has finite volume: therefore a finite polyhedron has
finite volume (right).

Exercise 3.2.6. A finite polyhedron P has finitely many faces and is
the convex hull of its ideal and finite vertices.

We want to estimate the volume of finite polyhedra, and to do this
we need a lemma. Given a horosphere O centred at p ∈ ∂Hn and a domain
D ⊂ O, the cone C of D over p is the union of all the half-lines exiting
from D and pointing towards p, see Figure 3.1.

Lemma 3.2.7. Let O be a horosphere centred at p ∈ ∂Hn, D ⊂ O

any domain and C the cone over D. The following equality holds:

Vol(C) =
VolO(D)

n − 1

where VolO is the (n − 1)-dimensional volume in the (n − 1)-manifold O.

Proof. Let O have some height xn = h as in Figure 3.1. We get

Vol(C) =

∫
D

dx

∫ ∞
h

1

tn
dt =

1

n − 1

∫
D

dx

hn−1
=

1

n − 1
· VolO(D).

The proof is complete. �

We now turn to finite polyhedra.

Proposition 3.2.8. Every finite polyhedron has finite volume.

Proof. For every ideal vertex of P , a small horoball centred at p inter-
sects P into a cone that has finite volume. The polyhedron P decomposes
into finitely many cones and a bounded region, see Figure 3.1-(right). �

A finite polyhedron without finite vertices is called an ideal polyhedron.
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Figure 3.2. A triangle with at least an ideal vertex (left).
The area of a triangle with finite vertices can be derived as
the area difference of triangles with one ideal vertex (right).

3.2.3. Polygons. A polygon is just a polyhedron of dimension two. In
contrast with Euclidean geometry, a strikingly simple formula relates the
area of a finite polygon with its inner angles. We define the inner angle of
an ideal vertex to be zero.

Proposition 3.2.9. A polygon P with inner angles α1, . . . , αn has area

Area(P ) = (n − 2)π −
n∑
i=1

αi .

Proof. Every polygon decomposes into triangles, and it suffices to
prove the formula on these. Consider first a triangle T with at least one
vertex at infinity. We use the half-plane model and send this vertex to ∞
as in Figure 3.2-(left). We suppose that the red dot is the origin of R2, so

T =
{

(r cos θ, y) | β 6 θ 6 π − α, y > r sin θ
}

and we get

Area(T ) =

∫
T

1

y 2
dxdy =

∫ β

π−α

∫ ∞
r sin θ

−r sin θ

y 2
dydθ

=

∫ β

π−α
−r sin θ

[
−1

y

]∞
r sin θ

dθ =

∫ π−α

β

r sin θ

r sin θ
dθ

=

∫ π−α

β

1 = π − α− β.

The area of a triangle with finite vertices ABC is deduced as in Figure
3.2-(right) using the formula

Area(ABC) = Area(AB∞) + Area(BC∞)− Area(AC∞).

The proof is complete. �

The sum of the inner angles of a hyperbolic polygon is strictly smaller
than that of a Euclidean polygon with the same number of sides, and the
difference between these two numbers is precisely its area.
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Figure 3.3. The regular icosahedron and dodecahedron.

Corollary 3.2.10. Every ideal triangle has area π.

3.2.4. Platonic solids. The theory of three-dimensional polyhedra in
H3 is very rich: we limit ourselves to the study of the platonic solids.

The five Euclidean platonic solids are the regular tetrahedron, the
cube, the regular octahedron, icosahedron, and dodecahedron. We now
see that each platonic solid P ⊂ R3 generates a nice continuous family of
solids in the three geometries H3,R3, and S3.

To construct this family we fix any point x in H3 and represent P
centred at x with varying size. To do this, we put P inside the Euclidean
tangent space TxH3 centred at the origin and with some radius t > 0.
Consider the image of its vertices by the exponential map and take their
convex hull. We indicate by P (−t) the resulting polyhedron in H3. The
polyhedron P (−t) is combinatorially equivalent to P and has the same
symmetries of P .

We extend this family to the other geometries as follows. The poly-
hedron P (0) is the Euclidean P (unique up to dilations), and P (t) with
t > 0 is the spherical P , constructed as above with S3 instead of H3: we
fix x ∈ S3, take a copy of P inside TxS3 with radius t, project its vertices,
and take the convex hull. We define the spherical P (t) only for t ∈ (0, π

2
]:

when t = π
2
it degenerates to a hemisphere. We also define P (−∞) as

the ideal hyperbolic platonic solid obtained by sending all the vertices at
infinity.

We have defined a polyhedron P (t) for all t ∈ [−∞, π
2

], that lies in
H3,R3, S3 depending on whether t is negative, null, or positive. In some
sense the polyhedron P (t) depends continuously on t also when it crosses
the value t = 0: when t → 0 the polyhedron in H3 or S3 shrinks, and every
polyhedron tends to a Euclidean one when shrunk.

In particular the dihedral angle θ(t) of P (t) varies continuously with
t ∈ [−∞, π

2
]. The function θ(t) is strictly monotone and we now determine

its image. The vertex valence of P is the number of edges at each vertex.
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polyhedron θ = π
3

θ = 2π
5

θ = π
2

θ = 2π
3

tetrahedron ideal H3 S3 S3 S3

cube ideal H3 H3 R3 S3

octahedron ideal H3 S3

icosahedron H3

dodecahedron ideal H3 H3 H3 S3

Table 3.1. The platonic solids with dihedral angle θ that
divide 2π.

Proposition 3.2.11. Let P have vertex valence n ∈ {3, 4, 5}. Then

θ
([
−∞, π

2

])
=

[
n − 2

n
π, π

]
.

Proof. Since θ is continuous and monotone increasing, it suffices to
show that θ(−∞) = n−2

n
π and θ( π

2
) = π.

By intersecting the ideal polyhedron P (−∞) with a small horosphere
O centred at an ideal vertex v we get a regular n-gon in the Euclidean plane
O, with interior angles n−2

n
π. The dihedral angle at an edge e incident to

v is measured by intersecting P (−∞) with any hypersurface orthogonal to
e: since O is orthogonal to e we get θ(−∞) = n−2

n
π.

The polyhedron P ( π
2

) is a hemisphere and hence θ( π
2

) = π. �

For some values of t, the platonic solid P (t) may have nice dihedral
angles θ(t), for instance angles that divide 2π. In the Euclidean world,
the only platonic solid with such nice dihedral angles is the cube. In the
hyperbolic and spherical world we find more.

The platonic solids with dihedral angles that divide 2π are listed in
Table 3.1. The table is just a consequence of Proposition 3.2.11: it suffices
to know the Euclidean dihedral angles for P , and all the angles bigger
(smaller) than this value are spherical (hyperbolic).

In particular, there are four right-angled platonic solids: the spherical
tetrahedron, the Euclidean cube, the hyperbolic dodecahedron, and the
ideal hyperbolic octahedron.

3.3. Tessellations

A tessellation is a nice paving of Hn made of polyhedra. Not only
tessellations are beautiful objects, but they are also tightly connected with
discrete groups of Isom(Hn) and hence with hyperbolic manifolds.

Definition 3.3.1. A tessellation of Hn (or Rn, Sn) is a locally finite set
of polyhedra that cover the space and intersect only in common faces.

Some examples in spherical and Euclidean space are shown in Figure
3.4. We now construct some families explicitly.
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Figure 3.4. A tessellation of S2 into squares, hexagons, and
decagons, and a tessellation of R3 into truncated octahedra.

Figure 3.5. The tessellations (2, 3, 3), (2, 3, 4) and (2, 3, 5)

of the sphere.

3.3.1. Triangles. We want to define some nice tessellations ofH2,R2,
and S2 into triangles. The following exercise says that every triple of acute
angles is realised by some triangle in the appropriate geometry.

Exercise 3.3.2. Given three real numbers 0 < α, β, γ 6 π
2
there is

a triangle ∆ with inner angles α, β, γ inside H2,R2, or S2 depending on
whether the sum α+ β + γ is smaller, equal, or bigger than π.

Let a, b, c > 2 be three natural numbers and ∆ be a triangle with inner
angles π

a
, π
b
, π
c
. The triangle ∆ lies in H2, R2, or S2 depending on whether

1
a

+ 1
b

+ 1
c
is smaller, equal, or bigger than 1. In all cases, by mirroring

iteratively ∆ along its edges we construct a tessellation of the space.
The triples realisable in S2 are (2, 2, c), (2, 3, 3), (2, 3, 4), and (2, 3, 5):

the last three tessellations are shown in Figure 3.5 and are connected to
the platonic solids. They consist of 24, 48, and 120 triangles.

The triples realisable in R2 are (2, 3, 6), (2, 4, 4), and (3, 3, 3): the
tessellations are shown in Figure 3.6. There are infinitely many triples
realisable in H2, and some are shown in Figure 3.7.
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Figure 3.6. The tessellations (2, 3, 6), (2, 4, 4), and (3, 3, 3)

of the Euclidean plane.

Figure 3.7. The tessellations (2, 3, 7), (2, 4, 5), and (3, 3, 4)

of the hyperbolic plane.

In the hyperbolic plane we can also use triangles with vertices at in-
finity, which have inner angle zero by definition.

Exercise 3.3.3. Given three real numbers 0 6 α, β, γ 6 π
2
with sum

smaller than π there is a triangle ∆ ⊂ H2 with inner angles α, β, γ.

For any triple (a, b, c) of numbers in N ∪ {∞} with 1
a

+ 1
b

+ 1
c
< 1

we may take the triangle ∆ ⊂ H2 with inner angles π
a
, π
b
, π
c
and reflect it

iteratively to get a tessellation of H2.
The triple (∞,∞,∞) gives a nice tessellation into ideal triangles called

the Farey tessellation and shown in Figure 3.8.

3.3.2. Platonic solids. We now turn to tessellations of 3-dimensional
spaces. Table 3.1 displays a finite list of platonic solids P with dihedral
angles 2π

k
contained in H3, R3, or S3. For each solid in the list, by reflecting

iteratively P along its faces we get a tessellation of the space.
The Figures 3.9, 3.10, and 3.11 show the tessellations of H3,H3, and

S3 by regular dodecahedra with dihedral angles π
2
, π

3
, and 2π

3
. The first two

tessellations contain infinitely many polyhedra and appear in the figures as
seen by an observer floating inside H3. The reader is invited to observe the
differences between the first two tessellations of the hyperbolic space. The
third tessellation contains finitely many polyhedra and the figure shows its
stereographic projection in R3.
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Figure 3.8. The Farey tessellation (∞,∞,∞) of the hyper-
bolic plane.

Figure 3.9. The tessellation of H3 into right-angled regular
dodecahedra, seen from inside H3.

3.3.3. Regular tessellations. Platonic solids are regular, that is they
have many symmetries. A notion of regularity may be defined in all dimen-
sions for polyhedra and tessellations as follows.

Every tessellation in Hn, Rn, or Sn has a symmetry group, consisting
of all the isometries of the ambient space that preserve it. A flag is a
sequence of faces f0 ⊂ . . . ⊂ fn of the tessellation with dim fi = i . A
tessellation is regular if the symmetry group acts transitively on flags.
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Figure 3.10. The tessellation of H3 into ideal regular do-
decahedra with dihedral angle π

3
, seen from inside H3. Note

that all vertices lie at infinity.

These definitions apply also to polyhedra. We note that a regular
polyhedron in Rn, considered up to similarities, may be interpreted as a
regular tessellation in Sn−1, and vice versa.

The Schläfli notation beautifully encodes various regular tessellations,
in all dimensions and in all geometries. The symbol {n} with n > 3 denotes
the regular n-gon, that is a regular tessellation of S1 by n congruent arcs,
and by extension {∞} denotes the regular tessellation of R by infinitely
many congruent segments.

The symbol {p, q} denotes a regular tessellation in H2,R2, or S2 by
p-gons where q of them meet at every vertex. The five platonic solids are

{3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3},

the symbols {3, 6}, {4, 4}, and {6, 3} denote the two regular tessellations
of R2 into equilateral triangles, squares, and regular hexagons, and every
other pair {p, q} denotes a tessellation of regular p-gons in H2 with angles
2π
q
, that meet at q at every vertex. We can also interpret {p,∞} as a

regular tessellation of H2 into ideal regular p-gons (the Farey tessellation
is {3,∞}) and {∞, q} as a regular tessellation of ∞-gons that meet at q
at every vertex, whose edges form a q-regular tree (a tree where q edges
meet at every vertex). Finally {∞,∞} is a regular tessellation of ideal
∞-gons. See Figure 3.12

The symbol {p, q, r} denotes a regular tessellation in H3,R3, or S3 by
polyhedra {p, q} where r of them meet at every edge. We deduce from



3.3. TESSELLATIONS 87

Figure 3.11. The tessellation of S3 into 120 regular dodec-
ahedra with dihedral angle 2π

3
, transposed into R3 via the

stereographic projection, that transforms straight faces into
round ones but preserves the angles.

Figure 3.12. The tessellations of H2 with Schläfli symbols
{4,∞}, {∞, 4}, and {∞,∞}.

Table 3.1 that the regular tessellations of S3 are

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3}, {4, 3, 3}, {5, 3, 3}.

These are the six regular polyhedra (usually called polytopes) in dimension
four: we will encounter them again in Chapter 12.2.3. The symbol {4, 3, 4}
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Figure 3.13. In the tessellation {6, 3, 3} of H3 every poly-
hedron has infinitely many hexagonal faces, whose vertices
all lie in a single horosphere.

indicates the tessellation of R3 into cubes, and

{3, 3, 6}, {3, 4, 4}, {3, 5, 3}, {4, 3, 5}, {4, 3, 6}, {5, 3, 4}, {5, 3, 5}, {5, 3, 6}

denote the tessellations of H3 into platonic solids. It is also possible to
interpret more triples {p, q, r} in an appropriate way, sometimes by repre-
senting the vertices of the polyhedra as space-like vectors in the hyperboloid
model.

Every regular tessellation has a dual regular tessellation obtained by
taking the barycenters of all the cells involved. The dual of {a, b, . . . , z}
is {z, . . . , b, a}. Duals of ideal tessellations involve infinite polyhedra: for
instance {6, 3, 3} is shown in Figure 3.13.

The story continues in four dimensions: we denote by {p, q, r, s} a
regular tessellation made of polytopes of type {p, q, r} that meet in s at
every codimension-two face. With the same techniques of Section 3.2.4
we can identify the regular polytopes in H4,R4 and S4 with dihedral angles
that divide 2π, and the corresponding tessellations of the ambient space –
that we are unfortunately unable to see.

3.3.4. Voronoi tessellations. In the previous section we have con-
structed some tessellations by exploiting the symmetries of regular polyhe-
dra: we can probably extend these methods to less symmetric polyhedra,
but how far can we go? How can we construct highly non-regular tessel-
lations?
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Figure 3.14. A Voronoi tessellation of the Euclidean plane.

There is a strikingly simple procedure that transforms every discrete
set S of points in Hn into a tessellation, called the Voronoi tessellation of
S. The construction goes as follows.

For every point p ∈ S we define

D(p) =
{
q ∈ Hn

∣∣ d(q, p) 6 d(q, p′) ∀p′ ∈ S
}
.

Proposition 3.3.4. The set D(p) is a polyhedron and the polyhedra
D(p) as p ∈ S varies form a tessellation of Hn.

Proof. It is an easy exercise to show that the points in Hn having the
same distance from two distinct fixed points form a hyperplane. For every
p′ ∈ S different from p we define the half-space

Hp′ =
{
q ∈ Hn

∣∣ d(q, p) 6 d(q, p′)
}
.

The set D(p) is the intersection of the half-paces Hp′ as p′ varies in S\{p}.
Since S is discrete, these half-spaces are locally finite (there are finitely

many points in S at bounded distance from p, hence finitely many hyper-
planes). Therefore D(p) is a polyhedron. Since S is discrete, every point
q ∈ Hn has at least one nearest point p ∈ S: therefore the polyhedra D(p)

cover Hn as p ∈ S varies.
It remains to prove that the polyhedra D(p) intersect along common

faces. We have D(p) ∩ D(p′) = D(p) ∩ ∂Hp′ and hence D(p) ∩ D(p′) is
either empty or a face of D(p). The case of multiple intersections follows
from Exercise 3.2.2. �

Voronoi tessellations of course make sense also in Rn and Sn, see
Figure 3.14. We have just proved that tessellations are not exoteric, but
quite ordinary objects, and we now show that they are useful to study
hyperbolic manifolds.
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3.4. Fundamental domains

We turn back to our discrete subgroups Γ < Isom(Hn). The geometry
of a discrete Γ is nicely controlled by some polyhedra, called fundamental
domains. We introduce these objects and make some important examples.

3.4.1. Fundamental and Dirichlet domains. Let Γ be a discrete group
of isometries of Hn. The group Γ may or may not act freely on Hn.

Definition 3.4.1. A fundamental domain for Γ is a polyhedron D ⊂ Hn

whose translates g(D) as g ∈ Γ varies are distinct and form a tessellation
of the space Hn.

If D is a fundamental domain, the group Γ acts freely and transitively
on the tessellation

{
g(D)

}
g∈Γ

, so in particular the polyhedra g(D) are all
isometric.

We describe a procedure that builds a fundamental domain for any
discrete subgroup Γ < Isom(Hn). Pick a point p ∈ Hn with trivial sta-
biliser Γp, which exists by Proposition 3.1.9. The group Γ acts freely and
transitively on the orbit Γ(p), which is discrete by Proposition 3.1.8.

The discrete orbit Γ(p) defines a Γ-invariant Voronoi tessellation of
Hn, and every polyhedron of the tessellation is a fundamental domain. The
polyhedron D(p) of the tessellation containing p is called the Dirichlet
domain for Γ centred at p. By construction we have

D(g(p)) = g(D(p))

for all g ∈ Γ. We have proved in particular the following.

Proposition 3.4.2. Every discrete group Γ < Isom(Hn) has a funda-
mental domain.

Fundamental domains are far from being unique. The Dirichlet do-
main D(p) depends on p in a continuous fashion, and many fundamental
domains are not Dirichlet domains.

Exercise 3.4.3. Prove that the shadowed triangle in Figure 3.15 is a
fundamental domain for the modular group PSL2(Z).

Everything we say also holds for Rn and Sn.

3.4.2. Fundamental domain of manifolds. Let Γ < Isom(Hn) be a
discrete subgroup that acts freely on Hn and D be a fundamental domain
for Γ. We can get some information on the hyperbolic manifold M = Hn/Γ

by looking at D.

Proposition 3.4.4. Let M = Hn/Γ be a hyperbolic manifold and D
a fundamental domain for Γ. The projection π : Hn → M restricts to a
surjective map D → M that sends int(D) isometrically onto an open dense
subset of M. In particular we have

Vol(D) = Vol(M).
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Figure 3.15. The shadowed triangle (with one ideal vertex)
is a fundamental domain for Γ = PSL2(Z) acting on the half-
space H2. The translates of the fundamental domain form
the tessellation shown.

If D is a Dirichlet domain, it is compact if and only if M is.

Proof. The translates g(D) cover Hn, hence the projection D →
M is surjective. The translates g(int(D)) are disjoint, hence int(D) is
sent isometrically inside M. The boundary ∂D has measure zero, hence
Vol(D) = Vol(int(D)) = Vol(M).

If D is compact then M clearly is. If D = D(p) is a Dirichlet domain
and M is compact, M has finite diameter δ and hence every point in Hn is
at distance 6 δ of some point in the orbit of p. Hence D(p) is contained
in the closure of B(p, δ). �

A fundamental domain D alone however does not determine M: we
will soon see in Section 3.4.8 that a square in R2 is the fundamental domain
of two non homeomorphic compact flat surfaces.

3.4.3. Asteroids. The facets of a fundamental domain D are nat-
urally partitioned into isometric pairs, as follows. Ever facet f of D is
incident to D and to another fundamental domain g(D) of the tessella-
tion. The isometry g−1 sends g(D) to D and hence sends f to another
facet f ′ of D. One checks immediately that (f ′)′ = f , so f and f ′ are
paired isometrically.

One should think of M as obtained from D by identifying these facets
in pairs: we can picture an observer – say, a spaceship – floating and
traveling insideM by visualising it inD, and jumping from f to f ′ every time
it crosses the interior of a facet f , like in the 1979 video game Asteroids.

3.4.4. Spine and cut locus. Another picture that may help to under-
stand M geometrically is the spine S ⊂ M defined as S = π(∂D). This
is a (n − 1)-dimensional object in M whose complement is an open ball.
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When D = D(p) is the Dirichlet domain of a point p, the spine S is called
the cut locus of the point q = π(p) ∈ M.

Exercise 3.4.5. The cut locus of q ∈ M consists of all points q′ such
that there are at least two geodesics of minimal length connecting q to q′.

We now exhibit some important examples of discrete groups of isome-
tries in the three geometries Hn, Rn, and Sn, and study their fundamental
domains.

3.4.5. Triangle groups. Let a, b, c > 2 be natural numbers and ∆

be the triangle in H2, S2, or R2 with inner angles π
a
, π
b
, π
c
. By reflecting

iteratively ∆ along its sides we get a tessellation T , see Section 3.3.1.
The triangle group Γ = Γ(a, b, c) is the group of isometries of S2,

R2, or H2 generated by the reflections x, y , z along the three sides of ∆

opposite to the vertices with inner angles a, b, c, respectively.

Proposition 3.4.6. The triangle group Γ(a, b, c) acts freely and tran-
sitively on the triangles of the tessellation T . Hence it is discrete and ∆ is
a fundamental domain for Γ. A presentation for the group is

〈x, y , z | x2, y 2, z2, (xy)c , (yz)a, (zx)b〉.

Proof. We restrict for simplicity to the hyperbolic case, the others
being analogous. It is convenient to construct the tessellation T abstractly
(this also furnishes a rigorous proof that by mirroring ∆ along its sides we
get a tessellation of H2).

We denote by x, y , z both the sides of ∆ and the reflections along
them. For every g ∈ Γ we define an abstract copy ∆g of ∆, and then we
glue all these abstract copies altogether by pairing their sides as follows:
for every side of ∆, say x , and every g ∈ Γ, we identify the two copies of
the side x in ∆g and ∆gx with the obvious identity map.

Via these identifications we get an abstract space T tessellated into
the triangles ∆g. The group Γ acts freely and transitively on the tessellation
(the element g′ ∈ Γ sends ∆g to ∆g′g). We now prove that T has a natural
structure of a hyperbolic surface: since Γ acts transitively, it suffices to
check this for the points p lying in ∆e . If p lies in the interior of ∆e or of a
side, this is clear by construction. If p is a vertex, say with inner angle a, by
construction a cycle of 2a triangles ∆e ,∆y ,∆yz ,∆yzy ,∆yzyz , . . . is attached
around p because (yz)a = e, and hence T is naturally a hyperbolic surface
also near p.

The hyperbolic surface T is easily seen to be connected and complete.
There is a natural developing map ϕ : T → H2 that sends ∆g to g(∆). The
map ϕ is a local isometry, hence a covering by Proposition 1.2.19, hence
an isometry since H2 is simply connected. We identify T with H2 via ϕ.

It remains to prove that Γ may be presented as stated. Let G be the
group presented as

〈x, y , z | x2, y 2, z2, (xy)c , (yz)a, (zx)b〉.
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There is a natural surjection G → Γ. We may repeat all the arguments
above using G instead of Γ and get another T ′ isometric to H2 that covers
T . We deduce that T ′ = T and G = Γ. �

The triangle group Γ(2, 2, c) ∼= Z/2Z × D2c has order 4c and is the
symmetry group of a prism. The triangle groups Γ(2, 3, 3), Γ(2, 3, 4), and
Γ(2, 3, 5) have order 24, 48, and 120 and are the symmetry groups of the
regular tetrahedron, octahedron, and icosahedron: the reader is invited to
check all these facts visually by looking at Figure 3.5.

The triangle groups Γ(2, 3, 6), Γ(2, 4, 4), and Γ(3, 3, 3) are discrete
groups of isometries of R2 with compact quotient R2/Γ. If 1

a
+ 1

b
+ 1

c
< 1

the group Γ(a, b, c) is a discrete subgroup of Isom(H2). It contains infin-
itely many elliptic elements, such as reflections along lines and finite-order
rotations around the vertices of the triangles. By Selberg’s Lemma, there
is a torsion-free subgroup Γ′ < Γ of some finite index h. The quotient H2/Γ′

is a closed hyperbolic surface and is tessellated into h triangles isometric
to ∆.

3.4.6. Coxeter polyhedra. Triangle groups may be generalised to all
dimensions as follows. A polyhedron P in Hn (or Rn, Sn) is a Coxeter
polyhedron if the dihedral angle of every codimension-two face divides π.
For instance, the regular ideal tetrahedron and octahedron are Coxeter
polyhedra.

The following theorem generalises Proposition 3.4.6. Let P be a finite
Coxeter polyhedron: it is the convex hull of finitely many vertices in Hn

(or Rn, Sn) and has k facets, that we number as 1, . . . , k; we denote by ri
the reflection along the i-th facet, and by π

ai j
the dihedral angle formed by

the i-th and j-th facets, if they are incident. Let Γ be the isometry group
generated by the reflections along the facets of P .

Theorem 3.4.7. By mirroring iteratively a finite Coxeter polyhedron
P along its facets we get a tessellation of Hn (or Rn, Sn). The group Γ

acts freely and transitively on the tessellation: hence it is discrete and P
is a fundamental domain for Γ. A presentation for Γ is

〈r1, . . . , rk | r 2
i , (ri rj)

ai j 〉

where i varies in 1, . . . , k and the pair i , j varies among the incident facets.

Proof. Same proof as Proposition 3.4.6, with in addition an induction
on the dimension n. Here are the details. We consider for simplicity only
the hyperbolic case.

For every g ∈ Γ we define an abstract copy Pg of P , and we identify the
i-th facet of Pg and Pgri for all g ∈ Γ and all i . To prove that the resulting
space T is naturally a hyperbolic manifold, we use the induction hypothesis
as follows. Every p ∈ Pe lies in the interior of some h-dimensional face
f , and let Γf < Γ be the subgroup generated by the reflections along
all the facets of P containing f . The point p is adjacent in T to the
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polyhedra Pg such that g ∈ Γf . By intersecting each such Pg with a small
codimension h+ 1 sphere centred in p and contained in the codimension h
subspace orthogonal to f , we get some spherical polytope Qg of dimension
n − h − 1 < n. (The spherical polytope Qt is usually called the spherical
link of f .)

By construction Qe ⊂ Sn−h−1 is a Coxeter polytope and the subgroup
Γf < Isom(Sn−h−1) is generated by the reflections along its facets. By
applying the induction hypothesis on Qe we deduce that the polytopes
Qg with g ∈ Γf form a tessellation of Sn−h−1, hence the polyhedra Pg
incident to p form naturally a hyperbolic ball locally near p. Therefore T
is a hyperbolic manifold.

Proving that T is complete requires a bit of care if Pe has some ideal
vertex v . In that case v has a Euclidean link (obtained by intersecting Pe
with a small horosphere) and we conclude by induction as above that the
Euclidean links of the Pg incident to v in T glue to form a Euclidean Rn−1,
that is a horosphere, so by intersecting each Pg with small horoballs we
get a horoball near v , which is complete.

The hyperbolic space T is complete and connected, and we conclude
as in the proof of Proposition 3.4.6. �

A group generated by some reflections along hyperplanes is called a
reflection group. The following proposition shows that Coxeter polyhedra
generate all the interesting reflection groups.

Proposition 3.4.8. Every discrete reflection group Γ is generated by
the reflections along the facets of some Coxeter polyhedron.

Proof. Consider the mirror hyperplanes of all the reflections in Γ.
Since Γ is discrete, these form a locally finite set and hence define a
tessellation of Hn onto which Γ acts transitively. Pick one polyhedron
P of the tessellation. The reflections along the facets of P generate Γ

(exercise). �

Coxeter polyhedra are beautiful objects that can be used to construct
hyperbolic manifolds: every finite Coxeter polyhedron P generates a reflec-
tion group Γ which contains, by Selberg’s Lemma, a torsion-free subgroup
Γ′ of some finite index h. The quotient M = Hn/Γ′ is a hyperbolic mani-
fold and is tessellated into h copies of P , so that Vol(M) = hVol(P ). By
residual finiteness, there are plenty of such manifolds.

3.4.7. Coxeter graphs. If a Coxeter polyhedron P has a reasonable
number of facets (for instance, if P is a simplex), then one can study many
of its properties by looking at its Coxeter graph, which is constructed
as follows: draw one node for each facet of P , and for every pair of
facets intersecting with dihedral angle π

a
connect the corresponding nodes

with an edge labeled with a. One also uses thickened or dashed edges
to denote non-incident faces that do or do not intersect at some ideal
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Figure 3.16. A fundamental domain in R2 for the torus
(left) and the Klein bottle (centre): opposite sides should
be identified as indicated by the arrows. A fundamental do-
main in S2 for RP2 (right).

vertex, respectively (these cases cannot occur on simplexes). Given the
abundance of right angles, one usually omit the edges with label 2.

Exercise 3.4.9. Let P be a regular polytope or tessellation with Schläfli
symbol {a, b, . . . , z}. By quotienting P via all its isometries we get a
Coxeter simplex, called its characteristic simplex, whose Coxeter graph is

3.4.8. Flat tori. The isometry group Isom(Rn) of Rn contains the
translations subgroup that we identify with Rn. The integer translations
Γ = Zn form a discrete subgroup that acts freely on Rn, therefore the
quotient Rn/Γ is a flat manifold. It is naturally diffeomorphic to the n-
dimensional torus:

Rn/Zn = (R/Z)n ∼= S1 × . . .× S1︸ ︷︷ ︸
n

.

Exercise 3.4.10. For every p ∈ Rn the Dirichlet domain D(p) is a
n-dimensional unit cube centred at p.

The flat n-torus may be seen as the unit n-cube with its opposite
facets identified by translations. The two-dimensional case is shown in
Figure 3.16-(left): by identifying the opposite sides of a square we get a
torus.

The n-torus possesses a continuous family of non-isometric flat met-
rics. A lattice Γ < Rn is a discrete subgroup isomorphic to Zn which spans
Rn as a vector space. We see Γ as a group of translations.

Exercise 3.4.11. For every lattice Γ, the flat manifold Rn/Γ is diffeo-
morphic to the n-torus. A fundamental domain is the parallelotope spanned
by n generators of Γ.

A Dirichlet domain for Γ is almost never a parallelotope! In the hexag-
onal torus R2/Γ the group Γ is the equilateral lattice generated by the
translations

(1, 0),
(

1
2
,
√

3
2

)
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and the Dirichlet domain of any point is a regular hexagon. Orientable flat
manifolds are easily classified (up to diffeomorphism) in dimension two.

Proposition 3.4.12. Every closed flat orientable surface is a torus.

Proof. A closed flat surface S is isometric to R2/Γ for some discrete
group Γ of orientation-preserving isometries acting freely. Every fixed-
point-free orientation-preserving isometry of R2 is a translation (exercise),
hence Γ < R2. If Γ has rank one then S is not compact, hence Γ is a
lattice and S is a torus. �

Flat manifolds more complicated than tori can be constructed by con-
sidering also non-translational isometries of Rn, which exist for n > 3 and
also for n = 2 in the non-orientable setting. For instance, in dimension
two we find the Klein bottle by taking Γ as the group generated by the
isometries:

τ : (x, y) 7→ (x + 1, y), η : (x, y) 7→ (1− x, y + 1).

A fundamental domain for the Klein bottle is shown in Figure 3.16-(centre).

Every subgroup Γ′ < Γ furnishes another flat manifold R2/Γ′ that
covers the Klein bottle. For instance, the subgroups 〈τ〉 and 〈η〉 generated
respectively by τ and η are both isomorphic to Z but provide two different
coverings: the manifold R2/〈τ〉 is an infinite cylinder while R2/〈η〉 is an
infinite Möbius strip.

The subgroup Γ′ generated by the translations τ and η2 is isomorphic
to Z2 and has index 2 in Γ. The Klein bottle is doubly covered by the
flat torus H2/Γ′ . A fundamental domain for Γ′ is a rectangle with vertices
(0, 0), (1, 0), (0, 2), (1, 2).

We have seen that the Klein bottle is covered by a torus. In fact, we
will see in Section 4.4 that every closed flat n-manifold is covered by a flat
n-torus.

Exercise 3.4.13. A squareQ ⊂ R2 is a Coxeter polygon and determines
a reflection group Γ. What is the minimum index of a torsion-free subgroup
Γ′ < Γ? Which topological surfaces R2/Γ′ do we get?

3.4.9. Real projective spaces. We now exhibit some elliptic mani-
folds. Every elliptic manifold is covered by Sn and is hence compact and
has finite fundamental group (because coverings between compact mani-
folds have finite degree).

An important example is the real projective space RPn = Sn/Γ where
Γ is the order-two group generated by the antipodal map ι(x) = −x .

Exercise 3.4.14. For every p ∈ Sn, the Dirichlet domain D(p) of Γ is
the hemisphere centred at p.

The two-dimensional case is shown in Figure 3.16-(right). The only
elliptic surfaces are S2 and RP2 in virtue of the following.
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Proposition 3.4.15. In even dimension n the only elliptic manifolds are
Sn and RPn.

Proof. Let M = Sn/Γ be an elliptic manifold. Every matrix in SO(n+

1) has an eigenvalue +1 because n is even (exercise) and hence acts in
Sn with a fixed point. Therefore Γ contains no non-trivial orientation-
preserving isometries, and since these form a group of index at most two,
either Γ is trivial or is generated by an orientation-reversing fixed-point free
involution in O(n + 1), and −I is the only such element (exercise). �

3.4.10. Lens spaces. In dimension two RP2 and S2 are the only ellip-
tic manifolds, but in dimension three there are more. Let p > 1 and q > 1

be coprime integers and set ω = e
2πi
p . We identify R4 with C2 and see S3

as
S3 =

{
(z, w) ∈ C2

∣∣ |z |2 + |w |2 = 1
}
.

The map
f (z, w) = (ωz, ωqw)

is an isometry of R4 because it consists of two simultaneous rotations on
the coordinate planes w = 0 and z = 0. The map f hence induces an
isometry of S3. It has order p and none of its iterates f , f 2, . . . , f p−1 has
a fixed point. Therefore the group Γ = 〈f 〉 generated by f acts freely on
S3, and is discrete because it is finite.

We have constructed an elliptic manifold S3/Γ, called a lens space and
indicated with the symbol L(p, q). Its fundamental group is isomorphic to
Γ = Z/pZ. Note that the manifold depends on both p and q.

3.5. Geodesic boundary, non-complete, and cone manifolds

We now introduce three important variations on the complete hyper-
bolic manifolds theme. The first consists of admitting a totally geodesic
boundary, the second is a brief overlook of some phenomena that may
occur when the completeness hypothesis is dropped, and in the third we
allow some conical singularity on a codimension-two geodesic stratum.

3.5.1. Hyperbolic manifolds with geodesic boundary. We reformu-
late a definition of hyperbolic (elliptic, flat) manifolds that allows the pres-
ence of some geodesic boundary. These manifolds are useful because they
can be glued along their boundaries to produce new hyperbolic (elliptic,
flat) manifolds.

Definition 3.5.1. A hyperbolic (elliptic, flat)manifold M with geodesic
boundary is a Riemannian manifold with boundary where every point has
an open neighbourhood isometric to an open set in a half-space in Hn (Sn,
Rn).

The boundary ∂M of a hyperbolic (elliptic, flat) n-manifold with ge-
odesic boundary is a hyperbolic (elliptic, flat) (n − 1)-manifold without
boundary. Theorem 3.1.2 extends appropriately to this context.
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Figure 3.17. An intersection of (possibly infinitely many!)
half-planes. The universal cover of a hyperbolic surface with
boundary is isometric to such an object.

Theorem 3.5.2. Every complete simply connected hyperbolic manifold
M with geodesic boundary is isometric to the intersection of some half-
spaces in Hn with disjoint boundaries.

Proof. We construct a developing map D : M → Hn as in Theorem
3.1.2. The map D is injective, because every two points p, q ∈ M are
connected by a geodesic (exercise: use completeness and geodesic bound-
ary), which is sent to a geodesic via D, so p, q are sent to distinct points
D(p), D(q).

Therefore D(M) ⊂ Hn is isometric to M. Since it is complete and
with geodesic boundary, its boundary consists of disjoint hyperplanes, and
hence D(M) is the intersection of half-spaces bounded by them. �

An example is sketched in Figure 3.17. Every complete hyperbolic
manifold with geodesic boundary can be enlarged to a hyperbolic manifold
without boundary in a canonical way.

Corollary 3.5.3. Every complete hyperbolic n-manifold M with geo-
desic boundary is contained in a complete hyperbolic n-manifold N without
boundary, such that N \ int(M) is diffeomorphic to ∂M × [0,+∞).

Proof. The proof of Proposition 3.1.3 applies and shows that M =

M̃/Γ where M̃ ⊂ H̃n is an intersection of half-spaces and Γ < Isom(M̃)

acts freely and properly discontinuously on M̃.
Every local isometry in Hn extends to a global isometry, therefore

Γ < Isom(M̃) < Isom(Hn). The group Γ acts freely on M̃ and hence also
on Hn: if it had a fixed point x ∈ Hn, it would fix also the unique point
y ∈ M̃ that is the closest to x . The manifold N = Hn/Γ contains naturally
M.

For every p ∈ ∂M, let γp(t) be the unit speed geodesic starting at p
orthogonal to ∂M and directed outward. By looking at the universal cover
one sees easily that the map ∂M × [0,+∞)→ N \ int(M), (p, t) 7→ γp(t)

is a diffeomorphism (we use here that M̃ ⊂ Hn is convex). �
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3.5.2. Cut and paste. Hyperbolic manifolds with geodesic boundary
are useful because they can be glued to produce new hyperbolic manifolds.

Let M and N be hyperbolic manifolds with geodesic boundary and
ψ : ∂M → ∂N be an isometry. Let M ∪ψ N be the topological space
obtained by quotienting the disjoint unionMtN by the equivalence relation
that identifies p to ψ(p) for all p ∈ ∂M.

Proposition 3.5.4. The space M ∪ψ N has a natural structure of hy-
perbolic manifold.

Proof. The interiors of M and N inherit their hyperbolic metrics.
When we glue p to ψ(p) we get a point q that has two half-disc neigh-
bourhoods on its sides, which glue to a honest hyperbolic disc, inducing a
hyperbolic metric near q. �

Conversely, if an orientable hyperbolic manifold M contains an ori-
entable geodesic hypersurface N, we can cut M along N to get a hyper-
bolic manifold with geodesic boundary. The boundary will consist of two
copies of N.

3.5.3. Non-complete hyperbolic manifolds. There is no classifica-
tion of simply connected non-complete hyperbolic manifolds: for instance,
we may get plenty of uninteresting examples by removing complicated
closed sets from Hn. However, the first part of the proof of Theorem
3.1.2 still applies and provides the following:

Proposition 3.5.5. Let M be a non-complete simply connected hyper-
bolic n-manifold. There is a local isometry

D : M → Hn

which is unique up to post-composing with Isom(Hn).

Proof. Construct D as in the proof of Theorem 3.1.2: the complete-
ness of M is used there only in the last paragraph to show that D is a
covering. As a local isometry, the map D is determined by its first-order
behaviour at any point p ∈ M, and is hence unique up to post-composing
with an isometry of Hn. �

The map D is called a developing map and is neither injective nor
surjective in general. We can push-forward isometries along D as follows.

Proposition 3.5.6. Let M be a hyperbolic n-manifold and D : M → Hn

be a local isometry. For every g ∈ Isom(M) there is a unique ρ(g) ∈
Isom(Hn) such that

ρ(g) ◦D = D ◦ g.
The resulting map ρ : Isom(M)→ Isom(Hn) is a homomorphism.
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Proof. Pick a point p ∈ M and define ρ(g) as the unique isometry
of Hn such that ρ(g) ◦ D = D ◦ g on a small neighbourhood of p. This
equality between local isometries holds locally and hence globally on M.
The map ρ is easily checked to be a homomorphism. �

The homomorphism ρ is the holonomy associated to D. IfM is a non-
complete hyperbolic n-manifold, its universal covering π : M̃ → M inherits
a non-complete hyperbolic metric. Therefore we get a developing map

D : M̃ → Hn

together with a holonomy

ρ : Aut(π) −→ Isom(Hn)

which is the restriction of ρ to the subgroup Aut(π) < Isom(M̃). By fixing
a point in M̃ we identify Aut(π) with π1(M) and get a holonomy

ρ : π1(M) −→ Isom(Hn).

As every metric space, a non-complete Riemannian manifold M has
a unique completion M, a complete metric space that contains M as an
open dense set. The completion M is however not necessarily a manifold,
except in some lucky cases. These lucky cases are extremely important
in dimension three, as we will see in Chapter 14. In that chapter we will
understand the completion M of a hyperbolic three-manifold by studying
its developing map and holonomy.

3.5.4. Singularities. A particular class of non-complete hyperbolic
manifolds deserves our attention, because their completions are some nice
and natural objects: manifolds with cone angles along some codimension-
two singular geodesic stratum.

Let S ⊂ Hn be a codimension-two subspace. The incomplete hyper-
bolic manifold Hn \ S has fundamental group Z and we denote by

π : X −→ Hn \ S

its universal covering: here X is an interesting non-complete simply con-
nected hyperbolic manifold. Note that π may be interpreted as a developing
map π : X → Hn which is neither injective nor surjective.

Exercise 3.5.7. The metric completion of X is X = X t S̃ where S̃ is
an identical copy of S. The covering π extends to a surjective map

π : X → Hn

that sends S̃ to S. If p ∈ S̃ and q ∈ X then d(p, q) = d(π(p), π(q)).

The space S̃ is the singularity of X and should be interpreted as lying
in X with infinite cone angle: the space X looks like a book with infinitely
many pages (it is not locally compact at S̃). Singularities with finite cone
angles will be defined in the next section as quotients of this model. The
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dimensions that will be interesting for us are of course n = 2 and 3, where
S̃ is a point and a line, respectively.

3.5.5. Cone manifolds. For every θ ∈ R there is a well-defined rota-
tion Rotθ : X → X of angle θ around S̃, which projects to a rotation in Hn

of angle θ around S; note that Rotθ 6= id for all θ 6= 0, including θ = 2kπ.
We fix θ 6= 0, so that Rotθ generates a free cyclic group Γ < Isom(X).

Exercise 3.5.8. The metric space X/Γ is the completion of X/Γ and
is homeomorphic to Rn.

The image of S̃ along the quotient π : X → X/Γ is a copy of S̃
and should now be interpreted as a singularity with cone angle θ. When
θ = 2kπ for some integer k the map π : X → Hn factors as

X
π1−→ X/Γ

π2−→ Hn.

When k = ±1 the map π2 is an isometry. We introduce the following
definition.

Definition 3.5.9. A hyperbolic manifoldM with cone angles is a metric
space with charts in some X/Γ and transition maps that are isometries.

The term “isometries” should be interpreted in the strongest sense:
the transition maps send singular points to singular points, and outside of
the singular points these are isometries of Riemannian manifolds.

The points in M that are mapped along charts to some singular set
form a hyperbolic codimension-two submanifold inM with some cone angle
θ, and different components may have different cone angles. Points with
cone angle 2π may be considered as ordinary points, while points with cone
angle different from 2π are singular and form the singular locus of M.

The singular locus of M is a geodesic codimension-two manifold, and
its complement is an ordinary hyperbolic manifold, whose metric comple-
tion is M. Flat and spherical manifolds with cone angles are defined in the
same way.

3.5.6. Examples. The following simple construction is a source of
many two-dimensional examples: let P be any polygon in H2,R2, or S2,
with some inner angles α1, . . . , αk . By doubling P along its edges we get a
topological sphere with k cone points of angles 2α1, . . . , 2αk < 2π. This
is a hyperbolic, flat, or spherical surface with cone angles.

Another simple but maybe more intriguing construction is the follow-
ing: pick any polyhedron P in H3,R3, or S3. The faces of P are (hyperbolic,
flat, or elliptic) polygons that glue isometrically along the edges: hence ∂P
is a topological sphere with a natural structure of (hyperbolic, flat, or el-
liptic) manifold with cone angles at the vertices.

To construct examples in dimension three we need a bit more work
because polyhedra have more strata. Non-compact examples are easier to
build: let P ⊂ H3 be any ideal hyperbolic polyhedron, with some k edges
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with dihedral angles α1, . . . , αk ; the double of P is naturally a hyperbolic
cone manifold where the edges form the singular locus with cone angles
2α1, . . . , 2αk .

3.6. Orbifolds

An orbifold is an object locally modelled on finite quotients of Rn.
It naturally arises when we quotient a Riemannian manifold by a discrete
group of isometries that may not act freely. Orbifolds behave like manifolds
on many aspects.

3.6.1. Definition. Let Γ < O(n) be a finite group of linear isometries
and V ⊂ Rn be a Γ-invariant open set. The resulting map

ϕ : V −→ V/Γ

is called a local orbifold model. For instance, we may pick V = B(0, r).
We now generalise manifolds by allowing local orbifold models in the atlas.

Definition 3.6.1. LetO be a Hausdorff paracompact topological space.
An orbifold atlas on O is an open covering {Ui}i∈I of O, closed by finite
intersections and equipped with local orbifold models

ϕi : Vi −→ Vi/Γi = Ui .

The local models are connected by some appropriate transition functions:
for every inclusion Ui ⊂ Uj there is an injective homomorphism

fi j : Γi ↪→ Γj

and a Γi -equivariant smooth embedding ψi j : Vi ↪→ Vj compatible with the
local models, that is

ϕj ◦ ψi j = ϕi .

Two such atlases are equivalent if the are contained in some bigger at-
las. The space O equipped with an orbifold atlas is an orbifold of dimension
n. See an example in Figure 3.18.

Remark 3.6.2. We think at the maps ψi j and fi j as defined only up to
the action of Γj (which acts on ψi j by composition and on fi j by conjuga-
tion). In particular, if Ui ⊂ Uj ⊂ Uk then we can verify that the equalities
ψik = ψjk ◦ψi j and fik = fjk ◦ fi j hold only up to this ambiguity. See Figure
3.18.

The isotropy group Γp of a point p ∈ O is the stabiliser of any lift of
p in any local model V with respect to the action of Γ. By definition Γp
is a finite subgroup of O(n). A point p is regular if its isotropy group is
trivial, and singular otherwise.

Example 3.6.3. The isotropy group Op in the orbifold O from Figure
3.18 is Z2 × Z2 at the origin, Z2 at the axis, and trivial elsewhere.

Proposition 3.6.4. The regular points form a dense subset in O.
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Figure 3.18. An orbifold O with three local models O =

U1 ⊃ U2 ⊃ U3. The group Γ1 = Z2 × Z2 acts on V1 by
reflections on the two coordinate axis, the group Γ2 = Z2

acts on V2 by reflection on the horizontal axis, Γ3 is trivial.

Proof. On a local model V → V/Γ, a singular point is the image
of the fixed point locus of some element in Γ, which is in turn a proper
subspace. �

An orbifold is locally oriented if all the finite groups Γ lie in SO(n),
and it is oriented if, in addition, all the transition maps ψi j are orientation-
preserving. In a locally oriented orbifold reflections are not admitted and
hence the singular locus has codimension > 2. An open subset of an
orbifold is naturally an orbifold.

3.6.2. Examples. Orbifolds are natural objects and there are plenty
of nice examples around.

Example 3.6.5. A differentiable manifold is an orbifold whose points
are all regular. A differentiable manifold with boundary may be interpreted
as an orbifold whose boundary points have the local structure of type
Rn/Γ where Γ = Z2 is generated by a reflection along a hyperplane. The
boundary should be interpreted as a mirror.

Exercise 3.6.6. Construct an orbifold structure on the triangle as sug-
gested by Figure 3.19.

Example 3.6.7. Let Γ < O(n) be finite and V ⊂ Rn a Γ-invariant open
set. The quotient V/Γ has an orbifold structure, defined by the unique local
model V → V/Γ.

We generalise the last example.

Proposition 3.6.8. If M a Riemannian manifold and Γ < Isom(M) is
a discrete subgroup, the quotient M/Γ has a natural orbifold structure.
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Figure 3.19. An orbifold structure on the triangle con-
structed using the local models from Figure 3.18. The
isotropy group is Z2 × Z2 at the vertices, Z2 at the edges,
and trivial in the interior.

Proof. Take a point p ∈ M/Γ and p̃ ∈ M a lift. Since Γ is discrete,
the stabiliser Γp̃ of p̃ is finite and there is a r > 0 such that expp̃(Br (0)) =

Br (p̃) and g(Br (p̃)) intersects Br (p̃) for some g ∈ Γ if and only if g ∈ Γp̃.
The ball Br (p̃) is clearly Γp̃-invariant. The group Γp̃ acts linearly and

orthogonally on Br (0) and we get an orbifold local model

Br (0) −→ Br (0)/Γp̃
∼= Br (p̃)/Γp̃ = Up

where the diffeomorphism is induced by the exponential map. We have
constructed an orbifold local model Up around p. We extend the covering
{Up} thus obtained by adding all the non-empty intersections. �

This is the richest source of nice examples. The quotient map M →
M/Γ is a covering, in an appropriate sense that we now explain.

3.6.3. Coverings. Let Γ′ < Γ < O(n) be finite groups and V ⊂ Rn a
Γ-invariant open set. The natural map

ϕ : V/Γ′ 7−→ V/Γ

between the two orbifolds is a local covering.

Definition 3.6.9. A continuous map p : Õ → O between orbifolds is a
covering if every point p ∈ O has a neighbourhood U with p−1(U) = ti∈IUi
and every restriction p|Ui : Ui → U is a local covering.

The following is the main source of examples.

Example 3.6.10. Let M be a Riemannian manifold and Γ′ < Γ <

Isom(M) be discrete groups. The natural map M/Γ′ → M/Γ is an orbifold
covering.

Definition 3.6.11 (The good, the bad, and the very good). An orbifold
is good if it is covered by a manifold, and it is bad otherwise. It is very
good if it is finitely covered by a manifold.
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3.6.4. Hyperbolic, flat, and elliptic orbifolds. We define a hyper-
bolic, flat, or elliptic orbifold to be an orbifold whose local models are
isometric quotients of balls in Hn, Rn, or Sn, and whose transition func-
tions are also isometries.

The quotient of a hyperbolic, flat, or spherical manifold by a discrete
group of isometries is naturally a hyperbolic, flat, or elliptic orbifold.

Example 3.6.12. The triangle group Γ(a, b, c) introduced in Section
3.4.5 is a discrete group of isometries of S2,R2, or H2. It defines a trian-
gular orbifold ∆, which is hyperbolic, flat, or elliptic, according to whether
1
a

+ 1
b

+ 1
c
is smaller, equal, or bigger than 1. The isotropy groups are

the dihedral D2a, D2b, and D2c at the vertices, Z2 at the edges, and trivial
elsewhere.

The index-two subgroup Γor(a, b, c)/Γ(a, b, c) consisting of orientation-
preserving isometries is sometimes called a von Dyck group. It defines an
orientable orbifold O that double-covers ∆. The orbifold O is a topo-
logical sphere with three singular points having rotation isotopy groups
Z/aZ,Z/bZ,Z/cZ. See Figure 3.20.

Exercise 3.6.13. Show that this is a presentation for Γor(a, b, c):

〈 r, s, t | r a, sb, tc , r st 〉.
The triple r, s, t of generators is intrinsically determined in the group up to
simultaneous conjugation or inversion. Different unordered triples (a, b, c)

produce non-isomorphic Von Dyck groups Γor(a, b, c).

Hints. The group Γ(a, b, c) preserves the tessellation T of H2, R2,
or S2 into triangles with angles π

a
, π
b
, π
c
, so its finite-order elements are

rotations along some vertices of T . Three rotations r, s, t that satisfy
rst = 1 are of some very special kind. �

Example 3.6.14. More generally, every hyperbolic (or flat, elliptic)
Coxeter polyhedron is a hyperbolic (or flat, elliptic) orbifold.

Example 3.6.15. Quotient the flat torus T = R2/Z2 by the elliptic
involution (x, y) 7→ (−x,−y). This isometry of T has four fixed points
and the quotient flat orbifold is a sphere with four singular points, see
Figure 3.21.

There are also many interesting non-compact orbifolds.

Example 3.6.16. A fundamental domain for PSL2(Z) was shown in
Figure 3.15. By gluing its sides according to the action we see quite easily
that the hyperbolic orbifold H2/PSL2(Z) is non-compact and contains two
rotational points of order 2 and 3, see Figure 3.22.

Exercise 3.6.17. The 1-dimensional compact orbifolds are S1 and the
segment [0, 1] with mirrored endpoints. Show that there are coverings
S1 → [0, 1] of degree 2, and also coverings [0, 1] → [0, 1] of any positive
degree.
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a b

c

a b

c

Figure 3.20. The index-two orientation-preserving
Γor(a, b, c) / Γ(a, b, c) defines an index-two orbifold covering
O → ∆, where O is a 2-sphere with three singular points
and ∆ a triangle.

Figure 3.21. The elliptic involution quotients the torus to a
sphere with four singular points. The fixed points and their
images are drawn in red. We show both a planar (left) and
spacial (right) picture.

Figure 3.22. The hyperbolic orbifold H2/PSL2(Z) is obtained
by mirroring the sides of a triangle with inner angles π

3
, π

2
,

and zero (left). The orbifold is topologically a punctured
sphere with two singular points with rotational isotropy Z2

and Z3 (right).
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When O = X/Γ and X is a simply connected manifold, we say that Γ is
the fundamental group of O. It is also possible to define the fundamental
group for a generic orbifold using the appropriate orbi-notions of paths and
homotopies.

3.6.5. Cone manifolds. Hyperbolic (flat, elliptic) cone manifolds and
orbifolds are different objects, but they have a wide common intersection.

A hyperbolic (flat, elliptic) orbifold O whose isotropy groups Op are
either trivial or generated by a 2π

p
-rotation along a codimension-two sub-

space is naturally a hyperbolic (flat, elliptic) cone manifold with cone angles
2π
p
. The singular set may consist of various connected components and

the natural number p depends on the component.
Conversely, every hyperbolic (flat, elliptic) manifold with cone angles

that divide 2π can be given a natural hyperbolic (flat, elliptic) orbifold
structure whose singular set consists of rotational points only. Moreover,
we can easily prove that it is a good one:

Proposition 3.6.18. Every hyperbolic (flat, elliptic) manifold M with
cone angles that divide 2π is a good hyperbolic (flat, elliptic) orbifold. If
M is complete, then M = Hn/Γ (Rn/Γ, Sn/Γ) for some discrete group Γ

of isometries.

Proof. We consider for simplicity only the hyperbolic case. We must
prove that M is orbifold-covered by a hyperbolic manifold.

The singular set S ⊂ M decomposes into connected components
S = tiSi , each with a cone angle 2π

pi
for some integer pi > 2. The

complement M ′ = M \ S is a non-complete hyperbolic manifold and as
such it is equipped with a developing map D : M̃ ′ → Hn and a holonomy
ρ : π1(M ′)→ Isom(Hn).

We pick a loop µi around each component Si of S and note that by
definition ρ(µi) is an elliptic isometry that rotatesHn around a codimension-
two subspace by the angle 2π

pi
. In particular ρ(µi) has order pi .

We consider the regular covering N → M ′ corresponding to the sub-
group ker ρ and give N the hyperbolic structure induced by M ′. The com-
pletion N of N is a hyperbolic manifold that orbifold-covers M: since ρ(µi)

has order precisely pi , the added singular points in N have cone angle 2π

and are hence ordinary.
If M is complete, then N also is and hence N = Hn/Γ′ . We define

Γ < Isom(Hn) to be the group generated by Γ′ and any lifts of the deck
transformations of N → M, and we get M = Hn/Γ. �

Corollary 3.6.19. If M is complete and has finitely generated funda-
mental group, then it is very good.

Proof. We know that M = Hn/Γ and we apply Selberg’s Lemma. �
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Summing up, complete hyperbolic cone manifolds with angles that
divide 2π can be promoted to good orbifolds and hence to quotients Hn/Γ.
We will encounter many examples in dimensions two and three later on.

3.6.6. References. All the material presented here is standard and
introduced in various books, like Benedetti – Petronio [4] and Ratcliffe
[49]. A beautiful introduction to regular polytopes is Coxeter’s 1963 book
[14], while the reader interested in Coxeter polytopes may consult Vinberg’s
survey [59].

The theory of orbifolds and cone manifolds presented here is quite
limited: to get more background, the reader may consult Thurston’s notes
[56, Chapter 13] for the orbifolds, and McMullen’s paper [40] for the cone
manifolds.



CHAPTER 4

Thick-thin decomposition

A peculiar aspect of hyperbolic geometry is the existence of complete
hyperbolic manifolds that have finite volume but are not compact. These
manifolds behave like the compact ones in many aspects, but are some-
times easier to construct. They arise naturally when we study hyperbolic
surfaces, and are a fundamental constituent of Thurston’s geometrisation
of three-manifolds.

We prove here a structure theorem for all such manifolds. The the-
orem says that every finite-volume complete hyperbolic manifold can be
decomposed into two domains: a thick part which is compact and has in-
jectivity radius bounded from below, and a thin part that consists of cusps.
A cusp is a (truncated) hyperbolic manifold of type N × [0,+∞), where
every section N × t has a flat metric that shrinks exponentially with t.

The core of this theorem is a lemma about discrete subgroups of Lie
groups called the Margulis Lemma. We will apply this lemma also to the
other geometries and prove Bierbach’s Theorem, that states that every
compact flat manifold is covered by a torus.

Throughout the discussion we will also study some general aspects
of finite-volume complete hyperbolic manifolds, concerning in particular
closed geodesics, isometry groups, and finite covers.

4.1. Tubes and cusps

We introduce here two very simple kinds of hyperbolic manifolds, so
simple that their fundamental groups will be called elementary in the se-
quel: the tubes and the cusps. Before introducing them we show that the
injectivity radius of a hyperbolic manifold behaves nicely.

We also study the closed geodesics in a hyperbolic manifold M, and
prove that there is precisely one in every free homotopy class of closed
curves of hyperbolic type.

4.1.1. Injectivity radius. Like many other geometric properties, the
injectivity radius of a complete hyperbolic manifold may be nicely observed
by looking at its universal cover. If S ⊂ Hn is a discrete set, we let d(S)

be the infimum of d(x1, x2) among all pairs x1, x2 of distinct points in S.
Recall that every complete hyperbolic manifold is a quotientM = Hn/Γ

by some group Γ of isometries acting freely on Hn.

109
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Proposition 4.1.1. Let M = Hn/Γ be a complete hyperbolic manifold
and π : Hn → M the projection. For every x ∈ M we have

injxM =
1

2
· d(π−1(x)).

Proof. The number injxM is the supremum of all r > 0 such that
B(x, r) is isometric to a ball of radius r in Hn. The open set B(x, r) is
a ball of radius r if and only if its counterimage via π consists of disjoint
balls of radius r , and this holds ⇔ two distinct points in π−1(x) stay at
distance at least 2r . �

Recall that d(γ) is the minimum displacement of γ ∈ Isom(Hn).

Corollary 4.1.2. If M = Hn/Γ be a complete hyperbolic manifold, then

injM =
1

2
· inf

{
d(γ)

∣∣ γ ∈ Γ, γ 6= id
}
.

Proof. We have

injxM =
1

2
· d(π−1(x)) =

1

2
· inf

{
d(x̃ , γ(x̃))

∣∣ γ ∈ Γ, γ 6= id, x̃ ∈ π−1(x)
}
.

Therefore

injM = inf
x∈M

injxM =
1

2
· inf

{
d(γ)

∣∣ γ ∈ Γ, γ 6= id
}
.

The proof is complete. �

Corollary 4.1.3. If M = Hn/Γ is a compact hyperbolic manifold then
every non-trivial element in Γ is hyperbolic.

Proof. Every nontrivial element in Γ is either hyperbolic or parabolic.
If M is compact then injM > 0. If Γ contains a parabolic γ then d(γ) = 0

and hence injM = 0. �

4.1.2. Tubes. Consider the infinite cyclic group Γ = 〈ϕ〉 generated by
a hyperbolic transformation ϕ on Hn with axis l and minimum displacement
d > 0. The iterates ϕk are again hyperbolic transformations with axis l and
displacement kd . Therefore Γ acts freely on Hn. The quotient manifold
M = Hn/Γ is called an infinite tube.

Exercise 4.1.4. Fix q ∈ l . Let q1, q2 be the two points in l at distance
d
2
from q and π1, π2 the two hyperplanes orthogonal to l in q1, q2. The

Dirichlet domain D(q) of Γ is the space comprised between π1 and π2.

The infinite tube M = Hn/Γ is obtained from D(q) by identifying π1

and π2 along ϕ. Its fundamental group is isomorphic to Γ ∼= Z. The axis
l projects in M onto a closed geodesic γ of length d . We have injM = d

2

by Corollary 4.1.2 and the points in γ are precisely those with minimum
injectivity radius. The closed geodesic γ is sometimes called the core
geodesic of the tube.
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l

N  lR
( )

Figure 4.1. The R-neighbourhood NR(l) of a vertical line in
the half-space model is a Euclidean cone. The boundary of
the cone is not totally geodesic: the cone is however convex.

Proposition 4.1.5. Every infinite tube is diffeomorphic to S1 × Rn−1

or S1 ×∼ Rn−1 according to whether ϕ is orientation-preserving or not.

Proof. By projecting Hn orthogonally onto l , we give Hn the struc-
ture of a Rn−1-bundle over l which is preserved by ϕ and hence descends
to a structure of Rn−1-bundle over γ. The conclusion follows from the
classification of vector bundles over S1, see Proposition 1.1.13. �

A tube of radius R, or a R-tube, is the quotient NR(l)/Γ of the closed
R-neighbourhood NR(l) of l , shown in Figure 4.1. It is diffeomorphic to
Dn−1 × S1 or Dn−1 ×∼ S1, and in particular it is compact. Note that the
boundary of a tube is not totally geodesic, see Figure 4.1.

4.1.3. Cusps. We now introduce another simple type of hyperbolic
manifolds. In the previous example the discrete group Γ consisted of hyper-
bolic transformations fixing the same line l , now Γ will consist of parabolic
transformations fixing the same point at infinity.

Let Γ < Isom(Rn−1) be a non-trivial discrete group of Euclidean isome-
tries acting freely on Rn−1: the quotient M = Rn−1/Γ is a flat (n − 1)-
manifold. If we use the half-space model for Hn with coordinates (x, t),
every element ϕ ∈ Γ acts as a parabolic transformation on Hn by sending
(x, t) to (ϕ(x), t). The whole group Γ is a discrete group of parabolic
transformations of Hn fixing the point ∞.

The quotient Hn/Γ is naturally diffeomorphic to M×R>0. The metric
tensor at the point (x, t) is

g(x,t) =
gMx ⊕ 1

t2

where gM is the metric tensor of the flat M. The manifold Hn/Γ is called
a cusp. Since Γ contains parabolics we have injM = 0.
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Figure 4.2. The pseudosphere is a surface in R3 isometric
to the union of two truncated cusps, each with constant
gaussian curvature −1.

Remark 4.1.6. The vertical coordinate t may be parametrized more
intrinsically using arc-length. As we have seen in Proposition 2.1.24, a
vertical geodesic with unit speed is parametrized as t = eu. Using u
instead of t the cusp is isometric to M × R with metric tensor

g(x,u) = (e−2ugMx )⊕ 1.

The lengths in the flat slice M× u are shrunk or dilated by the factor e−u.

A truncated cusp is a portion N = M × [a,+∞), bounded by the
Euclidean manifold M × a: note that the boundary ∂N is Euclidean but
not totally geodesic. The volume of a truncated cusp is strikingly simple.

Proposition 4.1.7. Let N be a truncated cusp. We have

Vol
(
N
)

=
Vol(∂N)

n − 1
.

Proof. It follows from Lemma 3.2.7. �

In particular a (non truncated) cusp has infinite volume.

Example 4.1.8. In dimension n = 2 there is only one cusp up to
isometry. The group Γ < Isom(R) is the infinite cyclic group generated by
a translation x 7→ x + b and up to conjugating in Isom(H2) we may take
b = 1. The cusp is diffeomorphic to S1 × R, and the circle S1 × {u} has
length e−u. Some truncated cusp (but not the whole cusp!) embeds in R3

as in Figure 4.2.

Remark 4.1.9. Pick p ∈ H2. Note that a cusp and H2 \ {p} are both
hyperbolic and diffeomorphic to an open annulus S1 × R. However, they
are not isometric because the cusp is complete while H2 \ {p} is not.

It is customary to employ the word cusp to indicate a truncated cusp.
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4.1.4. Closed geodesics. A closed curve in a manifoldM is a smooth
map γ : S1 → M. A (possibly closed) curve is simple if it is an embedding.

We consider S1 as the unit circle in C. A closed geodesic in a Rie-
mannian manifoldM is a smooth map γ : S1 → M whose lift γ◦π : R→ M

along the universal covering π(t) = e it is a non-constant geodesic. Two
closed geodesics γ1, γ2 that differ only by a rotation, i.e. such that γ1(z) =

γ2(ze it) for some fixed t ∈ R, are implicitly considered equivalent. The
closed geodesics γ(z) and γ(z) = γ(z̄) are however distinct (they have
opposite orientations).

Proposition 4.1.10. Let γ be a closed geodesic in a Riemannian man-
ifold M. Exactly one of the following holds:

(1) the curve γ is simple,
(2) the curve γ self-intersects transversely in finitely many points,
(3) the curve γ wraps k > 2 times along a curve of type (1) or (2).

Proof. If the geodesic is not simple, it self-intersects. If it self-
intersects only with distinct tangents, then (2) holds. Otherwise (3)
holds. �

The natural number k in (3) is the multiplicity of the closed geodesic.
A closed geodesic γ of multiplicity k is of type γ(e it) = η(ekit) for some
geodesic η of type (1) or (2).

Remark 4.1.11. A closed geodesic on a Riemannian manifold M is
determined by its support, its orientation, and its multiplicity.

4.1.5. Closed geodesics in a hyperbolic manifold. Closed geodesics
in hyperbolic manifolds have a particularly nice behaviour.

Let X, Y be topological spaces: as usual we indicate by [X, Y ] the
homotopy classes of continuous maps X → Y . Let X be path-connected.
There is a natural map π1(X, x0)→ [S1, X], and the following is a standard
exercise in topology.

Exercise 4.1.12. The map induces a bijection between the conjugacy
classes in π1(X, x0) and [S1, X].

A simple closed curve in X is homotopically trivial if it is homotopic to
a constant. As a corollary, a simple closed curve γ is homotopically trivial
if and only if it represents the trivial element in π1(X, γ(1)).

On a complete hyperbolic manifold M = Hn/Γ the conjugacy classes
of π1(M) correspond to those in Γ and we get a correspondence{

conjugacy classes in Γ
}
←→ [S1,M].

This correspondence works as follows: given ϕ ∈ Γ, pick any x ∈ Hn,
connect x to γ(x) with any arc, and project it to a closed curve in M.

Two conjugate elements in Γ are of the same type (trivial, parabolic,
or hyperbolic) and have the same minimum displacement. Therefore every
element in [S1,M] has a well-defined type and minimum displacement.



114 4. THICK-THIN DECOMPOSITION

Proposition 4.1.13. Let M be a complete hyperbolic manifold. Every
hyperbolic element of [S1,M] is represented by a unique closed geodesic,
of length d equal to its minimum displacement. The trivial and parabolic
elements are not represented by closed geodesics.

Proof. Take M = Hn/Γ. A hyperbolic isometry ϕ ∈ Γ has a unique
invariant geodesic in Hn, its axis, which projects to a closed geodesic of
length d . Conjugate isometries determine the same closed geodesic in M.

On the other hand, a closed geodesic in M lifts to a segment connect-
ing two distinct points x0 and ϕ(x0) for some ϕ ∈ Γ which preserves the line
passing through x0 and ϕ(x0): since ϕ preserves a line, it is hyperbolic. �

We get a bijection{
hyperbolic conjugacy classes in Γ

}
←→

{
closed geodesics in M

}
.

Corollary 4.1.14. Let M be a closed hyperbolic manifold. Every non-
trivial element in [S1,M] is represented by a unique closed geodesic.

Proof. Since M is compact there are no parabolics. �

Corollary 4.1.15. Let M be a complete hyperbolic manifold. Every
closed geodesic has the minimum length among the closed curves in its
homotopy class.

Proof. If α is a closed geodesic, its length equals the minimum dis-
placement d of a corresponding hyperbolic transformation ϕ. Every closed
curve β homotopic to α lifts to an arc connecting two points x̃ and ϕ(x̃)

that have distance at least d ; hence β has length at least d . �

Not only a purely topological object like a hyperbolic homotopy class
of closed curves has a unique geometric nice representative, but this repre-
sentative is the shortest possible one. Informally, we may think that every
closed curve may be shrunk until it becomes a closed geodesic, and the
negative curvature forces this closed geodesic to be unique: we will soon
see that the uniqueness is lost in the elliptic and flat geometries.

It is worth recalling that a closed geodesic may not be simple. When
it is simple, we now show that the closed geodesic has some nice small
neighbourhoods. We defined the R-tubes in Section 4.1.2.

Proposition 4.1.16. The R-neighbourhood of a simple closed geodesic
γ in a complete hyperbolic manifold is isometric to a R-tube, if R > 0 is
sufficiently small.

Proof. By compactness of γ there is a sufficiently small R > 0 such
that the R-neighbourhood of γ lifts to disjoint R-neighbourhoods of its
geodesic lifts in Hn. Hence their quotient is a R-tube. �
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4.2. The Margulis Lemma

We state and prove the Margulis Lemma, that concerns arbitrary dis-
crete groups in Lie groups and more specifically in Isom(Hn). The lemma
implies that there is a constant ε > 0, which depends only on the dimen-
sion n, such that the ε-thin part of any complete hyperbolic n-manifold
consists of truncated cusps and tubes only. The ε-thin part is by definition
the set of all the points with injectivity radius smaller than ε.

The proof of the lemma for general Lie groups is surprisingly simple
and elegant; its application to the hyperbolic case needs however a more
technical argument. We start by exposing some preliminary facts on the
isometries of the hyperbolic space that are of independent interest.

4.2.1. Isometries that commute or generate discrete groups. Two
isometries of Hn that commute or generate a discrete group must be of a
particular kind. Let Fix(ϕ) denote the fixed points in Hn of an isometry ϕ.

Lemma 4.2.1. Let ϕ1, ϕ2 ∈ Isom(Hn) be two hyperbolic or parabolic
isometries. If they commute then Fix(ϕ1) = Fix(ϕ2).

Proof. If they commute, the map ϕ1 acts on Fix(ϕ2) and vice versa. If
ϕ2 is hyperbolic, then Fix(ϕ2) = {p, q} and ϕ1 fixes the line with endpoints
p and q, hence is again hyperbolic with Fix(ϕ1) = {p, q}. If ϕ1 and ϕ2 are
parabolic then they have the same fixed point Fix(ϕ1) = Fix(ϕ2). �

Lemma 4.2.2. Let ϕ1, ϕ2 ∈ Γ be two non-trivial isometries in a dis-
crete group Γ < Isom(Hn) that acts freely on Hn. Either Fix(ϕ1) ∩
Fix(ϕ2) = ∅, or one of the following holds:

• ϕ1 and ϕ2 are parabolics with the same fixed point,
• ϕ1 and ϕ2 are powers of the same hyperbolic ϕ ∈ Γ.

Proof. Suppose that ϕ1 and ϕ2 have some common fixed points. We
first consider the case where ϕ1 is hyperbolic and ϕ2 is parabolic. We pick
the half-space model and suppose Fix(ϕ1) = {0,∞} and Fix(ϕ2) = {∞}.

Proposition 2.2.8 says that

ϕ1(x, t) = λ(Ax, t), ϕ2(x, t) = (A′x + b, t)

with A,A′ ∈ O(n − 1) and λ 6= 1. Hence

ϕn1 ◦ ϕ2 ◦ ϕ−n1 (x, t) = ϕn1
(
A′(λ−nA−nx) + b, λ−nt)

=
(
AnA′A−nx + λnAnb, t

)
.

Up to interchanging ϕ1 and ϕ−1
1 we may suppose λ < 1 and get

lim
n→∞

ϕn1 ◦ ϕ2 ◦ ϕ−n1 (0, t) = lim
n→∞

(λnAnb, t) = (0, t).

A contradiction since Γ is discrete.
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We now suppose that both ϕ1 and ϕ2 are hyperbolic, with Fix(ϕ1) =

{a,∞} and Fix(ϕ2) = {b,∞}. The isometries ϕ1 and ϕ2 permute the
horospheres centred at ∞ and

[ϕ1, ϕ2] = ϕ1 ◦ ϕ2 ◦ ϕ−1
1 ◦ ϕ−1

2 ∈ Γ

fixes every horizontal horosphere. Hence the commutator is parabolic or
trivial: the first case is excluded by the previous discussion, in the second
case we have a = b by Lemma 4.2.1.

Both ϕ1 and ϕ2 have the same axis l , and since they generate a
discrete group Γ0 < Γ they are both powers of some hyperbolic ϕ ∈ Γ0

with that axis. To prove this, note that Γ0 acts effectively on l as a discrete
group of translations, hence Γ0

∼= Z. �

Two isometries are contained in some discrete group if and only if
they generate a discrete group, so the previous lemma is actually a fact on
pairs of isometries that generate discrete groups. The two lemmas have
important geometric consequences.

Corollary 4.2.3. Let Hn/Γ be a complete hyperbolic manifold. The axis
in Hn of two hyperbolic isometries in Γ are either incident or ultra-parallel
(not asymptotically parallel).

Corollary 4.2.4. Let Hn/Γ be a complete hyperbolic manifold. Every
subgroup of Γ isomorphic to Z × Z consists of parabolic elements fixing
the same point at infinity.

Corollary 4.2.5. The fundamental group π1(M) of a closed hyperbolic
manifold M does not contain subgroups isomorphic to Z× Z.

Corollary 4.2.6. The torus has no hyperbolic structure.

4.2.2. The Margulis Lemma. We now introduce the main character
of this chapter, the Margulis Lemma. We first state a general version for
Lie groups and then turn more specifically to Isom(Hn).

Lemma 4.2.7. Let G be a Lie group. There is a neighbourhood U
of e ∈ G such that every discrete subgroup Γ < G generated by some
elements in U is nilpotent.

Note that the discreteness of Γ is essential here, since every connected
Lie group G is generated by arbitrarily small elements, and G needs not to
be nilpotent.

Proof. Consider the commutator map

[ , ] : G × G → G

that sends (g, h) to the commutator [g, h]. The map is smooth and sends
G × {e} and {e} × G to the point e. Therefore its differential at (e, e)
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vanishes. We identify a neighbourhood of e in G with Rn, so that the
commutator map near (e, e) can be read as

[ , ] : U × U −→ Rn

for some neighbourhood U ⊂ Rn of the origin. Since its differential at (0, 0)

vanishes, up to restricting U we may suppose that the map is 1
2
-Lipschitz.

Therefore for all x, y ∈ U we get

‖[x, y ]‖ < ‖[x, 0]‖+
1

2
‖y‖ =

1

2
‖y‖, ‖[x, y ]‖ < ‖[0, y ]‖+

1

2
‖x‖ =

1

2
‖x‖

and hence

‖[x, y ]‖ < 1

2
min

{
‖x‖, ‖y‖

}
.

This implies that for every smaller neighbourhood V ⊂ U of 0 there is a
k > 0 such that

[U, [U, . . . [U, U]] · · · ]︸ ︷︷ ︸
k

⊂ V.

We now turn back to G. Let Γ be discrete and generated by some elements
S ⊂ U. We choose a smaller neighbourhood V of e such that V ∩Γ = {e},
hence for any a1, . . . , ak , b ∈ S we get [a1, [a2, . . . [ak , b]] · · · ] ∈ V ∩ Γ =

{e}. Proposition 1.4.5 says that Γ is nilpotent. �

We now want to refine this lemma when G = Isom(Hn). Let P be a
property of groups, like being abelian, nilpotent, etc. A group is virtually
P if it has a finite-index subgroup which is P .

Lemma 4.2.8 (Margulis Lemma). In every dimension n > 2 there is
a constant εn > 0 such that for all x ∈ Hn, every discrete group Γ <

Isom(Hn) generated by elements that move x at distance smaller than εn
is virtually nilpotent.

Proof. It suffices to prove the theorem for a fixed x ∈ Hn since the
isometries of Hn act transitively on points. By Lemma 4.2.7 there is a
neighbourhood U of e in G = Isom(Hn) such that every discrete group
generated by some elements in U is nilpotent.

Let Vε ⊂ Isom(Hn) be the set of all the isometries that move x at
distance smaller than ε > 0. As ε > 0 varies, the relatively compact sets
Vε form a neighbourhood system for the compact stabiliser Gx < Isom(Hn)

of x , isomorphic to O(n). We can prove (exercise) that V −1
ε = Vε and

V kε = Vkε

for every positive k ∈ N. Since Gx is compact, it is covered by some m
translates of U. Pick a ε > 0 such that Vε is contained in the union of
these m translates. We prove the theorem with εn = ε/m.

Let Γ be a discrete group generated by some elements S ⊂ Vεn . We
need to show that Γ is virtually nilpotent. In fact we prove that the nilpo-
tent subgroup ΓU generated by Γ ∩ U has index at most m in Γ.
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Suppose by contradiction that Γ/ΓU contains more than m cosets.
Let r(i) be the number of cosets represented by elements in Γ that are
products of at most i generators in S. We have r(1) > 1, otherwise
Γ = ΓU . If r(i) = r(i + 1) for some i , then it is easy to deduce that r(i)

stabilises forever. This easily implies that r(m) > m. Therefore there are
m+ 1 elements in V mεn = Vmεn = Vε belonging to m+ 1 distinct cosets. By
hypothesis two of them, say g and h, belong to the same translate of U
covering Vε. Therefore gh−1 ∈ Γ ∩ U, contradicting the fact that g and h
lie in distinct cosets. �

For a discrete group Γ < Isom(Hn) and a point x ∈ Hn, we denote by
Γε(x) < Γ the subgroup generated by all elements g ∈ Γ that move x of a
distance smaller than ε. We have proved that Γεn(x) is virtually nilpotent
for every x ∈ Hn and every discrete Γ.

A Margulis constant in a fixed dimension n is any number εn > 0 for
which Lemma 4.2.8 holds. Every sufficiently small number is a Margulis
constant.

4.2.3. Elementary groups. A non-trivial discrete group Γ < Isom(Hn)

is elementary if it preserves a finite set of points in Hn.

Proposition 4.2.9. An elementary Γ acting freely on Hn is:

• generated by a hyperbolic isometry, or
• generated by parabolic isometries having the same fixed point at
∞.

Proof. Since Γ contains no elliptics, every non-trivial element fixes one
or two points at infinity in Hn, and no other finite set of points (because
of Proposition 2.4.6). We conclude using Lemma 4.2.2. �

Proposition 4.2.10. Let Γ < Isom(Hn) be a discrete group acting
freely on Hn. If Γ′ < Γ has finite index and is elementary, then Γ also is.

Proof. We know that every element in Γ′ is either hyperbolic with axis
l , or parabolic with fixed point p ∈ ∂Hn. If ϕ ∈ Γ then ϕk ∈ Γ′ for some
k: hence ϕ is also of that type. �

Corollary 4.2.11. Let Γ < Isom(Hn) be discrete and acting freely. If
Γ is virtually nilpotent, it is either trivial or elementary.

Proof. We know that Γ contains a finite-index nilpotent subgroup H.
If H is trivial then Γ is finite and hence trivial. If H is non-trivial, it has
a non-trivial centre by Proposition 1.4.6. Lemma 4.2.1 then implies that
all the elements in H have the same fixed points and so H is elementary.
Therefore Γ is elementary by Proposition 4.2.10 �

Let εn be a Margulis constant. We can strengthen the Margulis
Lemma.
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Corollary 4.2.12. Let Γ < Isom(Hn) be discrete and acting freely. For
every point x ∈ Hn the subgroup Γεn(x) is either trivial or elementary.

4.2.4. Thick-thin decomposition. A notable geometric consequence
of the Margulis Lemma is that every complete hyperbolic manifold decom-
poses into a thick and a thin part, where the thin part consists only of
particularly simple star-shaped pieces. This decomposition is known as the
thick-thin decomposition of hyperbolic manifolds.

We define a star-shaped set centred at p ∈ ∂Hn to be any subset
U ⊂ Hn that intersects every half-line pointing to p in a half-line. For
instance, a horoball is star-shaped. A star-shaped neighbourhood of a line
l ⊂ Hn is any neighbourhood V of l that intersects every line orthogonal to
l into a connected set. For instance, a R-neighbourhood of l is star-shaped.

These definitions pass to quotients. A star-shaped cusp neighbour-
hood is the quotient U/Γ of a Γ-invariant star-shaped set U centred at
p ∈ ∂Hn via a discrete group Γ of parabolic transformations fixing p and
acting freely. Analogously, a star-shaped simple closed geodesic neighbour-
hood is the quotient V/Γ of a Γ-invariant star-shaped neighbourhood V of
l via a discrete group Γ ∼= Z of hyperbolic transformations with axis l .

The truncated cusps and R-tubes studied in Section 4.1 are particu-
larly nice star-shaped cusp and geodesic neighbourhoods.

Let εn > 0 be a Margulis constant. We define M[εn ,∞) and M(0,εn ]

respectively as the set of all points x ∈ M having injxM >
εn
2
, and as the

closure of the complementary set M \M[εn ,∞). They form respectively the
thick and thin part of M.

Remark 4.2.13. We do not define the thin part simply as the set of
all points x having injxM 6

εn
2
because we want to discard the degenerate

and unlucky case of a closed geodesic γ having length precisely εn. The
injectivity radius would be εn

2
at the points in γ and strictly bigger than εn

2

near γ. With our definition, the geodesic γ is contained in M[εn ,+∞) and
not in M(0,εn ].

The following theorem is arguably the most important structural result
on complete hyperbolic manifolds of any dimension n.

Theorem 4.2.14 (Thick-thin decomposition). Let M be a complete
hyperbolic n-manifold. The thin part M(0,εn ] consists of a disjoint union
of star-shaped neighbourhoods of cusps and of simple closed geodesics of
length < εn.

Proof. We have M = Hn/Γ. For every isometry ϕ ∈ Γ we define

Sϕ(ε) =
{
x ∈ Hn

∣∣ d(ϕ(x), x) 6 ε
}
⊂ Hn.



120 4. THICK-THIN DECOMPOSITION

By Proposition 4.1.1 the thin part M(0,εn ] is the image of the set

S =
{
x ∈ Hn

∣∣ ∃ϕ ∈ Γ, ϕ 6= id such that d(ϕ(x), x) 6 εn
}

=
⋃

ϕ∈Γ,ϕ 6=id

Sϕ(εn).

More precisely, we should exclude the hyperbolic ϕ ∈ Γ with d(ϕ) = εn,
see Remark 4.2.13, but this is not an important point and we ignore it. It
is easy to check that Sϕ(ε) is star-shaped, centred at a p ∈ ∂Hn or at a
line l according to whether ϕ is parabolic fixing p or hyperbolic fixing l .

Suppose that x ∈ Sϕ(εn) ∩ Sψ(εn) for some non-trivial isometries
ϕ,ψ ∈ Γ. By the Margulis Lemma both ϕ and ψ belong to the elementary
group Γεn(x) and hence by Proposition 4.2.9 both ϕ and ψ are either
parabolic fixing the same point p at infinity or hyperbolic fixing the same
line l .

Therefore every connected component S0 of S is the union of all
Sϕ(εn) where ϕ varies in some maximal elementary subgroup Γ0 < Γ of
parabolics fixing the same point p or hyperbolics fixing the same line l .
The set S0 is a union of star-shaped sets centred at p or l and is hence
also star-shaped.

The group Γ preserves S and the only isometries in Γ that preserve S0

are those in Γ0, therefore the quotientM(0,εn ] = S/Γ consists of star-shaped
neighbourhoods of cusps and of simple closed geodesics. �

Star-shaped neighbourhoods are particularly nice in low dimensions.

Proposition 4.2.15. Let M be a complete orientable hyperbolic mani-
fold of dimension n 6 3. The thin part M(0,εn ] consists of truncated cusps
and R-tubes.

Proof. Pick a non-trivial ϕ ∈ Isom+(Hn). We check that Sϕ(ε) is
either empty, or a R-neighbourhood of a line l , or a horoball, for all ε > 0.
This proves the proposition.

Suppose that ϕ is hyperbolic with axis l . The distance d(x, ϕ(x)) de-
pends only on d(x, l) since all the orientation-preserving hyperbolic trans-
formations with axis l commute with ϕ and act transitively on the points
at fixed distance from l . It is easy to check that d(x, ϕ(x)) increases with
d(x, l) and hence Sϕ(ε) is either empty or a R-neighbourhood of l .

If ϕ is parabolic, it acts on each horosphere centred at p like a Eu-
clidean fixed-point-free orientation-preserving isometry on Rn−1: this must
be a translation when n 6 3. Therefore d(x, ϕ(x)) depends only on the
horosphere O containing x and decreases as O moves towards p. Therefore
Sϕ(ε) is a horoball. �

See the picture in Figure 4.3.

Corollary 4.2.16. Let M be a complete hyperbolic n-manifold. The
closed geodesics in M of length < εn are simple and disjoint.
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Figure 4.3. The thick-thin decomposition of a complete hy-
perbolic surface: the thin part (yellow) consists of truncated
cusps and neighbourhoods of short geodesics (blue).

Proof. These closed geodesics lie in the thin part. Star-shaped cusp
neighbourhoods contain no closed geodesics, and each star-shaped geo-
desic neighbourhood contains only one closed geodesic, its core, which is
simple. �

4.2.5. Finite-volume hyperbolic manifolds. A specific feature of hy-
perbolic geometry is the existence of complete hyperbolic manifolds that
have finite volume without being compact. The thin-thick decomposition
furnishes a nice topological description of such manifolds.

Proposition 4.2.17. A complete hyperbolic manifold M has finite vol-
ume if and only if its thick part is compact.

Proof. If the thick part is not compact, it contains an infinite number
of points that stay pairwise at distance greater than εn. The open balls of
radius εn

2
centred at these points are embedded and disjoint and all have

the same volume: therefore their union has infinite volume.
If the thick part is compact, it has finite volume. Its boundary is also

compact, and hence has finitely many connected components. Therefore
the thin part consists of finitely many star-shaped neighbourhoods of cusps
and closed geodesics, each with compact boundary. Each such object has
finite volume (because it is contained in a bigger abstract truncated cusp
with compact base, or a R-tube, which has finite volume). �

Corollary 4.2.18. Every complete finite-volume hyperbolic manifoldM
is diffeomorphic to the interior of a compact manifold N with boundary.
The boundary ∂N consists of manifolds that admit some flat structure.

Proof. We have seen in the previous proof that the thick part of M
is compact, and the thin part consists of finitely many star-shaped neigh-
bourhoods of cusps and closed geodesics, each with compact boundary.

Every cusp neighbourhood has compact base and hence contains a
smaller truncated cusp, diffeomorphic to X × [0, 1) for some closed flat
manifold X. The complement inM of these truncated cusps is compact: it
is obtained from the thick part by adding finitely many neighbourhoods of
closed geodesics (that are compact) and compact portions of cusp neigh-
bourhoods. Each truncated cusp is diffeomorphic to X× [0, 1) and can be
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compactified by adding X × 1. The resulting manifold N is compact with
boundary. �

Every boundary component X of N inherits a flat structure, uniquely
determined up to rescaling (different truncations modify X only by rescal-
ing.) As already mentioned, a truncated cusp is often called simply a cusp:
for instance we say that the surface sketched in Figure 4.3 has two cusps.

We briefly discuss the effects of Corollary 4.2.18 on low-dimensional
manifolds. Let M be a complete hyperbolic manifold of finite volume of
dimension n. If n = 2, the manifold M is diffeomorphic to the interior of
a compact surface N with boundary. Every boundary component of N is
of course a circle.

If n = 3, the manifold M is diffeomorphic to the interior of a compact
3-manifold N with boundary, and every boundary component X of N is a
flat surface: if M is orientable, then ∂N also is, and by Proposition 3.4.12
it consists of tori.

4.2.6. Geodesic boundary and cusps. Most of the arguments of this
chapter extend to hyperbolic manifolds with compact geodesic boundary.

Proposition 4.2.19. Every complete finite-volume hyperbolic manifold
M with compact geodesic boundary is diffeomorphic to a compact mani-
fold N with some boundary components removed. The removed compo-
nents have a flat structure. The remaining components form the geodesic
boundary of M and hence have a hyperbolic structure.

Proof. Double M along the geodesic boundary to obtain a finite-
volume hyperbolic manifold to which Corollary 4.2.18 applies. �

We briefly discuss the effects in low dimensions. In dimension n = 2

the boundary ∂N consists of circles: some are geodesic components of
∂M, while some others are removed and correspond to cusps. In dimension
n = 3, if M is orientable the removed boundary of ∂N consists of tori (the
cusps), while the geodesic boundary of M cannot contain any torus: a
torus has no hyperbolic structure by Corollary 4.2.6.

We add some information on fundamental groups. Let the manifolds
M and N be as in Proposition 4.2.19.

Proposition 4.2.20. For every boundary component X of N the ho-
momorphism π1(X) → π1(N) induced by inclusion is injective. Two ho-
motopically non-trivial closed curves in distinct boundary components of
N are not freely homotopic in N.

Proof. We have M = C/Γ for some convex C ⊂ H3 with boundary
consisting of hyperplanes. If X is a (cusp) flat component of ∂N, it is
isometric to Rn−1/ΓX and the map ΓX = π1(X) → π1(N) = Γ is injective
since it sends a Euclidean isometry to a corresponding parabolic isometry.
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If X is geodesic, it lifts to a hyperplane in ∂C, which is simply connected:
hence π1(X)→ π1(N) is injective.

A homotopically non-trivial closed curve γ ⊂ X determines a conju-
gacy class of hyperbolic or parabolic transformations in Γ. Every element in
this class preserves a unique boundary hyperplane or a point at infinity of C
that projects back to X, so the conjugacy class determines X. Therefore
distinct boundary components contain different conjugacy classes. �

We note that a finite-volume hyperbolic manifold M may have non-
compact geodesic boundary: an ideal polygon in H2 is a simple example.

4.3. Geodesic spectrum, isometry groups, and finite covers

We now study the geodesic spectrum and the isometry group of hy-
perbolic manifolds. The geodesic spectrum of M is the set of the lengths
of all the closed geodesics in M. We prove that a finite-volume M has a
discrete geodesic spectrum (with finite multiplicities) and a finite isometry
group.

Then we turn to finite covers and derive some geometric consequences
from the residually finiteness of fundamental groups.

We are almost exclusively interested in finite-volume hyperbolic man-
ifolds. The general strategy when proving something about finite-volume
hyperbolic manifolds is the following: we first suppose that the manifold is
compact for simplicity, and then we adapt the proof to the non-compact
case by looking at what happens to the cusps.

4.3.1. Geodesic spectrum. We start by proving the following.

Proposition 4.3.1. LetM be a finite-volume complete hyperbolic man-
ifold. For every L > 0 there are finitely many closed geodesics inM shorter
than L.

Proof. Suppose that there are infinitely many closed geodesics shorter
than L. We know that M decomposes into a compact part and a finite
union of truncated cusps. The compact part has finite diameter D.

Every closed geodesic intersects the compact part because a cusp
contains no closed geodesic. Therefore we can fix a basepoint x0 ∈ M
and connect x0 to these infinitely many geodesics of length < L with arcs
shorter than D. We use these arcs to freely homotope the geodesics into
loops based at x0 of length < L + 2D, and lift the loops to arcs in Hn

starting from some basepoint x̃0 ∈ Hn.
If two such arcs end at the same point, the corresponding closed

geodesics inM are freely homotopic: this is excluded by Proposition 4.1.13,
hence these endpoints are all distinct. The orbit of x̃0 now contains infin-
itely many points in the ball B(x̃0, L + 2D), a contradiction because the
orbit is discrete. �
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The lengths of the closed geodesics in M form a discrete subset of R
called the geodesic spectrum of M. Let `1(M) > 0 be the minimum of the
spectrum of M: a shortest closed geodesic in M is a closed geodesic of
shortest length `1(M). It is not necessarily unique (not even if considered
up to orientation reversal), but there are finitely many of them.

Proposition 4.3.2. If M is a closed hyperbolic manifold, then

injM =
1

2
· `1(M)

and every shortest closed geodesic is simple.

Proof. The length of a closed geodesic is the minimum displacement
of the corresponding hyperbolic transformation, so Corollary 4.1.2 gives
the equality.

Let now γ be a shortest closed geodesic. Consider Proposition 4.1.10:
if γ wraps multiple times along a curve η, then η is shorter than γ, a
contradiction. If γ self-intersects transversely at some point p, we can
split γ naturally as γ1 ∗ γ2 in π1(M, p), where both γ1 and γ2 are shorter
than γ. Either γ1 or γ2 is non-trivial in π1(M, p) and is hence hyperbolic,
but it has length smaller than `1(M): this contradicts Corollary 4.1.15. �

Remark 4.3.3. A shortest geodesic may be non-simple when M has
cusps! By doubling an ideal triangle along its boundary we construct a
hyperbolic surface called the thrice-punctured sphere which has three cusps
and contains various closed geodesics, none of which is simple. See Chapter
6.

4.3.2. Isometry group. We now study the isometry group Isom(M)

of a hyperbolic manifoldM. Recall that the normaliser N(H) of a subgroup
H < G is the set of elements g ∈ G such that gH = Hg. It is the biggest
subgroup of G containing H as a normal subgroup. The isometry group
Isom(M) has an algebraic representation.

Proposition 4.3.4. Let M = Hn/Γ be a complete hyperbolic manifold.
There is a natural isomorphism

Isom(M) ∼= N(Γ)/Γ.

Proof. Every isometry ϕ : M → M lifts to an isometry ϕ̃

Hn ϕ̃ //

π

��

Hn

π

��
M

ϕ
// M

such that ϕ̃Γ = Γϕ̃: hence ϕ̃ ∈ N(Γ). The lift is uniquely determined up
to left- or right-multiplication by elements in Γ, hence we get a homomor-
phism

Isom(M)→ N(Γ)/Γ
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which is clearly surjective (every element in N(Γ) determines an isometry)
and injective (if ϕ̃ ∈ Γ then ϕ = id). �

Recall that the centraliser of H < G is the set of elements g ∈ G
such that gh = hg for all h. It is a subgroup of G.

Exercise 4.3.5. Let M = Hn/Γ be a finite-volume hyperbolic manifold.
The centralizer of Γ in Isom(Hn) is trivial.

4.3.3. Outer automorphism group. The automorphism group of a
group G is the group Aut(G) of all the isomorphisms G → G. The inner
automorphisms are those isomorphisms of type g 7→ hgh−1 for some h ∈ G,
and they form a normal subgroup Int(G) / Aut(G). The quotient

Out(G) = Aut(G)/Int(G)

is called the outer automorphism group of G.
If x0, x1 are two points in a path-connected topological space X there

is a non-canonical isomorphism π1(X, x0) → π1(X, x1), unique only up to
post-composing with an inner automorphism. Therefore there is a canon-
ical isomorphism Out(π1(X, x0)) → Out(π1(X, x1)). Hence Out(π1(X))

depends very mildly on the basepoint.
The group Homeo(X) of all homeomorphisms of X does not act di-

rectly on π1(X) because of the inner-automorphism ambiguity, but we get
a natural homomorphism

Homeo(X) −→ Out(π1(X))

which is neither injective nor surjective in general. We note that homotopic
self-homeomorphisms give rise to the same element in Out(π1(X)).

4.3.4. Finite isometry groups. We turn back to hyperbolic manifolds.

Proposition 4.3.6. If M is a finite-volume complete hyperbolic mani-
fold, the natural map

Isom(M) −→ Out(π1(M))

is injective.

Proof. Set M = Hn/Γ, identify Γ with π1(M) and Isom(M) with
N(Γ)/Γ. With these identifications the map

N(Γ)/Γ −→ Out(Γ)

is just the conjugacy action that sends h ∈ N(Γ) to the automorphism
g 7→ h−1gh of Γ. This is an inner automorphism if and only if there is a
f ∈ Γ such that h−1gh = f −1gf for all g ∈ Γ, that is if hf −1 commutes
with g for all g ∈ Γ. Exercise 4.3.5 gives h = f ∈ Γ and hence the map is
injective. �

Corollary 4.3.7. Let M be a finite-volume complete hyperbolic mani-
fold. Distinct isometries of M are not homotopic.
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This is a quite strong fact, from which we deduce the following.

Corollary 4.3.8. The isometry group of every finite-volume complete
hyperbolic manifold M is finite.

Proof. We know that M is diffeomorphic to the interior of some com-
pact N having k > 0 boundary components. Let C1, . . . , Ck ⊂ M be
disjoint truncated cusps, all of the same small volume V > 0. Every
isometry of M permutes these truncated cusps and fixes their complement
C = M \ int(C1 ∪ . . . ∪ Ck).

The set C is compact and preserved by the Lie group Isom(M), which
is hence compact. To show that it is finite it suffices to prove that it
is discrete. Suppose that a sequence of isometries ϕi converges to the
identity: we will deduce that ϕi is homotopic to id for sufficiently large
values of i , a contradiction.

For any ε > 0 there is a ϕi that moves all points of C at distance < ε.
If ε > 0 is sufficiently small, the isometry ϕi preserves each Ci , it restricts
to an isometry of the flat torus Xi = ∂Ci and its extension to Ci is just a
smaller rescaling of ϕi |Xi at every flat torus leaf in the cusp.

Let also ε > 0 be sufficiently small, so that ε < injxM for every x ∈ C.
We get d(x, ϕi(x)) < injxM for all x ∈ C, and since ϕi acts on each Ci just
by rescaling its action on Xi , we get the same inequality for every x ∈ M.

For every x ∈ M there is a unique geodesic γx of length d(x, ϕi(x))

connecting x and ϕi(x). The geodesics γx vary continuously with x and we
can use them to define a homotopy between ϕi and id: a contradiction. �

The finiteness of the isometry groups is peculiar to the hyperbolic
world: we will see in Remark 7.1.3 that the isometry group of a flat torus
is infinite.

4.3.5. Finite covers. Let M = Hn/Γ be a complete finite-volume
hyperbolic manifold. How many finite covers M̃ → M are there above M?
Quite a lot, thanks to the following.

Proposition 4.3.9. The fundamental group π1(M) of a complete finite-
volume hyperbolic manifold M is residually finite.

Proof. The group π1(M) is finitely generated (actually, finitely pre-
sented) because M is homeomorphic to the interior of a compact manifold
with boundary, so Proposition 3.1.15 applies. �

This algebraic fact has some nice geometric consequences. Recall
that `1(M) is the length of the shortest closed geodesic in M.

Corollary 4.3.10. For every L > 0 there is a finite cover M̃ → M with
`1(M̃) > L.

Proof. There are finitely many hyperbolic elements a1, . . . , ak ∈ π1(M)

such that every closed geodesic in M of length < L is freely homotopic
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to some of these. By residually finiteness there is a finite-index normal
H / π1(M) that does not contain any of the elements a1, . . . , ak , and
hence none of their conjugates.

The finite-index H determines a finite cover π : M̃ → M such that
π∗(π1(M̃)) = H. A closed geodesic in M̃ cannot be shorter than L because
its image in M would be freely homotopic to one of a1, . . . , ak . �

Corollary 4.3.11. If M is a closed hyperbolic manifold, for every R > 0

there is a finite cover M̃ → M with injM̃ > R.

We can summarise this by saying that every closed hyperbolic manifold
has arbitrarily fat finite covers.

4.3.6. Subgroup separability. The geometric consequences of resid-
ually finiteness are quite remarkable: we now introduce a stronger algebraic
notion that will lead to more geometric applications.

Let G be a group. A subgroup H < G is separable if the intersection of
all the finite-index subgroups of G containing H is H itself. In other words,
for every non-trivial element a ∈ G \ H, there is a finite-index subgroup
G ′ < G that contains H but not a and hence “separates” H from a.

By definition, the trivial subgroup {e} in G is separable if and only if
G is residually finite. Note that, for general H < G, we cannot require the
subgroup G ′ to be normal in G, because H itself may not be normal in G,
as opposite to {e}. The following proposition furnishes some interesting
examples.

Proposition 4.3.12. Every maximal abelian subgroup H in a residually
finite group G is separable.

Proof. More generally, we suppose that H is maximal with respect to
some word relation f (h1, . . . , hn) = e. (In our case, f (h1, h2) = [h1, h2].)
Since G is residually finite, there is a sequence Ni /G of finite-index normal
subgroups with ∩Ni = {e}.

We show that H = ∩iHNi , and we conclude since HNi > Ni has finite
index in G. We have H ⊂ ∩iHNi . We now show that the elements of
∩iHNi satisfy f = e, and by maximality of H we get H = ∩iHNi .

For every Ni and h1, . . . , hn ∈ H, we have f (h1Ni , . . . , hnNi) ⊂ Ni
since its projection in G/Ni is trivial. Therefore ∩i f (HNi , . . . , HNi) = {e}
and the elements of ∩iHNi satisfy f = e. �

Corollary 4.3.13. Let M be a complete finite-volume hyperbolic n-
manifold. The following subgroups are separable:

• the subgroup 〈ϕ〉 = Z generated by a primitive hyperbolic trans-
formation ϕ;

• the subgroup π1(T ) generated by a (n − 1)-torus cusp section
T .

Proof. Both subgroups are maximal abelian, see Section 4.2.1. �
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We deduce a couple of geometric consequences from this algebraic
fact.

Corollary 4.3.14. Let M be a complete finite-volume hyperbolic n-
manifold. Every closed geodesic γ in M lifts to a closed geodesic in some
finite covers of M of arbitrarily large degree.

Proof. We have M = Hn/Γ. The closed geodesic γ is obtained by
projecting the axis l of a primitive hyperbolic element ϕ ∈ Γ. Since 〈ϕ〉 is
separable, there are subgroups H < π1(M) of arbitrarily large index that
contain 〈ϕ〉. �

We have discovered in particular that there are many closed hyperbolic
manifolds of bounded injectivity radius with arbitrarily large volume. We
can also use separability to promote some primitive closed geodesics to
simple ones on some finite coverings.

Corollary 4.3.15. Let M be a complete finite-volume hyperbolic n-
manifold. Every primitive closed geodesic γ in M lifts to a simple closed
geodesic in some finite cover of M.

Proof. We have M = Hn/Γ. The closed geodesic γ is obtained by
projecting the axis l of a primitive hyperbolic element ϕ ∈ Γ. If γ is
not simple, it self-intersects in k > 0 points, which lift to k transverse
intersections between l and some translates ϕ1(l), . . . , ϕk(l), for some ϕi ∈
Γ. Therefore the elements ψ ∈ Γ such that ψ(l) intersects l transversely
are those of the form ψ = ϕhϕiϕ

l for some i = 1, . . . , k and h, l ∈ Z.
Since 〈ϕ〉 is separable, there is a finite-index H < Γ with ϕ1, . . . , ϕk 6∈

H and 〈ϕ〉 ⊂ H. No ϕhϕiϕl lies in H, hence for every ψ ∈ H the lines l
and ψ(l) coincide or are disjoint. The line l projects to a simple geodesic
in Hn/H. �

Concerning cusps, we deduce analogously the following.

Corollary 4.3.16. Let M be a complete finite-volume hyperbolic n-
manifold and T ⊂ M be a (n − 1)-torus cusp section. The cusp section
T lifts to a cusp section in some finite covers of M with arbitrarily large
degree.

Proof. The subgroup π1(T ) is separable, so there are subgroups H <

π1(M) of arbitrarily large finite degree containing it. �

4.4. The Bieberbach Theorem

The Margulis Lemma for Lie groups is fairly general and has important
applications also in the elliptic and flat geometries. The most important
one is the Bieberbach Theorem.
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4.4.1. Elliptic manifolds. Recall that every complete elliptic manifold
is isometric to Sn/Γ for some finite group Γ < O(n) = Isom(Sn−1) acting
freely. We now improve the Margulis Lemma 4.2.7 for G = O(n) by
promoting “nilpotent” to “abelian”. To this purpose we need the following.

Lemma 4.4.1. There is a neighbourhood U of I ∈ O(n) such that for
every A ∈ O(n) and every B ∈ U we have

[A, [A,B]] = I =⇒ [A,B] = I.

Proof. We prove the lemma for the bigger Lie group U(n) consisting
of all unitary matrices. An immediate computation shows that

[A, [A,B]] = I ⇐⇒ [A,BA−1B−1] = I.

Let Cn = ⊕Vi be the decomposition into orthogonal eigenspaces for A
and A−1 (with respect to the standard hermitian product of Cn). The
decomposition for the conjugate BA−1B−1 is just Cn = ⊕B(Vi).

Let U be the neighbourhood of I consisting of all matrices that move
every vector of an angle < π

2
. Pick B ∈ U. Since the Vi are orthogonal we

get B(Vi)∩Vj = {0} for all i 6= j . On the other hand, the endomorphisms A
and BA−1B−1 commute and hence have a basis of common eigenvectors:
hence the only possibility is that B(Vi) = Vi for all i .

The restriction A|Vi is just λi I and hence commutes with B|Vi , for all
i . Therefore A and B commute everywhere. �

Corollary 4.4.2. There is a neighbourhood U of I ∈ O(n) such that
every finite subgroup Γ < O(n) generated by some elements in U is abelian.

Proof. We know from Margulis Lemma 4.2.7 that there is a U where
every such Γ is nilpotent. The previous lemma promotes Γ to an abelian
group, because [A, [A, . . . [A,B] · · · ]] = I implies after finitely many steps
that [A,B] = I for every generators A,B ∈ Γ ∩ U. �

Proposition 4.4.3. Let G be a compact Lie group and U a neighbour-
hood of e ∈ G. There is a N > 0 such that for every group Γ < G, the
subgroup ΓU < Γ generated by Γ ∩ U has index at most N in Γ.

Proof. Let W ⊂ U be a smaller neighbourhood such that W−1 = W

and W 2 ⊂ U and set N = Vol(G)/Vol(W ) using the Haar measure for G.
We conclude by showing that if gΓU and g′ΓU are distinct cosets of

ΓU in Γ, then gW ∩ g′W = ∅. This implies that ΓU has index at most N
in Γ.

Indeed, if gW ∩ g′W 6= ∅ there are w,w ′ ∈ W such that gw = g′w ′

which implies that g−1g′ = w(w ′)−1 ∈ W 2 ⊂ U and hence g−1g′ ∈ ΓU . �

We obtain a fairly interesting corollary about finite subgroups of O(n).

Corollary 4.4.4. For every n there is a N > 0 such that every finite
subgroup of O(n) contains an abelian subgroup of index at most N.
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4.4.2. Isometries of Euclidean space. We now turn to flat manifolds.
Recall that a complete flat manifold is isometric to Rn/Γ for some discrete
group Γ < Isom(Rn) acting freely. Every isometry g of Rn can be written
uniquely as

g : x 7−→ Ax + b

for some A ∈ O(n) and b ∈ Rn. The rotational and translational part of
g are A and b respectively. Let Fix(A) be the fixed points of x 7→ Ax .

Proposition 4.4.5. Let Ax + b be an isometry of Rn. Then:
• its inverse is A−1x − A−1b,
• if it acts freely then Fix(A) 6= {0},
• ∃ a translation of Rn that conjugates it to Ax + b′ with b′ ∈

Fix(A).

Proof. If it acts freely then Ax + b = x has no solution x ∈ Rn. By
rewriting the equation as (A− I)x = −b we see that A− I is not surjective,
hence not injective, hence Fix(A) is non-trivial.

A translation x + d conjugates Ax + b into(
A(x + d) + b

)
− d = Ax + (A− I)d + b.

Since A is orthogonal, we get Im (A − I) = ker(A − I)⊥ = Fix(A)⊥ and
hence there is a d such that b′ = (A− I)d + b ∈ Fix(A). �

Exercise 4.4.6. The commutator of two isometries is

[Ax + b, Cx + d ] = [A,C]x + A(I − C)A−1b + AC(I − A−1)C−1d.

In particular we get

[Ax + b, x + d ] = x + (A− I)d.

4.4.3. Discrete groups. The homomorphism r : Isom(Rn) → O(n)

that sends every isometry to its rotational part induces an exact sequence

0 −→ Rn −→ Isom(Rn)
r−→ O(n) −→ 0

where we indicate by Rn the group of translations of Rn.
Let Γ < Isom(Rn) be a discrete group. We get an exact sequence

0 −→ H −→ Γ −→ r(Γ) −→ 0

where H / Γ is the translation subgroup of Γ. The subgroup r(Γ) < O(n)

is not necessarily discrete, as the following example shows.

Example 4.4.7. A rototranslation in R3 is a rotation of some angle θ
along an axis r composed with a translation of some distance t > 0 in the
direction of r . A rototranslation generates a discrete group Γ = Z acting
freely on R3, whose quotient R3/Γ is diffeomorphic to R2 × S1. If θ is not
commensurable with π the image r(Γ) is not discrete and forms a dense
subset of the circle in O(3) of all rotations along r .

We now extend Corollary 4.4.4 to this context.
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Theorem 4.4.8. For every n there is a N > 0 such that every discrete
subgroup of Isom(Rn) contains an abelian subgroup of index at most N.

Proof. We pick a small neighbourhood U ⊂ O(n) of I, such that the
commutator is contracting in U (see the proof of the Margulis Lemma
4.2.7), it is symmetric (U = U−1) and A − I contracts vectors uniformly
for all A ∈ U, more precisely ‖(A− I)v‖ < 1

4
‖v‖ for all v 6= 0.

Let Γ < Isom(Rn) be discrete and r(Γ)U be the group generated by
r(Γ) ∩ U. By Proposition 4.4.3 the index of r(Γ)U in r(Γ) is bounded by
some N depending only on U. Therefore its counterimage in Γ

Γ∗ = r−1(r(Γ)U) ∩ Γ

has index in Γ bounded by N. The group Γ∗ is the subgroup of Γ consisting
of all Ax + b with A ∈ r(Γ)U . It remains to prove that Γ∗ is abelian.

Let A1x + b1 and A2x + b2 be two elements in Γ∗. Define

Ai+1x + bi+1 = [A1x + b1, Aix + bi ]

for all i > 2. Exercise 4.4.6 gives

(1) Ai+1x + bi+1 = [A1, Ai ]x + A1(I − Ai)A−1
1 b1 + A1Ai(I − A−1

1 )A−1
i bi

and hence

Ai+1 = [A1, Ai ],

bi+1 = A1(I − Ai)A−1
1 b1 + A1Ai(I − A−1

1 )A−1
i bi .

Suppose A1, A2 ∈ U. Since the commutator is contracting in U and Ai − I
contract vectors uniformly, we get Ai → I and bi → 0 as i →∞. Therefore
Aix + bi tends to the identity, and since Γ∗ is discrete it is the identity for
all i bigger or equal than some i0. In particular Ai0 = I and Lemma 4.4.1
used backwards gives A3 = [A1, A2] = I: hence A1 and A2 commute.

Since r(Γ∗) is generated by r(Γ∗)∩U, we deduce that r(Γ∗) is abelian.
Therefore (1) may be restated as

(2) Ai+1x + bi+1 = x + (I − Ai)b1 + (A1 − I)bi .

We now consider the case A1 ∈ U and A2 = I. We get

Ai+1x + bi+1 = x + (A1 − I)i−1b2.

Since A1 ∈ U we get (A1−I)ib2 → 0 and hence (A1−I)ib2 = 0 for some i ,
which gives (A1 − I)b2 = 0 since A1 is diagonalisable. Thus b2 ∈ Fix(A1).

We have proved that if Γ∗ contains a translation x+b, then b ∈ Fix(A)

for all A ∈ r(Γ∗) ∩ U. Since these A generate r(Γ∗), the vector b belongs
to

W = Fix(r(Γ∗)) =
{
x
∣∣ Ax = x ∀A ∈ r(Γ∗)

}
.

Pick now two arbitrary elements Ax + b and Cx + d in Γ∗. By (2) we get

[Ax + b, Cx + d ] = x + (I − C)b + (A− I)d.



132 4. THICK-THIN DECOMPOSITION

By what just said (I − C)b + (A− I)d ∈ W . On the other hand

Im (I − C) = ker(I − C)⊥ = Fix(C)⊥ ⊂ W⊥

and hence (I − C)b ∈ W⊥, and analogously (A − I)d ∈ W⊥. We deduce
that (I − C)b + (A − I)d ∈ W ∩ W⊥ is trivial and all elements in Γ∗

commute. �

4.4.4. Crystallographic groups. A crystallographic group is a dis-
crete subgroup Γ < Isom(Rn) with compact quotient Rn/Γ.

Proposition 4.4.9. The image r(Γ) of a crystallographic group Γ <

Isom(Rn) is finite.

Proof. By Theorem 4.4.8 we may suppose that Γ is abelian. We now
prove that Γ abelian implies that r(Γ) is trivial, i.e. all elements in Γ are
translations.

Suppose that Γ contains a non-translation Ax + b. We conjugate Γ

by a translation as in Proposition 4.4.5 to get b ∈ Fix(A). Pick another
isometry Cx + d in Γ. The commutator

[Ax + b, Cx + d ] = x + (A− I)d − (C − I)b
is trivial. Since A and C commute, we get (C − I)b ∈ Fix(A), hence
(A− I)d ∈ Fix(A) and finally d ∈ Fix(A).

We have proved that d ∈ Fix(A) ( Rn for all elements Cx + d in
Γ. Therefore the Γ-orbit of 0 ∈ Rn is contained in Fix(A). But the
compactness of Rn/Γ implies that there is a compact fundamental domain,
and hence a R > 0 such that every point in Rn is R-close to any fixed orbit:
a contradiction since Fix(A) is a proper vector subspace of Rn. �

Corollary 4.4.10. Every crystallographic group has a finite-index trans-
lation subgroup isomorphic to Zn.

Recall from Section 3.4.8 that a flat torus is a n-torus Rn/Γ where
Γ is a lattice, i.e. a discrete group isomorphic to Zn that spans Rn as a
vector space.

Corollary 4.4.11 (Bieberbach’s Theorem). Every closed flat n-manifold
is finitely covered by a flat torus.

We conclude the discussion by noting that there are no “cusps” in
Euclidean geometry.

Proposition 4.4.12. Every finite-volume complete flat manifold is closed.

Proof. Let M = Rn/Γ be a finite-volume flat manifold. Up to taking
finite indexes, the group Γ is abelian by Theorem 4.4.8. If all the elements
are translations, we are done: finite-volume easily implies that Γ = Zn,
thus M is closed.

Suppose some element Ax + b is not a translation: every element
of Γ commutes with it and hence preserves the space Fix(A) that has
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dimension k < n; hence M is isometric to Fix(A)/Γ×Rn−k and has infinite
volume. �

4.4.5. References. Most of the material introduced in this chapter is
standard and can be found in Benedetti – Petronio [4], Ratcliffe [49], and
of course in Thurston’s notes [56]. We have also consulted Thurston’s
book [57] for the part on chrystallographic groups. Proposition 4.3.12 was
taken from a paper of Long [36].





CHAPTER 5

The sphere at infinity

We have discovered that every complete hyperbolic manifold is a quo-
tient M = Hn/Γ for some discrete group Γ < Isom(Hn) acting freely, and
we now raise the following question: how does Γ act on the boundary ∂Hn

at infinity? Does the action of Γ on ∂Hn furnish some information on the
geometry of M?

We show in this chapter that ∂Hn subdivides naturally into two Γ-
invariant subsets: an open set Ω(Γ) called the domain of discontinuity
where the action of Γ is properly discontinuous (like in Hn) and a comple-
mentary closed set Λ(Γ) called the limit set where the action of Γ is more
chaotic.

We then use the limit set to define a canonical decomposition of
cusped hyperbolic manifolds into ideal polyhedra, called the Epstein–Penner
decomposition.

We also devote some time to prove Theorem 5.2.1, which states
that every smooth homotopy equivalence M → N between two closed
hyperbolic manifolds lifts to a map Hn → Hn that extends nicely to the
compactifications Hn → Hn. This fact will have important applications in
the study of hyperbolic manifolds in the subsequent chapters.

5.1. Limit set

How does a discrete group Γ of isometries of Hn act on the bound-
ary at infinity ∂Hn? We now prove that ∂Hn divides canonically into two
Γ-invariant subsets: an open zone Ω(Γ) where Γ acts properly discontinu-
ously, and a closed one Λ(Γ) where it does not. These regions are called
respectively the domain of discontinuity and the limit set of Γ.

5.1.1. The limit set. Throughout this section, we let Γ be a non-
trivial discrete group of isometries of Hn. Fix a point x ∈ Hn. We now
that the orbit Γ(x) is a discrete subset of Hn. The limit set Λ(Γ) ⊂ ∂Hn

of Γ is the set of all the accumulation points of the orbit Γ(x) in Hn.

Exercise 5.1.1. The limit set does not depend on x .

The limit set is clearly a closed Γ-invariant subset of ∂Hn. If Γ′ < Γ

we obviously get Λ(Γ′) ⊂ Λ(Γ).

Exercise 5.1.2. If Γ′ has finite index in Γ then Λ(Γ′) = Λ(Γ).

135
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Recall that Γ is elementary if it fixes a finite set of points in Hn.

Example 5.1.3. If Γ is elementary and acts freely, that is M = Hn/Γ

is wither a cusp or a tube (see Proposition 4.2.9), then Λ(Γ) = Fix(Γ)

consists of one or two points.

We now characterise the elementary subgroups of Isom(Hn). Recall
that Γ is virtually P if it has a finite-index subgroup that is P (where P is
some property).

Proposition 5.1.4. The following are equivalent:

(1) Γ is elementary,
(2) Γ fixes either a point x ∈ Hn, or a line, or a point x ∈ ∂Hn and

all the horospheres centred at x ,
(3) Γ is virtually abelian,
(4) Λ(Γ) consists of 0, 1, or 2 points.

Proof. (1) ⇒ (2). We expand on the proof of Proposition 4.2.9 by
taking elliptic elements into account.

By hypothesis Γ fixes a finite set of points in Hn. If some of them
lie in Hn, then Γ fixes their barycenter and we are done. If Γ fixes more
than two points in ∂Hn, a barycenter is also defined: their convex hull is an
ideal polyhedron of dimension at least 2, we can truncate (via horospheres)
all the vertices by the same small volume and take the barycenter of the
vertices of the resulting compact combinatorial polyhedron. So we are
done also in this case. If Γ fixes two points, it fixes a line.

We are left with the case where Γ fixes a point x ∈ ∂Hn, and no other
finite set of points. The proof of Lemma 4.2.2 extends as is when ϕ2 is
elliptic, and shows that if Γ contains a hyperbolic element ϕ1 then every
other non-trivial element of Γ is either hyperbolic or elliptic and fixes the
same axis of ϕ1, but this is excluded: so Γ contains only parabolics and
elliptics, and these must fix all the horospheres centred at x , as required.

(2)⇒ (3). The group Γ is virtually isomorphic to a discrete subgroup
of Isom(Rm) for some m and we apply Theorem 4.4.8.

(3) ⇒ (4). By Exercise 5.1.2 we may suppose that Γ is abelian. By
adapting the proof of Lemma 4.2.1 to elliptics we see (exercise) that Γ

satisfies (2) and hence we get (4).
(4) ⇒ (1). If Λ(Γ) is empty then Γ is finite and fixes a point by

Proposition 2.4.7. If it consists of one or two points, these are preserved
by Γ. �

5.1.2. Minimality. Let Γ be a non elementary non-trivial discrete
group of isometries of Hn. We are interested in the action of Γ on Λ(Γ).
We want to prove that the action is minimal, that is Λ(Γ) has no invariant
non-empty proper closed subset.

Recall from Section 3.2.1 that every closed subset S ⊂ Hn has a
well-defined convex hull C(S) ⊂ Hn. The convex hull C(S) is closed and
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is the intersection of all the closed half-spaces containing S. We have
C(S) ∩ ∂Hn = S ∩ ∂Hn.

Proposition 5.1.5. If Γ is not elementary, its action on Λ(Γ) is minimal.

Proof. Let S ⊂ Λ(Γ) be a non-empty closed Γ-invariant subset. Since
S is Γ-invariant, its convex hull C(S) also is. Since Γ is not elementary, S
contains at least two points and hence the intersection C(S) ∩ Hn is not
empty. If x ∈ C(S) ∩ Hn, its Γ-orbit is confined in C(S) and hence also
its accumulation points are: therefore Λ(Γ) ⊂ C(S) ∩ ∂Hn = S and hence
Λ(Γ) = S. �

Corollary 5.1.6. If Γ is not elementary and Γ′ / Γ is an infinite normal
subgroup, then Λ(Γ′) = Λ(Γ).

Proof. For every γ ∈ Γ we have γ−1Γ′γ = Γ′, so γ sends the orbit
Γ′(x) to the orbit Γ′(γ(x)) and hence preserves Λ(Γ′). Therefore Λ(Γ′) is
Γ-invariant.

The limit set Λ(Γ′) is not empty because Γ′ is infinite: the minimality
of Λ(Γ) implies that Λ(Γ′) = Λ(Γ). �

5.1.3. The convex core. If C ⊂ Hn is a closed convex set, we define
the nearest point retraction

r : Hn → C

as the map that sends x to the point r(x) ∈ C that is closer to x . If
x ∈ ∂Hn, we interpret r(x) as the first point of C that is contained in
some horosphere centred at x . We have r(x) = x if and only if x ∈ C.
The map r is continuous. Using the geodesic from x to r(x) we can
construct a natural deformation retraction of Hn onto the closed convex
set C.

Let Γ < Isom(Hn) be a non elementary non-trivial discrete group. The
convex hull of Λ(Γ) is Γ-invariant, so it makes sense to define the following.

Definition 5.1.7. The convex core of the orbifold O = Hn/Γ is the
quotient C(Λ(Γ))/Γ ⊂ O of the convex hull C(Λ(Γ)) of the limit set Λ(Γ).

We are of course mostly interested in the case where Γ acts freely and
hence M = Hn/Γ is a manifold. The deformation retraction defined above
is Γ-invariant, therefore every complete hyperbolic manifoldM deformation
retracts onto its convex core. In particular, M is homotopically equivalent
to its convex core.

5.1.4. The domain of discontinuity. Let Γ < Isom(Hn) be a non
elementary non-trivial discrete group. The domain of discontinuity of Γ is
the open set

Ω(Γ) = ∂Hn \ Λ(Γ).

The following proposition explains the terminology.
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Proposition 5.1.8. The action of Γ on Hn ∪ Ω(Γ) is properly discon-
tinuous.

Proof. The nearest point retraction r sends Hn ∪Ω(Γ) to C(Λ(Γ)) \
Λ(Γ) and commutes with Γ. The action of Γ on the latter set is properly
discontinuous (since it is contained in Hn), so the action on the former
also is. �

Proposition 5.1.9. If Vol(Hn/Γ) < +∞ then Λ(Γ) = ∂Hn.

Proof. If Ω(Γ) 6= ∅, pick x ∈ Ω(Γ). The point x has a neighbourhood
system consisting of half-spaces. Since Γ acts properly discontinuously on
Hn ∪Ω(Γ), there is some half-space H which intersects only finitely many
Γ-translates, contradicting the finite volume hypothesis. �

In this book we are mostly interested in finite-volume complete hy-
perbolic manifolds or orbifolds Hn/Γ, and for these the limit set is just the
whole boundary, regardless of Γ. This apparently disappointing piece of
information has some interesting algebraic consequences.

Corollary 5.1.10. If Vol(Hn/Γ) < +∞ then Γ does not contain any
non-trivial virtually abelian normal subgroup.

Proof. Let H / Γ be virtually abelian. If H is infinite, then Λ(H) =

Λ(Γ) = ∂Hn by Corollary 5.1.6, contradicting Proposition 5.1.4. If H is
finite, then Fix(H) is a non-empty proper subspace of Hn and Γ acts on
Fix(H) because H is normal. If Fix(H) is a point then Γ is elementary,
otherwise we get Λ(Γ) ⊂ ∂Fix(H), a contradiction in both cases. �

Corollary 5.1.11. The fundamental group of a finite-volume complete
hyperbolic manifold is never solvable.

Proof. Solvable groups have non-trivial normal abelian subgroups, as
proved in Proposition 1.4.10. �

5.1.5. Schottky groups. In all the examples encountered up to now
the limit set Λ(Γ) consists of either few points or the whole of ∂Hn. There
are many cases where Λ(Γ) is a more interesting (and often beautiful) set.
The simplest examples are probably the following.

Choose a number k > 2 and 2k half-spaces H1, . . . , H2k ⊂ Hn with
disjoint closures in Hn. The closed complement C = Hn\int(H1∪. . .∪H2k)

is a convex subset bounded by 2k disjoint hyperplanes. If we pair isomet-
rically these hyperplanes we get a complete (exercise) hyperbolic manifold
M, which is hence M = Hn/Γ for some Γ. The hyperbolic manifold M has
infinite volume and is the interior of a compact manifold that decomposes
into one 0-handle and k 1-handles. The group Γ is free with k generators.

Exercise 5.1.12. If n = 2, then Λ(Γ) ⊂ ∂H2 = S1 is a Cantor set.
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5.1.6. Parabolic and hyperbolic points. Let Γ < Isom(Hn) be a non
elementary non-trivial discrete group. A parabolic point x ∈ ∂Hn for Γ is a
point that is fixed by some parabolic element γ ∈ Γ. Similarly, a hyperbolic
point is a point that is fixed by some hyperbolic element.

Proposition 5.1.13. The set of all parabolic (hyperbolic) points is ei-
ther empty or a dense subset of Λ(Γ).

Proof. They clearly form a Γ-invariant subset, so its closure also is.
We conclude because Λ(Γ) is minimal. �

Corollary 5.1.14. If Vol(Hn/Γ) < +∞, the set of all parabolic (hyper-
bolic) points is either empty or dense in ∂Hn.

5.1.7. Horoballs in the hyperboloid model. In the conformal models,
horoballs are just Euclidean balls tangent to the boundary at infinity. In
the hyperboloid model In there is a more algebraic description. Let

L = {x ∈ Rn+1
∣∣ 〈x, x〉 = 0, xn+1 > 0}

be the positive light cone and recall from Section 2.2.3 that the boundary
at infinity ∂In may be interpreted as the set of rays in L. More than that,
every vector x ∈ L determines a horoball O centred at [x ] ∈ ∂In, via the
equation

O =
{
y ∈ In | − 1 6 〈x, y〉 < 0

}
.

The horoball gets smaller as x goes to infinity.

Exercise 5.1.15. This is really a horoball centred at [x ].

Hint. Prove that the boundary horosphere 〈x, y〉 = −1 is orthogonal
to all the lines pointing to x . �

There is also a simple (and maybe surprising) geometric relation be-
tween the vector x and the corresponding horoball in the Poincaré disc
model Dn. Represent Dn inside the hyperplane xn+1 = 0, and let π : In →
Dn the isometry obtained by projecting towards P = (0, . . . , 0,−1), con-
sidered in Section 2.1.6. By projecting towards P we also get a homeo-
morphism π : L→ Dn.

Exercise 5.1.16. The Euclidean centre of the horoball π(O) is π(x).

5.1.8. The Epstein–Penner decomposition. We now show that ev-
ery cusped finite-volume hyperbolic manifold decomposes canonically into
some ideal polyhedra. This decomposition is known as the canonical or
Epstein–Penner decomposition.

Let M = Hn/Γ be a non-compact finite-volume complete hyperbolic
manifold. The manifold M is diffeomorphic to the interior of a compact
N with c > 1 boundary components. We fix c disjoint truncated cusps
H1, . . . , Hc ⊂ M. Their lifts in Hn are c disjoint Γ-orbits Bi1, . . . , B

i
c of

disjoint horoballs.
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Figure 5.1. By glueing two identical ideal triangles along
their sides we get a thrice-punctured sphere S, and we choose
three disjoint truncated cusps in it having the same area
(left). In the universal cover, the two ideal triangles of S
lift to the Farey tessellation already shown in Figure 3.8, and
each of the three truncated cusps lifts to infinitely many dis-
joint horoballs (right). The Euclidean centre of the horoballs
is shown here, in relation to Exercise 5.1.16.

Example 5.1.17. Consider the thrice-punctured sphere S obtained by
gluing two identical copies of an ideal triangle along their sides. This is
a complete finite-volume hyperbolic surface with three cusps. We may
fix three disjoint truncated cusps of the same area, as sketched in Figure
5.1-(left). These lift to three families of disjoint horoballs as in Figure
5.1-(right).

We use the hyperboloid model In and interpret a horoball as a point in
the positive light cone L as explained in the previous section. The Γ-orbits
Bi1, . . . , B

i
c of horoballs form a discrete subset in L. If we modify the initial

truncated cusp Hj , all the points Bij ∈ L are rescaled by the same constant.
We make a crucial observation: the points Bij are discrete in L, but

the rays that contain them form a countable dense subset of L, because
they correspond to the parabolic points of Γ, that are dense by Corollary
5.1.14.

We now define C ⊂ Rn+1 as the convex hull of the points Bij in Rn+1.
We note that C is Γ-invariant. An example is shown in Figure 5.2. The
convex hull will define a decomposition of M into ideal polyhedra.

The convex hull C is contained in the convex hull of L, that consists
of all the positive timelike and lightlike vectors. The following proposition
says that C intersects L into countably many half-lines based at the Bij .

Proposition 5.1.18. The set C ∩ L is the set of αBij for some α > 1.

Proof. Pick a point x ∈ L not of this type: the segment 0x does not
intersect {Bij}. Since {Bij} ⊂ L is discrete, we can perturb the hyperplane
H tangent in x to L so that it intersects L into a small ellipsoid around 0x ,
and so that {Bij} lies on the opposite side of H of x . Therefore x 6∈ C.
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Figure 5.2. A portion of the convex hull C for the thrice-
punctured sphere of Figure 5.1. As suggested by Exercise
5.1.16 we determine the horoballs in L by projecting the Eu-
clidean centers of their representations in the disc model.
The black half-line above each horoball in L is contained in
C, see Proposition 5.1.18.

Conversely, pick a point x = αBi0j0 . The rays containing the points
Bij form a dense set in L, so we can find a sequence of Bij 6= Bi0j0 such
that [Bij ] converges to [Bi0j0 ]. Since {Bij} is discrete, the points Bij go to
infinity in the sequence and hence the segment with endpoints Bij and B

i0
j0

approaches x in the limit. Therefore x ∈ C. �

Proposition 5.1.19. Every timelike ray intersects ∂C exactly once.

Proof. Every timelike ray r enters in the interior of a polyhedron
spanned by some Bij , so it intersects C and hence ∂C. Consider a point
x ∈ ∂C ∩ r . Every supporting hyperplane for x must be spacelike because
the rays containing the Bij are dense. Therefore C ∩ r is a half-line and x
is its endpoint. �

In particular ∂C = (∂lC)t(∂tC) consists of the lightlike vectors ∂lC =

C ∩ L and some timelike vectors ∂tC. The previous proposition furnishes
a natural 1-1 correspondence ∂tC ←→ In with the hyperboloid model by
projecting along timelike lines.

Proposition 5.1.20. The timelike boundary ∂tC is tessellated by count-
ably many Euclidean n-dimensional polyhedra with vertices in {Bij}.

Proof. Consider a point x ∈ ∂tC and a supporting hyperplane H.
As already mentioned, the hyperplane H is spacelike and the intersection
H ∩ ∂tC is some k-dimensional polyhedron, convex hull of finitely many
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Figure 5.3. The Γ-invariant decomposition of the hyperbolic
plane into ideal polygons obtained by projecting the Euclidean
polygons of Figure 5.2 from ∂C to I2. This is in fact the Farey
tessellation of Figure 5.1.

Figure 5.4. Different choices of truncated cusps may lead
to distinct decompositions into ideal polyhedra.

points in {Bij}. If k < n we can rotate H until it meets one more point Bij
and after finitely many rotations we get a n-dimensional polyhedron.

We have proved that ∂tC is paved by n-dimensional polyhedra with
vertices in {Bij} and intersecting in common faces. The polyhedra are
locally finite because {Bij} is discrete, hence they form a tessellation. �

The tessellation of ∂tC is Γ-invariant and projects to a Γ-invariant
tessellation of the hyperbolic space In into ideal polyhedra, which projects
in turn to a tessellation of M into finitely many ideal polyhedra, called
the canonical or Epstein-Penner decomposition. An example is shown in
Figure 5.3. We have discovered the following.

Theorem 5.1.21. Every finite-volume non-compact complete hyper-
bolic manifold can be tessellated into finitely many ideal polyhedra.
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The canonical tessellation depends only on the chosen initial truncated
cusps H1, . . . , Hc . Different choices may give different canonical tessella-
tions, an example is sketched in Figure 5.4. We can parametrize these
choices by recording the volumes V1, . . . , Vc>0 of the truncated cusps (or
the areas of ∂Hi , that are Vi/(n − 1) by Proposition 4.1.7).

Proposition 5.1.22. If we multiply all volumes V1, . . . , Vc by the same
constant λ > 0 we get the same canonical tessellation.

Proof. The set Bij changes by a global rescaling, and hence also the
tessellation does. Its projection on In is unaffected. �

A way to get a truly canonical decomposition of M, which depends
on no choice, consists of taking V1 = . . . = Vc > 0. Note that when c = 1

any choice leads to the same canonical decomposition.

5.2. Extensions of homotopies

This section is entirely devoted to the proof of the following theorem.
Recall that every map f : M → N between connected manifolds lifts to a
(non-unique) map f̃ : M̃ → Ñ between their universal covers.

Theorem 5.2.1. Let f : M → N be a smooth homotopy equivalence
between closed hyperbolic n-manifolds. Every lift f̃ : Hn → Hn extends to
a continuous map f̃ : Hn → Hn whose restriction f̃ |∂Hn : ∂Hn → ∂Hn is a
homeomorphism.

Every smooth homotopy equivalence extends to a homeomorphism of
the boundaries of the universal coverings. This theorem will have important
consequences in the Chapters 8 and 13. To prove it, we need to define a
weaker notion of isometry.

5.2.1. Quasi-isometries. We introduce the following.

Definition 5.2.2. A map F : X → Y between metric spaces is a quasi-
isometry if there are two constants C1 > 0, C2 > 0 such that

1

C1
d(x1, x2)− C2 6 d(F (x1), F (x2)) 6 C1d(x1, x2) + C2

for all x1, x2 ∈ X and d(F (X), y) 6 C2 for all y ∈ Y .

A quasi-isometry is an isometry up to some error: note that F might
neither be continuous nor injective. Two metric spaces are quasi-isometric
if there is a quasi-isometry F : X → Y (which implies the existence of a
quasi-isometry G : Y → X, exercise) and quasi-isometry is an equivalence
relation between metric spaces. Intuitively, looking at a space up to quasi-
isometries is like watching it from some distance. Compact metric spaces
are obviously quasi-isometric to a point.

This notion is an important ingredient in geometric group theory : one
may for instance give every finitely-presented group G a canonical metric
(through its Cayley graph), uniquely determined up to quasi-isometries.
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5.2.2. Pseudo-isometries. Let f : M → N be a homotopic equiva-
lence between closed hyperbolic n-manifolds. Every continuous function
is homotopic to a smooth one, hence we suppose that f is smooth. The
map lifts to a map f̃ : Hn → Hn. We will prove that f̃ is a quasi-isometry.
Actually, the map f̃ is also continuous and (as we soon see) Lipschitz:
it will be useful for us to retain this information on f̃ to simplify some
arguments, so we introduce a different (more restrictive but less natural)
version of a quasi-isometry.

Definition 5.2.3. A map F : X → Y between metric spaces is a
pseudo-isometry if there are two positive constants C1, C2 > 0 such that

1

C1
d(x1, x2)− C2 6 d(F (x1), F (x2)) 6 C1d(x1, x2)

for all x1, x2 ∈ X.

In particular a pseudo-isometry is C1-Lipschitz and hence continuous.
Let f : M → N be a smooth map between Riemannian n-manifolds; the
maximum dilatation of f at a point x ∈ M is the maximum ratio ‖dfx (v)‖

‖v‖
where v varies among all the unitary vectors in Tx . The maximum dilatation
of f is the supremum of all maximum dilatations as x ∈ M varies.

Exercise 5.2.4. If f : M → N has maximum dilatation C the map f is
C-Lipschitz.

Proposition 5.2.5. Let f : M → N be a smooth homotopy equivalence
of closed hyperbolic n-manifolds. Every lift f̃ : Hn → Hn is a pseudo-
isometry.

Proof. Let g : N → M be a homotopic inverse. The homotopy be-
tween g ◦ f and idM lifts to a homotopy between a lift g̃ ◦ f and idHn . Let
g̃ be a lift of g such that g̃(f̃ (p)) = (g̃ ◦ f )(p) for some p. It follows that
g̃ ◦ f = g̃ ◦ f̃ .

Since M is compact, the map f has some finite maximum dilatation
C. Since f̃ is locally like f , it also has maximum dilatation C and is hence
C-Lipschitz. The same holds for g. Therefore there is a C1 > 0 such that

d
(
f̃ (x1), f̃ (x2)

)
6 C1 · d(x1, x2) ∀x1, x2 ∈ Hn,

d
(
g̃(y1), g̃(y2)

)
6 C1 · d(y1, y2) ∀y1, y2 ∈ Hn.

Since M is compact, the homotopy from idM to g ◦ f moves every point
of M along some arc with uniformly bounded length < K. The lifted
homotopy g̃ ◦ f̃ inherits the same property, hence

d(x1, x2)− 2K 6 d
(
g̃(f̃ (x1)), g̃(f̃ (x2))

)
6 C1 · d

(
f̃ (x1), f̃ (x2)

)
for all x1, x2 ∈ Hn. Therefore f̃ is a pseudo-isometry with C2 = 2K/C1. �
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Figure 5.5. We use the half-space model. The hyperbolic
cosine of the distance between x and π(x) is the inverse of
the cosine of θ (left). To determine the maximum dilatation
we decompose the tangent space Tx orthogonally as U ⊕ V
(right).

5.2.3. Boundary extension of a pseudo-isometry. We now prove
that not only pseudo-isometries Hn → Hn extend at infinity, but their
extensions at ∂Hn eliminate the “errors” and behave nicely.

Theorem 5.2.6. Every pseudo-isometry F : Hn → Hn extends to a
continuous map F : Hn → Hn that injects ∂Hn into itself.

We separate the proof in some lemmas.

Lemma 5.2.7. Consider the picture in Figure 5.5. We have

cosh d(x, π(x)) =
1

cos θ
.

Proof. We can work with the half-plane model H2 ⊂ C and up to
translations and dilations suppose that π(x) = i . The geodesic r is
parametrized as iet . The Möbius transformation z 7→ z+1

−z+1
sends r to γ

and fixes i , hence γ(t) = iet+1
−iet+1

. Set s = d(x, π(x)). We get x = ies+1
−ies+1

and

cos θ = =x = = (ies + 1)2

e2s + 1
=

2es

e2s + 1
=

2

es + e−s
=

1

cosh s
.

The proof is complete. �

Lemma 5.2.8. Let r ⊂ Hn be a line and π : Hn → r be the orthogonal
projection to r . The maximum dilatation of π at x ∈ Hn is

d =
1

cosh s

where s = d(x, r).

Proof. We use the half-space model with r and x as in Figure 5.5-
(left): we know that cosh s = 1

cos θ
. We have Tx = U ⊕ V as in Figure

5.5-(right) with V = ker dπx . A generator u of U is just rotated by dπx
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Figure 5.6. We use the red paths to estimate the distance
between F (r) and F (s). On the left: since F is C1-Lipschitz,
the blue path has length at most C1d(r, s). Its projection
onto l has dilatation at most 1/coshR by Lemma 5.2.8,
hence the red path in l has length at most C1d(r, s)/ coshR.
Therefore d(F (r), F (s)) 6 C1

d(r,s)
coshR

+ 2R. On the right we
get d(F (r), F (s)) 6 2R.

with respect to the Euclidean metric; with respect to the hyperbolic metric
we have

‖dπx(u)‖
‖u‖ =

xn
π(x)n

= cos θ =
1

cosh s
.

The proof is complete. �

We write pq for the segment with endpoints p and q and we denote
by Nr (A) the r -neighbourhood of A.

Lemma 5.2.9. Let F : Hn → Hn be a pseudo-isometry. There is a
R > 0 such that

F (pq) ⊂ NR
(
F (p)F (q)

)
for all distinct points p, q ∈ Hn.

Proof. Let C1, C2 be the pseudo-isometry constants of F . Fix a suffi-
ciently big R so that coshR > 2C2

1 . Let l be the line containing F (p) and
F (q). We show that F (pq) can exit from NR(l) only for a limited amount
of time. Let rs ⊂ pq be a maximal segment where F (rs) is disjoint from
the interior of NR(l), as the blue arc in Figure 5.6-(left). We have

1

C1
d(r, s)− C2 6 d(F (r), F (s)) 6 C1d(r, s).

We can improve the right inequality as shown in Figure 5.6-(left) and write

1

C1
d(r, s)− C2 6 d(F (r), F (s)) 6 C1

d(r, s)

coshR
+ 2R.

Therefore (
1

C1
− C1

coshR

)
d(r, s) 6 2R + C2.
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F(p)
F(l(u))

F(l(t))a tu <R

Figure 5.7. For every 0 < u < t, the point F (l(u)) is con-
tained in the (yellow) R-neighbourhood of F (p)F (l(t)). If u
is big, the blue segment F (p)F (l(u)) is long, while the red
one is bounded by R: hence the angle αtu between vt and vu
is small. Therefore vt is a Cauchy sequence.

Since coshR > 2C2
1 we deduce that d(r, s) < M for some constant M

that depends only on C1 and C2.
We have proved that F (pq) may exit from NR(l) only on subsegments

of pq with length < M. Since F is C1-Lipchitz the curve F (pq) lies entirely
in NR+C1M(l), and we replace R with R + C1M.

It remains to prove that F (pq) lies entirely (up to taking a bigger R)
in the bounded set NR(F (p)F (q)): the proof is analogous and easier, since
Figure 5.6-(right) shows that d(F (r), F (s)) 6 2R. �

In the previous and following lemmas, the constant R depends only
on the pseudo-isometry constants C1 and C2.

Lemma 5.2.10. Let F : Hn → Hn be a pseudo-isometry. There is a
R > 0 such that for all p ∈ Hn and every half-line l starting from p there
is a unique half-line l ′ starting from F (p) such that

F (l) ⊂ NR(l ′).

Proof. We parametrize l as a geodesic l : [0,+∞) → Hn with unit
speed. We have l(0) = p. Since F is a pseudo-isometry we get

lim
t→∞

d
(
F (p), F (l(t))

)
=∞.

Let vt ∈ TF (p) be the unitary tangent vector pointing towards F (l(t)):
Figure 5.7 shows that {vt}t∈N is a Cauchy sequence, hence it converges
to a unitary vector v ∈ TF (p). Let l ′ be the half-line starting from F (p)

with direction v . It is easy to check that F (l) ⊂ NR(l ′) and l ′ is the unique
half-line from p with this property. �

The previous lemma gives a recipe to transform every half-line l into
a half-line l ′ that approximates F (l). Since ∂Hn is an equivalence relation
of half-lines, we define the extension F : ∂Hn → ∂Hn by sending l to l ′.

Lemma 5.2.11. The boundary extension F : ∂Hn → ∂Hn is well-
defined and injective.
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Figure 5.8. Let l and H be a line and an orthogonal hyper-
plane. The orthogonal projection of H onto l is obviously a
point l∩H; the pseudo-isometry F mildly distorts this picture:
the image F (H) projects to a bounded segment in l ′.

Proof. Let l1, l2 be two half-lines at bounded distance d(l1(t), l2(t)) <

M for all t. If d(l ′1(t), l ′2(t))→∞ we get d
(
F (l1(t)), F (l2(t))

)
→ +∞, a

contradiction since F is Lipschitz. Therefore l ′1, l
′
2 are at bounded distance

and F is well-defined.
Injectivity is proved analogously: if l1 and l2 are divergent then l ′1 and

l ′2 also are because F is a pseudo-isometry. �

It remains to prove that the extension F : Hn → Hn is continuous. We
start by extending Lemma 5.2.10 from half-lines to lines.

Lemma 5.2.12. Let F : Hn → Hn be a pseudo-isometry. There is a
R > 0 such that for every line l there is a unique line l ′ with F (l) ⊂ NR(l ′).

Proof. Parametrize l as l : (−∞,+∞) → Hn with unit speed. By
cutting l into two half-lines we know that F (l(t)) is a curve that tends to
two distinct points x± ∈ ∂Hn as t → ±∞. Let l ′ be the line with endpoints
x±. For any t > 0 we have

F
(
l([−t, t])

)
⊂ NR

(
F (l(−t))F (l(t))

)
and by sending t → +∞ we deduce that F (l) ⊂ NR(l ′). �

The next lemma says that a pseudo-isometry does not distort much
lines and orthogonal hyperplanes. We will need it to prove continuity.

Lemma 5.2.13. Let F : Hn → Hn be a pseudo-isometry. There is a
R > 0 such that for any line l and hyperplane H orthogonal to l , the image
F (H) projects orthogonally to l ′ onto a bounded segment length smaller
than R.

Proof. See Figure 5.8. Consider a generic line s ⊂ H passing through
p = l ∩ H. By the previous lemmas F (s) ⊂ NR(s ′) with s ′ 6= l ′, and
the orthogonal projection on l ′ sends any other line s ′ onto a segment,
bounded by the images of the endpoints of s ′.
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l

H

l'

s

d
d

s1

s2

s'1

s'2

p

∞s
∞F(s )

F(p)

f

F

q

Figure 5.9. The lines s1 and s2 have a distance d from p

which depends on nothing (in fact, cosh d =
√

2). The lines
l ′, s ′1, and s

′
2 approximate up to an error R the images of l ,

s1, and s2 along F . The projection q of F (p) on l ′ is hence
R-close to F (p), which is in turn (C1d)-close to the lines
s ′i . Therefore q is (C1d + 2R)-close to both s ′1 and s ′2. This
easily implies that f is (C1d + 2R)-close to q.

Consider as in Figure 5.9 the line s, with one endpoint s∞ and the
corresponding endpoint F (s∞) of s ′. The figure shows that the projection
f of F (s∞) to l ′ is at bounded distance from a point q which does not
depend on s. �

Finally, we prove that the extended F is continuous.

Lemma 5.2.14. The extension F : Hn → Hn is continuous.

Proof. Consider x ∈ ∂Hn and its image F (x) ∈ ∂Hn. Let l be a half-
line pointing to x : hence l ′ points to F (x). The half-spaces orthogonal to l ′

determine a neighbourhood system for F (x): consider one such half-space
S.

Let R > 0 be as in the previous lemmas. The image F (l) is R-close
to l ′, hence for sufficiently big t the point F (l(t)) and its projection into
l ′ lie in S at distance > R from ∂S. By the previous lemma the image
F (H(t)) of the hyperplane H(t) orthogonal to l in l(t) is also contained
in S. Hence the entire half-space bounded by one such H(t) goes inside S
through F . This shows that F is continuous at every point x ∈ ∂Hn. �

With some effort, we have proved that every pseudo-isometry of Hn

extends continuously to the boundary. Theorem 5.2.1 now follows easily.

Proof of Theorem 5.2.1. We know that f̃ is a pseudo-isometry and
hence extends to a map f̃ : Hn → Hn that sends injectively ∂Hn to itself.
It remains to prove that f̃ |∂Hn is a homeomorphism.

Pick a smooth homotopic inverse g for f . The homotopy idM ∼ g ◦ f
lifts to a homotopy idHn ∼ g̃ ◦ f̃ for some lift g̃. Since M is compact,
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the latter homotopy moves every point at uniformly bounded distance and
hence g̃ ◦ f̃ extends continuously to the identity on ∂Hn, and the same
holds for f̃ ◦ g̃. Therefore g̃|∂Hn is the inverse of f̃ |∂Hn and they are both
homeomorphisms. �

5.2.4. References. As in the previous chapters, we have mostly con-
sulted Benedetti – Petronio [4], Ratcliffe [49], and Thurston’s notes [56].
The Epstein – Penner decomposition is taken from their 1988 paper [17].
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CHAPTER 6

Surfaces

A surface is a differentiable manifold of dimension n = 2, possibly
with boundary. The closed orientable surfaces are classified topologically
by their Euler characteristic, a complete invariant that also determines their
possible geometries: a closed surface has a hyperbolic, flat, or spherical
structure if and only if its Euler characteristic is negative, null, or positive.

We devote some time here to expose the topological classification
and the geometrisation of closed surfaces. Then we describe some of the
beautiful features of geometrisation: the geometry of a surface (typically,
hyperbolic geometry) can be used to prove in an elegant way various non-
trivial topological facts.

We end this chapter by defining and studying the mapping class group,
a group that encodes the topological symmetries of a surface.

6.1. Topological classification

A surface can be topologically quite complicated: think for instance
of R2 with a Cantor set removed. We decide to restrict our investigation
to the surfaces of finite type, i.e. obtained from a closed one by removing
points and/or open discs: these include all the compact surfaces with or
without boundary. We introduce here these surfaces and classify them up
to diffeomorphism.

We manipulate surfaces using various cut-and-paste tools: bound-
ary gluings, removal of discs or points, handle decompositions, connected
sums. See Section 1.1 to refresh these notions.

6.1.1. Gluing surfaces. A simple way to construct a surface is by
gluing simpler surfaces along their boundaries. We show here that the
glued surface depends only on the orientation classes of the gluing maps.

Two self-diffeomorphisms of S1 are co-oriented if they both preserve
or both invert the orientation of S1.

Lemma 6.1.1. Co-oriented self-diffeomorphisms of S1 are isotopic.

Proof. Let f0, f1 : S1 → S1 be two co-oriented self-diffeomorphisms.
Their lifts f̃0, f̃1 : R→ R are periodic and monotone, hence f̃t = (1− t)f̃0 +

tf̃1 also is and descends to an isotopy ft connecting f0 and f1. �

153
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Figure 6.1. A surface of genus 3 may be represented in
various ways.

Corollary 6.1.2. If we glue two oriented surfaces along their boundaries
via orientation-reversing diffeomorphisms, the resulting oriented surface
does not depend on the diffeomorphisms chosen.

Proof. All the orientation-reversing gluing maps are isotopic by Lemma
6.1.1, and isotopic gluing maps produce diffeomorphic manifolds, as stated
in Proposition 1.1.15. �

In a non-oriented context, we have two possible maps for every glued
boundary component.

Corollary 6.1.3. If we glue two discs we get a sphere.

Proof. The two discs are copies of D2 ⊂ C glued along a diffeo-
morphism ϕ : S1 → S1. Up to mirroring one we may suppose that ϕ is
orientation-reversing, and by Corollary 6.1.2 we may suppose that ϕ(z) =

z̄ . The resulting surface is diffeomorphic to a sphere (exercise). �

Warning 6.1.4. In dimension n > 7, by gluing two discs we may get
a manifold that is homeomorphic but not diffeomorphic to a sphere! See
Section 6.4.2.

6.1.2. Classification of surfaces. In Section 1.1.13 we introduced the
connected sum, a two-steps operation which consists of first removing balls
and then gluing the new sphere boundaries. Let Sg be the connected sum

Sg = T# . . .#T︸ ︷︷ ︸
g

of g tori T = S1 × S1. By convention S0 = S2 is the sphere and S1 = T

is the torus. The number g is the genus of the closed surface Sg. The
surface Sg may be represented in R3 in various ways, see Figure 6.1.

Proposition 6.1.5. We have χ(Sg) = 2− 2g.

Proof. Let S, S′ be surfaces andD ⊂ int(S), D′ ⊂ int(S′) discs. Then

χ(S#S′) = χ(S \D) + χ(S′ \D′)− χ(S1) = χ(S) + χ(S′)− 2.

Therefore χ(Sg) = 2− 2g by induction on g. �
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Figure 6.2. The 0-handle and k 1-handles form a subsur-
face S′ ⊂ S with connected boundary, to which the 2-handle
is attached (left). A 0-handle and two linked 1-handles (cen-
tre). If we attach a 2-handle to the centre figure we get a
handle decomposition of the torus (right).

Theorem 6.1.6 (Classification of surfaces). Every closed, connected,
orientable surface is diffeomorphic to Sg for some g > 0.

Proof. Being a closed manifold, every closed orientable surface S has
a handle decomposition. By Proposition 1.7.13 it has one with one 0-
handle, a certain number k of 1-handles, and one 2-handle. We get
χ(S) = 2 − k. We prove by induction on k that k = 2g is even and
S is diffeomorphic to Sg.

If k = 0 then S is obtained by gluing two discs (the 0- and 2-handle)
and is hence a sphere by Corollary 6.1.3.

Suppose k > 0. The 0-handle is a disc and the 1-handles are rectan-
gles attached to its boundary as in Figure 6.2-(left). Note that since S is
orientable every rectangle is attached without a twist, otherwise it would
create a Möbius strip. The 0- and 1-handles altogether form a compact
surface S′ ⊂ S with only one boundary component, to which the 2-handle
is attached.

Since ∂S′ is connected, every rectangle is linked to some other rec-
tangle as in Figure 6.2-(centre). A pair of linked rectangles form a sub-
subsurface S′′ ⊂ S′ ⊂ S as in Figure 6.2-(centre) with connected boundary.
If we cut S along the curve ∂S′′ and then cap off with two discs we perform
the inverse of a connected sum.

Therefore S = S1#S2, where S1 is S′′ with a disc attached, i.e. a
torus as Figure 6.2-(right) shows. The surface S2 decomposes into a 0-
handle, k − 2 1-handles, and one 2-handle. We conclude by induction on
k. �

6.1.3. Homology. The homology of Sg is easily calculated.

Proposition 6.1.7. We have

H0(Sg,Z) = Z, H1(Sg,Z) = Z2g, H2(Sg,Z) = Z.
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Figure 6.3. These 6 oriented curves represent a symplectic
basis for H1(S3,Z) = Z6.

Figure 6.4. The finite type surface Sg,b,p.

Proof. Since Sg is closed, connected, and orientable, we haveH0(Sg) =

H2(Sg) = Z. Since χ(Sg) = 2 − 2g, the group H1(Sg) has rank 2g. By
Poincaré duality H1(Sg) = H1(Sg) = Hom(π1(Sg),Z) has no torsion. �

Recall from Section 1.6.3 that by fixing an orientation for Sg we get
a symplectic intersection form ω on H1(Sg,Z). A basis for H1(Sg,Z) is
symplectic if ω =

(
0 Ig
−Ig 0

)
with respect to this basis: see Figure 6.3.

The algebraic intersection of two closed curves is the intersection form
of their classes in H1(Sg,Z); if the curves are transverse, this is just the
algebraic sum of their intersections, where each intersection counts as ±1

according to the local orientations.

6.1.4. Surfaces of finite type. We extend our investigation to a larger
interesting class of surfaces.

Definition 6.1.8. Let g, b, p > 0 be three natural numbers. The sur-
face of finite type Sg,b,p is the surface obtained from Sg by removing the
interior of b disjoint discs and p points.

See Figure 6.4. We say that Sg,b,p has genus g, has b boundary
components, and p punctures. Its Euler characteristic is

χ(Sg,b,p) = 2− 2g − b − p.
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We also use the notation Sg,b to indicate Sg,b,0.

Proposition 6.1.9. Every compact connected orientable surface with
boundary is diffeomorphic to Sg,b for some g, b > 0.

Proof. Let S be a compact orientable surface with some b boundary
components. If we glue b discs to ∂S we get a closed orientable surface,
hence diffeomorphic to Sg for some g > 0. The original S is obtained from
Sg by removing the interiors of b disjoint open discs. �

The compact connected orientable surfaces with χ > 0 are S2 = S0

and D2 = S0,1, while those with χ = 0 are the annulus A = S0,2 and the
torus T = S1.

Corollary 6.1.10 (Smooth Jordan curve Theorem). Every smooth sim-
ple closed curve γ ⊂ R2 bounds a disc.

Proof. Consider the curve γ inside S2 = R2 ∪ {∞}. By cutting S2

along γ we get one or two compact orientable surfaces with non-empty
boundary and with χ = 2 in total. The only possibility is that we get two
discs. �

6.1.5. Triangulations. Like every honest smooth compact manifold,
compact surfaces admit smooth triangulations, see Section 1.7.7. Con-
versely, we may use simplicial complexes to construct smooth surfaces
combinatorially.

Let X be a two-dimensional pure simplicial complex where every edge
is incident to two faces, and the link of every vertex is a circle.

Proposition 6.1.11. The complex X is the smooth triangulation of a
closed surface S, unique up to diffeomorphism.

Proof. By dualising X we get a handle decomposition: triangles,
edges, and vertices transform into 0-, 1-, and 2-handles, and we get a
smooth surface S triangulated by X. The way the handles are attached
is determined up to isotopy, therefore S is determined up to diffeomor-
phism. �

Warning 6.1.12. It is worth noting that this procedure (getting a
unique smooth structure from a simplicial complex) does not work in all
dimensions (here we used implicitly Lemma 6.1.1).

6.2. Geometrisation

We now prove that every surface Sg,b,p of finite type can be ge-
ometrised, that is it may be equipped with a hyperbolic, flat, or elliptic
metric. The metric type is prescribed by the sign of the Euler characteris-
tic of the surface.
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a b

c

b

c c

Figure 6.5. A pair-of-pants, an annulus with one puncture, a
disc with two punctures, and a thrice-punctured sphere. The
last three surfaces may be considered as some degenerated
hyperbolic pairs-of-pants where one or more boundary lengths
a, b, or c are zero, and we get cusps instead of geodesic
boundary components there.

6.2.1. Hyperbolic pair-of-pants. The sphere has of course an ellip-
tic structure, and the torus has many flat structures, see Section 3.4.8.
We now construct hyperbolic structures on all the surfaces Sg of genus
g > 2, and more generally on all the surfaces Sg,b,p of negative Euler char-
acteristic. We start with a simple block, the pair-of-pants S0,3, with Euler
characteristic −1.

Proposition 6.2.1. Given three real numbers a, b, c > 0 there is (up to
isometries) a unique complete finite-volume hyperbolic pair-of-pants with
geodesic boundary, with boundary curves of length a, b, and c.

When some length in a, b, c is zero, we mean that the geodesic bound-
ary is actually a cusp (recall Section 4.2.5) and hence the surface is topo-
logically a punctured annulus S0,2,1, a twice punctured disc S0,1,2, or a
thrice-punctured sphere S0,0,3: see Figure 6.5.

To prove this proposition we construct some right-angled hexagons
in H2 as in Figure 6.6-(left). Three alternate sides on a hexagon are
three pairwise non-incident sides, like the a, b, c shown in the figure. A
degenerate hexagon is one where the length of some alternate sides is zero
as in Figure 6.7.

Lemma 6.2.2. Given three real numbers a, b, c > 0 there exists (up to
isometries) a unique (possibly degenerate) hyperbolic right-angled hexagon
with three alternate sides of length a, b, and c.

Proof. We first suppose a, b > 0. The construction of the hexagon
is depicted in Figure 6.6-(right). If x = 0 the blue lines coincide, hence
P = Q and f (0) = 0. The function f : [0,+∞)→ [0,+∞) is continuous,
strictly monotonic, and with limx→∞ f (x) =∞: therefore there is precisely
one x such that f (x) = c.

If exactly two parameters are zero, say a = b = 0, a simpler construc-
tion works: take a segment of length c as in Figure 6.7-(centre), draw the
perpendiculars at their endpoints, and a line connecting the endpoints of
these.
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x

f(x)

a b

c

a b

P Q

A B

A' B'

r s

T U

l

Figure 6.6. A right-angled hexagon with alternate sides of
length a, b and c (left) and its construction (right), which
goes as follows: take a line l with two arbitrary points A
and B in it (bottom black). Draw the perpendiculars from
A and B (red). At distances a and b we find two points A′

and B′ and we draw again two perpendiculars (black) r and
s, with some points at infinity P and Q. Draw the (unique)
perpendiculars to l pointing to P and Q (blue): they intersect
l in two points T and U. Note that AT and UB have some
fixed length depending only on a and b. We can vary the
parameter x = TU: if x > 0 the lines r and s are ultra-
parallel and there is a unique segment orthogonal to both of
some length f (x).

Figure 6.7. A right-angled hexagon with parameters
a, b, c > 0 degenerates to a pentagon, quadrilateral, or tri-
angle with ideal vertices if one, two, or three parameters are
zero.

If a = b = c = 0, pick any ideal triangle. Ideal triangles are indeed
unique up to isometry: use the half-space model and recall that PSL2(R)

acts transitively on the ordered triples of points in ∂H2. �

The most degenerate case is so important that we single it out.

Corollary 6.2.3. All the ideal triangles in H2 are isometric.
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Figure 6.8. By gluing two identical right-angled hexagons
along their black sides we get a hyperbolic pair-of-pants with
geodesic boundary.

By gluing two identical (possibly degenerate) hexagons along alternate
sides as in Figure 6.8 we construct a (possibly degenerate) hyperbolic pair-
of-pants whose geodesic boundary consists of three simple closed geodesics
of length 2a, 2b, and 2c.

Proof of Proposition 6.2.1. We have proved the existence of a geo-
desic pairs-of-pants with any parameters a, b, c > 0, and we now turn to
its uniqueness. Let P be a pair-of-pants with geodesic boundary curves
C1, C2, C3 of length a, b, c > 0.

Since P, C1, and C2 are compact, there are points x1 ∈ C1 and x2 ∈ C2

at minimum distance d = d(x1, x2), connected by some curve γ3 of length
d . The curve is a simple geodesic orthogonal to both C1 and C2: if not,
some other curve connecting x1 and x2 would be shorter. We construct
analogously two orthogeodesics γ1 and γ2 connecting C2 to C3 and C3 to
C1 having minimal length.

The fact that γ1, γ2, γ3 have minimal length easily implies that they
are disjoint (if they intersect, we find shorter curves). The three ortho-
geodesics subdivide P into two hexagons, with alternate sides of length
L(γ1), L(γ2), and L(γ3): by Lemma 6.2.2 the two hexagons are isomet-
ric, and hence the three other alternating sides also have the same length
a
2
, b

2
, and c

2
. Hexagons are unique up to isometry and hence the original

pair-of-pants also are.
We can extend the argument to the more general case 2a, 2b, 2c > 0

as follows. If a = 0, a neighbourhood of the puncture is a cusp, and we
truncate it at some small horocycle C1 (we do the same if b = 0 or c = 0).
After these truncations we get a compact pair-of-pants (whose boundary
is not geodesic at the horocycles) and decompose it into two hexagons as
above. The resulting curve γ3 is orthogonal to the horocycle C1, hence it
extends to a half-line pointing towards the puncture. The curves γ1, γ2, γ3

decompose the surface into degenerate hexagons. �

6.2.2. Hyperbolic surfaces. The pairs-of-pants can be used as build-
ing blocks to construct topologically all finite type surfaces with χ < 0.
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Figure 6.9. Every surface of finite type with χ < 0 decom-
poses into pair-of-pants. We show here a decomposition of
S3.

Proposition 6.2.4. If χ(Sg,b,p) < 0 then Sg,b,p decomposes topologi-
cally into −χ(Sg,b,p) (possibly degenerate) pairs-of-pants.

Proof. If b + p = 0 then g > 2 and the surface decomposes easily
in many ways, see for instance Figure 6.9. If b + p > 0 and χ < −1, a
decomposition for Sg,b,p may be obtained from one of Sg,b−1,p or Sg,b,p−1

by inserting one more (possibly degenerate) pair-of-pants. If χ = −1 the
surface is either a pair-of-pants, or a torus with a puncture or boundary
component, which is in turn obtained by glueing two boundary components
of a pair-of-pants. �

We can use this building block to construct hyperbolic structures.

Corollary 6.2.5. If χ(Sg,b,p) < 0 then Sg,b,p admits a complete hyper-
bolic metric with b geodesic boundary components of arbitrary length.

Proof. Decompose Sg,b,p in pair-of-pants, assign an arbitrary length
to all the closed curves of the decomposition (the 6 red curves shown in
Figure 6.9) and give each pair-of-pants the hyperbolic metric determined
by the three assigned boundary lengths. Everything glues to a complete
hyperbolic metric for Sg,b,p thanks to Proposition 3.5.4. �

Can we geometrise the few orientable surfaces with χ > 0? Yes,
but since there are no cusps in the elliptic and flat geometries we do not
consider surfaces with punctures. The compact orientable surfaces with
χ > 0 are the sphere and the disc, and they all have an elliptic metric with
geodesic boundary (represent the disc as a hemisphere). Those with χ = 0

are the torus and the annulus, and they admit flat metrics with geodesic
boundary.
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Figure 6.10. The Klein bottle immersed in R3.

6.2.3. Non-orientable surfaces. The classification of all the finite-
type non-orientable surfaces is also simple. Let Sno

g be the connected sum

Sno
g = RP2# . . .#RP2︸ ︷︷ ︸

g

of g > 1 copies of the projective plane RP2.

Proposition 6.2.6. We have χ(Sno
g ) = 2 − g. The surface Sno

2 is
diffeomorphic to the Klein bottle K shown in Figure 6.10. We have

Sg#RP2 ∼= Sno
2g+1.

Proof. The formula for χ follows from χ(RP2) = 1. The Klein bottle
K may be cut along a closed curve into two Möbius strips, and RP2 minus
an open disc is a Möbius strip too, hence RP2#RP2 = K. The latter
equality is a consequence of T#RP2 ∼= K#RP2 which is left as an exercise.

�

Proposition 6.2.7. Every closed, connected, non-orientable surface is
diffeomorphic to Sno

g for some g > 1.

Proof. Pick a handle decomposition of the surface S. Since it is non-
orientable, at least one 1-handle is twisted and forms a Mb̈ius strip. We
have proved that S contains a Möbius strip, and we now remove it and
substitute it with a disc to get a new surface S′. We have S = S′#RP2

and we conclude by induction on −χ(S′). �

We may also denote by Sno
g,b,p the surface obtained from Sno

g by re-
moving the interiors of b discs and p points.

Exercise 6.2.8. If χ(Sno
g,b,p) < 0 then Sno

g,b,p decomposes into pairs-
of-pants and hence admits a complete hyperbolic metric with geodesic
boundaries of arbitrary length.

As in the orientable case, compact surfaces with χ > 0 can be ge-
ometrised: these are RP2, the Möbius strip, and the Klein bottle. The
first has an elliptic structure while the other two have flat structures with
geodesic boundary.
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n
n2

Figure 6.11. A mirror, a cone point, and a corner reflector
on a two-dimensional orbifold.

6.2.4. Orbifolds. We can push the classification and geometrisation
further to compact two-dimensional orbifolds.

The finite subgroups of O(2) are: the cyclic Z2 generated by a re-
flection, the cyclic Zn generated by a rotation, and the dihedral D2n con-
taining reflections and rotations. Therefore every singular point x on a
two-dimensional orbifold O is locally of one of these types:

V/Z2 , V/Zn , V/D2n

with V the unit ball in R2. The point x is called respectively a mirror, a
cone, and a corner reflector point of O, see Figure 6.11.

We consider for simplicity only locally orientable orbifolds, i.e. orbifolds
with isotropy groups in SO(2). In other words, we exclude mirrors and
corner reflectors. One such orbifold O is easily encoded as

(S, p1, . . . , pk)

where S is a surface, and the orbifold O is S with k cone points with
rotational isotropy groups of order p1, . . . , pk > 1. We do not require O
to be globally orientable, so S can be a non-orientable surface like RP2.
We define the Euler characteristic of that orbifold as

χ(O) = χ(S)−
∑(

1− 1

pi

)
.

This definition is designed to behave well under coverings. The degree of
an orbifold covering O → O′ is the cardinality of the fibre of any non-
singular point in O′.

Proposition 6.2.9. If O → O′ is a degree-d orbifold covering then

χ(O) = d · χ(O′).

Proof. Pick a cellularisation of O′ whose vertices contain the cone
points: it lifts to a similar cellularisation of O. We consider all the vertices
of these cellularisations as cone points, possibly with order 1, and we get

χ(O′) = V − E + F −
∑(

1− 1

p′i

)
= −E + F +

∑ 1

p′i
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orbifold Γ

S2 {e}

(S2, n, n) Zn
RP2 Z2

(RP2, n) D2n

orbifold Γ

(S2, 2, 2, n) D2n

(S2, 2, 3, 3) T12

(S2, 2, 3, 4) O24

(S2, 2, 3, 5) I60

Table 6.1. Except the two bad cases, every locally orientable
closed orbifold O with χ(O) > 0 can be geometrised as O =

S2/Γ for some discrete Γ < O(3). In all cases Γ < SO(3)

and hence O is orientable, except RP2 and (RP2, n) whose Γ

contains the antipodal map. The groups on the right table
are the spherical Von Dyck groups, see Section 3.6.4. The
groups T12, O24, I60 are the orientation-preserving isometry
groups of the tetrahedron, octahedron, and icosahedron, and
are isomorphic to A4, S4, A5 respectively.

where V, E, F is the number of vertices, edges, and faces in the cellulari-
sation of O′. The same formula holds for O:

χ(O) = −dE + dF +
∑ 1

pj
.

A cone point of order p′i in O′ lifts to some cone points with orders
pj1 , . . . , pjl of O, such that

d =

l∑
a=1

p′i
pja

=⇒ d · 1

p′i
=

l∑
a=1

1

pja
.

This implies that χ(O) = d · χ(O′). �

6.2.5. Geometrisation of orbifolds. Recall that an orbifold is good
if it is covered by a manifold. With a couple of exceptions, all the closed
two-orbifolds are good and geometric.

Theorem 6.2.10. Every closed locally orientable 2-orbifold O is good
except the following

(S2, p), (S2, p1, p2)

with p1 6= p2. A good orbifold O has an elliptic, flat, hyperbolic structure
⇐⇒ χ(O) is positive, zero, negative. The elliptic orbifolds are listed in
Table 6.1.

Proof. The orbifolds (S2, p) and (S2, p1, p2) are bad: subdivide S2

into two discs, each containing at most one cone point; each disc has
a unique surface (disc) covering, but the two coverings do not match if
p 6= 1 or p1 6= p2. The remaining orbifolds with χ(O) > 0 are

S2, (S2, n, n), RP2, (RP2, n),
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Figure 6.12. For every angle α 6 π
2
and lengths b, c > 0

there is a pentagon as shown (left); by doubling it along
the unmarked edges we get a hyperbolic annulus with a cone
point of angle 2α. For every angles α, β 6 π

2
and every

length c > 0 there is a quadrilateral as shown (right). By
doubling it along the unmarked edges we get a hyperbolic
disc with cone points of angle 2α and 2β.

(S2, 2, 2, n), (S2, 2, 3, 3), (S2, 2, 3, 4), (S2, 2, 3, 5)

and they can all be realised as S2/Γ for an appropriate finite Γ < O(3), see
Table 6.1. The orbifolds with χ(O) = 0 are

(S2, 2, 3, 6), (S2, 2, 4, 4), (S2, 3, 3, 3), (S2, 2, 2, 2, 2),

(RP2, 2, 2), K, T

where K and T are the Klein bottle and the torus. The first four orbifolds
were obtained as R2/Γ in Section 3.6.4. The orbifold (RP2, 2, 2) is R2/Γ

where Γ is generated by two glide reflections with orthogonal axis:

(x, y) 7→ (x + 1,−y), (x, y) 7→ (−x, y + 1).

To prove this, consider the fundamental domain [− 1
2
, 1

2
]× [− 1

2
, 1

2
].

If χ(O) < 0 we construct a hyperbolic metric as we did in the surface
case. If O = (S2, p1, p2, p3) we get O = H2/Γor(p1,p2,p3) using Von Dyck
groups, see Section 3.6.4. Otherwise, the orbifold O easily decomposes
along disjoint simple closed curves (that avoid the cone points) into some
basic pieces with χ < 0, which are of the following kind:

P, (A, p), (D, p1, p2)

where P,A,D are the pair-of-pants, the annulus, and the disc, and (p1, p2) 6=
(2, 2). We can give a hyperbolic structure to P with any fixed length at
the boundaries.

Analogously, we can give a cone manifold structure with geodesic
boundary to (A, p) (respectively, (D, p1, p2)) with one (two) cone point
of angle 2π

p
( 2π
p1

and 2π
p2
), for any fixed lengths at the boundaries. We

already know this for P , and the proof for (A, p) and (D, p1, p2) is similar:
instead of constructing right-angled hexagons, we construct pentagons
with angles π

2
, π

2
, π

2
, π

2
, π
p
and quadrilaterals with angles π

2
, π

2
, π
p1
, π
p2
, and

we double them, see Figure 6.12.
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By gluing all the pieces we obtain a hyperbolic cone structure on O
with cone angles 2π

pi
and we apply Proposition 3.6.18 to translate it to a

hyperbolic orbifold structure. �

Recall that an orbifold is very good if it is finitely covered by a manifold.
In the following corollary we use the geometrisation to prove shortly a non-
trivial topological fact.

Corollary 6.2.11. Every good closed locally orientable 2-orbifold is also
very good.

Proof. It is geometric, so Corollary 3.6.19 applies. �

The punctured case is also interesting when χ(O) < 0. We define a
punctured orbifold to be one of type

O = (Sg,0,b, p1, . . . , pk).

Theorem 6.2.12. Every punctured orbifold O with χ(O) < 0 has a
hyperbolic structure.

Proof. Same proof as above, where we use triangular groups with
possibly ideal vertices and we allow the pieces P , (A, p), (D, p1, p2) to
have boundary components and/or cone points that degenerate to cusps.
To construct them we build hexagons, pentagons, quadrilaterals with some
lengths or angles that may be zero. �

These punctured orbifolds are also very good for the same reason
above. It is also possible to consider orbifolds based on surfaces Sg,b,p with
boundary: every boundary component can be considered in two natural
but distinct ways, either as a mirror (hence the orbifold is locally non-
orientable), or as a boundary component: to do this we need to define an
appropriate notion of orbifold with boundary.

6.2.6. Gauss–Bonnet formula. How can we compute the area of a
hyperbolic surface? We can easily answer this question in the closed case.

Proposition 6.2.13 (Gauss–Bonnet). Let S be a closed hyperbolic
surface. We have

Area(S) = −2πχ(S).

Proof. Pick a Dirichlet domain D for S. It is a (2n)-gon with inner
angles α1, . . . , α2n. By Proposition 3.2.9 we have

Area(S) = Area(D) = (2n − 2)π −
2n∑
i=1

αi .

The surface S is obtained from D by gluing isometrically some pairs of
edges. We get a cellularisation of S with some v vertices, n edges, and
one face D. Therefore

χ(S) = v − n + 1.
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Each of the v vertices is obtained by identifying some of the vertices of
D, whose inner angles must sum to 2π. Therefore we get

2n∑
i=1

αi = 2πv

and hence

Area(S) = (2n − 2)π − 2πv = −2π(v − n + 1) = −2πχ(S).

The proof is complete. �

We can extend the formula to orbifolds and to the other geometries.

Corollary 6.2.14. Let O be a closed hyperbolic, flat, or elliptic locally
orientable 2-orbifold. We have

K · Area(O) = 2πχ(O)

where K = −1, 0, or +1 respectively.

Proof. If O is an orientable surface, then the equality holds: in the
hyperbolic case this is Proposition 6.2.13, in the flat case we get 0 = 0,
and in the elliptic case S = S2 and Area(S2) = 4π = 2πχ(S2).

In general there is a degree-d covering S → O of an orientable geo-
metric surface S by Corollary 6.2.11. The equality holds for S and hence
also for O since

χ(S) = d · χ(O), Area(S) = d · Area(O).

The proof is complete. �

6.2.7. Lie subgroups of SO(3). The following proposition is of gen-
eral interest and is used in many different contexts. It shows, among other
things, that orientable elliptic orbifolds are rigid : their geometry is fully
determined by their fundamental group. (Flat and hyperbolic surfaces are
not rigid, as we will soon see.)

Proposition 6.2.15. Every non-trivial proper Lie subgroup of SO(3) is
conjugate to one of the following:

Cn, D2n, T12, O24, I60, SO(2), SO(2) o C2.

These are the orientation-preserving isometry groups of: a regular n-
pyramid, n-prism, tetrahedron, octahedron, icosahedron, cone, and cylin-
der.

Proof. The Lie algebra g = so(3,R) is generated by the matrices

Ax =

0 0 0

0 0 −1

0 1 0

 , Ay =

 0 0 1

0 0 0

−1 0 0

 , Az =

0 −1 0

1 0 0

0 0 0


with the relations

[Ax , Ay ] = Az , [Ay , Az ] = Ax , [Az , Ax ] = Ay .
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Therefore g is isomorphic to R3 equipped with the standard vector product
×. We deduce that the only non-trivial proper sub-algebras of g have
dimension 1, and hence every non-trivial proper Lie subgroup G < SO(3)

has dimension 0 or 1.
If a Lie subgroup G < SO(3) has dimension zero, it is finite. Every

non-trivial element in G is a rotation along some axis, and hence it acts on
S2 with two (antipodal) fixed points. Let P ⊂ S2 be the set of the fixed
points of all the non-trivial elements of G.

The group G clearly acts on P , and a double-counting argument gives

2
(
|G| − 1

)
=
∑
p∈P

(
|Gp| − 1

)
where Gp < G is the stabiliser of p. The fundamental theorem on group
actions says that

|Gp| =
|G|
|O(p)|

where O(p) is the orbit of p. Therefore

2
(
|G| − 1

)
=
∑
p∈P

(
|G|
|O(p)| − 1

)
=
∑
O

(
|G| − |O|

)
where in the latter we sum on orbits O. We divide by |G| to get

(3) 2− 2

|G| =

r∑
i=1

(
1− 1

ai

)
where a1, . . . , ar are the orders of the stabilisers of the r orbits.

If r = 1 we get a1 = |G| = 1 and hence G is trivial, a contradiction.
If r = 2 we get a1 = a2 = |G| and hence every orbit is a single point, with
stabiliser G. Therefore the points are antipodal and G = Cn.

If r = 3 then (a1, a2, a3) is a triple with 1
a1

+ 1
a2

+ 1
a3
> 1, that is one

of
(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

In each case one calculates |G| using (3) and deduces the cardinalities
of the three orbits. For instance in the (2, 2, n) case we have |G| = 2n

and the orbits have cardinality (n, n, 2). One deduces that G contains an
index-two cyclic group Cn and is the symmetry group D2n of the prism.

In the (2, 3, 3) case we get |G| = 12 and hence the orbits have order
(6, 4, 4). The stabiliser of a point in the order-4 orbit O is a 2π

3
-rotation

that rotates the other three points: one deduces that the points in O are
the vertices of a regular tetrahedron and G is its symmetry group. The
other cases are treated analogously.

If G has dimension one, it contains the group SO(2) of all rotations
along some axis r . Either G = SO(2), or there is a g ∈ G \ SO(2). If
g(r) 6= r , then G contains another SO(2) of rotations along g(r), and
these two copies of SO(2) generate a Lie subgroup of dimension > 2

in G, a contradiction. Therefore every element in G \ SO(2) preserves
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r and is hence a π-rotation along an axis perpendicular to r . Therefore
G = SO(2) o C2. �

6.3. Curves on surfaces

It is natural to study a manifold by examining the lower-dimensional
sub-manifolds that it contains: we now look at closed curves in surfaces
and unveil an unexpectedly rich world. We will discover that the study of
curves in surfaces is tightly connected to hyperbolic geometry: each of the
two topics seems designed to give us a better understanding of the other.

We first prove various facts on curves, and then we use this knowledge
to deduce some topological non-trivial results on surfaces. We will end
up by showing that two self-diffeomorphisms of a closed surface Sg are
homotopic if and only if they are isotopic, a theorem that will be important
also in our topological study of three-manifolds in the subsequent chapters.

We concentrate for simplicity on the genus-g closed orientable sur-
faces Sg, although much of the discussion could be easily extended to
finite-type surfaces Sg,b,p with the appropriate modifications.

6.3.1. Definitions. We start by recalling and fixing some definitions.
A curve on a differentiable manifold M is a smooth map γ : I → M defined
on some interval I, while a closed curve is a smooth map γ : S1 → M.

A (possibly closed) curve γ is regular if γ ′(t) 6= 0 for all t. All the
curves will be tacitly assumed to be regular; moreover, with a little abuse
we will sometimes indicate by γ the support of the curve γ, that is its
image.

A curve is simple if it is an embedding, and the support of a simple
closed curve is a one-dimensional submanifold of M diffeomorphic to S1.
Recall that all isotopies are smooth by assumption, see Section 1.1.9.
Two simple closed curves are isotopic if and only if they are ambiently
isotopic. Two simple closed curves with the same support and orientation
are isotopic by Lemma 6.1.1.

6.3.2. Simple closed curves on the sphere. We would like to classify
the simple closed curves on a given closed surface up to isotopy, but we
will soon realise that this task is harder than one could expect. A closed
surface may contain many complicated closed curves, difficult to draw and
visualise.

For the moment we content ourselves with a very simple case. A
simple closed curve on a surface S is trivial if it bounds a disc.

Proposition 6.3.1. All simple closed curves in S2 are isotopic.

Proof. Every simple closed curve in S2 is trivial by Jordan’s Theorem
(see Corollary 6.1.10).

Theorem 1.1.14 and Lemma 6.1.1 together imply that there are at
most two isotopy classes of trivial simple closed curves on any connected
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surface S, depending on their orientations. When S = S2 the situation
is quite special and the two classes reduce to one: a π-rotation along a
horizontal axis transforms an eastward-run equator into a westward-run
one. �

The simple closed curves in a torus are much more interesting.

6.3.3. Simple closed curves in the torus. We now classify the simple
closed curves in the torus T = S1 × S1 up to isotopy. The fundamental
group π1(T ) = Z× Z is abelian, hence a closed curve γ is determined up
to free homotopy by its class (m, n) ∈ Z× Z.

Proposition 6.3.2. The class (m, n) 6= (0, 0) is represented by a simple
closed curve if and only if m and n are coprime. In that case, the simple
closed curve is unique up to isotopy.

Proof. We visualise the torus as a quotient T = R2/Z2 . If m and n
are coprime, the vector line generated by (m, n) ∈ R2 projects to a simple
closed curve in T representing the class (m, n), see Figure 6.13.

Conversely, let γ ⊂ T be a simple closed curve. We cut T along γ and
get a surface S with χ(S) = 0. If γ separates, then by the classification
of surfaces the only possibility is that S consists of a one-holed torus and
a disc, so γ is trivial and (m, n) = (0, 0), which is excluded. If γ does not
separate, there is another curve η intersecting it transversely in one point.
This implies that η and γ have algebraic intersection ±1 and hence (m, n)

are coprime: if (m, n) = k(p, q) with k > 2 the algebraic intersection
would be divided by k.

Finally, we pick two simple closed curves γ, η of the same type (m, n) 6=
(0, 0) and prove that they are isotopic. We put γ, η in transverse position,
and we cut T along γ to get an annulus A. If η does not intersect γ, by
cutting A along η we get two annuli: hence η and γ cobound an annulus
and we can use this annulus to build an isotopy between them. If η inter-
sects γ, the curve η decomposes into arcs in A as in Figure 6.14-(left).
Since the algebraic intersection of η and γ is zero, there is an arc with
both endpoints in the same boundary component of A. This arc forms a
bigon, which we can slide by isotopy as in Figure 6.14-(right) to decrease
the intersection points in γ ∩ η and conclude by induction. �

Simple closed curves in surfaces of higher genus are more complicated
to classify, but are still very important. A couple of techniques used in
the previous proof (cutting along curves and simplifying bigons) will be
employed again in the higher-genus context.

6.3.4. Preliminaries on simple curves. Let Sg be a closed orientable
surface of some genus g > 1. We now prove some topological facts on
simple closed curves in Sg, sometimes employing hyperbolic geometry.
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Figure 6.13. If (m, n) are coprime the line generated by
(m, n) ∈ R2 projects to a simple closed curve in T . Here
(m, n) = (3, 2).

Figure 6.14. Two homotopic simple closed curves in a torus
are isotopic: put them in transverse position, cut the first to
get an annulus, then remove bigons to destroy intersections.

Proposition 6.3.3. There are finitely many simple closed curves in Sg
up to diffeomorphisms of Sg.

Proof. By cutting Sg along a simple closed curve γ we get a surface
S′ with the same Euler characteristic as Sg, with one or two components,
and with the boundary oriented as γ: there are only finitely many diffeo-
morphism types for S′.

Suppose that by cutting Sg along γ1 and γ2 we get two surfaces S′1 and
S′2 of the same type. By hypothesis there is a diffeomorphism ϕ : S′1 → S′2
that preserves the boundary orientations. By Lemma 6.1.1 we may modify
ϕ near the boundary so that it extends to a diffeomorphism ϕ : Sg → Sg
sending γ1 to γ2. This concludes the proof. �

Exercise 6.3.4. There is precisely one non-separating simple closed
curve in Sg up to diffeomorphism!

Every non-separating simple closed curve in Sg may be transformed
into your favourite one by some diffeomorphism of Sg, see Figure 6.15.
This quite useful fact, analogous to the possibility of changing a basis in
a vector space, was called the change of coordinates principle by Farb and
Margalit.

Recall that a non-trivial element g ∈ G in a group is primitive if it
cannot be written as g = hn for some n > 2 and some h ∈ G. This
condition is conjugacy-invariant, so the following makes sense.
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Figure 6.15. There are infinitely many non-separating sim-
ple closed curves in Sg up to isotopy when g > 1, but there is
only one up to self-diffeomorphism of Sg . For instance, some
diffeomorphism of S2 sends the blue simple closed curve to
the red one (a self-diffeomorphism may be quite hard to vi-
sualise directly...).

Proposition 6.3.5. Let γ be a simple closed curve in Sg. It holds:

• if γ is homotopically trivial, it bounds a disc;
• if γ is not homotopically trivial, it is primitive in π1(Sg).

Proof. Let S′ be the surface obtained by cutting S = Sg along γ.
The surface S′ may have one or two components and has the same Euler
characteristic of S. If one component of S′ is a disc, we are done. If S′ is
an annulus, then S is a torus and we are done by Proposition 6.3.2.

In all the other cases there is a hyperbolic metric on S where γ is
a geodesic: each component of S′ has negative Euler characteristic and
hence can be given a hyperbolic structure with geodesic boundary curves
of length 1; by gluing them we get the hyperbolic metric on S.

We now apply Proposition 4.1.13 multiple times. Since γ is a closed
geodesic, it is not homotopically trivial. If γ = ηk is not primitive in π1(Sg),
then η is homotopic to a closed geodesic η̄ and hence γ is homotopic to
η̄ run k times: a closed curve cannot be homotopic to two distinct closed
geodesics, a contradiction. �

We have employed hyperbolic geometry to prove a topological fact
on surfaces: this will be a refrain in this chapter. Let the inverse γ∗ of a
closed curve γ be γ run with opposite orientation.

Proposition 6.3.6. A non-trivial simple closed curve in Sg is never
freely homotopic to its inverse.

Proof. If g = 1 the curves γ and γ∗ represent distinct elements (and
hence conjugacy classes) in π1(S1) = Z×Z. If g > 2, give Sg a hyperbolic
metric. The curve γ is homotopic to a closed geodesic γ̄ and hence γ∗ is
homotopic to its inverse γ̄∗, which is distinct from γ̄ as a closed geodesic
by definition. Distinct closed geodesics are not homotopic. �

6.3.5. Simple closed geodesics. Let now Sg have genus g > 2 and
be equipped with a hyperbolic metric. We know from Corollary 4.1.14 that
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Figure 6.16. The cones and bananas R-neighbourhoods of
a geodesic l in the half-plane (left) and disc (right) models.

every homotopically non-trivial closed curve in Sg has a unique geodesic
representative. We now prove that, if the original curve is simple, then the
geodesic representative also is.

Recall that the R-neighbourhood of an object in a metric space is
the set of all points of distance at most R from that object. The R-
neighbourhoods of lines in H2 are particularly simple.

Proposition 6.3.7. The R-neighbourhood of a line l ⊂ H2 in a con-
formal model is bounded by two Euclidean lines or circle arcs having the
same endpoints as l as in Figure 6.16.

Proof. Put l in the half-space model with endpoints at 0 and ∞. A
R-neighbourhood is invariant by the isometry x 7→ λx and is hence a cone
as in the figure. The other cases follow because isometries and inversions
send lines and circles to lines and circles. �

We use R-neighbourhoods to prove the following.

Proposition 6.3.8. Let Sg be equipped with a hyperbolic metric. Ev-
ery non-trivial simple closed curve in Sg is homotopic to a simple closed
geodesic.

Proof. Every non-trivial simple closed curve γ in Sg = H2/Γ is homo-
topic to a closed geodesic γ̄ by Corollary 4.1.14, and we now prove that
γ̄ is simple. The counterimage of γ in H2 consists of disjoint simple arcs,
while the counterimage of γ̄ consists of straight lines: we prove that these
lines are also disjoint.

The homotopy between γ and γ̄ lifts to a homotopy between the arcs
and the lines. The homotopy between γ and γ̄ has compact support,
hence there is a R > 0 such that every point in the arcs is moved in the
lifted homotopy to some distance smaller than R. Therefore every arc is
contained in the R-neighbourhood of a line as in Figure 6.17-(left).

This shows that lines and arcs have the same endpoints in ∂H2. If two
lines intersects, their endpoints are linked in the circle ∂H2 and hence also
the corresponding arcs intersect, see Figure 6.17-(right): a contradiction.
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Figure 6.17. The lifts of γ (black arcs) and of its geodesic
representative (red lines) have the same endpoints in ∂H2

(left). If two lines intersect, the arcs do (right).

Since the lifts of γ̄ do not intersect, the geodesic γ̄ does not self-
intersect transversely. Then γ̄ is either simple or wraps multiple times
a simple geodesic, but the second possibility is excluded by Proposition
6.3.5. �

We will soon promote “homotopic” to “isotopic”.

6.3.6. Geometric intersection. Isotopy classes of simple closed curves
on Sg form a complicate and interesting set, and a way to study it consists
of looking at the way these curves intersect each other. The algebraic
intersection is too weak a tool, because it detects only their homology
classes. We now introduce the much finer geometric intersection.

Let γ1 and γ2 be two simple closed curves in an orientable surface
S. Let the geometric intersection i(γ1, γ2) be the minimum number of
intersections of two transverse simple closed curves γ ′1, γ

′
2 homotopic to

γ1 and γ2. The geometric intersection depends only on the homotopy
classes of γ1 and γ2.

Proposition 6.3.9. We have i(γ, γ) = 0 for every simple closed γ.

Proof. A tubular neighbourhood of γ is diffeomorphic to S1× [−1, 1]

because S is orientable, hence γ has two disjoint parallel representatives
S1 ×

{
− 1

2

}
and S1 ×

{
1
2

}
which do not intersect. �

Recall that the algebraic intersection of two curves counts the inter-
sections with sign. Geometric and algebraic intersections behave much
differently and are equal only modulo 2.

The geometric intersection i(γ1, γ2) remains unaffected if we substi-
tute γ1 with its inverse, that is if we reverse its orientation.

6.3.7. The bigon criterion. Two simple closed curves γ1 and γ2 in an
orientable surface S are in minimal position if they intersect transversely
in exactly i(γ1, γ2) points. How can we know if two transverse simple
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Figure 6.18. Two curves γ1 and γ2 are in minimal position
if and only if they do not create bigons, like this one.

Figure 6.19. A bigon can be eliminated via homotopies
(left). If γ1 bounds a disc and γ2 intersects γ1, there is
a bigon (right).

closed curves in Sg are in minimal position? We now prove a nice and
simple criterion: they are in minimal position if and only if they do not
form bigons.

The complement of two transverse simple closed curves is a finite
disjoint union of open sets with polygonal boundaries; one such set is a
bigon if it is a disc with two sides as in Figure 6.18.

Theorem 6.3.10 (Bigon criterion). Two transverse simple closed γ1, γ2

in Sg are in minimal position if and only if they do not form bigons.

Proof. If γ1 and γ2 create a bigon, the homotopies in Figure 6.19-
(left) transform γ1 and γ2 into two curves that intersect in a smaller number
of points: hence γ1 and γ2 are not in minimal position.

Suppose now that γ1 and γ2 do not form bigons: we must show that
they are in minimal position. If γ1 is trivial, it bounds a disc D as in Figure
6.19-(right). If γ2 intersects γ1, an innermost argument shows that they
form a bigon: the curve γ2 intersects D in arcs, each dividing D into two
parts; if one part contains no other arc it is a bigon, otherwise we iterate.
Therefore γ1 and γ2 are disjoint and hence in minimal position.

It remains to consider the case where both γ1 and γ2 are non-trivial.
The torus case g = 1 is obtained by readapting the proof of Proposition
6.3.2 and is left as an exercise, so we suppose g > 2.
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Figure 6.20. The lifts of γi and γ̄i have distance bounded
by R and hence have the same endpoints (left). Two curves
that intersect in more than one point form a bigon (right).

Fix an arbitrary hyperbolic metric Sg = H2/Γ and let π : H2 → H2/Γ

be the projection. The closed curves γ1 and γ2 are now homotopic to two
simple closed geodesics γ̄1 and γ̄2. The lifts of γi and γ̄i in H2 are arcs and
lines and there is a R > 0 such that every arc lies in the R-neighbourhood
of a line, see the proof of Proposition 6.3.8. Arcs and lines have the same
endpoints at infinity as in Figure 6.20-(left).

Two distinct arcs may intersect at most in one point: if they intersect
more, an innermost argument shows that they form a bigon D as in Figure
6.20-(right), which projects to a bigon π(D) in Sg. (It is not immediate
that π(D) is a bigon! The two vertices of π(D) might coincide, but this
is easily excluded because Sg is orientable.)

We now show how to count the intersections between γ1 and γ2 di-
rectly in H2. Let C(γi) ⊂ Γ be the conjugacy class of all the hyperbolic
transformations corresponding to γi . We know that the lifts of γ̄i are
precisely the axis of the hyperbolic transformations in C(γi).

By Corollary 4.2.3 any two such axis are either incident or ultra-
parallel. Hence two lifts of γ1 and γ2 intersect (in a single point) if and only
if the corresponding lifts of γ̄1 and γ̄2 intersect (in a single point), and this
holds if and only if the endpoints are linked in ∂H2. We have established
two bijective correspondences

π−1(γ1) ∩ π−1(γ2)←→ π−1(γ̄1) ∩ π−1(γ̄2)←→ X

with

X =
{

(ϕ1, ϕ2) ∈ C(γ1)× C(γ2)
∣∣ Fix(ϕ1) and Fix(ϕ2) are linked

}
.

The bijective correspondences are Γ-equivariant. We quotient by Γ and
find

γ1 ∩ γ2 ←→ γ̄1 ∩ γ̄2 ←→ X/Γ.
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The cardinality k of X/Γ depends only on the homotopy type of γ1 and γ2.
Therefore any two curves homotopic to γ1 and γ2 will have at least these
k intersections. Hence γ1 and γ2 are in minimal position. �

The bigon criterion furnishes an efficient algorithm to calculate the
geometric intersection of any pair γ1 and γ2 of simple closed curves in Sg:
we put them in transverse position, and then we simplify bigons as much
as we can. After finitely many steps we get two curves in minimal position.

Geodesic representatives are typically efficient: they minimise lengths
(see Proposition 4.1.15), and they also minimise mutual intersections.

Corollary 6.3.11. Let g > 2 and Sg have a hyperbolic metric. Two
simple closed geodesics with distinct supports are in minimal position.

Proof. Two geodesics do not form bigons: if they do, the bigon lifts
to a bigon between two lines in H2, but lines intersect at most once. �

Here is a very simple application of the bigon criterion.

Corollary 6.3.12. If two simple closed curves γ, η intersect transversely
in one point, we have i(γ, η) = 1. In particular, they are both non-trivial.

Proof. The curves γ and η cannot form bigons. �

The following exercise shows that the geometric intersection distin-
guishes a trivial curve from a non-trivial one.

Exercise 6.3.13. If a simple closed curve γ is not trivial, there is an-
other simple closed curve η such that i(γ, η) > 0.

Hint. Use Proposition 6.3.3 to transform γ into a comfortable curve
and draw a η which intersects γ in at most 2 points without bigons. �

On the contrary, the algebraic intersection does not distinguish the
trivial curve from any other separating curve.

Exercise 6.3.14. Let γ and η be non-trivial simple closed curves in the
torus T of type (p, q) and (r, s). We have

i(γ, η
)

=

∣∣∣∣det

(
p r

q s

)∣∣∣∣ .
6.3.8. Homotopy and isotopy of curves. We are now going to prove

some “homotopy implies isotopy” theorems: we start with closed curves and
we end in the next section with self-diffeomorphisms of surfaces. These
slightly technical theorems have the remarkable and pleasant effect of
making life easier in dimensions two and three (their impact to three-
dimensional topology will be clear in the next chapter): topologists use
these theorems everyday when they manipulate two- and three-manifolds.

We start by showing that two non-trivial simple closed curves are
homotopic if and only if they are isotopic. We consider a particular case.
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Lemma 6.3.15. Let γ1 and γ2 be two non-trivial simple closed curves
in Sg. If they are disjoint and homotopic, they are parallel.

Proof. Cut Sg along γ1 ∪ γ2. We do not obtain discs because the
curves are non-trivial and if we obtain an annulus the two curves are par-
allel. In all the other cases we obtain surfaces of negative Euler charac-
teristic, and we may assign some hyperbolic metrics to them that glue to
a hyperbolic metric on Sg where both γ1 and γ2 are distinct geodesics: a
contradiction. �

We now turn to the general case.

Proposition 6.3.16 (Homotopy implies isotopy). Two non-trivial sim-
ple closed curves in Sg are homotopic if and only if they are isotopic.

Proof. Let γ1 and γ2 be two non-trivial simple closed curves. With
a small isotopy we put them in transverse position. Since i(γ1, γ2) =

i(γ1, γ1) = 0 the two curves are either disjoint or form some bigon. If they
form a bigon, we can eliminate it via isotopies as in Figure 6.19-(left) and
after finitely many steps we get two disjoint curves.

The curves γ1 and γ2 are parallel by Lemma 6.3.15, and we use the
annulus they cobound to move γ2 isotopically over γ1. The two curves
now have the same support and the same orientation by Proposition 6.3.6:
by Lemma 6.1.1 they are isotopic. �

Warning 6.3.17. Two homotopic simple closed curves in a three-
manifold are not necessarily isotopic, because they may be knotted dif-
ferently: the knot theory studies precisely this phenomenon.

Corollary 6.3.18. Let g > 2 and Sg have a hyperbolic metric. Every
non-trivial simple closed curve in Sg is isotopic to a simple closed geodesic.

6.3.9. Multicurves. Our next goal is to prove a “homotopy implies
isotopy” theorem for self-diffeomorphisms of surfaces. The core of the
proof is contained in the next section, and we will need there the notion
of multicurve: we now introduce this simple concept and extend some of
the previous results from curves to multicurves.

Definition 6.3.19. A multicurve µ in Sg is a finite set of disjoint non-
trivial simple closed curves.

See an example in Figure 6.21, and note that every component of
a multicurve is oriented. A multicurve is essential if it has no parallel
components. By cutting Sg along an essential multicurve µ we get finitely
many surfaces of negative Euler characteristic: if each such surface is
a pair-of-pants, then µ is a pants decomposition, already considered in
Section 6.2.2.
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Figure 6.21. A multicurve in a surface of genus two.

Proposition 6.3.20. An essential multicurve µ in Sg with g > 2 has
at most 3g − 3 components, and it has 3g − 3 if and only if it is a pants
decomposition.

Proof. By cutting Sg along µ we get some surfaces S1, . . . , Sk of
negative Euler characteristic such that χ(Sg) = χ(S1) + . . . + χ(Sk). If
each Si is a pair-of-pants then χ(Si) = −1 and k = −χ(Sg) = 2g − 2;
the curves are 3

2
(2g − 2) = 3g − 3 because each curve separates two

pants. If some Si is not a pair-of-pants it can be further subdivided into
pair-of-pants. �

We define the geometric intersection i(µ1, µ2) of two multicurves µ1

and µ2 as the minimum number of intersections of two transverse mul-
ticurves µ′1, µ

′
2 isotopic to µ1, µ2. This definition extends the geometric

intersection of simple closed curves (the original definition for simple closed
curves is with “homotopic” instead of “isotopic”, but these are equivalent
by Proposition 6.3.16).

Two transverse multicurves µ1 and µ2 are in minimal position if they
intersect exactly in i(µ1, µ2) points: the bigon criterion easily extends to
this context.

Proposition 6.3.21. Let µ1, µ2 ⊂ Sg be two transverse multicurves.
The following equality holds:

i(µ1, µ2) =
∑
γ1 ⊂ µ1
γ2 ⊂ µ2

i(γ1, γ2)

where the sum is taken on all components γ1, γ2 of µ1, µ2. The multicurves
µ1 and µ2 are in minimal position if and only if they do not form bigons.

Proof. If µ1 and µ2 form no bigons, then any two components γ1 and
γ2 form no bigons too (exercise) and are therefore in minimal position.
This proves the equality and that µ1 and µ2 are in minimal position. �

The formula says that if we consider a multicurve as a “sum” of dis-
joint simple closed curves, then the geometric intersection i behaves like a
bilinear form: this viewpoint will be further explored in Chapter 8.
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Figure 6.22. A bigon between η and η′ intersects µ in ver-
tical arcs and can be removed via an ambient isotopy that
preserves the support of µ.

Note again that i(µ, µ) = 0. We extend Proposition 6.3.16 to essen-
tial multicurves.

Proposition 6.3.22 (Homotopy implies isotopy). Let

µ1 = {γ1,1, . . . , γ1,n}, µ2 = {γ2,1, . . . , γ2,n}

be two essential multicurves in Sg. If γ1,i is homotopic to γ2,i for all i then
there is an isotopy moving µ1 to µ2.

Proof. We adapt the proof of Proposition 6.3.16. Since i(γ1,i , γ2,j) =

i(γ1,i , γ1,j) = 0 we get i(µ1, µ2) = 0 by Proposition 6.3.21 and after an
isotopy that destroys the bigons we get µ1∩µ2 = ∅. Then Lemma 6.3.15
implies that γ1,i and γ2,i are parallel and we are done. �

Corollary 6.3.23. Let g > 2 and Sg have a hyperbolic metric. Ev-
ery essential multicurve can be isotoped to a (unique) geodesic essential
multicurve.

In particular every pants decomposition straightens to a (unique) ge-
odesic one: this fact will be used in Chapter 7 to parametrize all the
hyperbolic metrics on a given Sg.

6.3.10. Minimal position. We end this discussion on multicurves by
showing that the minimal position is unique up to isotopy.

Proposition 6.3.24. Let µ, η be two multicurves in minimal position
in Sg. The union µ ∪ η of their supports depends up to ambient isotopy
only on the isotopy classes of µ and η.

Proof. Let µ′, η′ be multicurves in minimal position, individually iso-
topic to µ, η. We need to prove that the supports µ′ ∪ η′ and µ ∪ η are
ambiently isotopic.

By hypothesis there is an isotopy carrying µ′ to µ, which is ambient
since multicurves are compact: hence we can suppose µ′ = µ. We now
construct an isotopy that fixes µ′ = µ as a set (not pointwise!) and carries
η′ to η.

Up to a small ambient isotopy fixing the set µ we may suppose that
η and η′ intersect transversely. If η ∩ η′ 6= ∅ then η and η′ form a bigon
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as in Figure 6.22-(left): the multicurve µ intersects the bigon in arcs that
join distinct edges as in the figure (because µ′ = µ forms no bigons with
η and η′). We can eliminate the bigon by an ambient isotopy that fixes µ
as a set, as shown in Figure 6.22.

After finitely many steps we get η∩η′ = ∅. Since η and η′ are disjoint
and isotopic, every component of η is parallel to a component of η′. A
maximal set of parallel curves in η ∪ η′ is contained in a bigger annulus
[−1, 1]×S1 which intersects µ either into arcs [−1, 1]×{pt} or into circles
{pt} × S1. In both cases we easily see that µ ∪ η is ambiently isotopic to
µ ∪ η′. �

As an example, consider two essential multicurves η and µ in Sg with
g > 2 (for instance, two non-trivial simple closed curves). A hyperbolic
metric on Sg produces two geodesic representatives η̄ and µ̄ for them, and
the following holds:

Corollary 6.3.25. The support η̄ ∪ µ̄ in Sg does not depend (up to
ambient isotopy) on the chosen hyperbolic metric.

Proof. With the exception of the common components of η̄ and µ̄,
the rest intersects in minimal position. �

This corollary is one of the many instances of the following nice phe-
nomenon: a hyperbolic metric on Sg may be used as an auxiliary structure
to define objects or to prove statements which turn out a posteriori not
to depend on the chosen metric. We will employ this strategy many times
in Chapter 8.

6.4. Homotopy and isotopy

We have proved that “homotopy implies isotopy” for non-trivial simple
closed curves in Sg, and now we want to prove an analogous result for
diffeomorphisms of Sg. A crucial ingredient is a theorem proved by Smale
in the 1950s, which considers the self-diffeomorphisms of the disc D2.

Theorem 6.4.1. Two diffeomorphisms ϕ,ψ : D2 → D2 that coincide
on ∂D2 are isotopic, via an isotopy that fixes ∂D2 pointwise.

There is a proof of Theorem 6.4.1 in the topological category that is
surprisingly easy and works in any dimension.

6.4.1. The Alexander trick. The proof of the following fact is so
immediate, that it has a name: it is usually called the Alexander trick.

Proposition 6.4.2 (Alexander trick). Two homeomorphisms ϕ, ψ : Dn →
Dn that coincide on ∂Dn are continuously isotopic, via an isotopy that fixes
∂Dn pointwise.
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Proof. We consider f = ϕ ◦ ψ−1 and idDn and define an isotopy that
transforms f into idDn fixing ∂Dn. The following function does the job:

F (x, t) =

{
x if ‖x‖ > t,

tf
(
x
t

)
if ‖x‖ 6 t.

The proof is complete. �

Unfortunately this proof does not work in the smooth category, be-
cause the function F is not smooth (and not smoothable) at (0, 0). Of
course, as every continuous map, our F may be approximated by smooth
functions, but the injectivity of the slices F (·, t) can be lost in the approx-
imation.

Moreover, the statement in the smooth category is just false in dimen-
sion n > 7: there are self-diffeomorphisms of Dn that are not smoothly
isotopic to idDn in high dimension, and this is connected to the existence
of exotic spheres, differentiable manifolds that are homeomorphic but not
diffeomorphic to Sn.

6.4.2. Self-diffeomorphisms of the disc. After this very brief excur-
sion in the topological world, we turn back to the smooth category: every
map considered so far is smooth by assumption like in the rest of the book.

We prove here Theorem 6.4.1. We need a fact on planar fields.

Proposition 6.4.3. On a nowhere-vanishing vector field on R2, a max-
imal integral curve is never trapped in a compact set.

Proof. Suppose by contradiction that a maximal integral curve α : I →
R2 lies in a compact set K for all t > t0. Its ω-limit ω(α) ⊂ K is the
set of all points x ∈ K to which γ accumulates, that is the intersection of
the closures of α(t0,∞) for all t0 ∈ I. The ω-limit is the intersection of a
filtration of compact sets and is hence non-empty. Pick a point p ∈ ω(α).

Up to a local diffeomorphism, the vector field near p is constant ver-
tical as in Figure 6.23-(1). The integral curves near p are vertical. Since
p ∈ ω(α), the curve α contains infinitely many of them that tend to the
one containing p. Two subsequent ones determine a closed curve as in
Figure 6.23-(2), that bounds a disc by the Jordan curve theorem.

We prove that such a disc cannot exist. If it existed, we could reverse
all arrows and rotate it to obtain another disc as in Figure 6.23-(3), and by
gluing the two discs we would construct as in Figure 6.23-(4) a nowhere-
vanishing vector field on the sphere. Such a field of course does not exist
since the sphere has non-zero Euler characteristic. �

We can now prove Theorem 6.4.1.

Proof of Theorem 6.4.1. After composing with ψ−1 we can suppose
that ψ = id. Now ϕ|S1 is the identity. Every self-diffeomorphism of any
compact manifold that fixes the boundary is isotopic to one which is the
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p

(1) (2) (3) (4)

Figure 6.23. At a point p, after a local diffeomorphism we
may suppose that the vector field is constantly vertical (1). If
p is a limit point of an integral curve α we may find a closed
curve that bounds a disc (2). If such a disc existed, we could
rotate it and inverse all arrows (3) and glue the two portions
to form a nowhere-vanishing vector field on the sphere (4).

Figure 6.24. A self-diffeomorphism ϕ of D2 fixing ∂D2

pointwise (left). To get an isotopy fixing ∂D2 pointwise we
need to rescale via a diffeomorphism that maps each arc as
in the right figure to itself, and varies smoothly from id to
f −1
t from bottom to top (right).

identity on a collar of the boundary: hence we can suppose that ϕ = id on
a collar of S1.

We sketch ϕ in Figure 6.24-(left): vertical lines are transformed into
paths with the same endpoints. We want to construct an isotopy be-
tween ϕ and idD2 that “straightens” smoothly these lines, and we start by
straightening their tangent vector fields.

Consider the constant unitary vertical vector field X0 = (0, 1) on D2

and let X1 be its image along the diffeomorphism ϕ. It is easy to construct
a homotopy Xt between X0 and X1 through non-vanishing vector fields:
we see both X0 and X1 as maps D2 → C∗, we lift them to maps D2 → C
via the universal cover exp: C → C∗, we make a convex combination and
we project it back to C∗. By construction the vectors Xt are constantly
(0, 1) on a collar of S1.

We now carefully integrate the homotopy Xt of vector fields to an
isotopy of diffeomorphisms. Let S1

+ and S1
− be the upper and lower hemi-

sphere of S1. The vectors Xt at S1
− point inside and those at S1

+ point
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outside D2. By Proposition 6.4.3 the integral curve γtx of Xt starting from
a point (x,−

√
1− x2) ∈ S1

− exits at some point in S1
+ after some time T tx

that varies smoothly in x and t.
The point γtx(u) is defined for u ∈ [0, T tx ] and varies smoothly on

x, t, u. We obviously have T 0
x = 2

√
1− x2 and also T 1

x = T 0
x since γ1

x =

ϕ ◦ γ0
x . However T tx may not be constant in t, so we rescale the integral

curves as

γ̃tx(u) = γtx

(
u · T tx

2
√

1− x2

)
.

The new curve γ̃tx is defined in the interval
[
0, 2
√

1− x2
]
not depending

on t. We can now define

ϕt
(
x,−

√
1− x2 + u

)
= γ̃tx (u) .

The diffeomorphism ϕt : D2 → D2 furnishes an isotopy between id = ϕ0

and ϕ = ϕ1. However, the diffeomorphism ϕt does not fix the points in
S1

+ since the endpoint of γ̃tx has a first coordinate ft(x) which might be
distinct from x when 0 < t < 1 (but varies smoothly on t and x).

To fix that it suffices to compose each ϕt with a diffeomorphism of D2

that maps each arc as in Figure 6.24-(right) to itself and varies smoothly
from id to f −1

t from bottom to top. �

Remark 6.4.4. If ϕ : D2 → D2 is the identity on a collar of S1, we
can easily transform the isotopy ϕt so that it is the identity on this collar
for all t. This will be useful to glue isotopies.

6.4.3. Homotopy and isotopy of diffeomorphisms. We are now ready
to promote homotopies to isotopies of diffeomorphisms. We start with the
easier sphere case, which is a simple consequence of Theorem 6.4.1.

Theorem 6.4.5. Two diffeomorphisms ϕ,ψ : S2 → S2 are isotopic
⇐⇒ they are homotopic ⇐⇒ they are co-oriented.

Proof. We suppose that ϕ and ψ are co-oriented and we must prove
that they are isotopic. Pick any disc D ⊂ S2. Both ϕ and ψ send D to
some disc in S2. Theorem 1.1.14 furnishes an ambient isotopy relating
these maps, so we may suppose that ϕ and ψ coincide on D. The closed
complement is another disc and we conclude by Theorem 6.4.1.

More precisely, we pick a smaller closed disc D′ ⊂ int(D) and consider
the closed complement D′′ = S2 \ int(D′). The diffeomorphisms ϕ and
ψ of D′′ coincide on a collar of ∂D′′ and Theorem 6.4.1 together with
Remark 6.4.4 furnishes an isotopy that is the identity on that collar. We
extend this isotopy as the identity on D \D′′ and we are done. �

The theorem has a very important three-dimensional application.

Corollary 6.4.6 (Smale’s Theorem). Every self-diffeomorphism of S2

extends to a self-diffeomorphism of D3.
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Figure 6.25. Two essential multicurves (blue and red) in
minimal position, which subdivide the surface into hexagons.

Proof. Every self-diffeomorphism of S2 is isotopic either to the iden-
tity or to a reflection by Theorem 6.4.5. We map a collar of S2 to itself
using this isotopy, then extend to the rest of D3 using the identity or the
reflection. �

We can finally promote homotopies to isotopies on a general genus-g
surface Sg. The proof uses many of the techniques introduced in the last
sections: we employ multicurves to cut the surface into discs, and then
use Theorem 6.4.1 individually on each disc.

Theorem 6.4.7. Two diffeomorphisms ϕ, ψ : Sg → Sg are isotopic if
and only if they are homotopic.

Proof. We have seen the case g = 0, so we suppose g > 1. By
composing with ψ−1 we can suppose that ψ = id.

Fix two essential multicurves µ and η as in Figure 6.25. The figure
easily generalises to any genus g, and the reader may check that µ and η
subdivide the surface into hexagons (or a single square when g = 1). The
important point is that Sg \ (µ∪ η) consists of polygons, none of which is
a bigon.

By hypothesis ϕ is homotopic to the identity, so the image multicurves
ϕ(µ) and ϕ(η) are curve by curve homotopic to µ and η. By Proposition
6.3.22 the multicurve ϕ(µ) is isotopic to µ, and ϕ(η) is isotopic to η.

The curves µ and η are in minimal position because there are no
bigons. The images ϕ(µ) and ϕ(η) are also in minimal position because ϕ
is a diffeomorphism. By Proposition 6.3.24 the supports µ∪η and ϕ(µ∪η)

are ambiently isotopic, so we may suppose that they coincide.
The graph µ ∪ η is made of vertices (the intersections µ ∩ η) and

edges. The components of µ and η are pairwise non-homotopic simple
closed curves, hence ϕ sends necessarily every component to itself, and it
does so orientation-preservingly by Proposition 6.3.6. This implies easily
that vertices and edges are sent to themselves by ϕ. Hence ϕ = id on
vertices and after an isotopy we may suppose that ϕ = id on edges too.

After an isotopy we may also suppose that ϕ = id on a regular neigh-
bourhood U of µ ∪ η, obtained by thickening the cellularisation of µ ∪ η
to a handle decomposition with 0- and 1-handles. The complement of U
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consists of discs (the hexagons). Consider one such disc D, enlarged a bit
so that ∂D ⊂ int(U). The map ϕ sends D to itself and is the identity on
a collar of ∂D. By Theorem 6.4.1 and Remark 6.4.4 there is an isotopy
connecting ϕ to id on every such disc D that fixes pointwise this collar, so
we can extend it constantly on the rest of U and get a global isotopy on
Sg connecting ϕ and id. �

This theorem has important consequences in dimensions 2 and 3.

6.5. Mapping class group

We have just proved that two self-diffeomorphisms of Sg are homo-
topic if and only if they are isotopic. We have also seen that when g = 0

there are only two self-diffeomorphisms up to isotopy: the identity and a
reflection. Do we get a more complicated picture when g > 1? Yes, we
get an interesting group, called the mapping class group of Sg. The group
is naturally defined on all finite-type surfaces Sg,b,p.

6.5.1. Definition. Recall that the finite-type orientable surface Sg,b,p
has genus g, it has b boundary components, and p punctures.

Definition 6.5.1. The mapping class group of Sg,b,p is the group

MCG(Sg,b,p) = Diffeo+(Sg,b,p)/∼

where Diffeo+(Sg,b,p) indicates the group of all orientation-preserving dif-
feomorphisms Sg,b,p → Sg,b,p that fix pointwise the boundary and ϕ ∼ ψ
if ϕ and ψ are connected by an isotopy that fixes the boundary pointwise
at every level.

Example 6.5.2. The groups MCG(S2) and MCG(D2) are trivial by
Theorems 6.4.1 and 6.4.5.

The group MCG(Sg,b,p) acts on H1(Sg,b,p,Z) since homotopic func-
tions induce the same maps in homology. We get a group homomorphism

MCG(Sg,b,p) −→ Aut+
(
H1(Sg,b,p,Z)

)
= Aut+

(
Zn
)

= SLn(Z)

with n = 2g + max{b+ p− 1, 0}. This homomorphism is neither injective
nor surjective in general. Its kernel is called the Torelli group of Sg,b,p.

The mapping class group of a sphere is trivial, so we look at the torus.

6.5.2. The torus. The mapping class group of the torus is a familiar
group of 2× 2 matrices.

Proposition 6.5.3. The Torelli group of the torus T is trivial and

MCG(T ) ∼= Aut+(H1(T )) = SL2(Z).

Proof. Fix a meridian m and longitude l of T . A diffeomorphism ϕ

of T that acts trivially on H1(T ) = π1(T ) = Z2 sends m and l to two
simple closed curves ϕ(m) and ϕ(l) homotopic and hence isotopic to m
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Figure 6.26. A Dehn twist along a curve γ maps a trans-
verse arc µ onto an arc which makes a complete left turn.

and l : the proof of Theorem 6.4.7 shows that ϕ is isotopic to the identity.
Therefore the Torelli group is trivial.

A matrix A ∈ SL2(Z) acts linearly on R2 preserving the orientation
and the lattice Z2 and hence descends to a self-diffeomorphism of T =

R2/Z2 . This shows that the map MCG(T ) → Aut+(H1(T )) = SL2(Z) is
surjective. �

The mapping class group of a surface Sg of genus g > 2 is not iso-
morphic to a familiar group of matrices, at least as far as we know: indeed
(except some low-genus cases) it is still unknown whether MCG(Sg,b,p) is
linear, i.e. isomorphic to a subgroup of GL(n,C) for some integer n.

For the moment we content ourselves with a concrete description of
some particularly simple elements of MCG(Sg,b,p) called Dehn twists.

6.5.3. Dehn twists. Let γ be a non-trivial simple closed curve in the
interior of Sg,b,p. The Dehn twist along γ is the element Tγ ∈ MCG(Sg,b,p)

defined as follows.
Pick a tubular neighbourhood of γ orientation-preservingly diffeomor-

phic to S1 × [−1, 1] where γ lies as S1 × {0}. Let f : [−1, 1] → R be a
smooth function which is zero in

[
−1,− 1

2

]
and 2π on

[
1
2
, 1
]
. Let

Tγ : Sg,b,p −→ Sg,b,p

be the diffeomorphism that acts on the tubular neighbourhood as Tγ(e iα, t) =

(e i(α+f (t)), t) and on its complementary set in Sg,b,p as the identity. We
may visualise Tγ by noting that it gives a complete left turn to any arc µ
that intersects γ as in Figure 6.26.

Proposition 6.5.4. The element Tγ ∈ MCG(Sg,b,p) is well-defined and
depends only on the isotopy class of γ.

Proof. In the definition of Tγ we have chosen a tubular neighbourhood
for γ and a smooth function f . Tubular neighbourhoods are ambiently
isotopic, and functions with fixed extremes are isotopic too: these facts
imply easily that the isotopy class of Tγ is well-defined and depends only
on the isotopy class of γ. �
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Remark 6.5.5. To define Tγ we needed the orientation of Sg,b,p, but
not an orientation for γ. A bit surprisingly, if we change the orientation of
γ the element Tγ remains unaffected.

The inverse T−1
γ transforms every curve µ crossing γ via a complete

right-turn and is sometimes called a negative Dehn twist.

We construct some examples in the torus T . Let m and l be some
fixed meridian and longitude on the oriented T forming a positive basis, so
that m · l = +1 and we get an identification MCG(T ) = SL2(Z).

Proposition 6.5.6. The Dehn twists Tm and Tl are

Tm =

(
1 −1

0 1

)
, Tl =

(
1 0

1 1

)
.

Proof. In homology we find

Tm(m) = m, Tm(l) = l −m, Tl(l) = l , Tl(m) = m + l .

The proof is complete. �

By Exercise 6.3.4 there is a unique non-separating simple closed curve
γ in Sg up to self-diffeomorphism for every g ≥ 1. Therefore the Dehn
twists Tγ along non-separating curves in Sg are all conjugate in MCG(Sg).
In the torus case these can be easily identified algebraically.

Corollary 6.5.7. An element A ∈ SL2(Z) = MCG(T ) is a (positive or
negative) Dehn twist ⇐⇒ it is primitive and trA = 2.

Proof. Every such matrix in SL2(Z) is conjugate to
(

1 ±1
0 1

)
. �

Exercise 6.5.8. The Dehn twists Tm and Tl generate MCG(T ).

We have seen that Dehn twists generate MCG(T ), while many ele-
ments A ∈ MCG(T ) are neither Dehn twists nor powers of Dehn twists
(those with trA 6= 2). These two facts extend to higher-genus surfaces
Sg; we start by generalising the first.

6.5.4. Dehn twists generate. Dehn twists are basic elements in the
mapping class group, and we now prove that they generate the whole
group. We restrict ourselves for simplicity to compact surfaces Sg,b.

Theorem 6.5.9. The group MCG(Sg,b) is generated by Dehn twists.

To prove the theorem we will need some preliminary facts. We say
that two non-separating simple closed curves in the interior of Sg,b are
related if there is a combination of isotopies and Dehn twists transforming
the first into the second.

Lemma 6.5.10. The non-separating curves in Sg,b are all related.



6.5. MAPPING CLASS GROUP 189
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Figure 6.27. Two curves α (red) and β (green) intersecting
in one point are related: we get α = Tβ(Tα(β)).

(1) (2)
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Figure 6.28. Pick two consecutive points in α (green) that
intersect β (red). We can find a third non-separating curve
γ (blue) intersecting α and β in < k points. There are two
cases (1) and (2): in (1) the curve γ intersects β in one point
and is hence non-separating, in (2) we have two possibilities
γ1, γ2, and one is certainly non-separating since β is.

Proof. Let α and β be two non-separating curves. Up to isotopy they
intersect transversely into some k points. If k = 1 they are related by a
couple of Dehn twists as shown in Figure 6.27. If k = 0, since they are
both non-separating, one sees easily that there is another curve γ with
i(α, γ) = i(β, γ) = 1: hence α and β are both related to γ, so they are
related themselves. If k > 2 we can find a curve γ intersecting α and β
transversely into < k points as shown in Figure 6.28 and we proceed by
induction on k. �

We now consider Sg,b with b > 2 and fix two points p, q in two distinct
boundary components of Sg,b. We consider all the properly embedded arcs
in Sg,b with endpoints at p and q. As above, we say that two such arcs are
related if there is a combination of Dehn twists and isotopies transforming
the first into the second.

Lemma 6.5.11. The arcs in Sg,b with endpoints at p and q are all
related.

Proof. Pick two arcs α and β and put them into transverse position:
they intersect at their endpoints p and q and maybe transversely at some
k other points. Figure 6.29 shows that after isotopies and Dehn twists we
get α = β. �
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Figure 6.29. The arcs α (red) and β (green) intersect at
their endpoints and maybe at some k interior points. If k = 0

and they are oriented as in (1), a Dehn twist along γ trans-
forms β into α. If they are oriented as in (2), a negative Dehn
twist along γ transforms this configuration into (1). If k > 0

we look at the first intersection point in α. If the orientations
are coherent as in (3) a Dehn twist along γ decreases k. It
the orientations are not coherent we change them as in (2).

We can finally prove Theorem 6.5.9.

Proof of Theorem 6.5.9. Let ϕ be a self-diffeomorphism of Sg,b fixing
pointwise the boundary. We prove that ϕ is generated by isotopies and
Dehn twists.

We first prove the case g = 0 by induction on b. We know that
MCG(S0,1) is trivial, so we suppose b > 2. Let p, q be points in distinct
boundary components of S0,b, and α be an arc connecting them. All
the arcs with endpoints in p and q are related, and hence α and ϕ(α) are.
Therefore up to composing with Dehn twists and isotopies we may suppose
that ϕ is the identity of α and hence also on a tubular neighbourhood of
α. We cut S0,b along α and get S0,b−1, with ϕ transformed into a self-
diffeomorphism of S0,b−1. By induction on b the new ϕ is generated by
Dehn twists and isotopies, so the original ϕ also is.

We prove the case g > 0 by induction on g. Let α be a non-separating
simple closed curve. Since these are all related, up to isotopies and Dehn
twists we may suppose that ϕ is the identity on α; as above we can cut
Sg,b along α, get Sg−1,b+2 and conclude by induction on g. �



6.5. MAPPING CLASS GROUP 191

6.5.5. Action on simple closed curves. We now show that every el-
ement ϕ ∈ MCG(Sg) is determined by the way it permutes the (isotopy
classes of) simple closed curves in Sg.

Proposition 6.5.12. The action of ϕ ∈ MCG(Sg) on the isotopy
classes of simple closed curves is faithful.

Proof. The proof of Theorem 6.4.7 shows that if ϕ fixes the isotopy
classes of two essential multicurves µ and η as in Figure 6.25 then it is
isotopic to the identity. �

Recall that every simple closed curve is oriented by assumption: if we
considered unoriented simple closed curves the proposition would be false,
because in low genus there are some ϕ that send every curve to its inverse:
this happens for instance with the map −I ∈ SL2(Z) = MCG(T ).

6.5.6. References. The main source for this chapter is the book of
Farb – Margalit [18], which contains a lot more information on the mapping
class group of surfaces. We have also consulted Benedetti – Petronio [4]
and Thurson’s notes [56] and book [57], in particular for Smale’s Theorem,
that was originally proved in [54].





CHAPTER 7

Teichmüller space

We have discovered in Chapter 6 that every surface Sg of genus g > 2

can be equipped with a hyperbolic metric, and we have already noticed that
this metric is not unique: this chapter is entirely devoted to studying this
non-uniqueness phenomenon.

It turns out that Sg admits a continuous family of non-equivalent
hyperbolic metrics, that form altogether a nice topological space called
the Teichmüller space of Sg. We prove in his chapter that the Teichmüller
space of Sg is homeomorphic to an open ball of dimension 6g − 6. To
prove this fact we will introduce and study concepts like length functions,
earthquakes, and Fenchel–Nielsen coordinates. The simple closed curves
and their geodesic representatives will play a fundamental role in all the
discussion.

7.1. Introduction

Let Sg be as usual a closed orientable surface of genus g. We know
that Sg admits an elliptic, flat, or hyperbolic metric if and only if g = 0,
g = 1, or g > 2 respectively. The elliptic metric on the two-sphere is
unique up to isometries, but the flat and hyperbolic metrics on the other
surfaces are not.

We want to define the space of all flat or hyperbolic metrics on Sg
when g > 1. There are two natural ways do to this:

Definition 7.1.1. The moduli space of Sg is the set of all the flat or
hyperbolic metrics on Sg considered up to orientation-preserving isometries
and rescaling.

The Teichmüller space Teich(Sg) is the set of all the flat or hyperbolic
metrics on Sg considered up to isometries isotopic to the identity and
rescaling.

The rescaling of the metric is a simple operation that takes place only
on the flat metrics on the torus T . On the torus T a flat metric g can
be rescaled by any constant λ > 0 to give another flat metric λg: the
rescaling changes the lengths by a factor

√
λ and the area by a factor λ.

Up to rescaling, we may for instance require that T has unit area.
At a first sight, the moduli space seems a more natural object to

study. It turns out however that the Teichmüller space is homeomorphic

193
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Figure 7.1. The flat metric on the torus T determined by
z ∈ H2 may be constructed by identifying the opposite sides
of the parallelogram with vertices 0, 1, z, z + 1. The lattice
Γ is generated by 1 and z and the parallelogram is a funda-
mental domain.

(for some natural topology) to an open ball, while the moduli space is
topologically more involved: it is then more comfortable to define and
study the Teichmüller space first, and then consider the moduli space as a
quotient of Teichmüller space.

7.1.1. The Teichmüller space of the torus. The flat metrics on the
torus T are classified quite easily. We have seen in Proposition 3.4.12 that
every flat torus T is of type C/Γ for some lattice Γ < C isomorphic to Z2.

Fix two generators m, l for π1(T ). These are identified to two gener-
ators of Γ. Up to rescaling the metric, rotating C around the origin, and
reflecting along the real axis, we may suppose that these generators are
1 and some complex number z lying in the upper half-plane H2, so that
Γ = 〈1, z〉.

Proposition 7.1.2. By sending the flat metric on T to z we get a
bijection:

Teich(T ) −→ H2.

Proof. The map is well-defined: two metrics related by an isometry
isotopic to the identity produce the same z . The inverse H2 → Teich(T )

is constructed by identifying T with C/〈1,z〉 sending (m, l) to (1, z). �

The flat metric that corresponds to z ∈ H2 may be constructed by
identifying the opposite sides of a parallelogram as in Figure 7.1. We will
often tacitly identify Teich(T ) with the projective plane H2 via this bijective
correspondence.

Remark 7.1.3. Let T = C/Γ be a flat torus. Every translation z 7→
z + w in C commutes with Γ and hence descends to an isometry of T .
Therefore the isometry group Isom+(T ) is not discrete: every flat torus is
homogeneous, i.e. for every pair of points x, y ∈ T there is an isometry
sending x to y .



7.1. INTRODUCTION 195

Remark 7.1.4. Let T = C/Γ be a flat torus. Every non-trivial element
γ ∈ π1(T ) is represented by a closed geodesic, unique up to translations.
Its counterimage in C consists of parallel lines whose slope depends only
on γ. The geodesic is simple if and only if γ is primitive.

7.1.2. Action of the mapping class group. Recall that the mapping
class group MCG(Sg) of Sg is the group of all the orientation-preserving
self-diffeomorphisms of Sg considered up to isotopy (or equivalently, ho-
motopy). We now show that the mapping class group of Sg acts on its
Teichmüller space.

A diffeomorphism ϕ : Sg → Sg transports a metric m on Sg into a
new metric ϕ∗m by pushing it forward as follows:

(ϕ∗m)ϕ(x)

(
dϕx(v), dϕx(w)

)
= mx(v, w).

If m varies through an isotopy, the metric ϕ∗m varies through a corre-
sponding isotopy: therefore ϕ acts on Teich(Sg) as follows

Teich(Sg) −→ Teich(Sg)

[m] 7−→ [ϕ∗m]

If we vary ϕ by an isotopy the action is unaffected. Therefore the mapping
class group MCG(Sg) acts on Teich(Sg), and by definition the quotient

Teich(Sg)/MCG(Sg)

is the moduli space of Sg.
Everything can be written explicitly for the torus. Recall that we have

identified Teich(T ) with H2 and MCG(T ) with SL2(Z), see Proposition
6.5.3.

Proposition 7.1.5. The action of MCG(T ) on Teich(T ) is the follow-
ing action of SL2(Z) on H2 as Möbius transformations:(

a b

c d

)
: z 7−→ az − b

−cz + d
.

Proof. The metric z assigns to T the structure R2/Γ with Γ = 〈1, z〉
and (m, l) sent to (1, z).

Pick ϕ =
(
a b
c d

)
∈ SL2(Z) = MCG(T ). Since ϕ−1 =

(
d −b
−c a

)
, in the

new metric ϕ∗ we assign to (m, l) the translations (d−cz,−b+az), which
transform via rotations and dilations into (1, az−b

−cz+d
). �

We note in particular that MCG(T ) acts via isometries on the hyper-
bolic plane H2. The kernel of the action is {±I}: two matrices A and −A
act in the same way on Teich(T ).

Corollary 7.1.6. The moduli space of T is the orbifold H2/PSL2(Z).

The orbifold H2/PSL2(Z) is described in Figure 3.22. It has two singular
points of order 2 and 3: these represent the square and hexagonal torus,
see Section 3.4.8 and Figure 3.15.
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Figure 7.2. A R-annulus around a simple closed geodesic γ
on a hyperbolic surface is the quotient of a R-neighbourhood
of a line l by a hyperbolic transformation. The orthogonal
(green) geodesic segments are parametrized by arc length as
[−R,R], hence the R-annulus is naturally parametrized as
S1 × [−R,R].

We have constructed a bijection between Teich(T ) and H2, and we
now want to construct for g > 2 an analogous identification between
Teich(Sg) and some open set of RN for some N depending on g. To this
purpose we need to introduce some concepts.

7.2. Earthquakes and length functions

Simple closed geodesics are a formidable tool to study Teich(Sg): we
can use a simple closed geodesic to twist a metric (the operation is called
an earthquake), and by simply looking at the lengths of the other closed
geodesics we can measure how the metric varies along this transforma-
tion. We introduce these operations here; later on, we will use them to
parametrize Teich(Sg).

7.2.1. Earthquakes. The hyperbolic, flat, and spherical metrics on
surfaces may be twisted along simple closed geodesics: this operation is
called an earthquake.

Let m be a complete hyperbolic, flat, or elliptic metric on an oriented
surface S and γ be a simple closed geodesic in S. Recall that γ is a map
γ : S1 → S. Fix an angle θ ∈ R. Informally, a new complete hyperbolic,
flat, or elliptic metric mθ on S is constructed by cutting S along γ and
regluing with a counterclockwise twist of angle θ. Formally, the new metric
is defined as follows.

In the hyperbolic case, recall from Proposition 4.1.16 that γ has a
R-neighbourhood isometric to a R-tube for some R > 0. A R-tube in
dimension two is a R-annulus as in Figure 7.2, defined by quotienting a R-
neighbourhood of a line l by a hyperbolic transformation. The R-annulus
is naturally parametrized as S1 × [−R,R], where {e it} × [−R,R] is the
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Figure 7.3. To define the earthquake we pick a diffeomor-
phism of the R-annulus that modifies the orthogonal seg-
ments as shown here.

geodesic segment orthogonal to γ in γ(e it) parametrized by arc length.
The flat and elliptic cases are analogous.

We choose a diffeomorphism ϕ of S1 × [−R,R] that curves the seg-
ments left-wise with step θ as in Figure 7.3-(right). More precisely, let
f : [−R,R] → R be a smooth function which is zero on

[
−R,−R

2

]
and is

constantly θ on
[
R
2
, R
]
. We set ϕ(e it , s) = (e i(t+f (s)), s).

We define a new metric mθ on Sg as follows: the metric tensor mθ

coincides with ϕ∗m on the R-annulus and coincides with m on the com-
plement of the R

2
-annulus S1 ×

[
−R

2
, R

2

]
.

Proposition 7.2.1. The metric tensor mθ is well-defined and gives a
complete hyperbolic, flat, or elliptic metric to Sg.

Proof. It is well-defined because m and mθ coincide on S1 ×
[
R
2
, R
]
,

since (e it , s) 7→ (e i(t+θ), s) is an isometry of the R-annulus. It is hyperbolic,
flat, or elliptic because both patches m and ϕ∗m are. �

Remark 7.2.2. In the new metric mθ the curve γ is still a simple
closed geodesic of the same length as before, and its R-neighbourhood is
also unchanged.

Of course by deforming an elliptic metric in this way we get nothing
new, because all the elliptic metrics on S2 are isometric. Earthquakes are
interesting only in the flat and hyperbolic geometries.

7.2.2. The earthquake map. We consider the surface Sg with g > 1

and show that earthquakes define nice actions on the Teichmüller space
Teich(Sg).

If m is any flat or hyperbolic metric and γ is a non-trivial simple closed
curve in Sg, we define mγ

θ to be the flat or hyperbolic metric obtained
from m via an earthquake of angle θ performed along the unique (up to
translations if g = 1) simple closed geodesic homotopic to γ in the metric
m.
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Proposition 7.2.3. The earthquake map

Eγ : R× Teich(Sg) −→ Teich(Sg)

(θ,m) 7−→ mγ
θ

is a well-defined action of R on Teich(Sg). The map Eγ depends only on
the homotopy class of γ.

Proof. The only ambiguity in the definition of mγ
θ is the choice of

the function f : [−R,R] → R. If we use another function f ′ the resulting
metric (mγ

θ )′ changes only by an isotopy: the diffeomorphism of Sg which
is the identity outside the R-annulus and sends (e it , s) to (e i(t+f (s)−f ′(s)), s)

is an isometry between mγ
θ and (mγ

θ )′, and is clearly isotopic to the identity.
To prove that Eγ is an action we need to check that

mγ
θ+θ′ =

(
mγ
θ′
)γ
θ
.

By Remark 7.2.2 we can take the same R-annulus to compose two earth-
quakes and the equality follows. �

Like the Dehn twists Tγ defined in Section 6.5.3, the action Eγ de-
pends on the orientation of Sg but not on the orientation of γ. There is
indeed a strong relation between earthquakes and Dehn twists on γ: as
objects acting on Theichmüller space, the first generalise the second.

Proposition 7.2.4. We have Tγ(m) = Eγ(2π,m).

Proof. It follows directly from the definitions. �

We now want to study the Teichmüller space and the action of Eγ on
it. In mathematics a space is often beautifully described by some natural
functions defined on it: this role is played here by the length functions of
closed curves.

7.2.3. Length functions. A homotopically nontrivial (possibly non
simple) closed curve γ in Sg defines a length function

`γ : Teich(Sg)→ R>0

which assigns to a metric m ∈ Teich(Sg) the length `γ(m) of the unique
closed geodesic homotopic to γ.

When g = 1 we must actually specify a couple of things in the def-
inition: the closed geodesic γ is unique only up to translations, which do
not affect its length; on the other hand rescaling does affect lengths, so
to get a well-defined length function we rescale m to have unit area.

We want to study these length functions, and as usual we first analyse
the simpler torus flat world, where everything can be described explicitly.
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Figure 7.4. A torus with metric z (left) twisted along the
horizontal curve γ (right). The curve α is a closed geodesic
in the new metric.

7.2.4. Length functions on the torus. We denote every (isotopy
class of) non-trivial simple closed curve on T with a coprime pair (p, q)

of integers and we identify the Teichmüller space Teich(T ) with H2 ⊂ C,
see Propositions 6.3.2 and 7.1.2. The length functions may be written
explicitly.

Proposition 7.2.5. The formula holds:

`(p,q)(z) =
|p + qz |√
=z

for every simple closed curve (p, q) and every metric z ∈ H2.

Proof. Up to rescaling we have T = R2/Γ with Γ = 〈1, z〉. The
translation in Γ corresponding to (p, q) is p · 1 + q · z and the closed
geodesic it produces has length |p + qz |. The area of the torus T is =z
(see a fundamental domain in Figure 7.1) and hence we must rescale it by
1/
√
=z . �

We can also write the earthquake action on the meridian m = (1, 0).

Exercise 7.2.6. We have:

Em(θ, z) = z +
θ

2π
.

Hint. Look at the closed geodesic α in Figure 7.4. �

We have discovered in particular that Em is a parabolic isometry of H2,
and we now consider the earthquake action along a generic curve (p, q).

Corollary 7.2.7. The earthquake action E(p,q) is the 1-parameter family
of parabolic transformations with fixed point − p

q
∈ ∂H2.

Proof. We know this when (p, q) = (1, 0) = m. In general, we send
(1, 0) to (p, q) via some element of the mapping class group: this element
acts by isometries of H2 by Proposition 7.1.5 and sends ∞ to − p

q
. �
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The orbits of E(p,q) are the horospheres centred at − p
q
. We have

discovered that, quite unexpectedly, the hyperbolic geometry of the plane
H2 is well designed to model the Teichmüller space of the flat torus T .

It is now natural to identify the unoriented simple closed curve ±(p, q)

with the rational point − p
q
in R ∪ {∞} ⊂ ∂H2. We get the following

convexity property.

Corollary 7.2.8. Let γ, η be two simple closed curves on T . If i(γ, η) >

0 the length function `η is strictly convex on the orbits of Eγ .

Proof. We may suppose γ = m = (1, 0) and note that the con-
dition i(γ, η) > 0 translates into η = (p, q) 6= (±1, 0). The function
in Proposition 7.2.5 is strictly convex on the horospheres =z = k when
(p, q) 6= (±1, 0). �

Summing up, the torus picture is the following:

• the mapping class group acts on the Teichmüller space roughly
like PSL2(Z) acts isometrically on the hyperbolic plane H2,

• the unoriented simple closed curves are in 1-1 correspondence
with the rational points in ∂H2 = R ∪∞,

• earthquakes act like parabolic transformations centred at these
rational points,

• the length function `γ is constant at the horospheres centred at
γ but strictly convex at the horospheres centred at all the other
curves.

The main goal of Chapters 7 and 8 is to draw a similar picture for
surfaces Sg of higher genus g > 2. Everything is more difficult in the
hyperbolic world, because there are no nice explicit formulas describing the
length functions, the action of the mapping class group, the simple closed
curves, and the earthquakes. We now start by generalising the last point:
the strict convexity of length functions.

7.2.5. Convexity of the length functions. We consider Sg with g >
2. Our aim now is to generalise Corollary 7.2.8 to the hyperbolic setting
and then later use this convexity property to parametrize Teich(Sg). We
need a preliminary result.

Exercise 7.2.9. Let f : Rm ×Rn → R>0 be strictly convex and proper.
The function

F : Rn −→ R>0

y 7−→ min
{
f (x, y)

∣∣ x ∈ Rm
}

is well-defined, strictly convex, and proper.

The following generalisation of Corollary 7.2.8 says that length func-
tions are convex on the earthquakes orbits, and very often they are strictly
convex and proper.
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Figure 7.5. A geodesic in mγθ can be seen on the original
metric m as follows: it is a geodesic outside the annulus and
deviates on the left by an angle θ every time it crosses it
(centre). We may simplify the picture by describing it as a
broken geodesic line that makes a left θ-jump each time that
it crosses γ (right).

Proposition 7.2.10. Let η and γ be two homotopically non-trivial sim-
ple closed curves in Sg and m be a hyperbolic metric on Sg. The function

R −→ R>0

θ 7−→ `η(mγ
θ )

is

• constant if i(η, γ) = 0,
• strictly convex and proper if i(η, γ) > 0.

Proof. The metric mγ
θ is obtained by twisting m of an angle θ along

the simple closed geodesic γ. If i(η, γ) = 0 the curves η and γ are disjoint
geodesics in m and η is not affected by the earthquakes that we perform
near γ, hence the function `η(mγ

θ ) is constant.
Consider the case n = i(η, γ) > 0. Denote by η̄θ the geodesic repre-

sentative of η in the twisted metric mγ
θ : it intersects γ transversely in n

points.
Fix a sufficiently small R-annulus around γ and note that the geodesics

in mγ
θ can be seen in the original metric m as follows: these are curves that

are geodesic outside the R-annulus and deviate smoothly on the left each
time they cross it as in Figure 7.5-(centre). We may substitute each
smooth deviation with a broken jump as shown in Figure 7.5-(right) and
get a bijection{

closed geodesics

with respect to mγ
θ

}
←→

{
broken geodesics

with respect to m

}
where a broken geodesic is a geodesic that at every crossing of γ jumps
to the left at distance θL(γ)

2π
and then keeps going on, leaving γ with the

same incidence angle (here L(γ) is the length of γ). This correspondence
is useful because it preserves the lengths: the length of the closed geodesic
for mγ

θ is equal to the length of the corresponding broken geodesic (which
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x -  '
'

x -  '

Figure 7.6. The (blue) line l is a lift of η̄. Consider n con-
secutive intersections with lifts r1, . . . , rn+1 of γ (in red), with
τ(r1) = rn+1, and parametrize each ri with R via arc-length.
We set θ′ = θL(γ)/2pi .

is the sum of the lengths of its components), because the segments in
Figure 7.5-(left) and (right) are isometric.

We lift this description to the universal cover H2. We fix a lift l of
η̄ = η̄0 and pick n + 1 consecutive intersections r1, . . . , rn+1 of l with the
lifts of γ as in Figure 7.6. The hyperbolic transformation τ with axis l
corresponding to η sends r1 to rn+1. We parametrise each ri with R via arc
length.

The closed geodesic η̄θ, represented as a broken geodesic, lifts to a
broken geodesic which starts at some point x1−θL(γ)/2π ∈ r1 and arrives
at some other point x2 ∈ r2, then jumps on the left at distance θL(γ)/2π

and starts again from x2 − θL(γ)/2π, and so on until it reaches the point
τ(x1) ∈ τ(r1) = rn+1. If we make the points x1 ∈ r1, . . . , xn ∈ rn vary we
get various broken paths in this way, but only one arrives and exits from
each line ri with the same incidence angles and thus represents η̄θ. The
other broken paths represent piecewise-geodesic curves homotopic to η̄θ

and are therefore longer than η̄θ. Hence

`η(mγ
θ ) = min

{
n∑
i=1

d

(
xi −

θL(γ)

2π
, xi+1

) ∣∣∣∣∣ (x1, . . . , xn) ∈ Rn
}

where xn+1 = τ(x1). We can now prove that the function θ 7→ `η(mγ
θ ) is

proper and strictly convex. The function

ψ : R2n −→ R

(x1, y1, . . . , xn, yn) 7−→
n∑
i=1

d(yi , xi+1)
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where xn+1 = τ(x1) is strictly convex and proper by Proposition 2.4.4. The
auxiliary function

φ : R2n × R −→ R
(x, θ) 7−→ ψ(x)

is only convex, but its restriction to the subspace

H =

{
yi = xi −

θl(γ)

2π

}
is strictly convex and proper, because the subspace H is not parallel to the
direction (0, . . . , 0, 1). The coordinates xi and θ identify H with Rn × R.
The restriction f = φ|H is hence a function f : Rn ×R→ R and we obtain

`η(mγ
θ ) = min

{
f (x, θ)

∣∣ x ∈ Rn
}
.

By Exercise 7.2.9 the function θ 7→ `η(mγ
θ ) is strictly convex and proper.

�

We now employ this convexity property to prove some facts on the
earthquakes and the Teichmüller space.

7.2.6. Earthquakes on essential multicurves. We use the convexity
of the length functions to prove the following. We suppose again that
g > 2.

Corollary 7.2.11. For every simple closed curve γ, the earthquake
action Eγ on Teich(Sg) is free.

Proof. Suppose by contradiction that m = mγ
θ0

for some θ0 > 0.
Then m = mγ

nθ0
for every n ∈ Z. Let η be a simple closed curve with

i(η, γ) > 0, which exists by Exercise 6.3.13; the function θ 7→ `η(mγ
θ ) is

strictly convex and constant on {nθ0, n ∈ Z}, a contradiction. �

The earthquake action is defined more generally for essential multi-
curves. An essential multicurve µ = γ1 t · · · t γk of Sg determines an
action

Eµ : Rk × Teich(Sg) −→ Teich(Sg)

(θ,m) 7−→ mµ
θ

where θ = (θ1, . . . , θk) and mµ
θ = mγ1

θ1
◦ · · · ◦ mγk

θk
. Note that the actions

on disjoint curves commute.

Corollary 7.2.12. For every essential multicurve µ, the earthquake
action Eµ on Teich(Sg) is free.

Proof. We may complete µ to a pants-decomposition µ = γ1 t . . . t
γ3g−3. Pick for every i = 1, . . . , 3g − 3 a curve γ ′i as in Figure 7.7 such
that i(γi , γ ′i ) > 0 for all i and i(γi , γ ′j ) = 0 for all i 6= j .

Suppose by contradiction that m = mµ
θ for some θ 6= 0: hence mµ

nθ =

m for all n ∈ Z. There is an i such that θi 6= 0. The length function
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Figure 7.7. Choose for each component γi of a pants de-
composition µ a curve γ′i that intersects γi in one or two
points and is disjoint from the other components of µ. There
are two cases to consider, depending on whether the two
pants adjacent to γi are distinct (left) or not (right).

Figure 7.8. A frame for the Fenchel-Nielsen coordinates
consists of a (red) pants decomposition µ and a (blue) trans-
verse multicurve ν that cuts each pair of pants into two
hexagons. The number of components of µ is 3g − 3, that
of ν can vary.

`γ
′
i (mµ

θ ) depends only on θi and not on the other coordinates of θ: therefore
it equals `γ

′
i (m

γi
θi

) which is strictly convex, a contradiction. �

7.3. Fenchel–Nielsen coordinates

It is now time to fix a global set of coordinates for the Teichmüller
space when g > 2. These are the Fenchel–Nielsen coordinates and they
identify Teich(Sg) with R6g−6, more precisely with R3g−3

>0 × R3g−3.

7.3.1. The coordinates. We want to construct a parametrisation for
Teich(Sg) when g > 2. To identify a finite-dimensional vector space with
Rn one needs to fix a basis; likewise, here the parametrisation depends on
the choice of a frame.

Let Sg be oriented. A frame for Sg consists of two essential multic-
urves µ and ν in minimal position, such that:

(1) the multicurve µ is a pants decomposition,
(2) the multicurve ν decomposes every pair-of-pants in two hexagons.

An example that generalises easily to any genus g ≥ 2 is shown in
Figure 7.8. The pants decomposition µ = γ1 t . . . t γ3g−3 consists of
3g − 3 curves, while the number of curves in ν is not fixed a priori and
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Figure 7.9. A closed geodesic γ̄1 and the two adjacent pairs-
of-pants. The torsion parameter θ1 measures the distance (in
the universal covering) between two orthogeodesics (coloured
in green) via the formula θi =

2πsi
li

.

depends on our choice of ν. We now show that a frame induces a Fenchel–
Nielsen map

FN: Teich(Sg) −→ R3g−3
>0 × R3g−3

m 7−→ (l1, . . . , l3g−3, θ1, . . . , θ3g−3).

The map FN is defined as follows. Let m ∈ Teich(Sg) be a hyperbolic
metric. The 3g − 3 length parameters li = `γi (m) are defined using the
length functions: the multicurve µ has a unique geodesic representative

µ̄ = γ̄1 t . . . t γ̄3g−3

in the metric m by Corollary 6.3.23, and li is the length of γ̄i . Note that
these parameters depend only on µ and not on ν.

The torsion angles θi are more subtle to define: the geodesic multic-
urve µ̄ decomposes Sg into geodesic pairs-of-pants, and the angle θi mea-
sures somehow the way the two geodesic pairs-of-pants are glued along
the closed geodesic γ̄i . The precise definition of θi needs the auxiliary
multicurve ν.

We fix i = 1 for simplicity and define θ1. Figure 7.9-(left) shows
the two geodesic pants adjacent to γ̄1 (they might coincide). The second
multicurve ν intersects these pants in four blue arcs, two of which λ, λ′

intersect γ̄1: we pick one, say λ. We fix a lift P̃ ∈ H2 of P = γ̄1 ∩ λ and
we lift all the curves incident to P : the geodesic γ̄1 lifts to a line γ̃1 and λ
lifts to a (non-geodesic) curve λ̃ that connects two lifts γ̃2 and γ̃3 of the
closed geodesics γ̄2 and γ̄3. See Figure 7.9-(right).

We draw as in the figure the unique orthogeodesics connecting γ̃1 to
γ̃2 and γ̃3 and we denote by s1 the signed length of the segment in γ̃1

comprised between these two orthogeodesics, with positive sign if (as in
the figure) an observer walking on a orthogeodesic towards γ̃1 sees the
other orthogeodesic on its left (here we use the orientation of Sg).
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Figure 7.10. If we pick λ′ instead of λ we find a segment
of the same length s1. This holds because the two geodesic
pairs-of-pants incident to γ1 decompose into two hexagons
isometric to A and B as shown, and the sides of A and B
contained in γ̃1 have the same length l(γ1)

2
, that is half the

length of γ1.

By repeating this construction for each γ̄i we find some real numbers
si . Finally, the torsion parameter θi is

θi =
2πsi
li
.

Theorem 7.3.1 (Fenchel-Nielsen coordinates). The map FN is well-
defined and is a bijection.

Proof. We first note that in the definition of the torsion parameters
we could have chosen λ′ instead of λ. We would have obtained the same
length si as shown in Figure 7.10. Moreover a hyperbolic metric m′ iso-
metric to m through a diffeomorphism ϕ isotopic to the identity has the
same parameters li and θj since they depend only on the isotopy classes of
µ and ν. Therefore FN is well-defined.

We prove that FN is surjective. For every vector (l1, . . . , l3g−3) ∈
R3g−3
>0 we may use Proposition 6.2.1 and construct a metric on Sg by

assigning to each pair-of-pants of the pants decomposition µ the (unique)
hyperbolic metric with boundary lengths li . We get a metric with some
arbitrary torsion angles θ, which can be changed arbitrarily by an earthquake
along µ: it is easy to check that an earthquake with angles θ′ changes the
torsion angles from θ to θ+θ′, hence any torsion parameter can be realised
and FN is surjective.

We prove that FN is injective. If FN(m) = FN(m′), up to acting via
earthquakes we suppose that FN(m) = FN(m′) = (l1, . . . , l3g−3, 0, . . . , 0).
Since the torsion parameter is zero, the orthogeodesics in Figure 7.9-(right)
match and project in Sg to a geodesic multicurve ν̄ isotopic to ν and
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Figure 7.11. The curves γ (red), γ′ (blue), and γ′′ = Tγ(γ′)
(green) on the torus.

orthogonal to µ̄. Therefore Sg \ (µ̄ ∪ ν̄) is a tessellation of Sg into right-
angled hexagons, determined by the lengths li . Both metrics m and m′

have the same tessellation and are hence isometric, via an isometry which
is isotopic to the identity. �

Remark 7.3.2. As shown in the proof, the torsion parameters for m
are zero if and only if the geodesic representatives ν̄ and µ̄ of ν and µ are
everywhere orthogonal.

7.3.2. Length functions of 9g − 9 curves. It is now natural to ask
whether the length functions determine every point in Teich(Sg). The
answer is positive; as usual, to warm up we start by examining the torus.

Let γ, γ ′ be two simple closed curves in the torus T with i(γ, γ ′) = 1

and let γ ′′ = Tγ(γ ′) be obtained by Dehn twisting γ ′ along γ, see Figure
7.11.

Proposition 7.3.3. The map

L : Teich(T ) −→ R3
>0

m 7−→
(
`γ(m), `γ

′
(m), `γ

′′
(m)

)
is injective.

Proof. After fixing γ and γ ′ as a homology basis, we have γ = (1, 0),
γ ′ = (0, 1), and γ ′′ = (1,−1). Proposition 7.2.5 gives

L(z) =

(
1√
=z
,
|z |√
=z
,
|z − 1|√
=z

)
which is easily seen to be injective on Teich(T ) = H2. �

A similar set of 9g − 9 curves does the job on Sg when g > 2. Let
µ = γ1 t . . . t γ3g−3 be a pants decomposition for Sg. For each γi we
choose a curve γ ′i as in Figure 7.7, and we indicate by γ ′′i = Tγi (γ

′
i ) the

curve obtained by Dehn-twisting γ ′i along γi , see an example in Figure 7.12.

Proposition 7.3.4. The map

L : Teich(Sg) −→ R9g−9
>0

m 7−→
(
`γi (m), `γ

′
i (m), `γ

′′
i (m)

)
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Figure 7.12. The curves γi (red), γ′i (blue), and γ′′i =

Tγi (γ
′
i ) (green) when γi is adjacent twice to the same pair of

pants. It is an instructive exercise to draw γ′i and γ
′′
i when

γi is incident to distinct pair of pants.

is injective.

Proof. We compose L with FN−1 and obtain a map

L ◦ FN−1 : R3g−3
>0 × R3g−3 −→ R9g−9

>0

(li , θi) 7−→ (li , l
′
i , l
′′
i )

We prove that it is injective: it suffices to consider the case where the
values li are fixed and θi vary. Note that γ ′i and γ

′′
i intersect γj if and only

if i = j : hence l ′i and l
′′
i depend only on θi and not on the other torsion

parameters θj . Proposition 7.2.10 says that l ′i = f (θi) is strictly convex and
Proposition 7.2.4 gives l ′′i = f (θi + 2π). A strictly convex proper function
f : R→ R is at most 2 to 1, hence the function

R −→ R× R

θi 7−→
(
f (θi), f (θi + 2π)

)
is injective. Therefore L is injective. �

7.3.3. Collar lemma. The thick-thin decomposition theorem implies
that the closed geodesics of length smaller than a Margulis constant ε2 on a
complete hyperbolic surface are simple and have disjoint R-neighbourhoods
(see Corollary 4.2.16). When the curves are very short, one may choose
R to be very large: this fact is called the collar lemma and we prove it
directly using elementary tools.

For any number l > 0, draw the quadrilateral as in Figure 7.13-(left)
and define f (l) to be the distance between its opposite sides l and r .

Exercise 7.3.5. The function f : R>0 → R>0 is strictly decreasing and
a homeomorphism. In particular we get liml→0 f (l) = ∞. Explicitly, we
have

sinh f (l) =
1

sinh l
2

.

Hint. Put l in vertical position in H2 and use Lemma 5.2.7. �

The function f is simple to define, and is particularly useful.
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Figure 7.13. Pick a segment of length l and draw two per-
pendiculars at the endpoints: this determines a quadrilateral
with two ideal vertices; let f (l) be the distance between the
opposite sides l and r (left). A geodesic pair-of-pants is
the union of two isometric hexagons, which form in H2 a
right-angled octagon as drawn. The picture shows that the
closed boundary geodesics a and b have disjoint f (a) and
f (b)-neighbourhoods, coloured here in yellow (right).

Proposition 7.3.6. Let P be a geodesic pair-of-pants with boundary
lengths a, b, and c. The f (a), f (b), and f (c)-neighbourhoods of the
boundary components form three disjoint collars.

Proof. Consider two boundary components a and b. The geodesic
pair-of-pants P is divided into two isometric hexagons, and we lift them
to H2 where they form a right-angled octagon as in Figure 7.13-(right).
The picture shows that the f (a) and f (b)-neighbourhoods of a and b are
disjoint. �

Here is the collar lemma.

Lemma 7.3.7 (Collar lemma). Let g > 2 and Sg have a hyperbolic
metric. Disjoint simple closed geodesics γ1, . . . , γk of length l1, . . . , lk have
disjoint tubular f (li)-neighbourhoods.

Proof. We may suppose (by adding more simple closed geodesics if
necessary) that the closed geodesics form a pants decomposition, and
it suffices to consider two curves that cobound the same pair-of-pants.
Proposition 7.3.6 applies. �

We recall from Corollary 4.2.16 that every closed geodesic shorter
than ε2 is simple. Therefore very short closed geodesics are simple and
have large disjoint tubular neighbourhoods: the more we shrink the curves,
the larger are their neighbourhoods, and hence the larger is the diameter
of the surface (the diameter of a metric space is the supremum of the
distance of its points). In particular, if on a sequence of closed hyperbolic
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surfaces the injectivity radius tends to zero, their diameters must tend to
infinity.

Among the many consequences of the collar lemma, we focus on a
simple inequality which relates the geometric intersection of simple closed
geodesics to their lengths. We denote by L(γ) the length of γ.

Corollary 7.3.8. Let g > 2 and Sg have a hyperbolic metric. Let γ
and η be two simple closed geodesics in Sg. The following inequality holds:

L(η) > 2i(η, γ) · f (L(γ)).

Proof. The geodesic γ has a tubular f (L(γ))-neighbourhood. The
geodesic η intersects γ in i(η, γ) points and hence crosses the tubular
neighbourhood at least i(η, γ) times, each with a segment of length >
2f (L(γ)). �

7.3.4. A topology for the Teichmüller space. There are various equiv-
alent ways to assign a topology to the Teichmüller space. On the torus
T , we have seen that Teich(T ) can be identified with the hyperbolic plane
H2, and the mapping class group acts as isometries on it: we could not
hope for a better picture of Teich(T ) and we are fully satisfied.

When g > 2 we could similarly use the Fenchel-Nielsen coordinates
and give Teich(Sg) the topology of R6g−6, but then to be honest we should
also check that the topology does not depend on the frame... we prefer
to equip the Teichmüller space with an intrinsic topology and then prove
that the Fenchel-Nielsen coordinates are homeomorphisms.

We indicate by S = S (Sg) the set of all the non-trivial simple closed
curves in Sg, considered up to isotopy and orientation reversal (we say that
the curves are unoriented). Each element γ ∈ S induces a length function

`γ : Teich(Sg) −→ R>0.

We indicate as usual with RS the set of all functions S → R and give it
the usual product topology (the weakest one such that all the projections
are continuous). The natural map

Teich(Sg) −→ RS

m 7−→
(
γ 7−→ `γ(m)

)
is injective by Propositions 7.3.3 and 7.3.4. We may hence consider
Teich(Sg) as a subspace of RS and assign it the subspace topology. This
topology on Teich(Sg) is the weakest one where the length functions `γ

are continuous. Recall that a topological space is second-countable if it
has a countable base.

Proposition 7.3.9. The space RS is Hausdorff and second-countable.

Proof. Every product of Hausdorff spaces is Hausdorff, and every
countable product of second-countable spaces is second-countable. �
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We recall the following topological fact.

Proposition 7.3.10. Let f : X → Y be a continuous and proper map
between topological spaces. If Y is Hausdorff and second-countable then
f is closed.

Proper maps onto reasonable spaces are closed. If they are also in-
jective, we can obtain more.

Corollary 7.3.11. Let f : X → Y be a continuous, proper, and injective
map between topological spaces. If Y is Hausdorff and second-countable
then f is a homeomorphism onto its image.

We will use this corollary in a moment. Recall that every isometry
ϕ ∈ Isom+(H2) = PSL2(R) has a trace trϕ defined only up to sign, whose
modulus is > 2 precisely when ϕ is hyperbolic, see Proposition 2.3.9.

Proposition 7.3.12. Let S = H2/Γ be an orientable hyperbolic surface.
Every hyperbolic transformation ϕ ∈ Γ produces a closed geodesic γ in S
with

|trϕ| = 2 cosh
L(γ)

2
.

Proof. Up to conjugacy we have ϕ(z) = eL(γ)z . The matrix is

ϕ =

(
e
L(γ)

2 0

0 e−
L(γ)

2

)
hence |trϕ| = 2 cosh L(γ)

2
. �

In particular, the length of γ depends continuously on the transforma-
tion ϕ. We will use this fact to prove the following. We suppose g > 2.

Proposition 7.3.13. The Fenchel-Nielsen map

FN: Teich(Sg) −→ R3g−3
>0 × R3g−3

is a homeomorphism.

Proof. We consider Teich(Sg) inside RS and examine the inverse

FN−1 : R3g−3
>0 × R3g−3 −→ RS .

We prove that FN−1 is continuous. The map FN−1 assigns to the
parameters (li , θi) a metric on Sg constructed by attaching right-angled
hexagons. Both the hexagons and the attaching maps depend continu-
ously on the parameters (li , θi) and lift to a tessellation ofH2 into hexagons.
Since the decomposition into hexagons varies continuously, its deck trans-
formations vary continuously in PSL2(R) and hence the length functions
too by Proposition 7.3.12. Therefore FN−1 is continuous.

We prove that FN−1 is proper. Take a diverging sequence of param-
eters (li , θi) (that is, without converging subsequences) in R3g−3

>0 × R3g−3:
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we need to show that its image is also a diverging subsequence. The the-
sis is equivalent to show that the length function of some curve goes to
infinity. If li → +∞ for some i we are done. If li → 0, the length of
any curve intersecting essentially the shrinking curve γi goes to infinity by
Corollary 7.3.8. It remains to consider the case where the length parame-
ters li converge to some non-zero value, but some twist parameter θj goes
to infinity: in that case the length of any curve intersecting the twisted
curve γj goes to infinity by Proposition 7.2.10.

Finally, the map FN−1 is a homeomorphism onto its image by Corollary
7.3.11. The proof is complete. �

During the proof we have also discovered the following.

Proposition 7.3.14. If a sequence mi ∈ Teich(Sg) diverges, there is a
γ ∈ S such that `γ(mi)→∞ on a subsequence.

Recall that the action of a topological group G on a topological space
X is continuous if the action map G ×X → X is continuous. This implies
that G acts on X by homeomorphisms. We give the mapping class group
MCG(Sg) the discrete topology.

Proposition 7.3.15. The earthquakes and mapping class group actions
on the Teichmüller space are continuous.

Proof. The mapping class group acts on S by permutations, hence
its action on RS is continuous. On Fenchel-Nielsen coordinates the earth-
quake action sends θ to θ + θ′ and is hence continuous. �

The immersion in R9g−9 is also a topological embedding.

Proposition 7.3.16. The injective representation Teich(Sg) ↪→ R9g−9

furnished by Proposition 7.3.4 is a homeomorphism onto its image.

Proof. Using Fenchel-Nielsen coordinates the map is clearly continu-
ous. The proof that it is proper is as in Proposition 7.3.13. �

7.3.5. Surfaces of finite type. We have considered only closed sur-
faces Sg for simplicity, but most of the arguments exposed in this chapter
extend easily to all surfaces Sg,b,p of finite type with negative Euler char-
acteristic.

The Teichmüller space Teich(Sg,b,p) is the set of all the complete
hyperbolic metrics with geodesic boundary, considered up to isometries
that are isotopic to the identity. Fenchel-Nielsen coordinates are defined
analogously: the surface decomposes into −χ(Sg,b,p) = 2g + b + p − 2

pairs-of-pants, and the interior curves of the decomposition are
1

2

(
3(2g + b + p − 2)− b − p

)
= 3g + b + p − 3.

The Fenchel-Nielsen coordinates are(
l1, . . . , l3g+b+p−3, l

∂
1 , . . . , l

∂
b , θ1, . . . , θ3g+b+p−3

)
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where the li and l∂j are the length parameters of the 3g+b+p−3 interior
and b boundary curves, and the θi are the torsion angles of the interior
curves. We get a bijection

FN: Teich(Sg,b,p) −→ R3g+2b+p−3
>0 × R3g+b+p−3

which is a homeomorphism with respect to the natural topology on Te-
ichmüller space as a subset of RS . Therefore the Teichmüller space is
homeomorphic to a ball of dimension −3χ(Sg,b,p)− p.

For instance, the Teichmüller space of a pair-of-pants is R3
>0 parametrized

by the lengths of the boundary geodesics, while that of a thrice-punctured
sphere is a point (there is a unique metric).

An alternative description of the Teichmüller space for punctured sur-
faces, with ideal triangles playing the role of pairs-of-pants, is described in
the next section.

7.4. Shear coordinates

The Teichmüller space of a punctured surface may also be parametrized
using ideal triangles instead of pairs-of-pants: this viewpoint is maybe a bit
simpler, and generalises successfully to dimension three (via ideal tetrahe-
dra). The coordinates that it produces are called shear coordinates.

7.4.1. Ideal triangulations. In dimension two and three it is custom-
ary to relax the definition of triangulation, originally restricted to simplicial
complexes, see Section 1.7.7. We prefer to define a triangulation in a
looser sense, as a finite set of triangles glued together by pairing their
edges.

Let ∆1, . . . ,∆2k be an even number of identical copies of the standard
oriented 2-simplex. A triangulation T is a partition of the 6k edges of the
triangles into 3k pairs, and for each pair a simplicial isometry between the
two edges. The triangulation is oriented if the simplicial isometries are
orientation-reversing. If we glue the triangles along the isometries we get
a compact surface S: we always suppose that S is connected and T is
oriented, hence S = Sg for some g > 0.

The surface S is triangulated with 2k triangles, 3k edges, and some
p vertices. Vertices, edges, and triangles form a cellularisation of S, but
not necessarily a simplicial complex: for instance two or three vertices of
the same triangle ∆i can be identified to a single one along the process,
as the following exercise shows.

Exercise 7.4.1. Construct a triangulation of the torus with one vertex,
three edges, and two triangles.

Let Σ be the non-compact surface obtained by removing the p vertices
of the triangulation T from S: we say that T is an ideal triangulation for
Σ. The surface Σ is a punctured surface, i.e. Σ = Sg,0,p with p > 1.
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Figure 7.14. The standard representation of Sg by identi-
fying the edges of a 4g-gon has one vertex; we triangulate
the 4g-gon and get an ideal triangulation for Sg,0,1 (left). A
move that modifies a triangulation by adding a new vertex
(right).

Proposition 7.4.2. We have χ(Σ) = −k < 0. Every punctured surface
of negative Euler characteristic has an ideal triangulation.

Proof. We have χ(Σ) = χ(S) − p = p − 3k + 2k − p = −k. An
ideal triangulation for S0,0,3 is constructed by attaching ∆1 and ∆2 via
the obvious maps. An ideal triangulation for Sg,0,1 is constructed in Figure
7.14-(left) for all g > 1. An ideal triangulation for Sg,0,p with χ(Sg,0,p) < 0

and p > 2 is obtained from one of these by increasing p as in Figure 7.14-
(right). �

7.4.2. Hyperbolic ideal triangulations. Let T be an oriented trian-
gulation with triangles ∆1, . . . ,∆2k . We substitute every ∆i with an ideal
hyperbolic triangle (recall that it is unique up to isometry) and pair the
edges with some orientation-reversing isometries. The resulting oriented
punctured surface Σ inherits a hyperbolic structure of area kπ, since an
ideal triangle has area π. We call T a hyperbolic ideal triangulation for Σ.

The edges are infinite lines and the gluing isometry is not unique: in-
deed there is a 1-parameter family of isometries to choose from at every
pair of edges, and the hyperbolic structure depends on that – although the
topology of Σ does not. To encode this dependence, we note that every
edge of an ideal triangle has a preferred midpoint defined in Figure 7.15.
The orientation-reversing isometry between two edges of two triangles is
determined by the signed distance d (called shear) of their two midpoints
as shown in Figure 7.16-(left). The hyperbolic structure on Σ is deter-
mined by the shear coordinates d = (d1, . . . , d3k) of the 3k edges of the
triangulation.

7.4.3. Complete solutions. The hyperbolic structure on Σ may be
incomplete! Recall that a hyperbolic surface is complete if and only if its
universal cover is H2, so we now look at the universal cover of Σ.
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Figure 7.15. On an ideal triangle every edge has a unique
perpendicular which ends at the opposite vertex. The base of
this perpendicular is the midpoint of the edge and the three
perpendiculars intersect in a point called barycenter (left).
There is a unique configuration of three pairwise tangent
horocycles centred at the ideal vertices, and their tangency
points are the midpoints of the edges (right).

d
d1

d2
d3

1 2 3 1
'

Figure 7.16. The shear is the signed distance d between
two midpoints after the gluing. By convention the sign is
positive d > 0 if the points are as shown here, that is an
observer that arrives at the midpoint of an edge sees the
other midpoint on its left: we need the orientation of T here
(left). We develop a triangulation around a puncture v : here
h = 3 (right).

Proposition 7.4.3. The universal cover Σ̃ of Σ is isometric to the
interior of the intersection of some half-planes in H2 with disjoint boundary
lines (see Figure 7.17). The surface Σ is complete if and only if Σ̃ ∼= H2.

Proof. Recall from Section 3.5.3 the developing map D : Σ̃ → H2.
We prove that D is injective.

We can construct D as follows: the hyperbolic ideal triangulation T
of Σ lifts to a hyperbolic ideal triangulation T̃ of Σ̃ with infinitely many
triangles. Send a triangle of T̃ to an arbitrary ideal triangle of H2 and then
develop the map D by attaching subsequently all the triangles of T̃ . At
each step the image of D is an ideal polygon and we attach a new triangle
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Figure 7.17. The universal covering of Σ is isometric to the
interior of a convex set delimited by some lines in H2, which
is the intersection of (possibly infinitely many) half-planes
bounded by disjoint lines.

to the exterior of some side of the polygon. Therefore at each step D is
injective and hence D is globally injective.

Since D is injective we identify Σ̃ with its open image in H2. Pick a
point x ∈ ∂Σ̃. Every neighbourhood of x must intersect infinitely many
triangles of T̃ , hence there is a sequence of edges ei of T̃ such that d(ei , x)

is monotone decreasing and tends to zero. Since the ei are disjoint, their
endpoints in ∂H2 are monotone and tend to two points, which determine
a line l . We must have d(l , x) = 0 and hence x ∈ l and l ⊂ ∂Σ̃.

We have discovered that ∂Σ̃ consists of disjoint lines. This proves
that the closure of Σ̃ is the intersection of half-planes. A surface Σ is
complete if and only if Σ̃ is complete, and hence isometric to H2. �

The hyperbolic structure on Σ depends on the shearing coordinates
d ∈ R3k , and we now want to understand which values of d produce a
complete metric. An ideal vertex v of the triangulation T is adjacent to
some h triangles, which we denote by ∆1, . . . ,∆h for simplicity although
there might be repetitions, and to h edges with some shearing coordinates
that we also indicate by d1, . . . , dh for simplicity. The vertex v is a puncture
of Σ and let N(v) be a small topological punctured closed disc around v .

Proposition 7.4.4. The punctured disc N(v) is complete if and only if
d1 + . . .+ dh = 0.

Proof. We construct a portion of the developing map D : Σ̃→ H2 as
follows: we use the half-plane model and send ∆1 to H2 with v =∞ as in
Figure 7.16-(right), then we develop the triangulation horizontally. In the
picture h = 3 so we reproduce ∆1,∆2,∆3 and then another copy ∆′1 of ∆1.
Let ϕ ∈ PSL2(R) be the holonomy isometry that sends ∆1 to ∆′1.

If d1 + . . .+dh = 0 the midpoints of ∆1 and ∆′1 are at the same height
as in Figure 7.16-(right) and therefore ϕ is a parabolic map ϕ : z 7→ z + b
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Figure 7.18. When d1 + . . .+ dh 6= 0, the isometry ϕ send-
ing ∆1 to ∆′1 is hyperbolic, with some axis l which (up to
translations) has endpoints 0 and ∞. Hence ϕ(z) = edz

and the triangulation develops towards l as shown here.

for some b ∈ R. Therefore N(v) is a truncation of the cusp H2/〈ϕ〉, which
is complete.

If d1 + . . . + dh 6= 0 the midpoints of ∆1 and ∆′1 are at different
heights and therefore ϕ is not parabolic. Since ∞ ∈ Fix(ϕ), the isometry
ϕ is a hyperbolic transformation having some other fixed point in R. Up
to translating everything we may suppose that Fix(ϕ) = {0,∞}, hence
the axis l of ϕ is the vertical coordinate axis, and ϕ(z) = edz with d =

d1 + . . .+ dh. The map D develops towards l as shown in Figure 7.18: we
get l ⊂ ∂Σ̃, so Σ̃ 6= H2 is not complete. �

Summing up, we have a completeness equation of type di1 +. . .+dih =

0 for each of the p ideal vertices of the triangulation.

Corollary 7.4.5. The hyperbolic structure on Σ is complete if and only
if d satisfies the p completeness equations.

Proof. Let N(v) be a small punctured closed disc at v for every ideal
vertex v . The closure of Σ \∪vN(v) is compact. Therefore Σ is complete
if and only if each N(v) is. �

7.4.4. Shear coordinates for Teichmüller space. The solution space
of the completeness equations is some linear subspace V ⊂ R3k of di-
mension at least 3k − p = −3χ(Σ) − p. Note that this is precisely the
dimension of Teich(Σ), see Section 7.3.5. We have constructed a map

sh: V −→ Teich(Σ).

We will prove below that sh is a homeomorphism and hence dim V = 3k−p.
We will use the following.

Proposition 7.4.6. Let Σ be a complete hyperbolic punctured sur-
face. Every ideal triangulation of Σ is isotopic to a unique hyperbolic ideal
triangulation.
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Figure 7.19. Let s be a Euclidean line at hyperbolic distance
R from l . If R is sufficiently small, the line s does not inter-
sect the lower edges of ∆1,∆2,∆3. Let S be the region lying
above s.

Proof. We describe a procedure that straightens every ideal triangu-
lation T of Σ = H2/Γ to a hyperbolic one.

Truncate the cusps of Σ to get a compact sub-surface. The ideal
triangulation T is now truncated to a decomposition into hexagons, each
with three boundary and three interior edges. We lift the truncated cusps
and the hexagons to H2. Truncated cusps lift to horoballs, bounded by
horocycles, and hexagons lift to hexagons (the hexagons are not geodesic,
only smooth).

An interior edge of a hexagon in H2 cannot have both its endpoints
in the same horocycle, since it would form a bigon with it, and a bigon
does not decompose into hexagons (by a Euler characteristic argument).
Therefore every interior edge connects two distinct horocycles, centred
at two distinct points of ∂H2. Replace this edge with the geodesic line
connecting these two ideal points.

If we do this at every interior edge we get a Γ-invariant hyperbolic
ideal triangulation of H2, which projects to a hyperbolic ideal triangulation
for Σ isotopic to T . �

We can now parametrize Teich(Σ).

Corollary 7.4.7. The map sh is a bijection.

Proof. Proposition 7.4.6 shows that in every metric the initial trian-
gulation T straightens to an ideal hyperbolic one and is hence realised by
some d , so sh is surjective. Moreover the straightened triangulation is
unique and the parameters di are obtained intrinsically from it, so sh is
also injective. �

7.4.5. Incomplete metrics. The shear coordinates d may define an
incomplete metric on Σ, and we now determine its metric completion Σ.

Recall that every ideal vertex v has a total shear dv = di1 + . . .+ dih
which is zero precisely when Σ is complete near v .
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Figure 7.20. Near an ideal vertex v , horocycles (in blue) and
edges of the triangulation (in red) are mutually orthogonal.
They behave much differently in presence of a cusp (left) or
of a geodesic boundary (right): in a cusp, horocycles form
parallel circles and edges point toward the cusp; near a geo-
desic boundary, the horocycle point orthogonally toward the
boundary and the edges spin and wind around it indefinitely.

Proposition 7.4.8. The metric completion Σ is a hyperbolic surface
with geodesic boundary, whose boundary lengths are the absolute values
of the total shears of the vertices.

Proof. Let N(v) be a small closed punctured disc around v . If dv = 0

we already know that N(v) is a truncated cusp. If dv 6= 0 we develop N(v)

in H2 as in Figure 7.19. The hyperbolic transformation is ϕ(z) = edv z and
the points at distance R from l form a Euclidean line s starting from 0.
Pick R small so that s does not intersect the lower edges of ∆1, . . . ,∆h.
Since s is ϕ-invariant, it is contained in the union of all the developed
triangles of Figure 7.19 and hence in Σ̃.

The line s projects to a (non-geodesic) circle in Σ around v , and we
can suppose that ∂N(v) is that circle. We have N(v) = S/γ where S ⊂ H2

is the region lying above s. The completion S equals S ∪ l and therefore
N(v) = S/γ is an annulus with two boundary components: the original
non-geodesic ∂N(v) and a new geodesic l/γ , a curve of length |dv |. �

If dv 6= 0, the edges of the triangulation pointing towards v spin around
the geodesic boundary as shown in Figure 7.20-(right). The spinning di-
rection induces an orientation on each component of ∂Σ, which depends
on the sign of dv .

Summing up, every shear coordinate d = (d1, . . . , d3k) ∈ R3k deter-
mines a hyperbolic surface Σ with some p′ cusps and b oriented geodesic
boundary, where b + p′ = p is the number of vertices of the ideal trian-
gulation. The surface Σ is diffeomorphic to Sg,b,p′ . Let Teichor(Sg,b,p′)
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denote the Teichmüller space of the surface Sg,b,p′ equipped with an ori-
entation of the b boundary components: of course this is just 2b copies of
Teich(Sg,b,p′).

Proposition 7.4.9. The shear coordinates induce a bijection

R3k ←→
⊔

b+p′=p

Teichor(Sg,b,p′).

Proof. The map sends d ∈ R3k to the complete hyperbolic Σ, and we
now exhibit an inverse. Let Σ be a surface of finite type with a hyperbolic
structure with p′ cusps and b oriented geodesic boundary components, and
Σ = int(Σ). We may straighten any ideal triangulation T of Σ similarly
as we did in Proposition 7.4.6, with the only difference that horocycles are
replaced by oriented geodesic lines as lifts of oriented geodesic boundary
components; in the construction, we use the final endpoint of the oriented
line instead of the ideal point of the horocycle. We get an ideal triangula-
tion of Σ whose completion is Σ. �

For instance, R3 parametrizes altogether all the hyperbolic metrics
on the pair of pants, where each boundary component becomes either an
oriented geodesic or “degenerates” to a cusp.

7.4.6. References. Most of the material presented here is standard
and can be found in many books, starting from Thurston’s notes [56].
The main reference is Farb – Margalit [18], which also contains the proof
of Proposition 7.2.10, that appeared originally in a paper of Bestvina,
Bromberg, Fujiwara, and Souto [5]. The proof of the Collar Lemma is
taken from Hubbard [30].



CHAPTER 8

Surface diffeomorphisms

We describe in this chapter an analogy between the hyperbolic space
Hn and the Teichmüller space Teich(Sg) of a closed orientable surface
Sg of genus g > 1. The theory, originated from Thurston in the late
1970s, provides a beautiful and powerful framework for the analysis of the
geometric and dynamical properties of the surfaces Sg and of their mapping
class group MCG(Sg).

Here is a quick sketch of this analogy. We have already seen that
Hn compactifies to a closed disc Hn, that Isom(Hn) acts on it, that by
Brouwer’s theorem every non-trivial isometry ϕ has a fixed point in Hn,
and we have called ϕ elliptic, parabolic, or hyperbolic according to the
position of its fixed points.

We construct in this chapter a similar compactification of the open
ball Teich(Sg) to a closed disc. The action of the mapping class group
MCG(Sg) extends to this closed disc, and by Brouwer’s theorem every
non-trivial element ϕ of MCG(Sg) has a fixed point there. According to
the position of the fixed points of ϕ, we say that ϕ is finite order, reducible,
or pseudo-Anosov.

If ϕ is an isometry for some hyperbolic structure of Sg, it belongs to
the first type. Dehn twists belong to the second. The pseudo-Anosov
maps are both the most mysterious and the most important, and for their
study we need to introduce a wealth of beautiful new technology: geodesic
currents, laminations, and train tracks.

8.1. Thurston’s compactification

Let Sg be a surface of genus g > 2. Recall that Teich(Sg) is the
Teichmüller space of Sg and S = S (Sg) is the set of all non-trivial simple
closed curves in Sg, considered up to isotopy and orientation reversal: all
the closed curves considered in this chapter are unoriented.

Although Teich(Sg) and S are very different in nature, we want to
compactify both spaces by embedding them in a single bigger space. The
model that we have in mind, and that we would like to extend to higher
genus surfaces, is the flat torus picture that was painted in Section 7.2.4.

We briefly summarise it. The Teichmüller space Teich(T ) of the torus
T is H2 and it compactifies to H2; the mapping class group MCG(T ) acts
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on H2 as a discrete group of isometries; as such, the non-trivial elements
of MCG(T ) are divided into three classes (hyperbolic, parabolic, elliptic);
the simple closed curves form a dense countable set of rational points in
∂H2 = R ∪ {∞}.

We now may wonder whether there is an analogous identification
between Teich(Sg) and H6g−6 that transforms Teich(Sg) into a discrete
subgroup of Isom(Hn). This is unfortunately not the case, and the com-
pactification of Teich(Sg) must be constructed from scratch via different
methods: we compactify Teich(Sg) by embedding it in a bigger infinite-
dimensional space.

8.1.1. Projective immersion. In Chapter 7 we have used the length
functions to construct an embedding

i : Teich(Sg) ↪→ RS .

We know that Teich(Sg) is homeomorphic to an open ball of dimension
6g−6, and we want to compactify it in a geometrically meaningful way. A
first tentative could be to take its closure in RS , but this does not work:

Proposition 8.1.1. The subspace i(Teich(Sg)) is closed in RS .

Proof. Inclusion is proper, hence closed by Proposition 7.3.10. �

We are apparently stuck, so we turn back to our model, hyperbolic
space, to get some inspiration. We recall that Hn is properly embedded
in the lorentzian Rn+1 as a hyperboloid In. To compactify Hn, we may
consider its image Kn in RPn (the Klein model) and take the closure Kn

there. We try to mimic this construction, by considering the projective
space P(RS ) with the projection

π : RS \ {0} −→ P(RS ).

We first need to check that Teich(Sg) embeds there.

Proposition 8.1.2. The composition

π ◦ i : Teich(Sg) −→ P(RS )

is injective.

Proof. Suppose by contradiction that there are two distinct points
m,m′ ∈ Teich(Sg) with π(i(m)) = π(i(m′)); this implies that there is a
constant k > 1 such that `γ(m) = k · `γ(m′) for all γ ∈ S . That sounds
very unlikely, and we now prove that it easily leads to a contradiction.

Let γ1, γ2 ∈ S be two curves with i(γ1, γ2) = 1. We take x0 = γ1∩γ2

as a basepoint for π1(Sg, x0) and note that the elements γ2∗γ1 and γ2∗γ−1
1

are represented by two more non-trivial simple closed curves in Sg. It is
easily checked that the formula

tr(A) · tr(B) = tr(AB) + tr(A−1B)
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holds for any A,B ∈ SL2(R). Proposition 7.3.12 implies that

2 cosh

(
L(γ1)

2

)
· cosh

(
L(γ2)

2

)
=cosh

(
L(γ2 ∗ γ1)

2

)
+ cosh

(
L(γ2 ∗ γ−1

1 )

2

)
We have obtained a relation between the lengths of γ1, γ2, γ2 ∗ γ1, and
γ2 ∗ γ−1

1 that holds for any hyperbolic metric on Sg. It may be rewritten
as:

cosh
(
L(γ1)+L(γ2)

2

)
+cosh

(
L(γ1)−L(γ2)

2

)
= cosh

(
L(γ2∗γ1)

2

)
+cosh

(
L(γ2∗γ−1

1 )

2

)
.

By contradiction every m′-length is k times a m-length: this equation is
hence valid after multiplying every argument by k. It is easy to check that

cosh a+cosh b = cosh c+cosh d, cosh ka+cosh kb = cosh kc+cosh kd

if and only if {a, b} = {c, d}. This leads to a contradiction: the number
L(γ1) +L(γ2) is strictly bigger than L(γ2 ∗γ1) or L(γ2 ∗γ−1

1 ), since γ2 ∗γ1

and γ2∗γ−1
1 have a non-geodesic representative of length L(γ1)+L(γ2). �

We have embedded Teich(Sg) in P(RS ), and we now turn to S .

8.1.2. Thurston’s compactification. We now embed S in P(RS ).
A simple closed curve γ ∈ S defines a functional i(γ) ∈ RS by setting:

i(γ)(η) = i(γ, η).

We have constructed a map i : S → RS .

Proposition 8.1.3. The composition

π ◦ i : S −→ P(RS )

is injective.

Proof. Let γ1, γ2 ∈ S be distinct. There is always a curve η ∈ S
with i(γ1, η) 6= 0 and i(γ2, η) = 0. (If i(γ1, γ2) > 0, simply take η = γ2.
Otherwise, it is an easy exercise.) �

We will now tacitly consider both Teich(Sg) and S as subsets of RS .

Proposition 8.1.4. The subsets Teich(Sg) and S are disjoint in P(RS ).

Proof. For each γ ∈ S we have i(γ, γ) = 0, while every curve has
positive length on any hyperbolic metric. �

We can now state Thurston’s compactification theorem.

Theorem 8.1.5. The closure Teich(Sg) of Teich(Sg) in P(RS ) is
homeomorphic to the closed disc D6g−6. Its interior is Teich(Sg) and its
boundary sphere contains S as a dense subset.



224 8. SURFACE DIFFEOMORPHISMS

In particular, the closure of S is homeomorphic to a sphere S6g−7.
The proof of Theorem 8.1.5 occupies most of this chapter and will be
completed in Section 8.3.18. We will introduce in the process various
new geometric objects that play an important role in the topology of man-
ifolds in dimension two and three: geodesic currents, laminations, and train
tracks.

For the moment we content ourselves with checking that this pro-
jective embedding strategy works at least on the much simpler flat torus
case.

8.1.3. The torus. The Teichmüller space of the torus T is described
in Section 7.2.4 and needs no further comment; nevertheless, we prove
here that the projective embedding strategy works for T , just as a sanity
check before approaching the more complicated higher genus surfaces.

Proposition 8.1.6. The space Teich(T ) embeds in P(RS ) and its
closure there is homeomorphic to a closed disc D2. The interior of this
disc is Teich(T ) and its boundary contains S as a dense subset.

Proof. Everything can be written explicitly by identifying Teich(T )

with the half-plane H2 and S with the set Q ∪ {∞} ⊂ ∂H2. Exercise
6.3.14 and Proposition 7.2.5 give

i

(
p

q
,
r

s

)
=

∣∣∣∣det

(
p r

q s

)∣∣∣∣ = |ps − qr | = |s| ·
∣∣∣p − q r

s

∣∣∣ ,
`
p
q (z) =

|p + qz |√
=z

.

Therefore the images of r
s
∈ S and z ∈ H2 = Teich(T ) in P(RS ) are

respectively the functionals

p

q
7−→

∣∣∣p − q r
s

∣∣∣ if s 6= 0 and |q| if s = 0,

p

q
7−→ |p + qz | .

We could remove the constants |s| and
√
=z because we are considering

functionals in P(RS ) rather than in RS . We define for all z ∈ H2 the
functional

fz :
p

q
7−→ |p + qz | if z 6=∞,

f∞ :
p

q
7−→ |q|.

and we get a continuous immersion z 7→ fz of H2 into P(RS ). The
immersion is closed because it sends a compact space to a Hausdorff space,
hence it is a homeomorphism onto its image. The image is the closure of
Teich(T ) and its boundary contains S as a dense set. �
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8.2. Geodesic currents

We will prove Thurston’s compactification Theorem 8.1.5 using a
slightly different perspective. We are guided by the analogy with the hy-
perbolic space: when we embed (actually, define) the space Hn in Rn+1,
we make an essential use of the lorentzian form 〈, 〉 in Rn+1, so that Hn

consists of some points v with 〈v, v〉 = −1, and ∂Hn may be identified with
the light cone rays, that is the rays spanned by vectors v with 〈v, v〉 = 0.

It would be nice to have a similar nice bilinear form 〈, 〉 on RS , with
the property that Teich(Sg) and S consist of points with 〈v, v〉 = k and
〈v, v〉 = 0 respectively, for some fixed k 6= 0. Unfortunately we are not
able to define such a bilinear form in RS , and in order to get one we now
substitute RS with a similar (but more structured) infinite-dimensional
space, the space of geodesic currents.

In geometric measure theory, a current is a measure on some space,
which generalises the notion of m-dimensional submanifold in a n-manifold.
A geodesic current is a similar tool introduced by Bonahon in 1988 specif-
ically designed for geodesics on hyperbolic surfaces.

We will see that the geodesic currents are indeed equipped with a
bilinear form, which generalises beautifully both the intersection number
i(α, β) of curves and the length functions `γ on the Teichmüller space.

8.2.1. Geodesics. From now on, and through all the rest of this chap-
ter, we will consider geodesics only as subsets, neglecting their parametri-
sation.

More precisely, let M a complete hyperbolic manifold. We indicate
by G (M) the set of the supports of all the complete non-trivial geodesics
R → M. With a little language abuse, we call an element of G (M) a
geodesic.

A geodesic in G (M) is closed if it is the support of a closed geodesic
S1 → M, that is if it is compact; otherwise, it is open. We say that a
geodesic is simple if it has a simple geodesic parametrisation, either as an
open geodesic R→ M or as a closed one S1 → M.

We are particularly interested in the set G = G (H2) of lines in H2. A
line is determined by its extremes, hence there is a natural bijection

G ←→
(
∂H2 × ∂H2 \ ∆

)
/∼

where ∆ = {(a, a) | a ∈ ∂H2} is the diagonal and (a, b) ∼ (b, a). We
assign to G the topology of

(
∂H2 × ∂H2 \ ∆

)
/∼.

Exercise 8.2.1. The space G is homeomorphic to an open Möbius
strip. The lines intersecting a compact set K ⊂ H2 form a compact
subset of G .

The isometries of H2 act naturally on G by homeomorphisms.
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Proposition 8.2.2. If S = H2/Γ is a complete hyperbolic surface there
is a natural bijection

G (S)←→ G /Γ.

Proof. Every geodesic in S lifts to a Γ-orbit of lines in H2. �

It is typically more comfortable to lift objects from S to the universal
cover H2, and to study them there: we will often see a geodesic γ ∈ G (S)

as a Γ-orbit of lines in H2.
We will since now consider only closed surfaces Sg of genus g > 2. We

now prove the crucial fact that G (Sg) depends only mildly on the chosen
hyperbolic metric for Sg. An isomorphism between two pairs (G1,Γ1) and
(G2,Γ2) of groups Γi acting on topological spaces Gi is an isomorphism
ψ : Γ1 → Γ2 together with a ψ-equivariant homeomorphism G1 → G2.

Proposition 8.2.3. Let g > 2 and Sg = H2/Γ have a hyperbolic metric.
The pair (G ,Γ) does not depend (up to canonical isomorphisms) on the
chosen hyperbolic metric.

Proof. Let m,m′ be two hyperbolic structures on Sg, inducing two
different coverings π, π′ : H2 → Sg. The identity map Sg → Sg lifts to a
map H2 → H2 that extends to an equivariant homeomorphism ∂H2 → ∂H2

by Theorem 5.2.1. This induces an equivariant homeomorphism G →
G . �

Here and in the next sections, the hyperbolic metric on Sg has only an
auxiliary role: we need it to identify Sg with H2/Γ and to define and study
some geometric objects like G (Sg) = G /Γ, but most of our discoveries will
be independent a posteriori of the auxiliary hyperbolic metric.

Let Sg = H2/Γ be a hyperbolic surface. We note that Γ does not act
properly discontinuously on G .

Proposition 8.2.4. The Γ-orbit of a line l ∈ G is discrete if and only
if l projects to a closed geodesic in Sg.

Proof. Let π(l) ⊂ Sg be the projection of l in Sg. Since Sg is com-
pact, the projection π(l) is not a closed geodesic ⇔ there is a small disc
D ⊂ Sg intersecting π(l) into infinitely many distinct segments ⇔ there
is a small disc D ⊂ H2 intersecting infinitely many lines of the Γ-orbit of l
⇔ the Γ-orbit is not discrete. �

The lines l ⊂ H2 that project to closed geodesics in Sg are precisely
the axis of the hyperbolic isometries ϕ in Γ, and the Γ-orbit of one such axis
l consists of the axis of all the isometries in Γ conjugate to ϕ. Two such
axis are either incident or ultraparallel by Corollary 4.2.3, and the closed
geodesic in Sg is simple if and only if all the distinct axis in the Γ-orbit are
ultraparallel.

Proposition 8.2.4 implies in particular that the Γ-orbit of l is discrete
only for countably many lines l ∈ G .
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Recall from Corollary 4.1.14 that every homotopically non-trivial closed
curve in Sg is homotopic to a unique closed geodesic.

8.2.2. Geodesic currents. We now introduce a measure-theoretical
notion which is at first sight unrelated with everything we have seen up to
now; we will later show that, on the contrary, it generalises many of the
geometric objects that we have encountered in the last pages. The basic
notions of measure theory that we will need are summarised in Section 1.3.

Definition 8.2.5. Let Sg = H2/Γ have a hyperbolic metric. A geodesic
current on Sg is a locally finite Γ-invariant Borel measure on G = G (H2).

We denote by C = C (Sg) the set of all the geodesic currents in Sg.
It is a subset of the space M (G ) of all the locally finite Borel measures
on G , closed with respect to sums and products with non-negative scalars,
and it inherits its topology, see Section 1.3.3.

The currents space C is independent of the auxiliary hyperbolic metric
on Sg up to canonical isomorphisms, since the pair (G ,Γ) is.

8.2.3. Closed geodesics. We now introduce a fundamental example
of geodesic current.

Example 8.2.6 (Closed geodesics). A closed geodesic γ on Sg = H2/Γ

lifts by Proposition 8.2.4 to a discrete Γ-orbit of lines in H2. The Dirac
measure on this discrete set is locally finite and Γ-invariant, hence it is a
geodesic current.

We can therefore interpret every closed geodesic in Sg as a particular
geodesic current with discrete support. In particular we get an embedding

S ↪→ C

of the set S of all (isotopy classes of) unoriented non-trivial simple closed
curves in Sg into C . The embedding is defined by taking the geodesic
representative of each curve. Recall that the hyperbolic metric plays only
an auxiliary role.

The following proposition implies that – conversely – every current
supported on a discrete set is a linear combination of closed geodesics.

Proposition 8.2.7. If l ∈ G is an atomic point for a geodesic current
µ, that is if µ({l}) > 0, then l projects to a closed geodesic in Sg.

Proof. Since l is atomic and µ is Γ-invariant and locally finite, the
Γ-orbit of l in G is discrete. We conclude thanks to Proposition 8.2.4. �

It is an important aspect of the theory that atomic points may be only
of a very specific type. We remind that many closed geodesics are not
simple.
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a a

b
c

d

Figure 8.1. A pencil and a box (in the Klein model).

8.2.4. Pencils. We have determined the 0-dimensional subsets of
G that may have positive mass, and we now look at some natural 1-
dimensional ones. Let a pencil p ⊂ G of lines centred at a ∈ ∂H2 be some
Borel set of lines all having one endpoint at a, as in Figure 8.1-(left).

We note that a pencil may contain at most one axis of some hyperbolic
transformation in Γ, because two axis are never asymptotically parallel by
Corollary 4.2.3.

Proposition 8.2.8. Let µ be a geodesic current. The mass of a pencil
p is zero, unless it contains the axis of some non-trivial element in Γ.

Proof. It suffices to consider the case where p contains no axis, and
consists of all lines with one endpoint in a and another in some segment
[b, c] ⊂ ∂H2 not containing a.

As the lines in p point to a, they project in Sg to a narrow beam of
lines that go on running forever and exponentially-narrowing in Sg but never
close up. There is a disc D ⊂ Sg intersecting them infinitely many times,
hence a lift D ⊂ H2 intersects infinitely many disjoint Γ-translates of p.
The lines intersecting D form a compact subset of G , hence µ(p) = 0. �

8.2.5. Boxes. We now investigate some natural 2-dimensional sub-
sets of G . Let a, b, c, d ∈ ∂H2 be four distinct counterclockwise-ordered
points as in Figure 8.1-(right): they determine two disjoint arcs [a, b], [c, d ]

in ∂H2 and hence a compact set B = [a, b] × [c, d ] ⊂ G consisting of all
lines with endpoints in [a, b] and [c, d ], see Figure 8.1-(right). We call this
compact set B a box.

The topological boundary ∂B of a box B has four sides: the four
pencils of lines in B with one endpoint in a, b, c, or d . We say that the
box B is generic if no line l ∈ ∂B projects to a closed geodesic, i.e. no
l ∈ ∂B is the axis of some hyperbolic transformation in Γ. This is indeed a
generic condition: if neither of a, b, c, d is the endpoint of some axis, then
B is certainly generic, and recall that there are only countably many axis
overall.
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Figure 8.2. The box B containing l and the sub-boxes B′,
B′′ (left). A line l ∈ Uγ parametrised as (t, θ) (right).

We equip the currents space C with the weak-* topology introduced
in Section 1.3.3. We now prove that a converging sequence of currents
behave well on generic boxes.

Proposition 8.2.9. If µi ⇀ µ is a converging sequence of geodesic
currents and B is a generic box, then µi(B)→ µ(B).

Proof. By Proposition 1.3.8 it suffices to prove that µ(∂B) = 0, and
this follows from Proposition 8.2.8. �

8.2.6. Rigidity of atoms. We now use boxes to prove that the atomic
points in C are somehow rigid.

Proposition 8.2.10. The closed geodesics form a discrete subset in C .

Proof. Let µ ∈ C be a closed geodesic, i.e it is the Dirac measure on
the Γ-orbit of an axis l ⊂ H2 of some hyperbolic transformation ϕ ∈ Γ.

Let B = [a, b] × [c, d ] be a small generic box containing l and no
other Γ-translate of l , so that µ(B) = 1. Up to substituting ϕ with ϕ−1

we may suppose that ϕ([a, b]) = [a′, b′] ⊂ [a, b]. Consider the sub-boxes
B′ = [a, a′] × [c, d ] and B′′ = [b′, b] × [c, d ] shown in Figure 8.2-(left).
Since ϕ contracts [a, b] and expands [c, d ], we have

(4) B \ p ⊂
∞⋃
i=1

ϕi(B′ t B′′).

where p is the pencil containing l and other lines with one endpoint varying
in [b, c]. Note that p contains no axis of Γ other than l . If necessary, we
move a′ and b′ slightly farther from a and b to ensure that B′ and B′′ (and
hence all their ϕ-translates) are generic while (4) still holds.

We have µ(B′ t B′′) = 0 and we define an open neighbourhood U of
µ in the current space C as follows:

U =
{
η ∈ C | η(B′ t B′′) < ε, η(B) > 1− ε

}
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for some fixed 0 < ε < 1. This is indeed an open set because B,B′, and
B′′ are generic. We now prove that U contains no closed geodesic except
µ.

By contradiction, suppose U contains a closed geodesic η. Since
η(B) > 1 − ε > 0, at least one atom l ′ of η is contained in B. If l ′ = l

then η = µ and we are done. Otherwise, the line l ′ is contained in B \ p
and hence in ϕi(B′ t B′′) for some i . This is impossible since this set has
measure ε < 1. �

We have classified the elements in C supported on discrete sets, and
it is now due time to introduce some geodesic currents supported on the
whole of G .

8.2.7. The Liouville measure. There is a continuous measure on
G = G (H2) that is invariant under the action of the whole isometry group
Isom(H2). This measure is called the Liouville measure, and is defined as
follows.

Let γ : R→ H2 be a geodesic parametrised by arc length, and Uγ ⊂ G
be the open set consisting of all the lines intersecting γ, except γ itself.
We can parametrise Uγ via the homeomorphism

R× (0, π)→ Uγ

that sends (t, θ) to the line l that intersects γ at the point γ(t) with angle
θ, see Figure 8.2-(right). We define a volume 2-form on Uγ by setting:

Lγ =
1

2
sin θ dt ∧ dθ.

Since G is non-orientable, we cannot hope to define a global area form on
G . However all these local forms match up to sign and hence give rise to
a measure.

Proposition 8.2.11. The charts Uγ form a differentiable atlas for G .
The 2-forms Lγ match up to sign and hence define a measure L on G .

Proof. Every line in H2 intersects some other line, hence the charts
cover G . We consider a line r ∈ Uγ ∩ Uγ′ . The charts Uγ and Uγ′ have
parametrisations (t, θ) and (t ′, θ′) and 2-forms

Lγ =
1

2
sin θdt ∧ dθ, Lγ′ =

1

2
sin θ′dt ′ ∧ dθ′.

We consider the jacobian J = ∂(t ′,θ′)
∂(t,θ)

and recall that

dt ′ ∧ dθ′ = det J · dt ∧ dθ

so we need to show that

(5) det J = ± sin θ

sin θ′
.

We can reparametrise γ at our please, since this may change Lγ only by a
sign. We may suppose that γ and γ ′ are asymptotically parallel, because
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Figure 8.3. The two asymptotic lines γ, γ′ in the half-space
model H2 and the line r intersecting both.

any two lines γ, γ ′ intersecting r are connected by a path γ = γ1, . . . , γk =

γ ′ of lines intersecting r , such that any two subsequent lines γi , γi+1 are
asymptotically parallel (actually k = 3 suffices).

We represent the lines γ, γ ′, and r in the half-plane model H2 ⊂ R2

as in Figure 8.3. Up to isometries and reparametrisations we have

γ(t) = (0, et), γ ′(t ′) = (1, et
′
).

The line r is a Euclidean half-circle with center at some point C ∈ R
and with some radius R > 0. It intersects γ and γ ′ at some heights et

and et
′
, with some angles θ and θ′. We now calculate the determinant of

J = ∂(t ′,θ′)
∂(t,θ)

. Figure 8.3 shows that

R =
et

sin θ
=

et
′

sin θ′

C = −et cot θ, 1− C = et
′
cot θ′.

Now
∂(C,R)

∂(t, θ)
=

(
−et cos θ sin−1 θ et sin−2 θ

et sin−1 θ −et cos θ sin−2 θ

)
whose determinant is−e2t sin−1 θ = −R sin θ, and we get the same formula
for ∂(C,R)

∂(t ′,θ′) . Therefore

det
∂(t ′, θ′)

∂(t, θ)
= det

∂(t ′, θ′)

∂(C,R)
·det

∂(C,R)

∂(t, θ)
= (−R sin θ′)−1 ·(R sin θ) =

sin θ

sin θ′

and we finally obtain (5), as required. �

The measure L on G is called the Liouville measure and is clearly
invariant by the action of Isom(H2). The renormalising factor 1

2
in the

definition was chosen to get the following property, which nicely charac-
terises L.

Proposition 8.2.12. Let s ⊂ H2 be a geodesic segment of length l .
The lines in H2 intersecting s form a set of measure l .
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Proof. The set has measure∫ π

0

∫ l

0

1

2
sin θ dt dθ = l

∫ π

0

1

2
sin θ dθ = l .

The proof is complete. �

The Liouville measure L is supported on the whole of G .

Exercise 8.2.13. The Liouville measure of a box B = [a, b]× [c, d ] is

L(B) =
∣∣ logβ(a, b, c, d)

∣∣
where β is the cross-ratio of the four points.

8.2.8. The Liouville current. Let now Sg = H2/Γ be equipped with
a hyperbolic metric. The Liouville measure on G is Isom(H2)-invariant: in
particular it is Γ-invariant and hence defines a current L ∈ C (Sg), called
the Liouville current.

It is important to note that the space of currents C = C (Sg) does
not depend on the given hyperbolic metric for Sg, but the Liouville current
does! Every metric m ∈ Teich(Sg) induces a Liouville current Lm ∈ C ,
and in this way we get a Liouville map

Teich(Sg) −→ C

that sends m to Lm. We will soon see that this map is injective: as
promised, we have mapped both S and Teich(Sg) inside the currents
space C .

Remark 8.2.14. We constructed the Liouville current Lm by assigning
to G a differentiable atlas – hence a smooth structure – and a 2-form
defined up to sign. We note that the smooth structure on G also depends
crucially on m, because the boundary extension of Theorem 5.2.1 is not
guaranteed to be a diffeomorphism.

The crucial feature that makes C preferable to P(RS ) as a com-
fortable ambient space for both S and Teich(Sg) is the existence of a
nice bilinear form in C that extends both the length and the geometric
intersection of closed geodesics. We now introduce this bilinear form.

8.2.9. The projective frame bundle. We denote by I ⊂ G × G the
open subset consisting of all the pairs of incident distinct lines in H2. We
give I the topology induced by G × G , hence I is an open topological
4-manifold. Since two distinct incident lines intersect in a single point
p ∈ H2, the set I can be interpreted as the set of triples (p, l1, l2) with
p ∈ H2 and l1, l2 two distinct vector lines in the tangent plane TpH2.

Let now Sg = H2/Γ be equipped with a hyperbolic metric. The action
of Γ on G is not properly discontinuous, but the diagonal action of Γ on
I is, as the following shows.

Proposition 8.2.15. The map I → I /Γ is a topological covering.
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Proof. The group Γ acts freely and properly discontinuously on H2,
and hence it does so a fortiori on the triples (p, l1, l2). �

In particular I /Γ is a four-manifold, and it is naturally a bundle over
Sg, whose fibre above p ∈ Sg consists of the ordered pairs of distinct
vector lines l1, l2 in TpSg. Recall that the frame bundle on a manifold M
is a bundle whose fibre above p ∈ M is the set of all frames (i.e. basis)
in TpM. The space I /Γ can be seen as some projective quotient of the
frame bundle on Sg.

8.2.10. Intersection form. Two geodesic currents α, β ∈ C = C (Sg)

induce a Γ-invariant product measure α × β on G × G and hence on I .
This measure descends via the covering I → I /Γ to a measure on I /Γ

which we still indicate by α× β, see Section 1.5.4.

Definition 8.2.16. The intersection i(α, β) of two geodesic currents
is the total volume of I /Γ in the measure α× β.

The intersection i(α, β) does not depend on the auxiliary hyperbolic
metric for Sg. The finiteness of i(α, β) is not immediate since I /Γ is not
compact, and it deserves a proof.

Proposition 8.2.17. The intersection i(α, β) is finite.

Proof. LetD be a compact fundamental domain for Sg = H2/Γ. Since
D is compact, the lines intersectingD form a compact subset X ⊂ G which
has finite measures α(X) and β(X). The projection sends (X × X) ∩ I
surjectively onto I /Γ. Therefore i(α, β) = (α × β)(I /Γ) < α(X) ·
β(X). �

The form i is clearly bilinear and symmetric.

8.2.11. Geometric intersection and length of closed geodesics. We
now show that this abstract-looking intersection form generalises both the
geometric intersection and the length of simple closed geodesics. We
consider as usual the set S of simple closed curves as a subset of C .
The following proposition explains why we employed the notation i for the
intersection form of two geodesic currents.

Proposition 8.2.18. If α, β ∈ S , the number i(α, β) is the geometric
intersection of the simple closed curves α and β.

Proof. Represent α and β as simple closed geodesics. The measure
α × β is the Dirac measure with support the pairs of incident lines in H2

that cover respectively α and β. The Γ-orbits of these pairs are in natural
bijection with the transverse intersection points in α∩β. Hence the volume
of I /Γ is the cardinality of α∩ β, except when α = β and in this case we
get zero. �
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We note in particular that i(α,α) = 0 for every α ∈ S , hence the
set S is contained in the “light cone” consisting of all the currents α with
i(α,α) = 0. (Of course i(α,α) > 0 for every geodesic current α.) We
now consider the Liouville current Lm ∈ C determined by some hyperbolic
metric m on Sg.

Proposition 8.2.19. If α ∈ S then i(Lm, α) = `α(m) is the length of
the geodesic representative of α in the metric m.

Proof. Represent α as a simple closed geodesic in the metric m, of
length `α(m). The measure Lm × α has its support on the pairs (l , l ′) of
incident lines where l is arbitrary and l ′ is a lift of α.

Any segment s ′ ⊂ l ′ of length `α(m) in a fixed lift l ′ of α is a funda-
mental domain for the action of Γ on the lifts of α. Therefore i(Lm, α)

is the volume of the pairs (l , l ′) where l ′ is fixed, and l is arbitrary and
intersects s ′. By Proposition 8.2.12 these pairs have volume `α(m). �

The intersection form i on C generalises both the geometric intersec-
tion of curves and the length functions on Teichmüller space, two appar-
ently unrelated objects! As promised, we can easily deduce that Teich(Sg)

embeds in C .

Corollary 8.2.20. The Liouville map Teich(Sg)→ C is injective.

Proof. If m 6= m′ there is a curve γ ∈ S with `γ(m) 6= `γ(m′) by
Proposition 7.3.4 and thus i(Lm, γ) 6= i(Lm′ , γ). Hence Lm 6= Lm′ . �

We will since now consider both Teich(Sg) and S as subsets of C .
We know the geometric meaning of the intersection of two curves, and of
a curve and a hyperbolic metric. What is the intersection of two hyperbolic
metrics? When they coincide, we get a positive constant.

Proposition 8.2.21. Ifm ∈ Teich(Sg) we have i(Lm, Lm) = −π2χ(Sg).

Proof. The metric m produces a smooth structure on G and hence
on I , and Lm is induced by a Γ-invariant 2-form on G defined up to sign,
that we also denote as Lm. We need to integrate the 4-form Lm × Lm on
I /Γ.

Recall that I /Γ may be interpreted as a bundle over Sg. We make a
first-order computation on a very small region of Sg, which we may suppose
to be Euclidean: a very thin rectangle R in Sg of sides l and a with a� l .
We compute the volume of the portion of bundle lying above R.

We integrate Lm × Lm on all the pairs of segments intersecting in
some point in R, and we consider only segments with both endpoints on
the big l sides, neglecting the small a sides. A segment meeting the l sides
at angle θ has length L(θ) = a/ sin θ. By Proposition 8.2.12 the Lm × Lm
volume of the portion of I above R is (at a first order) equal to∫ π

0

∫ l

0

1

2
sin θ · L(θ) dt dθ ∼ 1

2
l

∫ π

0

sin θ · a

sin θ
=
π

2
la.
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The first-order contribution of a small region is hence π
2
times its area.

Since the volume is induced by a differentiable form, by taking the limit
we find that the contribution of any region is precisely π

2
its area and we

conclude by the Gauss-Bonnet theorem. �

We have already noted that i is symmetric and bilinear. As we men-
tioned, there is an evident analogy between the embeddings Teich(Sg) ↪→
C and Hn ↪→ Rn+1, since there is a bilinear form on both spaces C and
Rn+1, and Teich(Sg) is also contained in a “hyperboloid” consisting of vec-
tors v with i(v, v) = k for some fixed k 6= 0. On the other hand S is
contained in the “light cone” formed by all vectors v with i(v, v) = 0.

We may compactify Hn by projecting the hyperboloid to the Klein
model Kn ⊂ RPn. Now Kn is an open disc, whose boundary is the image of
the light cone. We would like to apply the same compactification strategy
to Teich(Sg). Before doing that, we need to prove a slightly technical fact:
that the bilinear form i is continuous.

8.2.12. Continuity of the intersection form. Let Sg = H2/Γ be a
closed hyperbolic surface. The following theorem is not obvious because
I is not compact: the proof relies on the fact that closed geodesics form
a discrete rigid set in C and therefore atomic points cannot “escape to
infinity” on a converging sequence of currents.

Theorem 8.2.22. The form i : C × C → R is continuous.

Proof. Let β1, β2 be two currents converging to α1, α2. We need
to prove that i(β1, β2) converges to i(α1, α2). The bundle I /Γ is not
compact and we need to control that no mass escapes to infinity: the
infinity here is the diagonal ∆ ⊂ G ×G , so our aim is to cover ∆ with small
boxes and prove that they contribute very little to i(β1, β2). For any box
B, we define

Ψ(B) =
(

(B × B) ∩I
)
/Γ.

We show that for every ε > 0 there are finitely many small generic boxes
Bi whose Γ-translates cover G , such that

(β1 × β2)(∪iΨ(Bi)) < ε

as soon as β1, β2 are sufficiently close to α1, α2. Since the Γ-translates of
∪i(Bi×Bi) form an open neighbourhood of ∆, the set (I /Γ)\(∪iΨ(Bi)) is
compact with zero-measure boundary (because the boxes Bi are generic)
so its contribution to i(β1, β2) tends to that to i(α1, α2) if β1, β2 are
sufficiently close, and the theorem is proved.

It remains to construct the boxes Bi . We first fix finitely many generic
boxes Bi whose Γ-translates cover G . Let K > 0 be bigger than the total
α1 and α2-mass of the boxes.

We now pick a small number 0 < ε′ < ε/2K and subdivide each box
Bi into finitely many generic sub-boxes (which we still call Bi) such that
the following holds for each i and each j = 1, 2:
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(1) either αj(Bi) < ε′, or
(2) there is an atomic point l ∈ Bi with αj(l) > ε′ and αj(Bi\l) < ε′.

If the second case holds for both j = 1, 2, we also require l ∈ Bi to be
the same line for j = 1, 2. We note that the total α1 and α2-mass of the
boxes is still smaller than K after the subdivision. We have

(β1 × β2)(Ψ(B)) 6 β1(B) · β2(B)

so if β1, β2 are sufficiently close to α1, α2 the boxes Bi that are of the
first kind for at least one value of j = 1, 2 contribute to i(β1, β2) less than
2ε′K < ε.

We are left to consider the boxes Bi containing a line l whose α1 and
α2-mass are both bigger than ε′. This is a potentially bad situation since
the point (l , l) ∈ G × G is atomic and contained in the frontier of I , and
could enter inside I abruptly for some arbitrarily small perturbations of
α1 and α2. We show that this cannot happen because atomic points are
rigid, as noted in Proposition 8.2.10.

As in the proof of Proposition 8.2.10, we set Bi = B = [a, b]× [c, d ]

and construct B′ = [a, a′]× [c, d ], B′′ = [b′, b]× [c, d ] whose ϕ-translates
cover B \ p where p is a pencil containing l . We note that

(β1 × β2)(Ψ(B)) 6 β1(B′ t B′′) · β2(B) + β2(B′ t B′′) · β1(B)

is smaller than ε′(β1(B) +β2(B)) and hence by summing on the Bi we get
again a contribution smaller than 2ε′K < ε. �

8.2.13. Filling geodesic currents. We now define an interesting class
of currents, whose importance will be evident in the next section.

We say that a geodesic current α ∈ C (Sg) fills the surface Sg = H2/Γ

if every line in H2 intersects transversely at least one line in the support of
α. For instance, a Liouville measure fills Sg since its support is the whole
of G . We say that k closed geodesics γ1, . . . , γk fill Sg if the geodesic
current γ1 + . . .+ γk does.

Proposition 8.2.23. Let γ1, . . . , γk be closed geodesics. If Sg \ (γ1 ∪
· · · ∪ γk) consists of polygons, the curves fill Sg.

Proof. Every geodesic in Sg intersects these curves. �

As an example, we can pick two multicurves η and µ in Sg that in-
tersect transversely forming only polygons but no bigons. By the bigon
criterion η and µ are in minimal position and by Proposition 6.3.24 their
geodesic representatives have the same configuration as η ∪ µ, so they fill
Sg.

It is a bit more difficult to construct a single (non-simple) closed
geodesic that fills Sg. The following remark is straightforward.

Remark 8.2.24. Let α and β be currents. We have i(α, β) > 0 if and
only if there are two distinct intersecting lines in the supports of α and β.
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Corollary 8.2.25. If α fills Sg then i(α, β) > 0 for every non-trivial
β ∈ C .

8.2.14. A compactness criterion. We now state a simple and gen-
eral compactness criterion for subsets of C that has various nice (and
apparently unrelated) geometric consequences.

Proposition 8.2.26 (Compactness criterion). If α ∈ C fills Sg, the set
of all β ∈ C with i(α, β) 6 M is compact, for all M > 0.

Proof. Let C ⊂ C be the set of all β with i(α, β) 6 M. It is closed
because i is continuous.

Let l be a line in H2. By hypothesis there is another line l ′ in the
support of α which intersects l in a point. Let B′, B be two sufficiently
small boxes neighbourhoods of l ′, l in G , so that B′ × B ⊂ I and B′ × B
is mapped injectively into I /Γ. If β ∈ C we have

α(B′)β(B) = (α× β)(B′ × B) 6 (α× β) (I /Γ) = i(α, β) 6 M.

Therefore every line l in H2 has a box neighbourhood B such that

β(B) 6 Kl ∀β ∈ C

for some constant Kl = M/α(B′) that depends only on l . The set C is
relatively compact by Theorem 1.3.9, and hence compact since it is closed.
The proof is complete. �

We now state some corollaries. The first concerns the immersion of
Teich(Sg) in C .

Corollary 8.2.27. The Liouville map Teich(Sg) ↪→ C is proper and a
homeomorphism onto its image.

Proof. We prove that the map is proper: if mj ∈ Teich(Sg) is a di-
verging sequence of metrics, we know from Proposition 7.3.14 that there is
a closed curve γ ∈ S such that `γ(mj) = i(mj , γ)→∞ on a subsequence.
Since i is continuous, the sequence mj diverges also in C .

We denote the Liouville map by L. We should now prove that L is con-
tinuous, but we prefer to consider the inverse map L−1 : L(Teich(Sg)) →
Teich(Sg). The map L−1 is continuous because i is and Teich(Sg) has the
weakest topology where the length functions are continuous. We show that
L−1 is proper. Let γ1, . . . , γk be simple closed curves that fill Sg. If L(mi) is
a diverging sequence, by Proposition 8.2.26 we have i(L(mi),

∑
t γt)→∞

and hence i(L(mi), γt)→∞ for some t. Therefore mi is divergent also in
Teich(Sg).

Now L−1 is continuous and proper and hence a homeomorphism by
Corollary 7.3.11. �

A second immediate corollary is a general compactness criterion for
the Teichmüller space.
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Corollary 8.2.28. Let γ1, . . . , γk be some closed geodesics that fill Sg.
The metrics m ∈ Teich(Sg) with `γi (m) 6 M form a compact subset of
Teich(Sg), for all M > 0.

We can similarly deduce the following.

Corollary 8.2.29. Let γ1, . . . , γk be simple closed curves that fill Sg.
For every M there are only finitely many α ∈ S with i(γi , α) < M for all
i .

Exercise 8.2.30. Use the compactness criterion to re-prove that on a
hyperbolic closed surface there are only finitely many closed geodesics of
bounded length.

We are finally ready to construct Thurston’s compactification of the
Teichmüller space, using Bonahon’s geodesic currents.

8.2.15. Projective currents. As usual, we pick a hyperbolic closed
surface Sg = H2/Γ. The currents space C is equipped with a multiplication
by positive scalars, hence we can define its projectivisation

π : C \ 0 −→ PC

where PC = (C \ 0)/∼ with α ∼ λα for all λ > 0. We give PC the
quotient topology.

Proposition 8.2.31. The space PC is compact.

Proof. Pick an α ∈ C that fills Sg. By the compactness criterion
the set C = {β ∈ C | i(α, β) = 1} is compact. By Corollary 8.2.25 we
have i(α, β) > 0 for all β, hence λβ ∈ C for some λ > 0. Therefore
π(C) = PC and PC is compact. �

We now want to embed both Teich(Sg) and S in PC .

Proposition 8.2.32. The composition S → C \ 0→ PC is injective.

Proof. Let γ1, γ2 ∈ S be distinct. There is always a closed curve
η ∈ S with i(γ1, η) 6= 0 and i(γ2, η) = 0. �

Proposition 8.2.33. The composition Teich(Sg) → C \ 0 → PC is
injective and a homeomorphism onto its image.

Proof. We see Teich(Sg) already properly embedded in C . Since
i(m,m) = −π2χ(Sg) is constant on Teich(Sg), the composition is in-
jective. The restriction π : Teich(Sg) → π(Teich(Sg)) is also continuous,
and we now prove that it is proper (note that we need to restrict the
codomain to get this).

Consider a diverging sequence mj ∈ Teich(Sg). By compactness of
PC the sequence [mj ] ∈ PC converges on a subsequence to some [α] ∈
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PC . For each j there is a λj > 0 such that λjmj → α in C . Since mj

diverges in Teich(Sg) and hence in C we get λj → 0. We get

i(α,α) = lim
j→∞

i(λjmj , λjmj) = −π2χ(Sg) lim
j→∞

λ2
j = 0.

In particular [α] 6∈ π(Teich(Sg)). Therefore the restriction π : Teich(Sg)→
π(Teich(Sg)) is proper and hence a homeomorphism. �

We will since now consider both S and Teich(Sg) embedded in PC .

8.2.16. Thurston’s compactification. We now consider the closure
Teich(Sg) of Teich(Sg) inside PC . This closure is compact since PC is,
and it is called the Thurston compactification of Teichmüller space. We
define its boundary simply as

∂Teich(Sg) = Teich(Sg) \ Teich(Sg).

Our aim is now to identify the topology of the Thurston boundary. The
proof of Proposition 8.2.33 already shows the following.

Proposition 8.2.34. The Thurston boundary consists of projective cur-
rents [α] with i(α,α) = 0.

We will later prove that the Thurston boundary actually consists of all
the projective currents [α] with i(α,α) = 0. For the moment we content
ourselves with some examples.

8.2.17. Weighted pants decompositions. We construct some geo-
desic currents based on geodesic pants decompositions. We will need the
following.

Exercise 8.2.35. Let P be a hyperbolic geodesic pair-of-pants. Every
simple geodesic γ in the interior of P is open and has both ends that
converge to ∂P , winding around it.

Hint. Decompose P into two right-angled hexagons. �

Let a weighted pants decomposition for Sg be a pants decomposition
µ = γ1 t . . . t γ3g−3 equipped with some real numbers λ1, . . . , λ3g−3 > 0.
A weighted pants decomposition defines a geodesic current µ = λ1γ1 +

. . .+ λ3g−3γ3g−3 such that i(µ, µ) = 0.
We will soon prove that [µ] lies in the Thurston boundary if µ 6= 0.

We will need the following lemma that characterises the positively weighted
pants decompositions among all currents.

Lemma 8.2.36. Let µ =
∑
λiγi be a weighted pants decomposition

with all positive weights λi > 0. A current α ∈ C has i(α,α) = i(α,µ) = 0

if and only if α =
∑
λ′iγi for some weights λ′i > 0.
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Proof. If α =
∑
λ′iγi , then clearly i(α,α) = i(α,µ) = 0. Conversely,

let α be a current with i(α,α) = i(α,µ) = 0. Since λi > 0, the support
of µ is the preimage in H2 of the geodesic pants decomposition. Since
i(α,µ) = 0, the support of α consists of lines that are either contained or
disjoint from that of µ.

By Exercise 8.2.35 a line l of the latter type has both its endpoints at
the endpoints of some line of µ, so there are only countably many of them
overall; they are not atomic since their projection in Sg is not closed and
hence have zero mass. So such lines l do not occur. The support of α is
hence contained in that of µ and the proof is complete. �

We now characterise simple closed curves.

Lemma 8.2.37. Let γ ∈ S be a simple closed curve and µ ∈ C be a
non-trivial current. If i(γ, α) = 0 implies i(µ,α) = 0 for all α ∈ S , then
[µ] = [γ].

Proof. Extend γ = γ1 to a geodesic pants decomposition β =
∑

i γi .
The previous lemma implies that µ =

∑
i λiγi and by letting the pants

decomposition vary we get µ = λ1γ1. �

8.2.18. Pinching and twisting. How can we construct sequences of
hyperbolic metrics on Sg that converge to some point at infinity? We can
do this quite easily by pinching a simple geodesic, or by twisting along it.

To define the former, we need to fix some Fenchel–Nielsen coordinates
(li , θi) for Teich(Sg) based on a pants decomposition µ = γ1 t . . .t γ3g−3.
Fix a metric (li , θi) ∈ Teich(Sg). A pinching along γ = γ1 is any sequence
of metrics where the first length coordinate l1 tends to zero and all the
other coordinates are kept bounded (from above and below).

Proposition 8.2.38. The limit of a pinching is [γ].

Proof. By the Collar Lemma 7.3.7, the length of a closed geodesic α
in the pinched metrics tends to infinity if i(γ, α) > 0 and stays bounded
if i(γ, α) = 0. Therefore the pinched metrics tend in PC to a class [µ]

such that i(γ, α) = 0 ⇒ i(µ,α) = 0 for all α ∈ S . Lemma 8.2.37 gives
[µ] = [γ]. �

Let m ∈ Teich(Sg) be any metric and γ be a closed geodesic. We
denoted by mγ

θ the metric obtained from m via an earthquake of angle θ
along γ, see Section 7.2.1.

Proposition 8.2.39. The limit of mγ
θ as θ → ±∞ is [γ].

Proof. By Proposition 7.2.10 the length of a closed geodesic α tends
to infinity if i(γ, α) > 0 and is constant if i(γ, α) = 0. We conclude as
above that the metrics tend to [γ]. �
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To appreciate the qualitative difference between pinching and twisting
along γ, recall the explicit torus case from Section 7.2.4: if we pinch along
γ, the sequence of metrics converge to [γ] ∈ ∂H2 roughly like a geodesic
pointing to [γ], while if we twist along γ it does so along a horosphere
centred at [γ].

We have discovered in particular that the set S is entirely contained
in Thurston’s boundary. To fully identify the Thurston boundary, we now
analyse the geodesic currents α lying in the “light cone”, that is those with
i(α,α) = 0. We already know that the weighted pants decompositions
are there, but there is more: we will soon see that the light cone contains
many new fascinating objects called laminations.

8.3. Laminations

In this section we characterize geometrically the currents α ∈ C con-
tained in the “light cone,” i.e. those with i(α,α) = 0. Every such current
may be represented as a measured geodesic lamination, a closed subset of
Sg foliated by geodesics and equipped with a transverse measure. These
unexpected objects play an important part in the topology of manifolds of
dimension two and three.

8.3.1. Geodesic laminations. Let S = H2/Γ be a hyperbolic surface.
Recall that in this chapter we consider geodesics only as subsets of S,
neglecting their parametrisation.

A geodesic lamination λ is a set of disjoint simple complete geodesics
in S, whose union is a closed subset of S. Each geodesic may be closed
or open and is called a leaf ; their union is the support of λ. We will often
confuse λ with its support for simplicity, since the support determines the
set of geodesics in all the interesting cases (see below).

The following examples of geodesic laminations are fundamental:

• a geodesic multicurve (that is a finite set of disjoint simple closed
geodesics) in S;

• a set of disjoint lines in H2 whose union is closed.

A lamination in H2 may be particularly complicated, see Figure 8.4.
Recall that G = G (H2) is the set of all lines in H2, with its natural topology.

Exercise 8.3.1. A set λ of disjoint lines in H2 forms a closed set in H2

if and only if λ is closed when considered as a subset of G .

If a set of disjoint lines in H2 is not closed, it suffices to take its closure
to get a lamination. Every lamination in S = H2/Γ lifts to a Γ-invariant
lamination in H2, hence the laminations in S are in natural bijection with
the Γ-invariant laminations in H2.

8.3.2. Local behaviour. A geodesic lamination is often too compli-
cated to be determined with full precision. In fact, its topology is already
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Figure 8.4. A geodesic lamination in H2.

quite involved, and we now start by examining it locally. Let λ be a geo-
desic lamination on a hyperbolic surface S = H2/Γ. The following exercise
may be proved by passing to the universal cover H2.

Exercise 8.3.2. Every point p ∈ λ has an open neighbourhood U and a
chart U → (−1, 1)×(−1, 1) that sends p to (0, 0) and λ∩U to (−1, 1)×J
for some closed subset J ⊂ (0, 1).

What kind of J ⊂ (0, 1) may arise? It is possible to construct some
laminations in H2 or in some simple hyperbolic surfaces like cusps and
tubes, where their support is the whole manifold. In this case J is the full
interval (0, 1). These cases are however of no interest for us, because of
the following.

Proposition 8.3.3. If S has finite volume, then J has empty interior.

Proof. Suppose by contradiction that J contains some open interval.
This open interval determines a set of leaves of λ, whose lift in H2 forms
an open subset U ⊂ H2 foliated into lines. Its limit in ∂H2 has non-empty
interior S. By Corollary 5.1.14 there is a hyperbolic transformation γ ∈ Γ

with an attracting limit point in S. This implies easily that there are γ-
translates of some lines in U that intersect some lines of U transversely, a
contradiction. �

Corollary 8.3.4. If S has finite volume, every geodesic lamination λ in
S has empty interior and is determined by its support.

8.3.3. Complementary regions. Let λ ⊂ S be a geodesic lamination
in a hyperbolic surface S = H2/Γ. A complementary region (shortly, a
region) is a connected component of the open complement S \ λ. The
abstract completion of a complementary region is a hyperbolic surface with
non-empty geodesic boundary consisting of lines and/or circles.
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In general, a complementary region may have genus and/or infinitely
many boundary components. Note that in any case there are at most
countably many regions, and hence only countably many leaves of λ may
be incident to a region: if λ has uncountably many leaves (this will be the
typical case), most leaves are not incident to any region (compare this with
the Cantor subset in [0, 1], which contains uncountably many points, but
only countably many of them are adjacent to some complementary open
segment).

Proposition 8.3.5. A geodesic lamination λ ⊂ Sg in a closed hyperbolic
surface Sg = H2/Γ has at most 4g − 4 complementary regions. The
boundary of each region has finitely many components.

Proof. Every complementary region has area at least π (the area of
an ideal triangle) and a region with infinitely many boundary components
has infinite area. By Gauss-Bonnet we get Area(Sg) = −2πχ(Sg) =

(4g − 4)π. �

A lamination λ ⊂ Sg is full if every region is an ideal polygon.

8.3.4. Transverse measures. Let λ ⊂ S be a geodesic lamination in
a hyperbolic surface S. A transverse arc to λ is the support of a simple
regular curve α : [a, b]→ S transverse to each leaf of λ, whose endpoints
α(a) and α(b) are not contained in λ.

Definition 8.3.6. A transverse measure for a lamination λ ⊂ S is a
locally finite Borel measure Lα on each transverse arc α such that:

(1) if α′ ⊂ α is a sub-arc of α, the measure Lα′ is the restriction of
Lα;

(2) the support of Lα is α ∩ λ;
(3) the measure is invariant through isotopies of transverse arcs.

In particular every arc α transverse to λ has a finite length, defined
as the total measure of the arc. The arc has length zero if and only if
α ∩ λ = ∅. A measured geodesic lamination is a geodesic lamination
equipped with a transverse measure.

Example 8.3.7. A geodesic multicurve λ ⊂ S has a natural transverse
measure: for any transverse arc α, the measure Lα on α is just the Dirac
measure supported on the finite set α ∩ λ.

More generally, we may assign a positive weight ai > 0 at each com-
ponent λi of λ and define a measured geodesic lamination by giving the
weight ai at each intersection α ∩ γi . By varying weights we get distinct
measured geodesic laminations with the same support.

8.3.5. Currents and measured geodesic laminations. Let Sg = H2/Γ

be a closed hyperbolic surface. We now construct a natural bijection be-
tween the measured geodesic laminations on Sg and the geodesic currents
λ with i(λ, λ) = 0, i.e. those lying in the “light cone.” We see a measured
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geodesic lamination in Sg as a Γ-invariant measured geodesic lamination
in H2.

Let λ ∈ C be a geodesic current with i(λ, λ) = 0. By Remark 8.2.24
the support of λ is a closed Γ-invariant subset of G formed by disjoint
lines, hence a Γ-invariant lamination in H2. The geodesic current induces
also a transverse measure as follows. Let α be an arc transverse to the
lamination λ. Up to cutting α in finitely many arcs we may suppose that it
intersects each leaf of λ in at most one point. We define the measure of a
Borel set U ⊂ α as the λ-measure in G of the lines in λ that it intersects.

Exercise 8.3.8. This transverse measure satisfies the axioms of Defi-
nition 8.3.6 and gives λ the structure of a Γ-invariant measured geodesic
lamination.

Proposition 8.3.9. We have just defined a bijection{
currents λ with i(λ, λ) = 0

}
←→

{
measured geodesic laminations in Sg

}
Proof. We define the inverse map by transforming a Γ-invariant mea-

sured geodesic lamination λ into a geodesic current with support λ ⊂ G
as follows. For every leaf l of λ, we pick a small transverse arc α that
intersects all the leaves in a neighbourhood Ul of l in λ, each once. The
measure on α translates into a measure on Ul , and all the measures on
these small sets Ul match to yield a measure on λ thanks to Proposition
1.3.4. �

We denote by ML ⊂ C the set of all the measured geodesic lam-
inations on Sg, henceforth identified with the currents lying in the “light
cone”. With this identification ML is independent on the auxiliary hyper-
bolic metric on Sg.

Recall that a multicurve on Sg is a finite collection of disjoint non-
trivial simple closed curves. A multicurve determines a measured geodesic
lamination: consider n parallel components as a single one with weight
n, take the geodesic representative of the resulting essential multicurve
(keeping the same weights), and use Example 8.3.7. We obtain the inclu-
sions

S ⊂M ⊂ML ⊂ C

where S and M are the simple closed curves and multicurves in Sg.

8.3.6. Some properties. We can now use our knowledge on the geo-
desic currents to get some information about the measured geodesic lam-
inations.

Proposition 8.3.10. Let λ ⊂ Sg be a measured geodesic lamination.
For every p ∈ ∂H2, there are at most two lines in the preimage λ̃ ⊂ H2

incident to p, and if there are two, none of them projects to a closed
geodesic in λ.
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Proof. If there are at least three lines l1, l2, l3 incident to p, with l2
lying strictly between l1 and l3, we may find a small arc α transverse to λ̃,
whose support lies between l1 and l3, that intersects l2 and possibly other
lines incident to p, and no other line of λ̃ (use Proposition 8.3.3 near l2
here). The lines intersected by α form a pencil with positive mass. By
Proposition 8.2.8 the pencil consists of a single line, the axis of a hyperbolic
element ϕ ∈ Γ.

On the other hand, if p is the endpoint of the axis of some ϕ, then no
other leaf l ⊂ λ̃ can be incident to p, otherwise infinitely many lines ϕi(l)
would also be, and the same argument above would give a contradiction.

�

Exercise 8.3.11. There are some geodesic laminations in Sg that do
not support any transverse measure.

Hint. Construct a geodesic lamination λ ⊂ Sg consisting of some
disjoint simple closed curves and finitely many open leaves that wind around
them (see Section 7.4.5). The pre-image λ̃ ⊂ H2 contradicts Proposition
8.3.10. �

8.3.7. Intersection form. What is the geometric meaning of the in-
tersection form i of two geodesic currents, when applied to a measured
geodesic lamination? Let λ be a measured geodesic lamination in a hyper-
bolic closed surface Sg = H2/Γ. Three cases are relevant for us:

(1) If γ is a simple closed geodesic, then either γ is contained in
λ, and we get i(γ, λ) = 0, or γ is disjoint from λ, and we still
get i(γ, λ) = 0, or γ is transverse to λ, and in that case i(λ, γ)

equals the full measure L(γ) of γ as a transverse curve to λ.
(2) If λ′ is another measured geodesic lamination, then i(λ, λ′)

“counts” the (possibly infinitely many) transverse intersections
of λ and λ′ with respect to the product of the two transverse
measures.

(3) If m is a hyperbolic metric, then i(λ,m) measures the “length”
of λ with respect to m, that is the integral over λ of the usual
length weighted with the transverse measure.

We now consider a non-geodesic non-trivial simple closed curve γ
transverse to λ, and we denote by L(γ) its full transverse λ-measure. The
quantities L(γ) and i(γ, λ) need not to be equal in this case (because γ
is not geodesic), but this phenomenon is easily controlled by a suitable
version of the bigon criterion.

Proposition 8.3.12. We have L(γ) > i(γ, λ) and the equality holds
⇐⇒ γ forms no bigon with any leaf of λ.

Proof. We follow the proof of Theorem 6.3.10. Let λ̃ be the coun-
terimage of λ in H2. A lift γ̃ of γ has distinct endpoints in ∂H2 and γ̃
must intersect the leaves of λ̃ whose endpoints are linked with them. The
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(1)

(2)

Figure 8.5. A switch contains a > 1 and b > 1 branches on
each side: here a = 3 and b = 2 (1). The complementary
regions of a train track contain no discs, annuli, monogons,
or bigons (2).

Figure 8.6. A train track on the genus-three surface S3.

curve γ̃ intersects each such leaf only once and no other leaf ⇔ γ̃ forms
no bigon with any leaf of λ̃ ⇔ γ forms no bigon with any leaf of λ. �

Proposition 8.3.13. If λ ∈ML is full, we have i(λ,α) > 0 for every
current α that is not a measured sublamination of λ.

Proof. If i(λ,α) = 0 then every line l in the support of α is either a
leaf of λ or an infinite diagonal in some complementary ideal polygon; a
diagonal would be an atomic point in α that would cover a closed geodesic
and could be added to λ contradicting Proposition 8.3.10. �

8.3.8. Train tracks. How can one construct a measured geodesic
lamination, concretely? There are some nice combinatorial tools designed
to this purpose, called train tracks.

A train track in a closed surface Sg is a closed subset τ ⊂ Sg built by
taking a finite set of points (called vertices or switches) and joining them
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with disjoint arcs called branches. We require that every switch looks
locally like Figure 8.5-(1): all branches have the same tangent line, and
there is at least one branch at each side.

The complementary regions of τ are the abstract closures of the
connected components of Sg \τ . Each complementary region is naturally a
compact surface with finitely many singular vertices in its boundary having
“zero interior angle”. In the definition of a train track, we also require that
no complementary region be a disc, an annulus, a monogon, or a bigon, as
in Figure 8.5. An example is shown in Figure 8.6. The exclusion of these
complementary regions is essential to get the following.

Exercise 8.3.14. A train track contains at most −6χ(Sg) switches
and at most −2χ(Sg) regions; it contains −6χ(Sg) switches if and only
if every switch is trivalent and every complementary region is a triangle.
The sphere and the torus contain no train track.

Hint. Make the appropriate Euler characteristic computation. �

Exercise 8.3.15. Construct a train track with−2χ(Sg) triangular com-
plementary regions in Sg for every g > 2.

Hint. Take a pants decomposition and add three arcs (tangent to the
boundary) inside each pants to cut it into two triangular regions. �

We obtain a finiteness property.

Corollary 8.3.16. There are only finitely many train tracks τ in Sg up
to diffeomorphism (but not up to isotopy!).

Proof. There are only finitely many combinatorial types for τ , its com-
plementary regions, and the way they are adjacent. �

8.3.9. Weight systems. A weight system on a train track τ ⊂ Sg
is the assignment of a non-negative real number, called weight, to each
branch of τ , such that at every vertex the switch condition holds: the
sum of the weights on the left branches should be equal to the sum of the
weights on the right branches.

Let w be an integral weight system, that is one whose weights are
all integers. The integral weight system w determines a closed 1-manifold
in Sg as follows: replace every branch with weight a with a parallel copies
of it, and pair all the branches at every switch in the obvious way (this is
possible thanks to the switch condition).

Proposition 8.3.17. The resulting closed 1-manifold is a multicurve.

Proof. Since no complementary region of τ is a disc or monogon, the
complementary regions of the closed 1-manifold have non-positive Euler
characteristic (exercise). �
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Figure 8.7. Decompose S into pairs of pants and annuli, so
that each simple closed curve separates a pair of pants from
an annulus. We mark a blue point in each curve.

Figure 8.8. Identify each pair of pants and annulus with one
of these two fixed models.

Our aim now is to use the train tracks to parametrise all the mul-
ticurves in Sg. Later on, we will extend everything from multicurves to
measured geodesic laminations.

8.3.10. A parametrisation for M . Let Sg have genus g > 2. We now
construct finitely many train tracks that parametrise all the multicurves in
Sg, and to this purpose we fix a frame similar to the one used in the
Fenchel-Nielsen parametrisation of the Teichmüller space.

We decompose Sg into pairs of pants and annuli as in Figure 8.7.
We mark (in blue) an arbitrary point in each closed curve and we also fix
once for all a diffeomorphism (preserving orientation and marked points)
between each pair of pants and annulus with the corresponding model in
Figure 8.8. The resulting parametrisation of M will depend also on these
fixed diffeomorphisms.

Let a colouring be the assignment of a triple ai , bi , ci of non-negative
numbers to each annulus of the decomposition, such that one of the fol-
lowing equalities holds:

ai = bi + ci , bi = ci + ai , ci = ai + bi .

We assign the colour ai to each of the two curves that bound the annulus.
Since there are − 3

2
χ(Sg) = 3g − 3 annuli, we get − 9

2
χ(Sg) = 9g − 9

colours overall. The colouring is integral if the colours are integers and
also the following holds: for each pair of pants, the sum ai + aj + ak of the
colours of its boundary curves must be even.
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Figure 8.9. The portion of weighted train track in a pair of
pants P is determined by the point Q = [ai , aj , ak ] ∈ RP2.
Having non-negative entries, the point Q is contained in the
triangle with vertices [1, 0, 0], [0, 1, 0], [0, 0, 1]. This trian-
gle subdivides into four sub-triangles by adding the vertices
[0, 1, 1], [1, 0, 1], [1, 1, 0] and the shape of the train track
depends on which sub-triangle contains Q. The three edges
of the train track are given the weights indicated in the fig-
ure: these are the only weights that sum to ai , aj , ak at the
boundaries. When Q lies in the frontier of two or more tri-
angles some branch has weight zero and we delete it: the
different shapes prescribed by the adjacent triangles coincide
after deleting this branch.

We now transform each colouring into a weighted train track τ as
follows. The boundary components of each pair-of-pants P are coloured
by some triple ai , aj , ak . We insert in P a portion of train track as in Figure
8.9: its shape depends on the position of the point [ai , aj , ak ] in RP2 and
its weights depend linearly on ai , aj , ak . Note that there are finitely many
possible shapes overall.

We extend the train track inside each annulus A coloured with ai , bi , ci
as shown in Figure 8.10. Again, the shape of the portion depends on the
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Figure 8.10. The portion of weighted train track in each
annulus A is determined by the point Q = [a, b, c] =

[ai , bi , ci ] ∈ RP2. By hypothesis Q is contained in the bound-
ary of the triangle with vertices [1, 0, 0], [0, 1, 0], [0, 0, 1]. The
boundary subdivides into three segments and the shape of the
train track depends on which segment contains Q. When Q
is a vertex some branch has weight zero and we delete it.

position of [ai , bi , ci ] in RP2. As a result we get a train track τ with integral
weights and hence a multicurve.

Proposition 8.3.18. The construction produces a bijection{
integral colourings

}
←→M .

Proof. We start by proving surjectivity. Given a multicurve µ ∈ M ,
we minimise its intersections with our decomposition into pants and annuli:
now µ intersects every pair of pants P into non-trivial simple closed curves
and arcs (an arc is trivial if it forms a bigon with ∂P ).

By decomposing P into two hexagons, and minimising the intersec-
tions of the curves and arcs with them, one deduces easily that P contains
only three isotopy classes of non-trivial closed curves (one parallel to each
component of ∂P ) and six isotopy classes of non-trivial arcs (one connect-
ing every pair of components of ∂P ). Note that isotopies are not required
to fix ∂P pointwise.

We isotope all the closed curves away from P and place them inside
the adjacent annuli, so there are only arcs. As above, we check easily
that the isotopy class of the whole set of arcs in P is determined by the
intersection numbers ai , aj , ak with the components of ∂P and is hence
represented by the corresponding train track portion from Figure 8.9.
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Figure 8.11. How to construct a lamination from a weighted
train track. Here we have a switch with weights a, b, c (1)
and the switch condition a = b + c allows all the Euclidean
rectangles (2) to glue (3).

We now turn to annuli. On each annulus A, there is only one isotopy
class of non-trivial arcs and one isotopy class of non-trivial closed curves.
However, an arc may wind many times around A and we are not allowed
to use isotopies that move ∂A anymore because the configuration in P is
already fixed: one deduces easily that the triples (a, b, c) from Figure 8.10
describe precisely all the possible configurations.

The injectivity is surprisingly simple to prove: the configuration of µ
that minimises its intersections with the decomposition into pairs of pants
and annuli is unique thanks to Proposition 6.3.24 and hence the numbers
ai , bi , ci are easily determined by µ. The proof is complete. �

We have found a complete combinatorial parametrisation for the set
M , and we now want to extend it to ML.

8.3.11. Topological laminations. A train track τ in Sg with integer
weights parametrises a multicurve. We now show that, more generally, a
weighted train track parametrises a measured geodesic lamination.

The construction goes as follows. First, we remove all the branches
with zero weight, and we replace every branch of weight a > 0 with a
Euclidean rectangle of width a and with arbitrary length as in Figure 8.11-
(2). Thanks to the switch conditions, these rectangles glue nicely at each
switch as in Figure 8.11-(3).

In Figure 8.11-(3) we see that all the lines from left- and right-
rectangles are matched in a 1-1 correspondence, with a finite number of
exceptions. At each exception, some m > 1 left-lines are matched to some
n > 1 right-lines at some point, and we have m + n = 3 or 4. We call
these lines and points singular.

After gluing the rectangles we get a closed subset λ of Sg foliated by
lines, with finitely many singular points and lines. We now eliminate the
singular points and lines by cutting λ carefully along them: if m + n = 4

this amounts simply to doubling the singular point; if m+n = 3 we double
the singular leaf by opening a small open corridor in the foliation, starting
from the singular point and digging along the leaf. Since the singular leaf
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Figure 8.12. The decomposition into pants and annuli of Sg
is homotopic to a geodesic pants decomposition (with each
curve counted twice) whose counterimage in H2 consists of
infinitely many disjoint ultraparallel lines as in the picture.
We show that the lift of a leaf l of λ in H2 has two distinct
endpoints in ∂H2: if l is a closed curve in an annulus A,
then it is isotopic to a closed geodesic and we are done; if l
intersects annuli and pairs of pants into non-trivial arcs, its
lift intersects the ultraparallel lines forming no bigons, hence
it intersects each line at most once: therefore it has disjoint
limits at ±∞ (left). The straightening replaces the lift with
the unique line with these endpoints (right).

may be non-compact, for the process to converge in Sg we need to shrink
the width of the corridor sufficiently fast.

After this cut we get a closed subset of Sg, which we still name λ,
nicely partitioned into disjoint lines that may be either open or closed:
we call it a topological lamination. After the cut every rectangle of type
L× [0, a] as in Figure 8.11 transforms into a set L× J where J is obtained
by cutting [0, a] along (at most) countably many points. Note that J may
be a Cantor set.

The set J inherits from [0, a] a Borel measure with total mass a.
This measure gives a transverse measure to the leaves of the rectangle
L × J, and λ inherits the structure of a measured topological lamination
(the notion of a transverse measure is exactly the same as in the geodesic
case).

It only remains to promote the topological lamination to a geodesic
lamination: this is usually done by straightening its leaves. We describe this
procedure only for a particular class of train tracks: the ones introduced
in the previous section to parametrise M .

8.3.12. A parametrisation for ML. We now extend the arguments
of Section 8.3.10 from multicurves to laminations.

We fix a decomposition of Sg into pants and annuli. Every colouring
(ai , bi , ci) produces a weighted train track, which in turn parametrises a
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measured topological lamination λ. We fix a hyperbolic structure Sg =

H2/Γ.
The lamination λ can be straightened to a measured geodesic lamina-

tion λ̄ as follows. A leaf l of λ is either a closed curve in some annulus A,
or it intersects every annulus A and pair of pants P in non-trivial arcs: in
both cases, every lift of l in H2 is a curve with two distinct limit endpoints
in ∂H2, see Figure 8.12. We replace every lift of l with the unique line
having these endpoints, and we do this for every leaf l of λ.

The result is a Γ-invariant closed set of disjoint lines in H2 that project
to a geodesic lamination λ̄ in Sg. The transverse measure on λ easily
induces one on the straightened λ̄: it suffices to consider transverse arcs
contained in the decomposition into pairs of pants and annuli. Note that
some parallel closed leaves of λ may have collapsed to a single atom closed
geodesic in λ̄.

Proposition 8.3.19. The construction induces a bijection{
colourings

}
←→ML.

Proof. We adapt the proof of Proposition 8.3.18, starting with sur-
jectivity: given a measured geodesic lamination λ, we determine a colour
(ai , bi , ci) representing it.

The decomposition into pairs of pants and annuli is homotopic to a
geodesic pants decomposition µ = γ1t. . .tγ3g−3 (with each curve counted
twice). We set ai = i(γi , λ).

The measured geodesic lamination λ ∈ ML decomposes as λ =

λ0tλ1 where λ0 =
∑

i kiγi is a weighted pants decomposition with support
in µ and λ1 is transverse to µ. If ki 6= 0 then necessarily ai = 0 and we
set bi = ci = ki .

At every pair of pants P the three colours ai , aj , ak determine a portion
of weighted train track as prescribed by Figure 8.9. The intersection λ1∩P
consists of geodesic and hence non-trivial arcs: therefore the weighted train
track describes faithfully this portion of measured geodesic lamination, up
to isotopy. The numbers bi and ci are then determined by the way these
two portions wind and match along γi . The colours (ai , bi , ci) parametrise
λ.

The choices of the colours (ai , bi , ci) were forced by the intersection
of λ with the two pants P adjacent to γi (exercise). This shows injectivity.

�

We have parametrised ML, and we now investigate its topology. The
space of all colourings (ai , bi , ci) forms the subset C×. . .×C ⊂ R3×. . .×R3

where C ⊂ R3 is the cone based on the origin over the sides of the triangle
with vertices (1, 1, 0), (0, 1, 1), and (1, 0, 1), and is homeomorphic to R2.
The space of colourings is homeomorphic to R2·(3g−3) = R6g−6, that is to
the Teichmüller space itself!
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gg

Figure 8.13. A monotonic curve γ intersects the products
L× J in monotonic paths (left) and forms no bigons outside
the products (right).

The parametrisation identifies ML with C × . . . × C. We want to
show that this identification is a homeomorphism, and to this purpose we
study the intersection form.

8.3.13. Intersection form. We now show that the intersection form
i between curves and laminations has a surprisingly simple behaviour after
that we parametrise the space ML as C × . . .× C.

We note that C × . . . × C is a piecewise-linear object in R9g−9, that
is it is the support of a simplicial complex. Recall that a continuous map
between simplicial complexes is simplicial if it sends each simplex onto a
simplex in an affine linear way, and it is piecewise linear if it restricts to
a simplicial map on some subdivisions. Finally, the map is half-integral
piecewise linear if all the affine linear maps have half-integer (possibly
integer) coefficients.

Proposition 8.3.20. For every γ ∈ S the map

C × . . .× C → R
λ 7−→ i(γ, λ)

is half-integral piecewise linear.

Proof. A colour (ai , bi , ci) ∈ C×. . .×C defines a weighted train track
τ and hence a measured topological lamination λ, obtained by substituting
every edge of τ with some product L× J of horizontal leaves. Thanks to
Proposition 8.3.12 the intersection i(γ, λ) is realized by some representa-
tive γ which is either a leaf of λ or is transverse to λ and forms no bigon
with any leaf of λ.

We say that a closed curve transverse to λ is monotonic if

(1) it intersects every product L× J into arcs that are monotonic in
both coordinates, and the same monotonicity is preserved when
the curve goes from one product L× J to an adjacent one as in
Figure 8.13-(left);

(2) it makes no bigons outside the rectangles as in Figure 8.13-
(right).



8.3. LAMINATIONS 255

Figure 8.14. If a monotonic curve γ forms a bigon with a
leaf α, by cutting carefully τ along γ we construct a portion
of train track on this bigon containing α and with truncated
edges exiting orthogonally from γ (left). We then simplify
the triangles adjacent to γ (right).

Concerning (1), a horizontal path in L× J disjoint from λ is allowed,
but it must keep being horizontal on the adjacent products.

A simple closed curve that forms no bigons with any leaf of λ can
be easily isotoped to be monotonic. Conversely, we now prove that a
monotonic curve γ forms no bigons with any leaf of λ. If it did, by cutting
τ along γ we would get an abstract bigon with a portion of train track as
in Figure 8.14-(left). If γ is adjacent to some triangles as in Figure 8.14-
(right) we close them as shown there. Finally, by doubling the bigon along
γ we get a train track on a disc, and by doubling again we build a train
track in a sphere, which is absurd (one checks easily that no complementary
region is a disc, annulus, monogon, or bigon: there are no bigons because
we have closed the triangles as in Figure 8.14-(right)).

The λ-transversal length L(γ) of a monotonic γ is the sum of the
lengths of the sub-paths intersecting sequences of products L × J as in
Figure 8.13-(left). One checks easily that the length of each sub-path
is a half-integer linear combination of the colours (ai , bi , ci). Therefore
L(γ) = i(γ, λ) is a half-integer combination of the colours.

If we vary the colouring (ai , bi , ci) a little, the curve γ keeps being
monotonic in the same way as before, except when a portion of γ is hor-
izontal: in that case the new monotonicity depends on how the colouring
varies. In all cases, the new γ is still monotonic, hence bigonless, hence
L(γ) = i(γ, λ) again.

If there are no horizontal portions in γ, the length L(γ) varies lin-
early with the same integral formula found above. If there are horizontal
portions, then the colour lies in a hyperplane of R9g−9, and there are two
different linear formulas joining there. Hence i(γ, λ) is half-integral piece-
wise linear. �

The map λ 7→ i(γ, λ) is also obviously homogeneous, in the sense
that i(γ, tλ) = ti(γ, λ) for all t > 0.
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The proof of Proposition 8.3.20 contains a recipe for calculating
i(γ, λ). It suffices to put γ in monotonic position and then add the contri-
butions of each monotonic arc. For instance, the i-th curve γi of the pants
decomposition has an obvious monotone position giving i(γi , λ) = ai .

The colours bi and ci do not have such an immediate description, but
the following holds anyway.

Exercise 8.3.21. There exist finitely many simple closed curves γj
whose intersections i(λ, γj) determine the colouring (ai , bi , ci) representing
λ in a half-integral piecewise-linear continuous fashion.

Hint. Choose some additional curves as in Proposition 7.3.4 and com-
pute their intersections with λ. �

8.3.14. The Thurston boundary. We can finally determine the topol-
ogy of the measured geodesic laminations space ML and of the Thurston
boundary of the Teichmüller space.

Proposition 8.3.22. The colouring parametrisation induces a homeo-
morphism ML ∼= R6g−6.

Proof. The map ML → C×. . .×C ∼= R6g−6 is continuous by Exercise
8.3.21. It is proper: if the colours (ai , bi , ci) stay bounded, the intersections
i(λ, γi) with finitely many filling curves γi stay bounded, and hence λ
moves in a compact set by Proposition 8.2.26. The continuous map is a
homeomorphism by Proposition 7.3.11. �

Let now PML ⊂ PC be the set of all projective measured laminations,
that is the image of ML\ 0 in PC . The set PML contains the projective
simple closed curves PS and the projective multicurves PM .

Theorem 8.3.23. The following homeomorphism holds

∂Teich(Sg) = PML ∼= S6g−7.

The set PS is dense in PML.

Proof. The homeomorphism ML ∼= R6g−6 induces PML ∼= S6g−7.
Concerning the Thuston boundary, we know from Section 8.2.18 and
Proposition 8.2.34 that

PS ⊂ ∂Teich(Sg) ⊂ PML.

We now show that PS is dense in PML, and this concludes the proof.
First, we prove that PM is dense in PML. Rational colours (ai , bi , ci)

form a dense subset of C× . . .×C and project to a dense subset of PML.
Every rational colour is a multiple of an integer colour, which represents a
multicurve.

Second, we prove that PS is dense in PM . Let µ be a multicurve
in Sg. Up to acting via MCG(Sg) we may suppose that µ is supported on
the pants decomposition γ1, . . . , γ3g−3 used to define C × . . . × C, hence
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µ is defined by some integral colour (ai , bi , ci) = (0, bi , bi). Now pick any
simple closed curve γ with a′i = i(γ, γi) > 0 for all i , represented by some
colours (a′i , b

′
i , c
′
i ). By Dehn twisting γ along the γi we vary the pair b′i , c

′
i

as we please, and by twisting at the correct rates we construct a sequence
of simple closed curves that converge projectively to [µ]. �

The mapping class group MCG(Sg) acts naturally on the whole set C
of currents and in particular it acts by homeomorphisms on ∂Teich(Sg).

The identification of ∂Teich(Sg) = PML with the projectivisation of
C×. . .×C is of course not canonical because it depends on a decomposition
of Sg into pairs of pants and annuli. However, Proposition 8.3.20 and
Exercise 8.3.21 imply that any two different identifications differ by some
projective integral piecewise-linear homeomorphisms, hence the Thurston
boundary has a natural projective integral piecewise linear structure, called
PIP for short, which is preserved by MCG(Sg). In particular PML contains
some natural rational points, and these are PM .

8.3.15. A projection. The reader has probably noted that the coordi-
nates that yield the homeomorphisms Teich(Sg) ∼= R6g−6 and ∂Teich(Sg) ∼=
S6g−7 are quite similar: they both depend on a pants decomposition µ plus
some additional marking, and every curve of the pants decomposition con-
tributes roughly with two parameters, a “length” and a “twist”. It would
now be reasonable to expect that both these coordinates merge nicely to
give a global homeomorphism Teich(Sg) ∼= D6g−6, but this is unfortunately
not the case.

The proof that Teich(Sg) is homeomorphic to D6g−6 is disappointingly
indirect. We first prove that Teich(Sg) is a topological manifold with
boundary, by constructing some charts. To construct a chart, we first
build a map

q : Teich(Sg)→ML
that depends only on a fixed pants decomposition µ. For a given hyperbolic
metric m ∈ Teich(Sg), we construct a measured geodesic lamination q(m)

as follows. We straighten µ to its geodesic representative (with respect
to m), and we consider separately each geodesic pair of pants P of the
decomposition. We first show that P has a natural partial foliation, that
depends only on its metric, whose leaves are not geodesics. We then glue
these partial foliations to get a partial foliation on Sg, and then straighten
it to a geodesic lamination q(m).

The natural partial foliation on P is constructed as follows. Let gi j
be the unique orthogeodesic connecting the i-th and j-th boundary com-
ponent of P , for all 1 6 i , j 6 3. Let a1, a2, a3 be the lengths of the
boundaries of P . We consider the point Q = [a1, a2, a3] in the triangle of
Figure 8.9, pick the three orthogeodesics gi j isotopic to the three curves
indicated in the sub-triangle of Figure 8.9 containing Q, and thicken each
gi j to a metric R-neighbourhood of gi j , where R is the linear combination of
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(1) (2)

Figure 8.15. Every geodesic pair of pants P has a natu-
ral partial foliation: the shape of the foliation is determined
by the sub-triangle containing Q = [a1, a2, a3] in Figure 8.9,
where a1, a2, a3 are the lengths of ∂P ; the two pictures shown
here correspond to two cases. In each case, there are three
rectangles: each is the R-neighbourhood of the correspond-
ing (unique) orthogeodesic (drawn in blue), and R is the linear
combination of a1, a2, a3 prescribed by Figure 8.9, that is the
unique combination that guarantees that the three rectangles
match nicely as in the figure (1). We cut the geodesic pants
P along the three blue orthogeodesics and get two right-
angled hexagons. Since by hypothesis the three red sides
have length > ε/2, one sees easily that the central triangle
has diameter bounded by some constant C′ depending only
on ε, and hence every leaf in each of the three rectangles is
shorter than some C′′ that also depends only on ε (2).

a1, a2, a3 indicated in Figure 8.9. The R-neighbourhood is naturally foliated
into (non-geodesic) arcs staying at fixed distance from gi j and the foliated
neighbourhoods cover nicely much of the pair of pants P , as shown in Fig-
ure 8.15-(1). Every foliated rectangle is equipped with a natural transverse
measure induced by the orthogonal distance between leaves.

The partial foliations of all the pairs of pants of Sg glue to a singular
measured foliation for Sg, which straightens as prescribed in Section 8.3.12
to a measured geodesic lamination q(m).

Let µ = γ1 t . . . t γ3g−3 be our original pants decomposition.

Proposition 8.3.24. The map q restricts to a homeomorphism

q : Teich(Sg) −→
{
λ ∈ML

∣∣ i(λ, γi) > 0 ∀i
}
.

Proof. Compare the coordinates (li , θi) for Teich(Sg) and (ai , bi , ci)

for ML. The map q sends (li , θi) to (li , bi , ci) for some (bi , ci) that
depends homeomorphically on θi ∈ R for each i . Note that ai = i(λ, γi).

�

8.3.16. The fundamental lemma. We now show that the projection
q distorts very little the lengths of the simple closed curves, as long as we
put a lower bound on the lengths of the curves γ1, . . . γ3g−3 of the fixed
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pants decomposition µ. This technical fact is called the Fundamental
Lemma [19].

For every ε > 0, we define V (ε) ⊂ Teich(Sg) to be the open subset
consisting of all metrics m such that i(m, γi) > ε for all i .

Lemma 8.3.25. For every simple closed curve α ∈ S there exists a
constant C > 0 such that, for all m ∈ V (ε), we have

i(q(m), α) 6 i(m,α) 6 i(q(m), α) + C.

Proof. We represent q(m) as a singular partial foliation, without any
straightening. The transverse measure of q(m) is just the length of orthog-
onal geodesics, hence the q(m)-measure of any piecewise-transverse closed
curve is smaller or equal than its length: this proves that i(q(m), α) 6
i(m,α).

We prove the other inequality. If α = γi then i(m,α) = i(q(m), α),
so we suppose that i(α,µ) > 0. Up to isotopy we may take α to be
monotonically transverse to q(m), recall the proof of Proposition 8.3.20.
The curve α intersects each pair of pants P into some essential arcs β
that cross each foliated rectangle monotonically.

We can easily homotope each of these arcs β ⊂ α∩P with fixed end-
points into a (not necessarily simple!) piecewise smooth arc that decom-
poses into finitely many sub-arcs, that are alternatively contained either in
a component of ∂P or in a leaf of some foliated rectangle. Each sub-arc
in a component of ∂P may make many full turns (and hence may not be
injective). Each of the three rectangles contains at most one leaf that is a
sub-arc of β. We arrange the homotopy efficiently so that the new β has
the same transverse q(m)-measure as before.

The transverse q(m)-measure of β on the sub-arcs in ∂P is equal to
its length, whereas on the leaf sub-arcs it is zero. Therefore the m-length
of β is equal to its measure plus the length of at most 3 leaves of some
rectangles in P . Figure 8.15-(2) shows that each such leaf is shorter than
some constant C ′′ that depends only on ε.

Note that α is decomposed into i(α,µ) arcs like β. By homotoping
each β as above we find a homotopic representative for α whose length
is at most the q(m)-measure of α plus C = 3i(α,µ)C ′′. The length of
any homotopic representative is greater or equal than the length i(m,α)

of the geodesic one, and this proves the second inequality. �

Corollary 8.3.26. Let mi ∈ V (ε) be a diverging sequence in Teich(Sg).
The sequence converges in Teich(Sg) ⇐⇒ the sequence [q(mi)] ∈ PML
does, and in this case they tend to the same limit.

Proof. If mi converges to some [α] ∈ PML, we have λimi → α for
some real numbers λi → 0. By the fundamental lemma, for every simple
closed curve γ ∈ S we get∣∣i(λimi , γ

)
− i
(
λiq(mi), γ

)∣∣→ 0.
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Therefore λiq(mi) converges (on a subsequence) to a β ∈ML such that
i(α, γ) = i(β, γ) for all γ ∈ S . Exercise 8.3.21 gives β = α.

The other implication is analogous. �

8.3.17. A topological chart. Pick an arbitrary element [λ] ∈ PML =

∂Teich(Sg). We construct an explicit neighbourhood of [λ] in Teich(Sg).
Let µ = γ1t. . .tγ3g−3 be a pants decomposition such that i(γi , λ) > 0

for all i . We fix ε > 0 and define as above V (ε) ⊂ Teich(Sg) as the set
of all the metrics m such that i(γi , m) > ε for all i . We define similarly
W ⊂ PML as the set of all [α] such that i(γi , α) > 0 for all i . We have
[λ] ∈ W .

Proposition 8.3.27. We have

π(q(V (ε))) = π(q(Teich(Sg))) = W.

The set W ∪ V (ε) is an open neighbourhood of [λ] in Teich(Sg).

Proof. Proposition 8.3.24 implies the second equality, the first holds
because every [α] ∈ W is represented by an α with i(γi , α) > ε.

The sets W and V (ε) are open in PML and Teich(Sg) respectively. If
W∪V (ε) were not open in Teich(Sg), there would be a sequencemi 6∈ V (ε)

of metrics converging to some [α] ∈ W . On a subsequence we may
suppose that i(mi , γj) < ε for some fixed j and therefore i(α, γi) = 0, a
contradiction. �

We have found an open neighbourhood of [λ] and we now want to
determine its topology.

Proposition 8.3.28. There is a homeomorphism

φ : W ∪ V (ε) −→ U

onto an open subset U ⊂ H of a half-space H ⊂ R6g−6, with φ(W ) =

U ∩ ∂H.

Proof. We complete the pants decomposition µ to a filling set µ′ ∈ C
of simple closed curves in Sg, considered as a current. We know from
Proposition 8.2.28 that the metrics m with i(m,µ′) 6 M form a compact
subset in Teich(Sg). We define the map

φ : W ∪ V (ε) −→ W × [0, 1]

x 7−→
{

(x, 0) if x ∈ W,
(π(q(x)), e−i(q(x),µ′)) if x ∈ V (ε).

The map φ is continuous: if a sequence mi ∈ V (ε) of metrics tends to
[α] ∈ PML, then i(mi , µ

′) → ∞, hence i(q(mi), µ
′) → ∞ by the funda-

mental lemma. Moreover π(q(mi)) → [α] by Corollary 8.3.26. Summing
up, we get that φ(mi)→ ([α], 0) = φ([α]).
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The map φ is injective: given two metrics m,m′, if the first compo-
nents of φ(m), φ(m′) are equal then q(m) = λq(m′), and if the second
components are equal we get λ = 1.

By similar methods one proves that the image of φ is open and the
inverse there is continuous. The set W × [0, 1] embeds in H since W
embeds in R6g−7. �

Corollary 8.3.29. The space Teich(Sg) is a topological manifold with
boundary ∂Teich(Sg).

8.3.18. Conclusion. We have discovered that Teich(Sg) is a compact
topological manifold with boundary, and we now invoke Theorem 1.7.18
to deduce that it is a disc. We have finally completed the proof of the
following theorem, which is the main achievement of the whole chapter.

Theorem 8.3.30. The closure Teich(Sg) of Teich(Sg) in PC is homeo-
morphic to the closed disc D6g−6. Its interior is Teich(Sg) and its boundary
contains S as a dense subset.

Thurston’s original compactification theorem embeds everything in
RS instead of C . We can easily deduce it from Theorem 8.3.30.

Proof of Theorem 8.1.5. The natural map C → RS induced by the
intersection form i is continuous since i is, and it induces a continuous
map ϕ : PC → P(RS ) on their projective spaces.

The Teichmüller space is embedded in both projective spaces and
ϕ restricts to a homeomorphism between the two embeddings, and to a
continuous surjective map from their compactifications. The map on com-
pactifications is actually injective since ϕ|PML is (intersections with simple
closed curves distinguish laminations) and is hence a homeomorphism. �

8.4. Surface diffeomorphisms

We have discovered that Thurston’s compactification Teich(Sg) of
the Teichmüller space is homeomorphic to a closed disc. The mapping
class group MCG(Sg) acts on it naturally. We can now apply Brouwer’s
fixed point theorem to every element ϕ ∈ MCG(Sg), and characterise ϕ
according to the position of its fixed points, much similarly as we did for
the isometries of Hn.

8.4.1. The torus case. As usual, the flat torus case is very instructive
because everything can be written explicitly.

We know from Proposition 7.1.5 that MCG(T ) acts on Teich(T ) like
the Möbius transformations PSL2(Z) do on the hyperbolic half-plane H2.
The action of course extends to the compactification H2 = H2 ∪ R ∪
{∞} and every non-trivial isometry A ∈ PSL2(Z) is elliptic, parabolic, or
hyperbolic according to the position of its fixed points.

As an integral matrix, the isometry A has also more properties that
are easy to check: if it is elliptic, it has finite order because PSL2(Z) is
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discrete; if it is parabolic, it is conjugate in PSL2(Z) to a matrix
(

1 n
0 1

)
for

some n 6= 0 and is thus the n-th power of a Dehn twist; if it is hyperbolic, it
is conjugate in PSL2(R) to a diagonal matrix

(
λ 0

0 λ−1

)
for some λ > 1, with

some basis of eigenvectors v, w . The two foliations of R2 into lines parallel
to v or w are both preserved by A and descend to foliations in T = R2/Z2

that are preserved by A. The two foliations are both irrational (because
λ is), that is every leaf is dense in T , and A stretches one foliation by λ
and contracts the other by 1/λ. One such diffeomorphism of T is called
Anosov.

Summing up, the non-trivial elements in MCG(T ) either have finite
order, or preserve a simple closed curve, or are Anosov. We now define an
analogous trichotomy for the elements in MCG(Sg) when g > 2, where the
foliations are replaced by measured geodesic laminations, and the measure
is there to encode stretchings and contractions.

8.4.2. The trichotomy. Let Sg have genus g > 2. The mapping class
group MCG(Sg) acts naturally on the whole space C of currents and in
particular on the compactification Teich(Sg) ∼= D6g−6 of the Teichmüller
space.

Let ϕ ∈ MCG(Sg) be a non-trivial element. By Brouwer’s fixed point
theorem, ϕ fixes at least one point in Teich(Sg). We say that ϕ is:

(1) finite order if it fixes a hyperbolic metric m ∈ Teich(Sg);
(2) reducible if it fixes a multicurve µ ∈M ;
(3) pseudo-Anosov in all the other cases.

We now analyse the three cases individually.

8.4.3. Finite order elements. We must first explain the terminology.

Proposition 8.4.1. A non-trivial element ϕ ∈ MCG(Sg) is finite order
if and only if it has indeed finite order in MCG(Sg).

Proof. Suppose that ϕ preserves the isotopy class [m] ∈ Teich(Sg)

of a hyperbolic metric m in Sg. We can choose a representative for ϕ
that fixes m. This representative is an isometry for m. Since the isometry
group of a closed hyperbolic manifold is finite (see Corollary 4.3.8) we have
ϕn = id for some n > 1 and ϕ has indeed finite order in MCG(Sg).

Conversely, let ϕ be an element having finite order in MCG(Sg). The
subgroup 〈ϕ〉 generated by ϕ cannot act freely on Teich(Sg) ∼= R6g−6,
otherwise it would quotient R6g−6 to an aspherical manifold with finite
fundamental group, contradicting Theorem 1.7.10. Therefore some non-
trivial power of ϕ has a fixed point in Teich(Sg).

If ϕ has prime order we easily conclude that also ϕ has a fixed point
and we are done. However, if ϕ has order p1 · · · ps for some primes pi , we
need to do more work. By induction, ϕ′ = ϕp1···ps−1 has a fixed point [m] ∈
Teich(Sg) and is hence represented by an isometry for Sg with metric m.
The isometry ϕ′ quotients Sg to a hyperbolic orbifold, and the fixed points
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Fix(ϕ′) of ϕ′ in Teich(Sg) can be identified naturally with the (suitably
defined) Teichmüller space of this orbifold, which is homeomorphic to RN
for some N > 0 like in the surface case (exercise).

Since ϕ and ϕ′ commute, the first act as a mapping class on Fix(ϕ′)

with order p1 · · · ps−1: we conclude by induction on s that ϕ has a fixed
point in Teich(Sg). �

We get in particular the following corollary, which is far from obvious
because MCG(Sg) does not act itself on Sg, and algebraic relations in
MCG(Sg) do not translate into algebraic relations between representatives,
except in some very lucky cases.

Corollary 8.4.2. If ϕ ∈ MCG(Sg) has order k, it may be represented
by a diffeomorphism ϕ : Sg → Sg such that ϕk = id.

Proof. The class ϕ has a representative ϕ : Sg → Sg that is an isom-
etry for some hyperbolic metric; the isometry ϕk is isotopic to the identity
and is hence the identity by Corollary 4.3.7. �

8.4.4. Reducible elements. We must explain the terminology also in
this case. If ϕ fixes a multicurve µ, one can cut Sg along µ and look at the
restriction of ϕ to the resulting pieces: after extending all the theory to
surfaces with boundary (that we have not done here for simplicity), we can
hence study inductively each piece, and this explains the word reducible.

The cases (1) and (2) are not exclusive: there are isometries of hy-
perbolic surfaces that preserve some multicurve. On the other hand, there
are finite order elements that are not reducible (exercise) and reducible
mapping classes that are not of finite order: for instance, Dehn twists.

8.4.5. The action on ML. The mapping class group MCG(Sg) of
Sg acts on the currents space C and hence on the “light cone” subspace
ML of all measured geodesic laminations, which contains the space M of
multicurves.

The action of MCG(Sg) on ML can be seen concretely inside Sg. It
suffices to consider ML as the space of all measured topological lamina-
tions (defined in Section 8.3.11) considered up to isotopy and collapsing of
parallel closed leaves. Now ϕ ∈ MCG(Sg) acts on ML simply by sending
the measured topological lamination µ to ϕ(µ).

We now prove that if ϕ fixes a non-trivial point in ML we fall back
into one of the two cases already considered.

Proposition 8.4.3. If ϕ(µ) = µ for some non-trivial µ ∈ML, then ϕ
is either finite order or reducible.

Proof. We fix a hyperbolic metric on Sg and represent µ as a measured
geodesic lamination there.

By Proposition 8.3.5 there are finitely many complementary regions
in Sg \ µ. If µ is not full, some region is not an ideal polygon and hence
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deformation-retracts onto a subsurface S′ ⊂ Sg, whose boundary com-
ponents ∂S′ are non-trivial simple closed curves in Sg. The union of all
such curves ∂S′ as S′ varies produces a multicurve preserved by ϕ, which
is hence reducible.

If µ is full, all the complementary regions are ideal polygons, and after
substituting ϕ with a finite power we can suppose that each region is fixed
(not pointwise) by ϕ, together with each of its boundary components. We
consider the preimage µ̃ ⊂ H2 and note that its complementary regions in
H2 are still ideal finite polygons, the lifts of the ones in Sg.

The diffeomorphism ϕ lifts to a homeomorphism ϕ̃ : H2 → H2 that
fixes µ̃, and we may suppose that it fixes (not pointwise) a complementary
polygon and each of its boundary lines. In particular ϕ fixes orientation-
preservingly a line l ⊂ µ̃.

Remember that G is the set of all lines in H2. We now prove that,
if ϕ̃ fixes (orientation-preservingly) a line l ⊂ µ̃ ⊂ G , then it fixes (still
orientation-preservingly) all the lines in µ̃ contained in some neighbourhood
of l ∈ G . This is done as follows: since the boxes form a neighbourhood
system for G , and ϕ̃ acts via homeomorphisms on G , there are two boxes
B ⊂ B′ containing l such that ϕ̃(B) ⊂ B′. Now B∩ µ̃ ⊂ B′∩ µ̃ consists of
some parallel lines, which look like J×R ⊂ J ′×R for some measured ordered
set J ′ and some subsegment J ⊂ J ′: the map ϕ sends J to J ′ preserving
both the ordering and the measure, and fixing the point corresponding to
l : hence it is the identity.

On the other hand, every complementary region of µ̃ is a finite ideal
polygon: hence if ϕ̃ fixes (orientation-preservingly) one side of the polygon,
it fixes all the others.

The two properties just listed together easily imply that, since l is
fixed, the whole of µ̃ is. Since the lines are fixed orientation-preservingly,
their endpoints are fixed: the map ϕ̃ fixes all the endpoints of all lines in µ̃,
and since these endpoints form a dense subset of ∂H2 the map ϕ̃ fixes ∂H2

pointwise and hence ϕ is trivial in MCG(Sg) by Proposition 6.5.12. �

The previous proposition shows in particular that pseudo-Anosov el-
ements act freely on ML \ {0}. We now investigate more closely these
mysterious mapping classes.

8.4.6. Pseudo-Anosov elements. A pseudo-Anosov element ϕ is by
definition neither finite order nor reducible. We have just seen that ϕ acts
freely on ML \ {0}, but this does not prevent it from having some fixed
points in PML; indeed we now show that there are two fixed points there,
one attracting and the other repelling, so that ϕ looks very much like a
hyperbolic isometry on the hyperbolic space.

Theorem 8.4.4. Let ϕ ∈ MCG(Sg) be a pseudo-Anosov element.
There are two measured geodesic laminations µs , µu ∈ ML and a real



8.4. SURFACE DIFFEOMORPHISMS 265

Figure 8.16. The appropriate lift ϕ̃ acts on ∂H2 with 2k

fixed points that are alternatively attractive and repelling.
By joining the repelling points we find another lamination µu
fixed by ϕ. Here k = 5.

number λ > 1 such that

ϕ(µs) = λµs , ϕ(µu) =
1

λ
µu.

The laminations µs and µu are full, and they altogether fill Sg.

Proof. By Brouwer’s fixed point theorem, a pseudo-Anosov element
ϕ has a fixed point in Teich(Sg) ∼= D6g−6 which is (by definition) neither
a metric nor a multicurve. Therefore ϕ fixes a projective measured lami-
nation [µ] which is full (otherwise ϕ would be reducible: see the proof of
Proposition 8.4.3).

Since [µ] is a projective class, we have ϕ(µ) = λµ for some real
number λ > 0. Up to replacing ϕ with its inverse ϕ−1 we may suppose
that λ > 1, and Proposition 8.4.3 shows that λ > 1. We denote this µ by
µs .

We now construct µu. As in the proof of Proposition 8.4.3, we con-
sider the preimage µ̃s ⊂ H2 of µs , and after replacing ϕ with a finite power
we may choose a lift ϕ̃ of ϕ that fixes a complementary polygonal region
R of µ̃s and its sides, hence in particular the vertices of R, see Figure 8.16.

The k vertices of R divide ∂H2 into ϕ̃-invariant arcs I1, . . . , Ik , cor-
responding to the sides s1, . . . , sk of R, see Figure 8.16. Since µs is full,
each si is the limit of a sequence of leaves in µ̃s with both endpoints in Ii
converging to the endpoints of si but distinct from them by Proposition
8.3.10. Since λ > 1, the map ϕ̃ pushes these leaves towards si , so in
particular the vertices of R are local attractors for the action of ϕ̃ on ∂H2,
see Figure 8.16.
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Since the endpoints p and q of li are attractors, the map ϕ̃ fixes at
least one point in the interior of Ii , and we show that it cannot fix two: if
ϕ̃ fixes r and s in the interior of Ii , then it fixes the box [p, r ]× [s, q] that
has non-zero measure, a contradiction since λ > 1. There is a single fixed
point in li , and it must be repulsive.

The dynamics of ϕ̃ on ∂H2 is described in Figure 8.16. The closure of
the projection of the k green lines is another invariant geodesic lamination
µu, which must be full because ϕ is pseudo-Anosov.

We now prove that µu admits some (non unique) transverse measure
and can hence be considered as an element of ML. The dynamics shows
that for some curve γ ∈ S the supports of ϕ−k(γ) tend to that of µu.
The sequence ϕ−k([γ]) ∈ PML hence converges on a subsequence to a
projective measured geodesic lamination with support µu.

In principle, the measure supported by µu needs not to be unique,
not even up to rescaling: hence the element [µu] may not be uniquely
determined and we cannot conclude that it is fixed by ϕ, unfortunately.
However, distinct measures on the same support form obviously a convex
cone in the current space C and hence a closed disc in PC , the class ϕ
acts on this disc and therefore has a fixed point there by Brouwer’s fixed
point theorem again.

We have ϕ(µu) = λ′µu for some λ′. It is clear that µu and µs fill Sg
altogether, and in particular i(µu, µs) > 0. Therefore

0 < i(µu, µs) = i(ϕ(µu), ϕ(µs)) = λλ′i(µu, µs)

gives λ′ = 1
λ
. The proof is complete. �

The laminations µs and µu are the stable and the unstable measured
geodesic laminations fixed by ϕ, and λ is the dilatation of ϕ. We now
prove a converse to Theorem 8.4.4.

Proposition 8.4.5. If ϕ ∈ MCG(Sg) is such that ϕ(µ) = λµ for some
full µ ∈ML and λ > 1, then ϕ is pseudo-Anosov.

Proof. We need to prove that ϕ is neither finite order nor reducible,
that is that ϕ fixes no non-trivial current α ∈ Teich(Sg) ∪M . We have

i
(
ϕk(α), µ

)
= i
(
α,ϕ−k(µ)

)
= λ−k i

(
α,µ)→ 0

as k → +∞. Therefore ϕ(α) 6= α unless i(α,µ) = 0, which is excluded
since µ is full. �

8.4.7. Examples. We now construct plenty of pseudo-Anosov diffeo-
morphisms. We need a bit of simple linear algebra.

We say that a matrix or vector is positive if all its entries are. A square
matrix M with non-negative integral entries is Perron-Frobenius if Mk is
positive for some k > 0.

Proposition 8.4.6. Every Perron-Frobenius integral matrix M has a
positive eigenvector v with some eigenvalue λ > 1.
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a

b

a

b

a

b b'

a'

Figure 8.17. We smoothen α ∪ β to a bigon track that
contains both α and β (left). The bigon track may have
some bigons as complementary regions (right).

Proof. The matrix M has non-negative entries and hence preserves
the standard simplex ∆ = {xi > 0,

∑
xi = 1}, so by Brouwer’s fixed point

theorem it has a fixed point v ∈ ∆ there. Since Mk > 0 and v is an
eigenvector for Mk , we get v > 0. Since Mk is integral we get λk > 1 and
hence λ > 1. �

The following examples were constructed by Penner in 1988. Recall
that a multicurve α in Sg is essential if it contains no parallel components:
this holds for instance if α is a simple closed curve or a pants decomposi-
tion.

Theorem 8.4.7. Let α and β be two essential multicurves that al-
together fill Sg. Let ϕ ∈ MCG(Sg) be any composition of Dehn twists
T+1
a and T−1

b where a and b vary among the curves in α and β. If every
component a, b of α, β occurs at least once, then ϕ is pseudo-Anosov.

The Dehn twists may occur in any order, for instance ϕ = T 2
a T
−3
b T−1

b′ Ta′ .

Proof. We put α and β in minimal position and smoothen the trans-
verse intersections as in Figure 8.17-(left) to get a bigon track τ . A bigon
track is like a train track, except that it may contain some complementary
bigon as in Figure 8.17-(right). The straightening procedure described
in Section 8.3.12 works also in this case (exercise), so every weight sys-
tem on τ determines a measured geodesic lamination in Sg. (Different
weight systems may determine the same geodesic laminations because of
the bigons.)

We have α = a1t. . .tam and β = b1t. . .tbn. Each ai and bj may be
represented by assigning weights 1 or 0 to the edges of τ , and these weights
formm+n independent (exercise) vectors v1, . . . , vm+n in the weights space
of τ . Let V be the (m + n)-dimensional sub-cone of the weights space
generated by v1, . . . , vm+n via combinations with non-negative coefficients.
Every vector in V models a measured geodesic lamination in Sg.
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Let Ω be the m+ n square matrix Ωi j = i(vi , vj). We have Ω =
(

0 H
K 0

)
.

The crucial point here is that both Taj and T
−1
bk

act on V like the matrix

Qi = I +DiΩ

where I is the identity and Di has 1 on the i-th entry of the diagonal and
0 everywhere else. The map ϕ therefore acts on V as a product M =

Qi1 · · ·Qih of non-negative matrices. Since each i = 1, . . . , m + n occurs
at least once as an index, we may deduce (exercise) that M is Perron-
Frobenius. Therefore M has a positive eigenvector v with eigenvalue λ >
1.

The positive eigenvector v determines an element µ ∈ML such that
ϕ(µ) = λµ. We leave to the reader the proof that µ is full, and we
conclude using Proposition 8.4.5. �

8.4.8. References. The material contained in this chapter is well
known to experts, but it is hard to find a source in the literature that
contains everything in a fully self-contained way. The whole theory was
presented by Thurston in a very nice and readable paper [55] that however
contained no proof. The most complete book on the subject is then Fathi
– Laudenbach – Poénaru [19], and this is also the main source that we
have used for writing this chapter. Another important source is Casson –
Bleiler [12].

We have chosen to describe the whole theory using Bonahon’s geo-
desic currents, that originated in the papers [6, 7]. To this purpose we have
also consulted McMullen [39], Aramayona – Leininger [3], and Calegari [9].
We also borrowed some arguments on train tracks and measured geodesic
laminations from a nice and self-contained paper of Hatcher [27]. The
proof of Proposition 8.4.1 was taken from [18, Theorem 6.1]. Theorem
8.4.7 was proved by Penner in [44].
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CHAPTER 9

Topology of three-manifolds

The three-manifolds world is topologically much richer than the sur-
faces realm, while yet not so crazy as the four-manifolds universe. In
dimension two a simple homological invariant (the Euler characteristic)
suffices to classify topologically all the closed orientable manifolds: at the
complete opposite, the closed four-manifolds cannot be classified in any
reasonable sense. The three-manifolds lie in the middle: we do not have
yet a complete satisfactory picture, but we understand them a good deal.

The rest of this book is devoted to three-manifolds, more specifi-
cally to compact orientable three-manifolds, possibly with boundary (the
orientability assumption is not essential, but it helps to simplify many argu-
ments). We split their study into some parts. First, we state some universal
topological facts, mostly concerning the way surfaces can be contained in
three-manifolds. Then we construct some classes of three-manifolds, fo-
cusing mostly on Seifert manifolds. After classifying the Seifert manifolds
topologically, we assign a geometry to each: there are eight interesting
geometries in dimension three, and we introduce them with some care.
Finally, we concentrate on the most interesting and beautiful of the eight:
hyperbolic geometry.

In this chapter we start to study the topology of three-manifolds. We
begin with some algebraic topology, then we show that the connected sum
behaves like products of numbers: every closed three-manifold splits in
a unique way in a unique list of prime factors. Finally we introduce the
important notion of incompressible surface.

9.1. Algebraic topology

The algebraic topology of compact 3-manifolds is not complicated.

9.1.1. Integral homology. In this section all the homology groups are
considered over Z. We first note that, for closed orientable 3-manifolds,
the fundamental group determines everything.

Proposition 9.1.1. The homology H∗(M) of a closed orientable 3-
manifold M is determined by π1(M).

Proof. As in every path connected space, the group H1(M) is the
abelianisation of π1(M) and H1(M) = Hom(H1(M),Z), which is hence
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isomorphic to H1(M) modulo its torsion. By Poincaré duality H2(M) =

H1(M) and H2(M) = H1(M). Finally H3(M) = Z. �

9.1.2. Homology spheres. A homology n-sphere is a closed orientable
n-manifold M whose homology is the same as that of Sn. That is, we have
H0(M) = Hn(M) = Z and Hi(M) vanishes for all 0 < i < n.

By Poincaré duality, a closed 3-manifold M is a homology sphere if
and only if H1(M) vanishes. Since H1(M) is the abelianization of π1(M),
this happens precisely when π1(M) is a perfect group, that is a group with
trivial abelianization.

In 1900 Poincaré conjectured that every homology 3-sphere should be
homeomorphic to S3. Four years later, he found himself a counterexample
by constructing what is known today as Poincaré’s homology sphere, a
closed 3-manifold with a perfect fundamental group of order 120. He then
modified his original conjecture by asking whether every simply connected
closed 3-manifold should be homeomorphic to S3. This fact, widely known
as Poincaré’s Conjecture, was proved only in 2002 by Perelman.

We will construct Poincaré’s homology sphere (and many more ho-
mology spheres) in Chapter 10, and we will discuss the Poincaré Conjecture
in Section 12.9, as a part of Thurston’s wider Geometrisation Conjecture,
also proved by Perelman in 2002.

9.1.3. The boundary. The Euler characteristic χ(M) of a closed odd-
dimensional manifold vanishes, and on manifolds with boundary we have
the following.

Proposition 9.1.2. If M is a compact 3-manifold with boundary, then

χ(M) =
χ(∂M)

2
.

Proof. We only use that M has odd dimension n. If M is closed and
orientable, we have χ(M) =

∑n
i=0(−1)ibi and the Betti numbers bi and

bn−i are equal by Poincaré duality, hence χ(M) = 0. If M is non-orientable
then it has an orientable double-cover N and χ(N) = dχ(M) on degree-d
covers, hence χ(N) = 0 implies χ(M) = 0. If M has boundary then

0 = χ(DM) = 2χ(M)− χ(∂M)

where DM is the double of M, constructed by taking two identical copies
of M and identifying their boundaries in the obvious way. �

The manifold M has half the Euler characteristic of ∂M, and is also
responsible for half of the first homology group of ∂M. More precisely, we
are interested in the boundary map

∂ : H2(M, ∂M) −→ H1(∂M)

and we want to prove that its image is a particular half-dimensional sub-
group. Recall from Proposition 1.7.16 that every class in H2(M, ∂M) is
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represented by an oriented properly embedded surface Σ, and ∂ sends [Σ]

to [∂Σ].
Let M be oriented. The boundary ∂M may be disconnected and in-

herits an orientation. Recall that H1(∂M) ∼= Z2n for some n and H1(∂M)

is equipped with a symplectic intersection form ω, see Section 6.1.3. A
subgroup L < H1(∂M) is lagrangian if ω|L ≡ 0.

Exercise 9.1.3. If L is lagrangian then rkL 6 n.

When rkL = n we say that L has maximal rank.

Proposition 9.1.4. Let M be an oriented compact 3-manifold with
boundary. The image of the map

∂ : H2(M, ∂M,Z) −→ H1(∂M,Z)

is a lagrangian subgroup of H1(∂M,Z) of maximal rank.

Proof. Consider the long exact sequence

. . . −→ H2(M, ∂M)
∂−→ H1(∂M)

i∗−→ H1(M) −→ . . .

We have two pairings

ω : H1(∂M)×H1(∂M) −→ Z,
η : H2(M, ∂M)×H1(M) −→ Z.

The latter is provided by Lefschetz duality and is non-degenerate after
quotienting the torsion subgroups. We have

ω(∂α, β) = η(α, i∗β)

for all α ∈ H2(M, ∂M) and β ∈ H1(M): this equality can be proved easily
by representing the elements of H2(M, ∂M) as surfaces (which we can do
thanks to Proposition 1.7.16). Now if β = ∂α′ we get

ω(∂α, ∂α′) = η(α, i∗∂α
′) = η(α, 0) = 0

and hence Im ∂ is lagrangian. It has maximal rank since H2(M, ∂M) =

H1(M) and H1(M) have the same rank: if rk Im ∂ < 1
2
b1(∂M), then we

get rk Im i∗ >
1
2
b1(∂M) and rk ker ∂ > b1(M)− 1

2
b1(∂M), a contradiction

since Im i∗ and ker ∂ are η-orthogonal. �

Corollary 9.1.5. Let M be an oriented compact 3-manifold. We have

b1(M) >
b1(∂M)

2
.

Proof. The rank of H1(M) equals that of H1(M) = H2(M, ∂M). �

Corollary 9.1.6. The boundary of a simply connected compact 3-
manifold consists of spheres.
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9.1.4. Non-orientable surfaces. Let M be an orientable 3-manifold
and S ⊂ M be a connected surface. If S is orientable, by Proposition 1.1.12
a tubular neighbourhood for S is diffeomorphic to the product S × R.

The orientable manifold M may also contain a non-orientable sur-
face S: for instance the orientable projective space RP3 contains the non-
orientable projective plane RP2. In that case a tubular neighbourhood of
S is diffeomorphic to the unique orientable interval bundle S ×∼ R over S,
see Proposition 1.1.12 again. A compact tubular neighbourhood of S is
an interval bundle S ×∼ I, whose boundary is the orientable double cover
of S. For instance, the boundary of RP2 ×∼ I is a sphere.

A non-orientable properly embedded surface S ⊂ M does not define a
homology class in Z, but it defines one in Z2, that is [S] ∈ H2(M, ∂M;Z2).
As opposite to orientable surfaces, this class [S] is always non-trivial.

Proposition 9.1.7. Let M be orientable. Every non-orientable surface
S determines a non-trivial class [S] ∈ H2(M, ∂M;Z2). The manifold M
contains at most dimH2(M, ∂M;Z2) disjoint non-orientable surfaces.

Proof. A tubular neighbourhood S ×∼ I of S contains a simple closed
loop α intersecting S transversely in one point. The homology class [S] ∈
H2(M, ∂M;Z2) = H1(M;Z2) sends α to 1 ∈ Z2 and is hence non-trivial. If
S = S1t. . .tSk are all non-orientable, each Si has its own αi and therefore
the elements [S1], . . . , [Sk ] ∈ H2(M, ∂M;Z2) are linearly independent. �

Corollary 9.1.8. A simply-connected three-manifold does not contain
any closed non-orientable surface.

9.2. Prime decomposition

In this section we study spheres and discs in three-manifolds. We
prove that every sphere in R3 bounds a disc, and we call irreducible a
three-manifold that has this property. Then we study the connected sum of
three-manifolds, and we show that it behaves like multiplication of natural
numbers: every closed oriented three-manifold decomposes uniquely into
some prime factors.

9.2.1. Balls. In general dimension n, we have used the term disc to
denote the closed Euclidean disc Dn, and the term ball for its open interior.
Speaking about three-dimensional spaces, we will henceforth use a more
intuitive terminology and call disc and ball respectively the closed discs D2

and D3, and we will use the symbols D and B for them.
Let M be a connected 3-manifold. Theorem 1.1.14 says that all the

closed balls B ⊂ int(M) in M are isotopic and hence the removal of the
interior of B from M produces a new manifold N with boundary, which
does not depend on B. We have ∂N = ∂M t ∂B.
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The inverse operation consists of capping off a boundary component
of N diffeomorphic to S2 by attaching a ball B to it, via some diffeomor-
phism. This operation depends only on the boundary component that is
capped off.

Proposition 9.2.1. The manifoldM obtained by capping off a spherical
boundary component of N does not depend on the diffeomorphism chosen.

Proof. There are only two diffeomorphisms up to isotopy, see The-
orem 6.4.5, and they are related by a reflection of B, so they produce
diffeomorphic manifolds. �

In dimension 3 we can therefore freely remove and add balls without
affecting much the topology of the manifold. In particular, by removing
the interior of a ball from S3 we get another ball B, and by attaching a ball
to B we get S3 back. We must thank Smale’s Theorem 6.4.1 for that:
the situation in higher dimensions is more complicated.

9.2.2. Connected sums. Connected sums exist in any dimension n,
but when n 6 3 they may be redefined in slightly simpler terms:

Definition 9.2.2. The connected sum M = M1#M2 of two oriented
connected 3-manifolds M1, M2 is constructed by removing the interiors
of two closed balls from M1 and M2, and then gluing the two resulting
spheres via any orientation-reversing diffeomorphism.

In dimension n 6 3 these diffeomorphisms are all isotopic, see Theo-
rem 6.4.5, hence this is a good definition (in arbitrary dimension we require
the diffeomorphism to extend to the removed discs). We usually work
with oriented 3-manifolds to have a uniquely defined connected sum, but
in some cases this is not necessary. An orientable manifold M is mirrorable
if it admits an orientation-reversing self-diffeomorphism.

Exercise 9.2.3. If M1 is mirrorable, the manifold M = M1#M2 does
not depend (up to diffeomorphisms) on the orientations of M1 and M2.

If both M1 and M2 are oriented and not mirrorable, it may happen
that M1#M2 and M1#M2 are not diffeomorphic (here M2 is M2 with the
reverse orientation). There is also a boundary-version of connected sum:

Definition 9.2.4. The ∂-connected sumM = M1#∂M2 of two oriented
3-manifolds with boundary is constructed by gluing two discs D1 ⊂ ∂M1

and D2 ⊂ ∂M2 via an orientation-reversing diffeomorphism.

The operation depends only on the components of ∂M1, ∂M2 contain-
ing D1, D2, because of Theorem 1.1.14. The following holds:

M#S3 = M, M#∂B = M, ∂(M1#∂M2) = (∂M1)#(∂M2).

In the latter equality we suppose that ∂M1 and ∂M2 are connected.
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Figure 9.1. Non-degenerate points of index 0, 1, and 2.

Figure 9.2. The height function on this torus is a Morse
function. It has four critical points of index (from bottom to
top) 0, 1, 1, 2.

Exercise 9.2.5. Let M = M1#M2 or M = M1#∂M2. We have

π1(M) = π1(M1) ∗ π2(M2).

Hint. Use Van Kampen. �

Corollary 9.2.6. We have H1(M,Z) = H1(M1,Z)⊕H1(M2,Z).

9.2.3. Irreducible 3-manifolds. We introduce an important defini-
tion. Let M be a connected, oriented 3-manifold with (possibly empty)
boundary.

Definition 9.2.7. The manifold M is irreducible if every sphere S ⊂
int(M) bounds a ball.

It is important to recall here that the sphere must be a smooth surface.
If we admitted also topological spheres, no 3-manifold would be irreducible:
there are “wild” topological spheres inside every ball, as in Figure 1.1.

9.2.4. Alexander theorem. The first 3-manifold to look at is of course
R3. We prove here that R3 is irreducible.

We need some Morse theory. Let S ⊂ R3 be a closed surface and
f (x, y , z) = z be the height function. The function f is a Morse function
for S if f |S has finitely many critical points, and at each critical point the
Hessian of f |S is non-singular (the Hessian is read on a chart for S, but
this definition is chart-independent). The critical point is a local minimum,
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P P

Figure 9.3. The plane P intersects S into circles. Starting
from the innermost ones, we cut S along the circles and cap
them off by adding pairs of discs. The resulting surface does
not intersect P anymore.

a saddle, or a local maximum, according to the signature of the Hessian,
see Figure 9.1. These critical points have index 0, 1, and 2, respectively.

Exercise 9.2.8. A critical point p for f |S is non-degenerate if and only
if p is a regular (i.e. non-critical) point for the Gauss map S → S2.

Lemma 9.2.9. Let S ⊂ R3 be a closed surface. After rotating S of
an arbitrarily small angle, the height function f is a Morse function for S.

Proof. Consider the Gauss map ψ : S → S2. By Sard lemma there
are regular values arbitrarily close to v = (0, 0, 1). Rotate S so that v is a
regular value. Now ψ−1(v) is the set of critical points for f and they are
all non-degenerate. �

We are now ready to prove the following.

Theorem 9.2.10 (Alexander’s Theorem). The space R3 is irreducible.

Proof. Let S ⊂ R3 be a 2-sphere. Up to a small rotation we suppose
that the height function f |S is a Morse function, and after a further small
rotation we may suppose that the k critical points of f |S stay at distinct
heights z1 < . . . < zk . Pick a regular value ui ∈ (zi , zi+1) for every i =

1, . . . , k − 1. The horizontal plane P at height ui intersects S transversely
into circles. Starting from the innermost ones, we cut S along these circles
and cap them off by adding pairs of discs as in Figure 9.3. The resulting
surface is disjoint from P .

At every cut a sphere decomposes into two spheres. If we do this for
every i = 1, . . . , k − 1 we end up with many spheres of the types shown in
Figure 9.4, that clearly bound balls in R3.

Now we reverse the process and undo all the cuts: we prove inductively
that at each backward step we have a set of spheres bounding balls (note
that the balls are not disjoint!). At each backward step we replace two
spheres S1, S2 bounding balls B1, B2 with one sphere S. Isotope S1 and
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Figure 9.4. After capping off at each ui we end up with
many spheres of these basic types, which clearly bound balls.

S

a

N

Figure 9.5. If S ⊂ M is non-separating, there is a simple
closed curve α intersecting S transversely in one point: here
S is drawn as a disc whose boundary should be collapsed to
a point, and α is a line whose endpoints should be identified
(left). Pick two tubular neighbourhoods of S and α and
consider their union N (right).

S2, so that they intersect in a disc D. If the interiors of B1 and B2 are
disjoint, then S bounds the ball B1∪B2. If they are not disjoint, then one is
contained in the other, say B1 ⊂ B2 and S bounds the ball B2\int(B1). �

Corollary 9.2.11. Every sphere contained in a sub-ball B ⊂ M of a
3-manifold M bounds a ball B′ ⊂ B.

Corollary 9.2.12. Every sphere in S3 bounds a ball on both sides.

Proof. Choose two points p, q 6∈ S on opposite sides with respect to
S. We have S3 \ p = S3 \ q = R3 hence S is contained in R3 in two ways
and bounds a ball in each. �

Alexander’s Theorem generalises the smooth Jordan curve Theorem
to dimension 3. The situation in higher dimensions is much more prob-
lematic: it is still unknown whether every smooth 3-sphere in R4 bounds a
smooth 4-disc (this is usually called the Schönflies problem).

9.2.5. Prime manifolds. A connected sum M1#M2 is trivial if either
M1 or M2 is a sphere.

Definition 9.2.13. A connected, oriented 3-manifold M is prime if
every connected sum M = M1#M2 is trivial.

Being prime is equivalent to be irreducible, with a single exception.
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Proposition 9.2.14. Every oriented 3-manifold M 6= S2 × S1 is prime
if and only if it is irreducible.

Proof. The inverse operation of a connected sum M = M1#M2 con-
sists of cutting along a separating sphere S ⊂ M and then capping off
the two resulting manifolds N1, N2 with balls. The capped Ni is S3 if and
only if Ni is a ball. Therefore the connected sum is trivial if and only if
S bounds a ball on one side. Therefore M is prime if and only if every
separating sphere S ⊂ M bounds a ball.

If M is irreducible, then it is clearly prime. If M is prime and not
irreducible, there is a non-separating sphere S ⊂ M. There is a simple
closed curve α ⊂ M intersecting S transversely in one point as in Figure
9.5-(left). Pick two tubular neighbourhoods of S and α as in Figure 9.5-
(right): their union is a manifold N with a boundary sphere ∂N = S′. The
sphere S′ is separating and M is prime, hence S′ bounds a ball B on the
other side and M = N ∪ B.

We now prove thatM = S2×S1. We embed S∪α naturally in S2×S1

as S = S2× y and α = x ×S1. Decompose S2 = D ∪D′ in two discs and
S1 = I∪I ′ in two intervals. The manifold N also embeds as S2×I∪D×S1

and its complement B = D′ × I ′ is a ball. Therefore M = S2 × S1. �

9.2.6. Some irreducible manifolds. The Alexander theorem gener-
ates many more examples of irreducible 3-manifolds.

Proposition 9.2.15. Every compact three-dimensional submanifoldM ⊂
S3 with connected boundary is irreducible.

Proof. Every sphere S ⊂ M bounds two balls in S3. Since ∂M is
connected, it is contained in one of them, so the other is contained in
M. �

We turn to coverings.

Proposition 9.2.16. Let p : M → N be a covering of 3-manifolds. If
M is irreducible then N also is.

Proof. A sphere S ⊂ N lifts to many spheres in M, each bounding at
least one ball. Pick an innermost such ball B. We prove that p(B) is a
ball with boundary S and we are done.

To do this, note that p|∂B is a diffeomorphism onto S and p(int(B))

is disjoint from S since B is innermost. This implies that p|B : B → p(B)

is a covering and since it has degree one on S it is a diffeomorphism. �

Corollary 9.2.17. Elliptic, flat, hyperbolic 3-manifolds are irreducible.

Proof. Their universal covering is diffeomorphic to S3 or R3. �

Finally, we consider the exception S2 × S1. It is not irreducible since
it contains a non-separating sphere, but it is prime.
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Figure 9.6. A handlebody of genus 3.

Proposition 9.2.18. The manifold S2 × S1 is prime.

Proof. Let S ⊂ S2 × S1 be a separating sphere: we must prove that
it bounds a ball. It separates S2×S1 into two manifolds M and N, and on
fundamental groups we get Z = π1(M) ∗ π1(N). This implies easily that
either π1(M) or π1(N) must be trivial: suppose the first.

Since M is simply connected, a copy M ′ of M lifts to the universal
cover S2×R of S2×S1. We identify S2×R = R3\0. This copyM ′ now lies
in R3, and ∂M ′ = S2 implies that M ′ is a ball by Alexander theorem. �

9.2.7. Handlebodies and line bundles. We now introduce some ba-
sic, but important, compact 3-manifolds with boundary. A handlebody is a
connected orientable 3-manifold that decomposes into 0- and 1- handles.

Proposition 9.2.19. The boundary of a handlebody is Sg for some
g > 0. Two handlebodies are diffeomorphic if and only if they have the
same g.

Proof. By simplifying handles we may decompose the handlebody into
one 0-handle and some g 1-handles, so that the boundary is a genus-g
surface, see Figure 9.6. Each 1-handle is attached along a pair of discs;
the orientability assumption together with Theorem 1.1.14 easily imply that
the result of attaching a 1-handle depends on nothing and the handlebody
depends only on g up to diffeomorphisms. �

The genus of a handlebody Hg is the genus g of its boundary surface.
Proposition 9.2.15 implies the following.

Corollary 9.2.20. Handlebodies are irreducible.

Some other simple manifolds are irreducible.

Proposition 9.2.21. If g > 1 then Sg × [0, 1] is irreducible.

Proof. Its universal cover R2× [0, 1] is irreducible, because its interior
is diffeomorphic to R3. �

Exercise 9.2.22. If b > 1 the manifold Sg,b × [0, 1] is homeomorphic
to a handlebody of genus 2g + b − 1 = −χ(Sg,b) + 1.



9.2. PRIME DECOMPOSITION 281

Figure 9.7. A normal surface intersects every tetrahedron
in triangles or squares.

D

S S'

Figure 9.8. We can surger a surface S along a disc D with
∂D = D∩S. The operation consists of removing an annular
tubular neighbourhood of ∂D in S and adding two parallel
copies of D. We get a new surface S′.

9.2.8. Normal surfaces. Let M be a compact 3-manifold with (pos-
sibly empty) boundary. As every smooth compact manifold, M has a tri-
angulation T , made of a certain number t of tetrahedra. We now show
that T can be used to treat combinatorially many interesting surfaces in
M.

A properly embedded surface S ⊂ M is transverse to T if it is trans-
verse to all its simplexes. In particular S does not intersect the vertices
of T , and it intersects every edge, face, and tetrahedron respectively into
a finite number of points, curves, and surfaces. Every properly embedded
surface S ⊂ M can be perturbed to be transverse to T .

Definition 9.2.23. A normal surface is a properly embedded surface S
transverse to T that intersects every tetrahedron into triangles or squares
as in Figure 9.7.

Example 9.2.24. For every vertex v of T lying in int(M) we may take
a small sphere centred at v that intersects every incident tetrahedron in a
small triangle: we get a normal sphere. If v lies in ∂M we get similarly a
normal disc. A surface of this type is called vertex-linking. Vertex-linking
spheres are not very interesting since they bound balls.

Exercise 9.2.25. A connected normal surface is vertex-linking if and
only if it consists of triangles only (no squares).
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Figure 9.9. We can also surger a surface S along a disc D
touching the boundary in a segment. The result is a new
properly embedded surface S′.

Figure 9.10. Starting from the innermost curves in ∂∆ ∩ S
we surger along discs so that S∩∆ consists only of discs and
closed components, which we then remove.

Let S ⊂ M be a properly embedded, possibly disconnected, compact
surface. An elementary transformation on S is one of the following moves:

• the removal of a connected component of S contained in some
ball;

• let D ⊂ int(M) be a disc with ∂D = D ∩ S: we surger S along
D as shown in Figure 9.8;

• let D ⊂ M be a disc with D ∩ (S ∪ ∂M) = ∂D = α ∪ β, where
α is an arc in S and β an arc in ∂M as in Figure 9.9-(left): we
surger S as shown in the figure.

Every elementary transformation is local, i.e. it takes place in a ball. It
transforms S into a new surface S′. We fix a triangulation T for M.

Proposition 9.2.26. Every properly embedded surface S ⊂ M becomes
normal after finitely many isotopies and elementary transformations.

Proof. Put S transverse to T . It intersects every tetrahedron ∆ into
surfaces as in Figure 9.10-(left). The intersection S∩∂∆ consists of closed
curves: the innermost ones bound discs in ∂∆, which may be pushed a bit
inside ∆ and then used to surger S. We do this with all curves (starting
with the innermost ones) to transform S as in Figure 9.10, so that at the
end S ∩∆ consists only of discs and closed surfaces. Then we remove the
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Figure 9.11. The closed curves contained in a triangle are
the intersections of small spherical components of S with
that triangle. We just remove them.

Figure 9.12. If the boundary of a (yellow) disc D intersects
an edge e of ∂∆ twice, we pick two innermost intersections,
that must be in opposite directions. There must be a red disc
as shown (exercise: use Alexander’s theorem), which can be
used to push S in the direction indicated by the arrow. The
resulting surface is shown in the right. If e ⊂ ∂M, we cannot
push S outside ∂M: instead, we surger along the red disc.

closed surfaces: this is an elementary transformation since ∆ is a ball. We
do this for every tetrahedron ∆.

Now S intersects every tetrahedron ∆ in discs. Consider the boundary
curve of one such disc: if it is contained in a face as in Figure 9.11-(left),
it belongs to one or two discs (depending on whether the face belongs to
∂M or not), which form a component of S contained in a ball that can be
removed.

Suppose the boundary curve crosses twice an edge of ∆: if the edge
lies in the interior of M, we isotope S as shown in Figure 9.12 to decrease
the number of intersections of S with the 1-skeleton of T ; if the edge lies
in ∂M we simplify analogously by surgerying along the red disc shown in
the figure. In all cases then we go back to the first step of the algorithm.

After finitely many steps we get a surface S intersecting every tetra-
hedron ∆ in discs, whose boundary curves intersect every edge of ∆ at
most once. One such disc is either a triangle or a square. �
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Figure 9.13. If we cut a tetrahedron ∆ along triangles and
squares we get arbitrarily many prisms with triangular or
quadrilateral basis, and at most 6 other pieces (here we get
4 pyramids and two esahedra).

9.2.9. Interesting surfaces cannot have too many components. We
know from Proposition 9.1.7 that a compact orientable M cannot contain
too many disjoint non-orientable surfaces. It can however contain arbi-
trarily many orientable surfaces: for instance, small surfaces contained in
disjoint balls. A crucial aspect of 3-manifolds theory is that M cannot
contain arbitrarily many “interesting” surfaces, as we now see.

Two disjoint connected diffeomorphic surfaces Σ,Σ′ ⊂ M are parallel
if they cobound a region diffeomorphic to Σ × [0, 1] with Σ = Σ × 0 and
Σ′ = Σ× 1. Two parallel surfaces are obviously isotopic.

Let T be a triangulation of a compactM with (possibly empty) bound-
ary. Let t be the number of tetrahedra in T and set b2 = dimH2(M, ∂M,Z2).

Lemma 9.2.27. Let S be an orientable normal surface. If S has more
than 10t + b2 components, then two components Σ,Σ′ of S are parallel
and cobound a Σ× [0, 1] which is disjoint from the other components.

Proof. The complement M \ S intersects every tetrahedron ∆ into
polyhedra: there are many prisms lying between parallel triangles or squares,
and at most 6 other pieces, see Figure 9.13. These at most 6 pieces are
adjacent to at most 1+1+1+1+3+3 = 10 triangles and squares.

This implies that, except at most 10t of them, the components of S
are only adjacent (on both sides) to prisms. These prisms glue to form
I-bundles. Therefore at least b2 + 1 components of S are adjacent to I-
bundles on both sides. The twisted I-bundles are at most b2 by Proposition
9.1.7, and each is adjacent to one surface. Therefore at least one surface
is adjacent to a product I-bundle Σ× [0, 1]. �

We get a topological corollary. A ball with holes is a 3-manifold
obtained by removing some k > 0 disjoint small open balls from a ball.
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A sphere system for a 3-manifold M is a surface S ⊂ int(M) consisting
of disjoint spheres, such that no component of M \ S is a ball with holes
disjoint from ∂M. (Balls with holes adjacent to spherical components of
∂M are allowed.)

Corollary 9.2.28. LetM be a compact orientable 3-manifold that does
not contain any non-separating sphere. There is a K > 0 such that every
sphere system in M contains less than K spheres.

Proof. Pick a triangulation T of M with some t tetrahedra: we prove
that K = 10t + b2 + 1 works, with b2 = dimH2(M, ∂M;Z2). Suppose
by contradiction that there is a sphere system S with > K spheres. Via
isotopies and elementary transformations we transform S into a normal
surface S′.

We now examine the effect of elementary transformations in detail.
No component of S is contained in a ball, otherwise by Alexander theorem
an innermost component ofM\S would be a ball. Therefore an elementary
transformation cannot cancel a component of S.

A surgery along a disc splits a sphere S0 into two spheres S1, S2.
We now prove that by substituting S0 with either S1 or S2 we still get a
sphere system. If we push S1 and S2 away from S0 the surfaces S0, S1, S2

altogether bound a ball with two holes B.
By our hypothesis on M the spheres S0, S1, and S2 are separating.

Let Ni be the component of M \(S0∪S1∪S2) adjacent to Si distinct from
B, for i = 0, 1, 2. If both N1, N2 are balls with holes disjoint from ∂M,
then N1 ∪N2 ∪B also is, which is excluded. Therefore one, say N1, is not
a ball with holes disjoint from ∂M. On the other side, if N2 ∪B ∪N0 were
a ball with holes disjoint from ∂M, then N0 would also be (by Alexander’s
theorem), which is excluded. Therefore by substituting S0 with S1 we still
get a sphere system.

This proves that the final normal surface S′ contains a sphere system
with the same number > K of components as S. Lemma 9.2.27 gives a
contradiction. �

9.2.10. Prime decomposition. We now show that the connected
sum operation on oriented three-manifolds behaves like the product of
natural numbers: every object decomposes uniquely into prime factors.

Theorem 9.2.29. Every compact oriented 3-manifoldM with (possibly
empty) boundary decomposes into prime manifolds:

M = M1# . . .#Mk

This list of prime factors is unique up to permutations and adding/removing
copies of S3.

Proof. We first show the existence of a decomposition. If M con-
tains a non-separating sphere, then the proof of Proposition 9.2.14 shows
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B

N1

N2

Figure 9.14. A reducing set of spheres (red) for M =

M1#M2#(S2×S1). Here B is a ball with four holes and Ni
is Mi with one hole.

that M = M ′#(S2 × S1). Since H1(M) = H1(M ′) ⊕ Z, up to factoring
finitely many copies of S2 × S1 we may suppose that every sphere in M is
separating.

IfM is prime we are done. If not, it decomposes asM = M1#M2. We
keep decomposing each factor until all factors are prime: this process must
end, because a decomposition M = M1# . . .#Mk gives rise to a system
of k − 1 spheres, and k cannot be arbitrarily big by Corollary 9.2.28.

We turn to uniqueness. Let

M = M1# . . .#Mk#h(S2 × S1), M = M ′1# . . .#M ′k ′#h′(S
2 × S1)

be two prime decompositions with Mi ,M
′
j 6= S2 × S1, so Mi ,M

′
j are irre-

ducible for all i , j . We say that a set S ⊂ M of disjoint spheres is a reducing
set of spheres for the decomposition M = M1# . . .#Mk#h(S2 × S1) if
M \ S consists of precisely one Mi with some holes for each i , and some
balls with holes disjoint from ∂M. An example is drawn in Figure 9.14. In
general, we may construct S by taking the spheres of the prime decom-
position, plus one non-separating sphere inside each S2 × S1 summand.
Similarly, let S′ be a reducing set of spheres for the other decomposition.

The first observation we make is that if we add to S any sphere Σ

disjoint from S, then we still get a reducing set of spheres for the same
decomposition as before. This is because Σ is contained in a holed Mi

or S3, and since Mi is irreducible Σ bounds a ball B there. Therefore by
adding Σ we still get the same holedMi , plus a possibly holed (if B∩S 6= ∅)
ball B.

We assume S and S′ intersect transversely in circles and pick an in-
nermost circle in a component of S bounding a disc D ⊂ S. We surger S′

along D, thus substituting a component S′0 of S
′ with two spheres S′1tS′2.
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We check that the result is another sphere system for the same decom-
position. We isotope the spheres S′0, S

′
1, S

′
2 so that they are disjoint and

cobound a ball with two holes B2: the system S′ tS′1 tS′2 is still reducing
by the observation above. The removal of S′0 then adds B2 to the outside
of S′0, and this is equivalent to making one more hole there.

After finitely many surgeries we get S ∩ S′ = ∅. By the same obser-
vation above S ∪ S′ is a reducing set of spheres for both decompositions:
therefore the pieces Mi and M ′j of the decompositions are pairwise diffeo-
morphic.

Finally we must have h = h′ since M = N#h(S2 × S1) = N#h′(S
2 ×

S1) and H1(M) = H1(N)⊕ Zh = H1(N)⊕ Zh′ . �

This important result is known as the Prime decomposition Theorem
for 3-manifolds: the existence of a decomposition was proved by Kneser
[33] in 1929, and its uniqueness by Milnor [41] in 1962. In light of this
result, topologists have since long restricted their attention to prime 3-
manifolds, or almost equivalently to irreducible 3-manifolds.

The strategy of cutting canonically a three-manifold along surfaces
has proved successful with spheres, so we now try to do the same with
other surfaces. We start by studying properly embedded discs, which of
course occur only in manifolds with boundary. It is tempting to guess that
discs should behave roughly like spheres, because by doubling a 3-manifold
along its boundary we transform properly embedded discs into spheres. We
now see that this is indeed the case. As for spheres, we need to distinguish
the interesting ones, that we call essential, from the others.

9.2.11. Essential discs. Let M be a compact 3-manifold with (possi-
bly empty) boundary. A properly embedded surface S ⊂ M is ∂-parallel if
it is obtained by slightly pushing inside M the interior of a compact surface
S′ ⊂ ∂M, possibly with boundary.

In what follows D and S are properly embedded. We say that:

• a sphere S ⊂ M is essential if it does not bound a ball,
• a disc D ⊂ M is essential if it is not ∂-parallel.

Now, the manifold M is:

• irreducible if it does not contain essential spheres, and
• ∂-irreducible if it does not contain essential discs.

To warm up, we show the following. A solid torus is a handlebody of
genus 1, that is a three-manifold diffeomorphic to D × S1.

Proposition 9.2.30. Let M be a compact, irreducible, orientable 3-
manifold with boundary, and let D ⊂ M be an essential disc. Let Σ ⊂ ∂M
be the boundary component containing ∂D. Then:

• the curve ∂D is non-trivial in Σ;
• if Σ is a torus then M is a solid torus.
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Proof. If ∂D bounds a disc D′ ⊂ Σ then D ∪ D′ is a sphere, which
bounds a ball because M is irreducible; this ball furnishes a parallelism
between D and D′ and hence D is ∂-parallel, a contradiction.

If Σ is a torus, by surgerying Σ along D we get a sphere which must
bound a ball B. Therefore M is obtained by adding a one-handle to B,
that is it is a solid torus. �

9.2.12. Decomposition along discs. We now show that essential
discs behave roughly like essential spheres, in the sense that there is a
kind of prime decomposition theorem also for discs. After stating and
proving this theorem, we will essentially forget about essential spheres and
discs and focus on the 3-manifolds that do not contain them.

Let M be a compact 3-manifold with (possibly empty) boundary. A
disc system in M is a set of pairwise disjoint non-parallel essential discs.

Proposition 9.2.31. There is a K > 0 such that every disc system in
M cannot contain more than K discs.

Proof. The proof is analogous to that of Corollary 9.2.28 �

We now want to cut irreducible manifolds along essential discs.

Remark 9.2.32. The opposite operation of cutting a manifold along
a properly embedded disc is a 1-handle addition.

We now state the analogue of Theorem 9.2.29 in this context. Note
thatM is irreducible by hypothesis: we have already eliminated the essential
spheres, and we now remove the essential discs.

Theorem 9.2.33. Every compact oriented irreducible 3-manifold M is
obtained by adding 1-handles to a finite list

M1, . . . ,Mk

of connected irreducible and ∂-irreducible 3-manifolds. The list is unique
up to permutations and adding/removing balls.

Proof. The proof is similar to Theorem 9.2.29. If we cut M along a
maximal disc system we get some connected manifolds M1, . . . ,Mk . Each
Mi is ∂-irreducible because the disc system is maximal, and it is irreducible
because every sphere in Mi ⊂ M bounds a ball B in M, and B is necessarily
contained in Mi .

We prove uniqueness. Pick two sets of discs S, S′ ⊂ M such that by
cutting along each we get irreducible and ∂-irreducible components. We
prove that these components are the same up to adding/removing balls.
We assume that S and S′ intersect transversely.

A circle S∩S′ which is innermost with respect to S is bounded by two
sub-discs D ⊂ S and D′ ⊂ S′, which together form a sphere: this sphere
in turn bounds a ball (because M is irreducible) as in Figure 9.15. We
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Figure 9.15. The discs D and D′ form a sphere which
bounds a ball since M is irreducible. We can use this ball
to isotope S′ away from S.

can use the ball to isotope S′ away from S and reduce the intersections in
S ∩ S′. After finitely many isotopies there are no circles in S ∩ S′.

We are left to consider the arcs in S ∩ S′. We end precisely as in
Theorem 9.2.29. We observe that by adding more discs to S or S′ we get
a set of discs that ∂-reduces M into the same list of Mi ’s, plus possibly
some balls.

Thanks to an innermost argument, we may surger some disc D0 ⊂ S
along an arc in D0 ∩ S′ and transform it into two discs D1 t D2, both
disjoint from S and with less intersections with S′. The set S t D1 t D2

is still a reducing set for the Mi ’s. If we remove D0 from this new system,
in the complement we only remove a ball: hence we can replace D0 with
D1 tD2. After finitely many steps we get S∩S′ = ∅ and therefore S∪S′
is a reducing set producing the same Mi ’s of S and S′, up to balls. �

9.2.13. Projective planes. The previous discussions show how to deal
with spheres and discs, and we now turn to the only remaining compact
surface with χ > 0: the projective plane. There is not much to say about
it.

Proposition 9.2.34. Every compact irreducible orientable 3-manifold
M that contains RP2 is diffeomorphic to RP3.

Proof. The orientable M contains the orientable tubular neighbour-
hood N = RP2 ×∼ I of RP2. The boundary ∂N is the orientable cover S2

or RP2. Since M is irreducible, the sphere ∂N bounds a ball B. There-
fore M is uniquely determined as the manifold obtained by capping off the
boundary sphere of N.

The manifold RP3 is irreducible (because its cover S3 is) and contains
RP2, hence we must have M = RP3. �

This proposition does not hold for non-orientable three-manifolds,
which might contain RP2 with a product neighbourhood RP2 × I. These
cases are difficult to deal with, so one typically excludes them a priori by
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requiring the manifold to be RP2-irreducible, which means that it does not
contain two-sided projective planes.

9.3. Incompressible surfaces

We have proved that every compact oriented 3-manifold decomposes
along essential spheres and discs, into some canonical pieces that do not
contain essential spheres or discs anymore.

We would like to pursue this strategy with the next simplest surfaces,
namely tori and annuli. To this purpose we define the important notion of
incompressible surface in a three-manifold, which applies to all surfaces of
non-positive Euler characteristic.

9.3.1. Incompressible surfaces. Throughout all this section M de-
notes a compact orientable 3-manifold with (possibly empty) boundary.
Let S ⊂ M be a properly embedded orientable surface. A compressing
disc for S is a disc D ⊂ M with ∂D = D ∩ S, such that ∂D does not
bound a disc in S. With this hypothesis, the surgery in Figure 9.8 is called
a compression: it transform S into a new surface S′ ⊂ M which is simpler
than S.

Proposition 9.3.1. The surface S′ may have one or two components
S′i , and χ(S′i ) > χ(S) for each component.

Proof. We have χ(S′) = χ(S) + 2. If S′ has one component we are
done, so suppose S′ = S′1 tS′2. Since ∂D did not bound a disc in S, no S′i
is a sphere, hence χ(S′i ) 6 1 that implies χ(S′i ) > χ(S) for i = 1, 2. �

A properly embedded connected orientable compact surface S ⊂ M

with χ(S) 6 0 is compressible if it has a compressing disc, and incom-
pressible otherwise. See Figure 9.16-(top).

Corollary 9.3.2. Let S ⊂ M be any properly embedded orientable
surface. After compressing it a finite number of times it transforms into a
disjoint union of spheres, discs, and incompressible surfaces.

Proof. We compress S as much as we can; after finitely many steps
we must stop because of Proposition 9.3.1. �

Remark 9.3.3. By definition, an orientable 3-manifold is ∂-irreducible
if and only if its boundary consists of incompressible components. (Strictly
speaking, a boundary component is not properly embedded and hence can-
not be incompressible: we implicitly push it inside the 3-manifold.)

A simple incompressibility criterion is the following.

Proposition 9.3.4. Let S ⊂ M be an orientable, connected, properly
embedded surface with χ(S) 6 0. If the map π1(S)→ π1(M) induced by
inclusion is injective, then S is incompressible.
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Figure 9.16. A surface S is incompressible (∂-
incompressible) if the existence of a disc D as in the
top-left (bottom-left) picture implies the existence of
another disc D′ ⊂ S as in the top-right (bottom-right)
picture. If in addition M is irreducible (∂-irreducible) the two
discs D and D′ form a sphere (disc) which bounds a ball (is
∂-parallel), and hence by substituting D′ with D we get two
isotopic surfaces.

Proof. Suppose that a disc D compresses S. Its boundary ∂D is a
non-trivial element in π1(S) because it does not bound a disc in S by
Proposition 6.3.5, but is clearly trivial in π1(M): a contradiction. �

The converse is also true, but its proof is much harder! We will com-
plete it at the end of this chapter. For the moment we content ourselves
with the following.

Proposition 9.3.5. If S ⊂ M is incompressible, every component of
∂S is non-trivial in ∂M.

Proof. If a component of ∂S is trivial in ∂M, it bounds a disc D ⊂ ∂M
there. By taking an innermost one we get D ∩S = ∂D, and by pushing D
inside M we find a compressing disc for S. �

9.3.2. Tori. The first closed surface to look at is the torus.

Proposition 9.3.6. Let T ⊂ M be a torus in an irreducible 3-manifold.
One of the following holds:

(1) T is incompressible,
(2) T bounds a solid torus,
(3) T is contained in a ball.

Proof. If T is not incompressible, it compresses along a disc D. The
result of the compression is necessarily a sphere S ⊂ M which bounds a
ball B since M is irreducible. If B is disjoint from T , then T bounds a solid
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Figure 9.17. A torus in an irreducible 3-manifold is either in-
compressible, or it bounds a solid torus (left), or is contained
in a ball (right).

torus as in Fig.9.17-(left). If B contains T , then case (3) holds as shown
in Figure 9.17-(right). �

If M = S3 the case (3) can be excluded: if T is contained in a ball B,
then it bounds a solid torus “on the outside” using the complementary ball
S3 \B. We will also exclude the case (1) when we show that S3 contains
no incompressible surfaces.

9.3.3. ∂-incompressible surfaces. There is of course also a ∂-version
of incompressibility. Let S ⊂ M be a properly embedded orientable surface
in a 3-manifoldM. A ∂-compressing disc for S is a disc D with ∂D = α∪β,
where α lies in S and β in ∂M as in Figure 9.9-(left); we also require that
there is no sub-disc D′ ⊂ S with ∂D′ = α ∪ β′ and β′ ⊂ ∂S. The move
in Figure 9.9 is a ∂-compression and transforms S into a surface S′ ⊂ M
simpler than S:

Proposition 9.3.7. The surface S′ may have one or two components
S′i , and χ(S′i ) > χ(S) for each component.

Proof. We have χ(S′) = χ(S) + 1. If S′ has one component we are
done, so suppose S′ = S′1 t S′2. Since α did not bound a disc in S, no S′i
is a disc, hence χ(S′i ) 6 0 that implies χ(S′i ) > χ(S) for i = 1, 2. �

A properly embedded connected orientable compact S ⊂ M with
χ(S) 6 0 is ∂-compressible if it has a ∂-compressing disc, and it is ∂-
incompressible otherwise. See Figure 9.16.

Corollary 9.3.8. Let S ⊂ M be any properly embedded orientable
surface. After ∂-compressing it a finite number of times it transforms into
a disjoint union of spheres, discs, and ∂-incompressible surfaces.

9.3.4. Annuli. The first non-closed surface to look at is the annulus.
Let a tube be the tubular neighbourhood of a properly embedded arc.
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Figure 9.18. An annulus A in an irreducible and ∂-irreducible
3-manifold is either incompressible and ∂-incompressible, or is
parallel to an annulus in ∂M (left), or bounds a tube (centre),
or is contained in a ball intersecting ∂M in a disc (right).

Proposition 9.3.9. Let A ⊂ M be a properly embedded annulus in an
irreducible and ∂-irreducible 3-manifold. One of the following holds:

(1) A is incompressible and ∂-incompressible,
(2) A bounds a tube,
(3) A is parallel to an annulus in ∂M,
(4) A is contained in a ball B intersecting ∂M in a disc.

Proof. If A compresses along a disc D, it transforms into two discs
that are parallel to two discs D1, D2 ⊂ ∂M since M is ∂-irreducible. If
D1 ∩D2 = ∅ then A bounds a tube as in Figure 9.18-(right); if D1 ⊂ D2

then A is contained in a ball B intersecting ∂M in D2.
If A ∂-compresses along a disc D, it transforms into a disc which

is again ∂-parallel and hence A is as in Figure 9.18-(left) or bounds a
tube. �

As a corollary, we get a simple criterion for detecting incompressible
and ∂-incompressible annuli:

Corollary 9.3.10. Let A ⊂ M be a properly embedded annulus in
an irreducible and ∂-irreducible 3-manifold. If the components of ∂A are
non-trivial and non-parallel in ∂M, the annulus A is incompressible and
∂-incompressible.

9.3.5. Handlebodies. We study some examples. We investigate the
incompressible and ∂-incompressible surfaces in the three-sphere and in
the handlebodies. Recall that a (∂)-incompressible surface is always com-
pact, orientable, connected, properly embedded, and with non-positive Eu-
ler characteristic by hypothesis.

Proposition 9.3.11. There are no incompressible surfaces in R3.

Proof. Let S be a surface in R3. By applying as is the proof of
Alexander Theorem 9.2.10 we find that S transforms into spheres after
surgerying along discs. Therefore S compresses somewhere. �
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A high genus closed surface may be embedded in R3 in a rather com-
plicated way (which may be hard to imagine) and the proposition says that
no matter how intricate the surface is, there is always a compressing disc
somewhere that one can use to simplify the picture. After finitely many
compressions the complicated surface is atomised into some trivial spheres.

Corollary 9.3.12. There are no incompressible surfaces in S3.

Corollary 9.3.13. There are no incompressible surfaces in the ball B.

Proof. Use Proposition 9.3.5. �

Corollary 9.3.14. Every torus in S3 bounds a solid torus and every
properly embedded annulus in B bounds a tube.

Proof. Apply Propositions 9.3.6 and 9.3.9. Since the manifold is S3

or B, the cases (3) or (4) easily imply (2). �

The solid torus in S3 and the tube in B may of course be knotted!
We now turn to handlebodies. Recall that a handlebody of genus g ≥ 1 is
irreducible by Corollary 9.2.20, but it is clearly not ∂-irreducible.

Proposition 9.3.15 (Handlebodies). The genus-g handlebody Hg con-
tains no incompressible and ∂-incompressible surfaces.

Proof. Suppose that S ⊂ Hg is incompressible and ∂-incompressible.
Pick disjoint essential discs D1, . . . , Dg that cut Hg into a ball B. Put S in
transverse position with respect to tiDi , so that the intersection of S with
tiDi consists of circles and properly embedded arcs. Since Hg is irreducible
and S is incompressible and ∂-incompressible, all these intersections can
be removed by an isotopy of S, as explained below. Then Corollary 9.3.13
gives a contradiction.

The intersections removal goes as follows. Let α be one arc or circle
in S ∩Dj . Since S is incompressible and ∂-incompressible, there is a disc
D′ ⊂ S bounded by α (if α is a circle) or by α∪ β with β ⊂ ∂S (if α is an
arc) as in Figure 9.16. After substituting α with an innermost intersection
of D′ with tiDi we may suppose that D′ is entirely contained in B and
hence we may eliminate α with an isotopy as explained in Figure 9.16. �

We can be more specific on the solid torus H1.

Proposition 9.3.16. Every incompressible surface in a solid torus is a
∂-parallel annulus.

Proof. Every incompressible surface S ⊂ H1 is ∂-compressible by
Proposition 9.3.15. If we ∂-compress it, we get either a disc or an in-
compressible surface again. Therefore S is constructed iteratively from
some discs by a sequence of moves opposite to the ∂-compression, that
produce incompressible surfaces at each step. One easily sees that the
only incompressible surface that this move can produce at the first step is
a ∂-parallel annulus (from a single disc), and then one gets stuck. �
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D
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S

e

S

Figure 9.19. A move that decreases the intersection num-
ber of S with the vertical edges (left). The surface S inter-
sects every prism into horizontal triangles (centre) or vertical
rectangles (right).

Warning 9.3.17. The handlebody H2 contains many complicated prop-
erly embedded incompressible surfaces! However, these are ∂-compressible.
The main difference between H1 and H2 is that π1(H2) = Z ∗ Z is a free
group of rank two and contains many free groups of arbitrarily high rank,
so there is a lot of space for π1-injective incompressible surfaces in H2 with
boundary (whose fundamental group is free).

9.3.6. Line bundles. We now turn to product line bundles. Recall
that Sg is the closed orientable surface of genus g.

Proposition 9.3.18 (Line bundles). Fix g > 1. The product M =

Sg × [−1, 1] is irreducible and ∂-irreducible. The incompressible and ∂-
incompressible surfaces in M are precisely the following (up to isotopy):

• the horizontal surface Sg × 0,
• a vertical annulus γ × [−1, 1] for each non-trivial simple closed
curve γ ⊂ Sg.

Proof. We know that M is irreducible by Proposition 9.2.21. The
horizontal surface and the vertical annuli are both incompressible and ∂-
incompressible by Propositions 9.3.4 and 9.3.10. Propositions 9.3.4 also
shows that M is ∂-irreducible.

We now prove that every incompressible and ∂-incompressible S is
either vertical or horizontal, up to isotopy. We use a version of normal
surface theory, with prisms instead of tetrahedra.

A triangulation ∆ of Sg determines a decomposition of Sg×[−1, 1] into
prisms. Every vertex v of ∆ gives rise to a vertical edge e = v×[−1, 1]. We
suppose that S is transverse to the prisms and has minimum intersection
number with the vertical edges. The intersection of S with a vertical
rectangular face consists of arcs and circles. The simplification argument
described below shows that after an isotopy we get only horizontal or
vertical arcs (that is, arcs joining opposite sides of the rectangle). By
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further isotopies we can also supppose that S intersects every horizontal
triangle of the prism into arcs joining distinct sides. Therefore S intersects
necessarily every prism into either horizontal triangles or vertical rectangles
as in Figure 9.19-(centre) and (right). These pieces glue up to give a
horizontal or vertical surface.

Here is the simplification argument. There cannot be arcs with end-
points in two consecutive edges, because they could be removed by an iso-
topy as in Figure 9.19-(left) contradicting minimality. Analogously there
are no arcs with both endpoints in the same vertical edge. Circles and arcs
with endpoints in the same horizontal edge are removed as in the proof of
Proposition 9.3.15. �

9.4. Haken manifolds

There are two classes of irreducible closed three-manifolds: those that
contain incompressible surfaces, and those that do not. Both classes are
very important and contain a wealth of interesting manifolds.

The manifolds belonging to the first class are called Haken manifolds
and are somehow easier to study, because they can be cut into balls via a
standard procedure called hierarchy : we cut the manifold along an essential
surface, then along another, and we iterate until we get balls. We study
these manifolds here. We also prove the converse of Proposition 9.3.4, that
is that a closed surface is incompressible if and only if it is π1-injective, see
Theorem 9.4.14.

9.4.1. Introduction. If not otherwise mentioned, all the 3-manifolds
M we will consider in this section will be connected, compact, oriented and
with (possibly empty) boundary. We introduce a definition.

Definition 9.4.1. A Haken manifold is a compact, connected, ori-
ented 3-manifold M with (possibly empty) boundary, which is irreducible,
∂-irreducible, and contains an incompressible and ∂-incompressible surface.

The reader should not be frightened by the abundance of adjectives:
this definition is really clever because it summarises various reasonable
hypothesis in a unique word. The rest of this chapter is mainly devoted to
the study of Haken manifolds. We start by looking at their boundaries.

Proposition 9.4.2. Every boundary component X of a Haken manifold
M has χ(X) 6 0 and is incompressible.

Proof. No component X of ∂M is a sphere: if it were so, it would
bound a ball B and we would have M = B, contradicting Corollary 9.3.13.
Hence χ(X) 6 0 and X is incompressible because M is ∂-irreducible. �

We now prove that there are plenty of Haken manifolds. We start
with a general proposition.
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Proposition 9.4.3. Let M be an oriented, compact, irreducible, and
∂-irreducible 3-manifold with (possibly empty) boundary. Every non-trivial
homology class α ∈ H2(M, ∂M;Z) is represented by a disjoint union of
incompressible and ∂-incompressible oriented surfaces.

Proof. Every class α is represented by a properly embedded oriented
surface S by Proposition 1.7.16. A compression as in Figure 9.8 and 9.9
does not alter the homology class of the surface: indeed in homology we
have S′ − S = ∂B where B = D × [−1, 1] is a tubular neighbourhood of
the compressing disc D. Hence [S′] = [S] = α.

We compress S until its connected components are either incompress-
ible and ∂-incompressible surfaces, discs, or spheres. Since M is irreducible
and ∂-irreducible, discs and spheres bound balls and are hence homologi-
cally trivial, so they can be removed. �

Corollary 9.4.4. Let M be oriented, compact, irreducible, and ∂-
irreducible. If H2(M, ∂M;Z) 6= {e} then M is Haken.

Corollary 9.4.5. Let M be oriented, compact, irreducible, and ∂-
irreducible. If ∂M 6= ∅ and M 6= B, then M is Haken.

Proof. If ∂M contains a sphere, it bounds a ball B and hence M = B.
Otherwise H1(∂M) has positive rank, and hence H2(M, ∂M) = H1(M)

also has positive rank by Corollary 9.1.5. �

We recall that every compact orientable 3-manifold decomposes along
spheres and disc into irreducible and ∂-irreducible pieces. If one such piece
has non-empty boundary then either it is ball, or it is Haken.

The following lemma will be useful soon. It says that every Haken
manifold contains an interesting “spanning” surface S, that touches all the
boundary components (the spanning surface need not to be connected).

Lemma 9.4.6. Every Haken manifold M contains an oriented surface
S, whose components are incompressible and ∂-incompressible, such that
[∂S ∩X] ∈ H1(X,Z) is non-trivial for every boundary component X of M.

Proof. We have ∂M = X1 t . . .tXk with χ(Xi) 6 0 for all i . Propo-
sition 9.1.4 says that the image of

∂ : H2(M, ∂M,Z) −→ H1(∂M,Z)

is a lagrangian subgroup L of maximal rank. We have

H1(∂M,Z) = ⊕ki=1H1(Xi ,Z).

The decomposition is orthogonal with respect to the symplectic intersec-
tion form ω. There is an α ∈ L whose projection to each H1(Xi ,Z) is
non-trivial: if not, the space L would be ω-orthogonal to some H1(Xi ,Z)

and hence contained in a smaller symplectic subspace, a contradiction since
L has maximal rank. Pick any incompressible and ∂-incompressible surface
S such that ∂[S] = α. �
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9.4.2. Normal surfaces. On Haken manifolds, incompressible sur-
faces are efficiently detected by normal surfaces.

Proposition 9.4.7. Let M be Haken and T be a triangulation for M.
Every compact surface S ⊂ M whose components are all incompressible
and ∂-incompressible is isotopic to a normal surface.

Proof. We know that S becomes normal after surgeries as in Figure
9.8 or Figure 9.9. These surgeries are actually isotopies since S is incom-
pressible and ∂-incompressible, and M is irreducible and ∂-irreducible (see
Figure 9.16). �

Note that in the proof of Proposition 9.4.7, as in many other proofs,
it is crucial that M be irreducible and ∂-irreducible. We can now apply
Lemma 9.2.27 to get the following.

Corollary 9.4.8. Let M be a Haken manifold. There is a K > 0 such
that every set S of pairwise disjoint and non-parallel incompressible and
∂-incompressible surfaces in M consists of at most K elements.

Our aim is now to cut a Haken manifold iteratively along incompress-
ible and ∂-incompressible surfaces. The two-dimensional analogue to keep
in mind is the following: every surface Sg of genus > 2 can be cut into
pairs-of-pants; a pair-of-pants is a quite simple surface, but we are still
not satisfied and we further cut it along three arcs into two discs (two
hexagons). We have constructed a two-step decomposition of Sg into
discs: this is what we would like to extend from two to three dimensions.

9.4.3. Cutting along surfaces. When we cut a 3-manifold along an
incompressible surface, some nice properties of the manifold are preserved.

Proposition 9.4.9. Let M be compact and irreducible, and S ⊂ M be
either an essential disc or an incompressible surface. Let M ′ be obtained
by cutting M along S. The following holds:

• the manifold M ′ is irreducible;
• a closed Σ ⊂ M ′ is incompressible in M ′ ⇐⇒ it is so in M.

Proof. We prove that M ′ is irreducible. Let Σ ⊂ M ′ be a sphere.
Since M is irreducible, the sphere Σ bounds a ball B ⊂ M. The ball B
cannot contain S because all surfaces in a ball are compressible. Therefore
B ⊂ M ′ and M ′ is irreducible.

To prove the second assertion, we show that Σ has a compressing disc
D in M if and only if it has one in M ′. If D lies in M ′ then of course it lies
also in M. Conversely, suppose D lies in M. Put D in transverse position
with respect to S and pick an innermost intersection circle in D, bounding
a disc D′ ⊂ D. Since D′ cannot compress S, and since M is irreducible,
the disc D′ can be isotoped away from S. This simplifies D ∩ S and after
finitely many steps we get D ∩ S = ∅ and hence D ⊂ M ′. �
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Corollary 9.4.10. If we cut a Haken 3-manifold along a closed incom-
pressible surface, we get a disjoint union of Haken 3-manifolds.

The following consequence is also interesting.

Corollary 9.4.11. Let M be compact with non-empty boundary. If
M is irreducible, then either it is a handlebody or it contains a closed
incompressible surface.

Proof. The manifold M decomposes along essential discs into mani-
folds M1, . . . ,Mk that are irreducible and ∂-irreducible. If every Mi is a ball
then M is a handlebody. If Mi is not a ball, the closed surface S = ∂Mi is
not a sphere and is incompressible in Mi , and hence also in M by Proposi-
tion 9.4.9. �

9.4.4. Hierarchies. We want to use incompressible surfaces to cut
every Haken manifold into simpler pieces. The procedure goes as follows.

A hierarchy for a Haken 3-manifold M is a sequence of 3-manifolds

M = M0
S0 M1

S1 M2
S2 . . .

Sh−1 Mh

where each Mi+1 is obtained cutting Mi along a properly embedded (pos-
sibly disconnected) surface Si ⊂ Mi , such that the following holds:

• every component of Si is an incompressible and ∂-incompressible
surface or an essential disc, for all i ;

• the final manifold Mh consists of balls.

The number h is the height of the hierarchy. We now show that every
Haken manifold can be “atomised” into balls in three steps.

Theorem 9.4.12. Every Haken manifold has a hierarchy of height 3.

Proof. Let S0 be a maximal family of pairwise disjoint and non-parallel
closed incompressible surfaces in M, which exists by Corollary 9.4.8. We
cut M0 = M along S0 and get M1.

Every connected component M i
1 of M1 is Haken by Corollary 9.4.10.

By Lemma 9.4.6 for every i there is a “spanning” surface Si1 ⊂ M i
1 made

of incompressible and ∂-incompressible components that intersects every
boundary component of M i

1. We cut M1 along the spanning S1 = tSi1 and
get a new manifold M2.

We now prove that M2 contains no closed incompressible surface.
Indeed, if Σ ⊂ M2 were closed and incompressible, then it would be so also
in M by Proposition 9.4.9. Since S0 is maximal, the surface Σ would be
parallel to a component of S0, that is it would cobound a Σ× [0, 1] with it.
Since the spanning surface S1 intersects all the boundary components of
M1, a component of S1 would be contained in Σ×[0, 1] and would intersect
the boundary only on the side of S0: this is excluded by Proposition 9.3.18
(products do not contain incompressible and ∂-incompressible surfaces with
boundary only on one side).
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S2

S0

S1
S2S1

S0

Figure 9.20. The strata S0, S1, and S2 intersect in vertices
(left). The boundary of each ball B ⊂ M2 is tessellated into
domains belonging to S0, S1, or S2. Three of them intersect
at a 3-valent vertex (right).

Every component of M2 is a handlebody by Corollary 9.4.11. We cut
it along a set S2 of essential discs to get balls. �

Hierarchies may be used to prove theorems on Haken manifolds. We
will now use them to prove that incompressible surfaces must be π1-
injective: we need a preliminary discussion and a lemma.

In our hierarchy of height 3, the surfaces in S0 are closed, the span-
ning surfaces in S1 have boundary, and S2 consists of discs. To simplify
notations, we redefine S0 as ∂M ∪ S0.

It is convenient to consider all the surfaces S0, S1, and S2 inside M,
without cutting M along them. With this perspective ∂S1 is glued to
S0 and ∂S2 is glued to S0 ∪ S1, via transverse maps. Every intersection
S0∩S1∩S2 is a vertex as in Figure 9.20-(left). The space X = S0∪S1∪S2

is a two-dimensional cell complex whose complement in M is a union of
open balls: such an object X is usually called a spine for M.

We say that our hierarchy of height 3 is minimal if the essential discs
in S2 are chosen to minimise the total number of vertices. We can of
course suppose that the hierarchy is minimal.

The final manifold M3 is the abstract closure of M \ (S0 ∪ S1 ∪ S2)

and consists of balls. The boundary of every such ball B is tessellated into
domains belonging to S0, S1, or S2. Three domains intersect at 3-valent
vertices as in Figure 9.20-(right). We say that B is essential if every simple
closed curve γ ⊂ ∂B transverse to the tessellation and intersecting 6 3

domains is the boundary of a disc D ⊂ ∂B intersecting only these domains:
see Figure 9.21.

Lemma 9.4.13. If the hierarchy is minimal, every ball inM3 is essential.

Proof. Let γ ⊂ ∂B intersect k 6 3 domains. The curve γ obviously
bounds a properly embedded disc D′ ⊂ B. If k = 1, the curve is entirely
contained in Si for some i . Since S0 and S1 are incompressible and S2

consists of discs, the curve γ bounds a disc D also in Si . Since S1 is
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Figure 9.21. If γ intersects at most three domains, it
bounds a disc D intersecting only these domains, as shown
here.

γ γ

D

γ

D

Figure 9.22. By minimality the region in S2 is incident to a
single vertex and we can slide γ through it. Then we resume
to the k = 2 case.

incompressible and S2 consists of essential discs, the boundary components
of Sj with j > i are not attached in the interior of D, so D is entirely
contained in the domain containing γ and we are done.

If k = 2, the curve γ is contained in Si ∪ Sj for some i < j . If
(i , j) = (0, 1) we use that S1 is ∂-incompressible to get a disc D as in
Figure 9.21-(top-right). If j = 2, then γ cuts a disc in S2 into two discs
D1 ∪D2.

We have three half-discsD′, D1, D2 intersecting in an arc, all contained
in a handlebody H ⊂ M2. Recall that H \S2 consists of balls. If we replace
D1 ∪ D2 by either D1 ∪ D′ or D2 ∪ D′ (say, the first) we still get a disc
system that cuts H into balls, and hence another hierarchy. By minimality
D2 = D is adjacent to no vertices, i.e. it is as in Figure 9.21-(top-right)
and we are done.

The case k = 3 is analogous: the curve γ cuts a disc in S2 into two
parts D1 ∪ D2 and we may replace it with D1 ∪ D′. By minimality D2 is
incident to at most one vertex v : we isotope γ through v as in Figure
9.22, and then conclude using the k = 2 case. �
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Figure 9.23. The counterimage of S0 ∪ S1 ∪ S2 along f .
An edge with label i goes to Si (unlabelled edges go to S0).
Here there is a 0-gon (yellow) and three 2-gons (green). The
correct notion of k-gon should be clear from the picture.

9.4.5. Dehn’s Lemma. Proposition 9.3.4 says that an orientable con-
nected properly embedded π1-injective surface S ⊂ M with χ(S) 6 0 is
incompressible. We can finally prove the converse, at least for closed sur-
faces.

The following result is often proved as a corollary of a famous topo-
logical fact called the Dehn Lemma. We do not state Dehn’s Lemma here,
and we prove directly the following using hierarchies.

Theorem 9.4.14. Let M be a compact oriented 3-manifold. A con-
nected oriented closed S ⊂ M with χ(S) 6 0 is incompressible if and only
if the induced map i∗ : π1(S)→ π1(M) is injective.

Proof. We know one implication from Proposition 9.3.4; here we sup-
pose that S incompressible and prove that i∗ : π1(S)→ π1(M) is injective.

The decomposition of M into irreducible and ∂-irreducible factors is
made by cuttingM along essential spheres and discs transverse to S. Since
S is incompressible, we may surger S along these spheres and discs without
altering i∗, so that S is disjoint from them and hence contained in a single
factor. Therefore we may suppose M is irreducible and ∂-irreducible.

Now M contains the incompressible S and is hence Haken. Theorem
9.4.12 furnishes a hierarchy of height 6 3. We may suppose that S0 is a
maximal system of closed incompressible surfaces containing S and that
the hierarchy is minimal. The balls in M3 are essential by Lemma 9.4.13.

Suppose by contradiction that i∗ is not injective: there is a loop
γ : S1 → S which is homotopically trivial in M but not in S. The triv-
iality in M furnishes a continuous map f : D2 → M which extends γ. We
homotope f to a smooth map, transverse to all the strata of S0 ∪S1 ∪S2.

By transversality, the counterimage f −1(S0 ∪ S1 ∪ S2) is a graph in
D2 as in Figure 9.23, which divides D2 into regions. The graph is itself
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α α α

Figure 9.24. The immersed curve α intersects k 6 3 regions
and is hence of one of these types (because B is essential).

a hierarchy, with edges of type 0, 1, 2 attached iteratively. An easy Euler
characteristic argument shows that at least one region R is a k-gon with
k 6 3, see Figure 9.23. The region R is mapped inside a ball B ⊂ M3, and
∂R is mapped to an immersed curve α ⊂ ∂B intersecting k 6 3 domains
of the tessellated ∂B.

Since B is essential, the curve α is of one of the types shown in Figure
9.24. In all cases we may slide the disc f (R) away from B and decrease the
number of regions in D by destroying R. After finitely many homotopies
of this kind we get f (D) ∩ (S0 ∪ S1 ∪ S2) = ∅ and hence f (D) is entirely
contained in a ball B ⊂ M3. Therefore γ is trivial in S, a contradiction. �

Corollary 9.4.15. A Haken manifold has infinite fundamental group.

Proof. It contains the fundamental group of a closed surface with
χ 6 0, which is infinite. �

Corollary 9.4.16. Elliptic 3-manifolds are not Haken.

We will see in the subsequent chapters that every flat 3-manifold is
Haken. Hyperbolic 3-manifolds may or may not be Haken.

9.4.6. Essential surfaces. Topologists sometimes use the term “es-
sential” to summarise various reasonable notions in a single word. We
already know what an essential disc or sphere is (see Section 9.2.11) and
we now turn to surfaces with non-positive Euler characteristic.

LetM be a compact oriented three-manifold and S ⊂ M be a properly
embedded connected compact surface with χ(S) 6 0. We say that S is
essential if it is incompressible, ∂-incompressible, and not ∂-parallel.

9.4.7. Simple manifolds. Let M be irreducible and ∂-irreducible. We
introduce yet some more definitions. We say that

• M is atoroidal if it does not contain essential tori,
• M is acylindrical if it does not contain essential annuli.

Finally, the manifold M is simple if it is atoroidal and acylindrical. We
can summarise this definition as follows:
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Definition 9.4.17. A compact oriented 3-manifold M with (possibly
empty) boundary is simple if it does not contain any essential sphere, disc,
torus, or annulus.

Many examples come from elliptic and hyperbolic geometry:

Proposition 9.4.18. Every closed elliptic or hyperbolic 3-manifold M
is simple.

Proof. We know that M is irreducible. The manifold M does not
contain incompressible tori because π1(M) does not contain Z×Z: if M is
elliptic then π1(M) is finite, if it is hyperbolic we use Corollary 4.2.5. �

The flat geometry is an exception: the three-torus S1 × S1 × S1

contains many incompressible tori and is hence not simple. For instance,
the two-torus S1 × S1 × p is incompressible (because it is π1-injective).

Our next goal will be to decompose every irreducible and ∂-irreducible
manifold M along some canonical set of essential tori and annuli into some
pieces. These pieces will be either simple, or belong to a particular class:
the Seifert manifolds. We introduce this class in the next chapter.

9.4.8. References. The main sources that we have used for this chap-
ter are an unfinished book of Hatcher [26] and Fomenko–Matveev [20].
The proof of Theorem 9.4.14 through hierarchies is due to Aitchison and
Rubinstein [2].



CHAPTER 10

Seifert manifolds

In the previous chapter we have proved various general theorems on
three-manifolds, and it is now time to construct examples. A rich and
important source is a family of manifolds built by Seifert in the 1930s,
which generalises circle bundles over surfaces by admitting some “singular”
fibres. The three-manifolds that admit such kind of fibration are now called
Seifert manifolds.

In this chapter we introduce and completely classify (up to diffeomor-
phisms) the Seifert manifolds. In Chapter 12 we will then show how to
geometrise them, by assigning a nice Riemannian metric to each. We will
show, for instance, that all the elliptic and flat three-manifolds are in fact
particular kinds of Seifert manifolds.

10.1. Lens spaces

We introduce some of the simplest 3-manifolds, the lens spaces.
These manifolds (and many more) are easily described using an impor-
tant three-dimensional construction, called Dehn filling.

10.1.1. Dehn filling. If a 3-manifoldM has a spherical boundary com-
ponent, we can cap it off with a ball. IfM has a toric boundary component,
there is no canonical way to cap it off: the simplest object that we can
attach to it is a solid torus D×S1, but the resulting manifold depends on
the gluing map. This operation is called a Dehn filling and we now study
it in detail.

Let M be a 3-manifold and T ⊂ ∂M be a boundary torus component.

Definition 10.1.1. A Dehn filling of M along T is the operation of
gluing a solid torus D × S1 to M via a diffeomorphism ϕ : ∂D × S1 → T .

The closed curve ∂D×{x} is glued to some simple closed curve γ ⊂ T ,
see Figure 10.1. The result of this operation is a new manifold Mfill, which
has one boundary component less than M.

Lemma 10.1.2. The manifold Mfill depends only on the isotopy class
of the unoriented curve γ.

Proof. Decompose S1 into two closed segments S1 = I ∪ J with
coinciding endpoints. The attaching ofD×S1 may be seen as the attaching

305
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Figure 10.1. The Dehn filling Mfill of a 3-manifold M is
determined by the unoriented simple closed curve γ ⊂ T to
which a meridian ∂D of the solid torus is attached.

of a 2-handle D× I along ∂D× I, followed by the attaching of a 3-handle
D × J along its full boundary.

If we change γ by an isotopy, the attaching map of the 2-handle
changes by an isotopy and hence gives the same manifold. The attaching
map of the 3-handle is irrelevant by Proposition 9.2.1. �

We say that the Dehn filling kills the curve γ, since this is what really
happens on fundamental groups, as we now see.

The normaliser of an element g ∈ G in a group G is the smallest
normal subgroup N(g) / G containing g. The normaliser depends only on
the conjugacy class of g±1, hence the subgroup N(γ)/π1(M) makes sense
without fixing a basepoint or an orientation for γ.

Proposition 10.1.3. We have

π1(Mfill) = π1(M)/N(γ).

Proof. The Dehn filling decomposes into the attachment of a 2-
handle over γ and of a 3-handle. By Van Kampen, the first operation
kills N(γ), and the second leaves the fundamental group unaffected. �

Let a slope on a torus T be the isotopy class γ of an unoriented
homotopically non-trivial simple closed curve. The set of slopes on T was
indicated by S in Chapter 7. If we fix a basis (m, l) for H1(T,Z) = π1(T ),
every slope may be written as γ = ±(pm+ql) for some coprime pair (p, q).
Therefore we get a 1-1 correspondence

S ←→ Q ∪ {∞}

by sending γ to p
q
. If T is a boundary component of M, every number p

q

determines a Dehn filling of M that kills the corresponding slope γ.
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Different values of p
q
typically produce non-diffeomorphic manifolds

Mfill: this is not always true - a notable exception is described in the next
section - but it holds in “generic” cases.

10.1.2. Lens spaces. The simplest manifold that can be Dehn-filled
is the solid torus M = D×S1 itself. The oriented meridian m = S1×{y}
and longitude l = {x} × S1 form a basis for H1(∂M,Z).

Definition 10.1.4. The lens space L(p, q) is the result of a Dehn filling
of M = D × S1 that kills the slope qm + pl .

A lens space is a three-manifold that decomposes into two solid tori.
We have already encountered lens spaces in the more geometric setting
of Section 3.4.10, and we will soon prove that the two definitions are
coherent. Since L(p, q) = L(−p,−q) we usually suppose p > 0.

Exercise 10.1.5. We have π1

(
L(p, q)

)
= Z/pZ.

Proposition 10.1.6. We have L(0, 1) = S2 × S1 and L(1, 0) = S3.

Proof. The lens space L(0, 1) is obtained by killing m, that is by
mirroring D×S1 along its boundary. The lens space L(1, 0) is S3 because
the complement of a standard solid torus in S3 is another solid torus, with
the roles of m and l exchanged (exercise). �

Exercise 10.1.7. Every Dehn filling of one component of the product
T × [0, 1] is diffeomorphic to D × S1. Therefore by Dehn-filling both
components of T × [0, 1] we get a lens space.

The solid torus D × S1 has a non-trivial self-diffeomorphism

(x, e iθ) 7−→ (xe iθ, e iθ)

called a twist along the disc D×{y}. The solid torus can also be mirrored
via the map

(x, e iθ) 7−→ (x, e−iθ).

Exercise 10.1.8. We have L(p, q) ∼= L(p, q′) if q′ ≡ ±q±1 (mod p).

Hint. Twist, mirror, exchange the two solid tori giving L(p, q). �

Remark 10.1.9. The meridian m of the solid torus M = D × S1 may
be defined intrinsically as the unique slope in ∂M that is homotopically
trivial in M. The longitude l is not intrinsically determined: a twist sends l
to m+ l . The solid torus contains infinitely many non-isotopic longitudes,
and there is no intrinsic way to choose one of them.
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10.1.3. Equivalence of the two definitions. When p > 0, we have
defined the lens space L(p, q) in two different ways: as the (q, p)-Dehn
filling of the solid torus, and as an elliptic manifold in Section 3.4.10. In
the latter description we set

ω = e
2πi
p , f (z, w) = (ωz, ωqw)

and define L(p, q) as S3/Γ where Γ = 〈f 〉 is generated by f . We now show
that the two definitions produce the same manifolds.

Proposition 10.1.10. The manifold S3/〈f 〉 is the (q, p)-Dehn filling of
the solid torus.

Proof. The isometry f preserves the central torus

T =
{

(z, w)
∣∣ |z | = |w | =

√
2

2

}
that divides S3 into two solid tori

N1 =
{

(z, w)
∣∣ |z | 6 √

2
2
, |w | =

√
1− |z |2

}
,

N2 =
{

(z, w)
∣∣ |w | 6 √

2
2
, |z | =

√
1− |w |2

}
.

Identify T with S1×S1 = R2/Z2 in the obvious way, so that H1(T ) = Z×Z.
The meridians of N1 and N2 are (1, 0) and (0, 1). The isometry f act on
T as a translation of vector v =

(
1
p
, q
p

)
. The quotient T/〈f 〉 is again

a torus, with fundamental domain the parallelogram generated by v and
w = (0, 1).

The quotients N1/〈f 〉, and N2/〈f 〉 are again solid tori. Therefore S3/〈f 〉
is also a union of two solid tori. Their meridians are the projections of
the horizontal and vertical lines in R2 to T/〈f 〉 = R2/〈v,w〉. In the basis
(v, w) these meridians are pv − qw and w respectively. Therefore S3/〈f 〉
is a (−q, p)-Dehn filling on the solid torus, which is diffeomorphic to the
(q, p)-Dehn filling by mirroring the solid torus. �

Corollary 10.1.11. We have L(1, 0) = S3 and L(2, 1) = RP3.

Proof. We have f = id and f = −id, correspondingly. �

10.1.4. Classification of lens spaces. Which lens spaces are diffeo-
morphic? It is not so easy to answer this question, because many lens
spaces like L(5, 1) and L(5, 2) have the same homotopy and homology
groups, while there is no evident diffeomorphism between them. A com-
plete answer was given by Reidemeister in 1935, who could distinguish lens
spaces using a new invariant, now known as the Reidemeister torsion. More
topological proofs were discovered in th 1980s by Bonahon and Hodgson.
We follow here Hatcher [26].

Theorem 10.1.12. The lens spaces L(p, q) and L(p′, q′) are diffeo-
morphic ⇐⇒ p = p′ and q′ ≡ ±q±1 (mod p).
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Figure 10.2. We require the p sheets of the spine ∆ to lie
above every local maximum for f |Σ.

Proof. We may suppose p > 1. Exercise 10.1.8 furnishes one impli-
cation, so we start with a lens space L(p, q) and we prove that there is
(up to isotopy) only one torus T dividing L(p, q) into two solid tori: this
fact then implies that one can recover p and q intrinsically from L(p, q),
up to the stated ambiguity for q (which depends on the chosen longitudes
and orientations, and changes by switching the solid tori). So we suppose
that there is another torus T ′.

Let Σ be the core circle of one solid torus adjacent to T ′. If we can
isotope Σ inside the torus T , we are done: in that case T ′ is isotopic to
the boundary of a small tubular neighbourhood of Σ, hence both T and T ′

are cut into two annuli T = A1 ∪ A2 and T ′ = A′1 ∪ A′2 such that Σ ⊂ A1,
all four annuli share the same boundaries, and A2 is contained in the large
outside solid torus bounded by T ′; the annulus A2 is incompressible in
this solid torus by Proposition 9.3.4 (otherwise Σ would be homotopically
trivial, contradicting p > 1) and hence ∂-parallel by Proposition 9.3.16, so
it is isotopic to either A′1 or A′2, suppose to A

′
2; since A1 is clearly isotopic

to A′1 we conclude that T and T ′ are isotopic.
Our aim is now to prove that Σ can be isotoped inside T . To this

purpose we construct two different objects from T ′ and T , a spine ∆ and
a foliation F . The spine ∆ ⊂ M is built by adding to Σ the meridian D
of the other solid torus incident to T ′, enlarged so that ∂D is glued along
Σ like a degree-p covering. Note that M \ ∆ is an open ball.

We construct the foliation F of M by subdividing each solid torus
bounded by T into concentric tori, with a central singular circle in each.
We represent F as the level sets of a map f : L(p, q) → [0, 1] where the
singular circles are the extreme levels f −1(0) and f −1(1).

We now put ∆ in some good position with respect to F . We first
perturb Σ so that it is disjoint from the singular circles of F and f |Σ
is a Morse function with singular points in distinct levels. At every local
maximum (minimum) of f |Σ we isotope ∆ so that the p sheets of ∆ lie
above (below) Σ as in Figure 10.2. Finally, we require ∆ to be transverse to
the two singular circles of F and f |∆\Σ to be a Morse function, with critical
points at distinct levels (also distinct from those of the critical points of
f |Σ).
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Figure 10.3. The singular points in D can be centres (top
left), saddles (top right) and half-saddles (bottom).

Figure 10.4. A singular leaf exiting from a singular point
may be of one of these kinds. The dots in (e) indicate that
there might be another half-saddle at the other endpoint: this
is because there are half-saddles at the same level (precisely
p for every local maximum or minimum for f |Σ).

The foliation F induces a singular foliation on ∆ that pulls back to
D via the map D → ∆. There are three types of singular points in the
foliation, shown in Figure 10.3: centres, saddles, and half-saddles.

A leaf in D incident to a singular point is singular. Since we minimised
the critical points that may stay at the same level, the singular leaves
exiting from a singular point may be only of the six possible kinds shown
in Figure 10.4. The saddles and half-saddles of type (a) and (e) are called
essential, and the others inessential. In (a) the singular leaves divide D
into four quarter discs, and in (e) they cut off two or more half discs.

Among all possible good configurations of ∆, we pick one that min-
imises first the number of critical points in f |Σ, and second the number of
essential saddles.

LetD′ ⊂ D be a quarter or half-disc not containing any smaller quarter
or half-disc. Define α = D′ ∩ ∂D. Suppose first that D′ is a half-disc and
both endpoints of α are singular. The singular disc D′ can contain some
singular point of type (b), and it certainly contains one singular point of
type (f), see Figure 10.5-(left). (It contains no other singular point except
these.) The image of D′ in ∆ is shown in Figure 10.5-(right). In this case
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Figure 10.5. The disc D′ is a half-disc and α is incident to
two singular points.

Figure 10.6. The disc D′ is a half-disc and α is incident to
one singular point.

Figure 10.7. The disc D′ is a quarter disc.

we can slide α along D′ to the green arc shown in the figure which lies
entirely in a level torus of f . If we could do this for all the arcs of ∂D
cut by singular points, we would happily isotope Σ inside a torus level and
hence into T , and we would be done.

There are however two other cases to consider, and both will be ex-
cluded by our minimality assumption on ∆. One is that D′ may be a
half-disc with only one singular endpoint for α, as in Figure 10.6. In that
case we can isotope α to the green curve through D′, dragging the spine
∆ behind. In the new configuration f |Σ has strictly less critical points, a
contradiction.
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In the last case D′ is a quarter disc as in Figure 10.7 and we can
isotope α to the green curve dragging Σ as above, but more carefully: we
enlarge the other p − 1 sheets of ∆ by parallel copies of D′. In the new
configuration the number of critical points in f |Σ is unchanged, but there
are strictly fewer essential saddles: at least one is destroyed and no new
one is created. (Note that many inessential saddles may be created.) This
is also excluded. �

We have discovered, in particular, that there are closed three-manifolds
like L(5, 1) and L(5, 2) that are not diffeomorphic, although their funda-
mental groups are both isomorphic to Z/5Z; the two manifolds are both
covered by S3, so they also have isomorphic higher homotopy groups.

10.2. Circle bundles

We now introduce another simple class of 3-manifolds, the orientable
circle bundles over some compact surface S. We will discover that there
is essentially only one circle bundle if S has boundary, and infinitely many
if S is closed, distinguished by an integer called the Euler number.

10.2.1. The trivial circle bundle. Let S be a compact connected
surface. As every connected manifold, it has a unique orientable line bundle

S × I or S ×∼ I

depending on whether S is orientable or not. We denote by

M = S × S1 or S ×∼ S1

respectively the double of S × I and S ×∼ I along its boundary. If we do
not know whether S is orientable or not, we use the symbols S ×(∼)

I and
S ×(∼)

S1 to denote these objects. The manifold S ×(∼)
S1 is an orientable

circle bundle over S, called the trivial one.

10.2.2. Circle bundles with boundary. We start by exploring the case
where the base surface S has non-empty boundary: in this case every
bundle M over S is a 3-manifold with boundary; the boundary consists of
tori, one fibering above each circle in ∂S, because the torus is the unique
orientable surface that fibres over S1.

There is essentially only one bundle over S:

Lemma 10.2.1. If ∂S 6= ∅, the orientable circle bundles on S are all
isomorphic.

Proof. Let N → S be an orientable circle bundle. Decompose S as
a disc D with some pairs of disjoint segments (Ii , Ji) in ∂D to be glued.
Since D is contractible the restriction of N to D is a product D × S1

and N is obtained from it by gluing the annuli Ii × S1 and Ji × S1 via
orientation-reversing fibre-preserving maps. Two such maps are always
isotopic (exercise) and hence N is uniquely determined. �
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A

S

Figure 10.8. A twist along a fibered annulus A modifies a
section S as shown.

We now want to study the sections of the trivial bundle M → S,
because these will be useful in the study of bundles over closed surfaces.
We now discover that, although the bundle is trivial, it contains many non
isotopic sections, and we want to classify them.

Recall that a section of the bundle π : M → S is a map i : S → M

such that π ◦ i = id. Since the section i is determined by its image i(S),
we simply consider the surface i(S) as a section of π. By construction
M is the double of an interval bundle over S and as such it contains the
zero-section S there. However, this section is not unique in general, not
even up to isotopy.

To modify a section, pick a properly embedded arc in S. The arc
determines a fibered annulus A ⊂ M above it, which we may use to twist
the section as shown in Figure 10.8. This operation modifies the curves
∂S ⊂ ∂M via two Dehn twists (one positive and one negative) on the tori
∂M along the two curves in ∂A.

By twisting along annuli we may construct all the sections of M:

Lemma 10.2.2. Two sections of S ×(∼)
S1 are connected by a compo-

sition of twists along fibered annuli and fibre-preserving isotopies.

Proof. Let i1, i2 be two sections. Decompose S as a 0-handle D with
some rectangular 1-handles attached to ∂D. The bundle is trivial on each
handle. Since D is contractible, every map i : D → S1 is homotopic to a
constant and we may hence isotope i1 and i2 so that they coincide on D.

See a 1-handle as [−1, 1]2 with {±1} × [−1, 1] glued to D. The
sections i1, i2 : [−1, 1]2 → S1 coincide on {±1} × [−1, 1], and up to
reparametrising we may suppose that they are constantly 1 there. The
section i1 : [−1, 1]2 → S1 defines an element d ∈ π1(S1, 1) = Z, deter-
mined by the loop t 7→ i1(t, u), whose homotopy class does not depend on
the fixed u ∈ [−1, 1]. The section is in fact determined up to isotopy by
d , and by twisting along the annulus 0 × [−1, 1] we can vary this integer
arbitrarily. Therefore after some twists and isotopies the sections i0 and i1
are both constantly 1 on 1-handles, and thus coincide everywhere. �
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Corollary 10.2.3. If S has only one boundary component, the boundary
of a section of M = S ×(∼)

S1 is a slope in ∂M that does not depend on
the section.

Proof. Distinct sections are connected by finitely many Dehn twists
along annuli. One such twist acts on the torus ∂M as a composition of
two opposite Dehn twists, which cancel each other. Hence it does not
affect the boundary slope of a section. �

Exercise 10.2.4. Prove this corollary using Proposition 9.1.4.

10.2.3. Closed circle bundles. We turn to closed circle bundles. In
this section we prove that the oriented circle bundles over a closed surface
are parameterised by an integer called the Euler number.

We prefer to see the bundles over closed surfaces as Dehn fillings of
bundles over surfaces with boundary. Here are the details.

Let S be a compact surface with non-empty boundary. Pick M =

S ×(∼)
S1 and fix an orientation for M. Recall that we denote by S the

zero-section of M. Every boundary component T of M is an oriented
torus, which contains two natural unoriented simple closed curves: the
boundary m = T ∩ ∂S of the section S and the fibre l of the bundle. If
oriented, the curves m and l form a basis (m, l) for H1(T,Z). We choose
orientations for m and l such that (m, l) form a positively oriented basis:
there is a unique choice up to reversing both m and l .

A Dehn filling on T is determined as usual by a pair (p, q) of coprime
integers that indicate the slope ±(pm + ql) to be killed.

Suppose now that S has only one boundary component and let Mfill

be obtained by Dehn filling M along the slope (1, q). Let Ŝ be the closed
surface obtained by capping S with a disc.

Proposition 10.2.5. The circle bundle M → S extends to a circle
bundle Mfill → Ŝ. Every oriented circle bundle on Ŝ is obtained in this
way, and distinct values of q yield vector bundles that are not orientation-
preservingly isomorphic.

Proof. The meridian of the filling solid torus is m′ = m + ql . The
fibre l has geometric intersection 1 with m′ and is hence a longitude for
the filling solid torus. We may represent the filling solid torus as D × S1

with m′ = S1 × {y} and l = {x} × S1. The circle bundle M → S extends
naturally to a circle bundle Mfill → Ŝ with Ŝ = S ∪D.

Every closed circle bundle N → Ŝ arises in this way: the bundle above
a disc D ⊂ Ŝ is the trivial D × S1, and if we remove it we get M → S

back. The number q is intrinsically determined: the meridian m does not
depend on the section of M → S by Corollary 10.2.3, and the equality
m′ = m + ql determines q. Therefore distinct values of q yield non-
isomorphic bundles. �
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The integer q is the Euler number of the circle bundle and is usually
denoted with the letter e. We summarise our discovery:

Corollary 10.2.6. For every e ∈ Z and every closed surface S there is
a unique oriented circle bundle over S with Euler number e.

A change of orientation forM transforms e into −e. Recall that every
closed surface S has a trivial circle bundle S ×(∼)

S1 constructed by doubling
the unique oriented line bundle on S.

Exercise 10.2.7. An oriented circle bundle over a closed surface is
trivial ⇐⇒ e = 0 ⇐⇒ the bundle has a section.

We may see the Euler number of a bundle M → S over a closed S as
an obstruction for the existence of a section.

Remark 10.2.8. Every oriented n-dimensional vector bundle E → S

over a closed oriented n-manifold S has a Euler number defined by taking
two generic sections and counting their signed intersections. We briefly
explain how this number is closely related to the one we defined here.

Each vector bundle E → S induces a sphere bundleM → S: it suffices
to fix a Riemannian metric on E and take the sub-bundle consisting of unit
tangent vectors. When n = 2 we get a circle bundle M → S and the Euler
number of E → S coincides with that of M → S that we defined above.

When E is the tangent bundle of S, the Euler number is the Euler
characteristic χ(S). For instance, the unit tangent bundle of S2 has Euler
number e = χ(S2) = 2 and hence it is diffeomorphic to L(2, 1) = RP3.

Exercise 10.2.9. Let M be a circle bundle over the genus-g surface
Sg with Euler number e. We have H1(M,Z) = Z2g × Z/eZ.

Corollary 10.2.10. Let M → Sg and M ′ → Sg′ be circle bundles with
Euler numbers e and e ′. The manifolds M and M ′ are diffeomorphic ⇐⇒
g = g′ and |e| = |e ′|.

Exercise 10.2.11. The circle bundle M over S2 with Euler number e
is diffeomorphic to the lens space L(|e|, 1).

Hint. The base sphere S2 decomposes into two discs, and the fibration
over each disc is a solid torus. So M is the union of two solid tori. �

We end the discussion by defining explicitly a famous non-trivial circle
bundle over S2.

10.2.4. The Hopf fibration. The quotient map

(C2)∗ −→ CP1

(z, w) 7−→ [z, w ]

restricts to a circle bundle S3 → CP1 = S2 called the Hopf fibration. The
fibre over [z, w ] is the circle (ωz, ωw) as ω ∈ S1 varies. See Figure 10.9.

Exercise 10.2.11 implies that the Euler number of the Hopf fibration
S3 → S2 is ±1, and hence it has no section by Exercise 10.2.7.
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Figure 10.9. The fibre of every point in the Hopf fibration
S3 → S2 is a circle, and the counterimage of a circle in
S2 is a torus in S3. The picture shows the counterimage
of three circle arcs: each is a portion of standard torus in
S3 = R3 ∪∞, foliated by circles of type (1, 1).

10.3. Seifert manifolds

We now enlarge the class of circle bundles over surfaces by admitting
some kind of singular fibres. We introduce the Seifert fibrations, whose
total spaces are called Seifert manifolds. These manifolds were introduced
by Herbert Seifert in 1933 and fit perfectly in the much more recent ge-
ometrisation perspective: in the next chapter we will introduce the eight
three-dimensional geometries, and prove that six of them are realised pre-
cisely by the Seifert manifolds.

10.3.1. Definition. We define the Seifert manifolds as Dehn fillings
of trivial bundles over surfaces with boundary. Here are the details.

Let M be the (unique) oriented bundle S ×(∼)
S1 over a compact con-

nected (possibly non-orientable) surface S with boundary. We denote by
S the zero-section.

Let T1, . . . , Tk be the boundary tori of M. On each Ti we choose an
orientation for the meridian mi = Ti ∩ ∂S and for the fibre li of the bundle
so that the basis (mi , li) for H1(Ti ,Z) be positively oriented.

A (pi , qi)-Dehn filling on Ti kills the slope pimi +qi li . We say that the
Dehn filling is fibre-parallel if pi = 0, i.e. if it kills a fibre.
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Definition 10.3.1. A Seifert manifold is any 3-manifold N obtained
from M by Dehn filling some h 6 k boundary tori in a non-fibre-parallel
way, that is with pi 6= 0 for all i .

The Seifert manifold is closed if h = k, and has k − h boundary tori
otherwise. It is not important to know which h tori are filled, in virtue of
the following.

Proposition 10.3.2. Every permutation of the boundary tori is realised
by a self-diffeomorphism of M that preserves the pairs ±(mi , li).

Proof. Every permutation of the boundary circles of S is realised by
a self-diffeomorphism of S, that extends orientation-preservingly to the
orientable I-bundle and its double M. �

The pair (pi , qi) is determined up to sign, so we can always suppose
pi > 0 and we fully encode the Seifert manifold N using the following
notation:

(6) N =
(
Ŝ, (p1, q1), . . . , (ph, qh)

)
where Ŝ is S with h boundary components capped. The reason for using
Ŝ instead of S is that N has a particular fibration onto Ŝ, as we will soon
see. Before constructing this fibration we list some simple examples that
should hopefully help the reader to familiarise with the notation (6), that
will be used extensively in the whole chapter.

Example 10.3.3. The Seifert manifold
(
Sg, (1, e)

)
is the circle bundle

over the orientable genus-g surface Sg with Euler number e, by construc-
tion. In particular

(
Sg, (1, 0)

)
= Sg × S1.

Example 10.3.4. The Seifert manifold
(
S2, (p, q)

)
is diffeomorphic to

the lens space L(q, p).

The following facts follow from Exercise 10.1.7.

Exercise 10.3.5. The Seifert manifold
(
D2, (p, q)

)
is a solid torus.

In the following exercise, it should be clear that the resulting manifold
is a lens space (by Exercise 10.1.7) and the hard part is to check carefully
that the proposed lens space parameters are correct.

Exercise 10.3.6. The Seifert manifold
(
S2, (p1, q1), (p2, q2)

)
is the

lens space L(p1q2+q1p2, rq2+sp2) where r, s are such that p1s−q1r = ±1.
In particular, this Seifert manifold is S3 when p1q2 + q1p2 = ±1.

10.3.2. Seifert fibrations. As we anticipated, a Seifert manifold N as
in (6) possesses some kind of singular fibration over the filled surface Ŝ.
We clarify this point here by defining the notion of Seifert fibration.

Let (p, q) be two coprime integers with p > 0. A standard fibered
solid torus with coefficients (p, q) is the solid torus

D × [0, 1]/ψ
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Figure 10.10. A standard fibered solid torus. We identify
the top and bottom discs by a 2π q

p
rotation, for some q

coprime with p. Here p = 5. Every non-central fibre (green)
winds p times along the central fibre (red).

where ψ : D × 0 → D × 1 is a rotation of angle 2π q
p
. The fibration into

vertical segments {pt}×[0, 1] extends to a fibration into circles of the solid
torus. The central fibre obtained by identifying the endpoints of 0× [0, 1]

is the core of the solid torus, and every non-central fibre winds p times
around the core of M: see Figure 10.10.

The positive number p is the multiplicity of the central fibre. If p = 1

the fibered solid torus is diffeomorphic to the usual product fibration D×S1

and the central fibre is regular. If p > 1 the central fibre is singular.

Definition 10.3.7. A Seifert fibration is a partition of a compact ori-
ented 3-manifold N with (possibly empty) boundary into circles, such that
every circle has a fibered neighbourhood diffeomorphic to a standard fibered
solid torus.

Let S be the topological space obtained from N by quotienting circles
to points.

Proposition 10.3.8. The space S is a compact connected surface with
(possibly empty) boundary.

Proof. Every standard fibered solid torus quotients to a disc: a sector
z = ρe iθ with 0 6 ρ 6 1 and 0 6 θ 6 2π

p
with two edges θ = 0 and

θ = 2π
p

identified by a rotation. This disc actually looks like a “cone”, and
this motivates the following discussion. �

The map N → S is in fact what we call a Seifert fibration. The
surface S may have boundary and may be non-orientable, and its interior
has a natural orbifold structure: if the preimage of x ∈ S is a fibre of
order p, we see x as a cone point of order p, see Section 6.2.4. If N
has boundary, then S also has, and we say that S itself is an orbifold for
simplicity although we actually mean only its interior. Morally, we should
consider the fibration N → S as a circle bundle over the orbifold S.
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A Seifert fibration without singular fibres is just an ordinary circle
bundle. We now show that Seifert manifolds and Seifert fibrations are
more or less the same thing.

Proposition 10.3.9. The Seifert manifold

N =
(
S, (p1, q1), . . . , (ph, qh)

)
has a Seifert fibration N → S over the orbifold

(S, p1, . . . , ph).

Every Seifert fibration arises in this way.

Proof. The Seifert manifold N is obtained by filling h components of
a bundle M = S′ ×(∼)

S1. The bundle M → S′ extends to a Seifert fibration
N → S where the orbifold S is obtained from S′ by attaching h discs with
cone points p1, . . . , ph.

More precisely, we fill each boundary torus Ti of M with a solid torus
having meridian µi = pimi +qi li . We fix a longitude λi = rimi +si li for this
solid torus by choosing ri , si with pisi − qi ri = 1. We get li = piλi − riµi .
By hypothesis the Dehn filling is not fibre-parallel, hence pi 6= 0 and the
fibration M → S′ extends to a standard fibration of the solid torus with
coefficients (pi ,−ri).

Every Seifert fibration N → S arises in this way: if we remove the
singular fibres (or a regular one, if there are not) we get an ordinary circle
bundle over a surface with boundary, which is trivial. Therefore N is a
Dehn filling of this trivial bundle, hence a Seifert manifold. �

We have seen that the notation

(7) N =
(
S, (p1, q1), . . . , (ph, qh)

)
defines a Seifert fibration N → S and a Seifert manifold N.

Example 10.3.10. If the orbifold S is a disc with at most one singular
point then N is a standard fibered solid torus. If S is S2 with at most 2

singular points then N is a lens space: see Exercises 10.3.5 and 10.3.6.

10.3.3. Classification of Seifert fibrations. We say that two Seifert
fibrations π1 : N1 → S, π2 : N2 → S are isomorphic if there is a diffeomor-
phism ψ : N1 → N2 such that π1 = π2 ◦ ψ. Two different notations as in
(7) may describe isomorphic fibrations, but this phenomenon is completely
understood.

Proposition 10.3.11. Two notations as in (7) describe two orientation-
preservingly isomorphic Seifert fibrations if and only if they are related by
a finite sequence of the following moves and their inverses:

(pi , qi), (pi+1, qi+1) 7−→ (pi , qi + pi), (pi+1, qi+1 − pi+1),(8)

(p1, q1), . . . , (ph, qh) 7−→ (p1, q1), . . . , (ph, qh), (1, 0),(9)

(pi , qi) 7−→ (pi , qi + pi) if ∂N 6= ∅,(10)
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and permutations of the pairs (pi , qi)’s.

Proof. Recall that N is a Dehn filling of M = S′ ×(∼)
S1. Move (8) is

the result of twisting M along a fibered annulus A connecting the tori Ti
and Ti+1 in ∂M: this self-diffeomorphism of M acts on Ti and Ti+1 like two
opposite Dehn twists and extends to an isomorphism of the two fibrations.
In (10) we twist along an annulus connecting Ti and ∂N. The move (9)
corresponds to drilling a nonsingular fibered torus and refilling it back.

We now prove that these moves suffice to connect two isomorphic
Seifert fibrations. Suppose that two distinct notations as in (7) describe
isomorphic fibrations. We use the moves (8), (9), and (10) to eliminate
the parameters pi = 1 as much as possible from both notations. If there
are no singular fibres, we end up with a single parameter (1, e) if S is
closed, and no parameters at all if ∂S 6= ∅. We conclude by Corollary
10.2.6.

If the fibration has at least one singular fibre, we can eliminate all
pi = 1 and the (pi , qi) correspond to singular fibres. An isomorphism of
Seifert fibrations sends singular fibres to singular fibres and hence induces
an isomorphism of their complement S′ ×(∼)

S1. The parameters (pi , qi) are
determined by the choice of a section in S′ ×(∼)

S1. Different sections are
related by Dehn twist along annuli and hence the parameters are related
by the moves (8) and (10). �

Proposition 10.3.11 classifies all the Seifert fibrations up to isomor-
phism. A classification of Seifert manifolds up to diffeomorphism would
also be desirable, but it is much harder to obtain because a three-manifold
may admit many non-isomorphic Seifert fibrations. For instance, Exercise
10.3.6 shows that the lens spaces may fibre in many different ways; a man-
ifold as familiar as S3 fibres over the orbifold (S2, p1, p2) if p1 and p2 are
coprime and hence has infinitely many non-isomorphic fibrations. It is a
stimulating exercise to try to visualise these Seifert fibrations of S3.

We now start a long journey in Seifert manifolds theory, whose ulti-
mate goal is to classify them completely up to diffeomorphism. We will
see at the end that the only Seifert manifolds admitting non-isomorphic
fibrations are the “smallest” ones, like S3, the lens spaces, and few more
that will be classified using some ad hoc argument.

Exercise 10.3.12. The number of non-isomorphic Seifert fibrations
over a fixed orbifold S is finite ⇐⇒ ∂S 6= ∅.

10.3.4. Euler number. We now extend the notion of Euler number
from ordinary to Seifert fibrations. We define the Euler number of the
fibration (7) to be the rational number

e(N) =

h∑
i=1

qi
pi
.
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The Euler number is only defined modulo Z when N has boundary. The
good definition follows from Proposition 10.3.11 (the moves do not affect
e, except (10) that modifies e into e + 1 and applies only when N has
boundary) and is coherent with the circle bundle case. The Euler number
depends on the fibration and not only on N, but we write e(N) anyway for
simplicity. Proposition 10.3.11 easily implies the following.

Corollary 10.3.13. Two Seifert fibrations(
S, (p1, q1), . . . , (ph, qh)

)
,
(
S′, (p′1, q

′
1), . . . , (p′h′ , q

′
h′)
)

with pi , p′i > 2 are orientation-preservingly isomorphic if and only if S = S′,
h = h′, e = e ′, and up to reordering pi = p′i and qi ≡ q′i (mod pi) for all i .

The numbers e and e ′ indicate the Euler numbers of the two fibrations,
and recall that they are only defined modulo Z when ∂S 6= ∅.

Remark 10.3.14. The move(
S, (p1, q1), . . . , (ph, qh)

)
7−→

(
S, (p1,−q1), . . . , (ph,−qh)

)
corresponds to a change of orientation for the three-manifold and trans-
forms e into −e.

10.3.5. Homology. We now characterise the Seifert manifolds that
have finite homology groups, and in particular the homology spheres.

Proposition 10.3.15. The homology group H1(M,Z) of

M =
(
S, (p1, q1), . . . , (ph, qh)

)
is finite ⇐⇒ one of the following holds:

• S = S2 and e 6= 0, and we get |H1(M,Z)| = |e|p1 · · · ph;
• S = RP2, and we get |H1(M,Z)| = 4p1 · · · ph.

Proof. IfM is not closed then H1(M,Z) is infinite because H1(∂M,Z)

is. If S 6= S2,RP2 then H1(S) is infinite. It is easy to check that the
fibration M → S induces a surjection H1(M)→ H1(S) and hence H1(M)

is also infinite.
Suppose S = S2. The manifoldM is a (pi , qi)-Dehn filling of S0,h×S1

where S0,h is the sphere with h holes. The homology of S0,h × S1 is
generated by m1, . . . , mh, l with the relation m1 + . . .+mh = 0. The i-th
Dehn filling adds the relation pimi + qi li = 0. The relations form a square
(h + 1)-matrix

1 p1 0 · · · 0

1 0 p2

. . .
...

...
...

. . .
. . . 0

1 0 0 · · · ph

0 q1 q2 · · · qh


∼



1 p1 0 · · · 0

1 0 p2

. . .
...

...
...

. . .
. . . 0

1 0 0 · · · ph

−e 0 0 · · · 0


.



322 10. SEIFERT MANIFOLDS

We have used Gauss moves to simplify the last row. The determinant of
this matrix is ±ep1 · · · ph. The order |H1(M,Z)| is the absolute value of
the determinant if it is non-zero, and is infinite if it is zero.

Suppose S = RP2 and let Sno
1,h be RP2 with h holes. The homology

of Sno
1,h ×

∼
S1 is generated by a,m1, . . . , mh, l , where a is an orientation-

reversing curve in Sno
1,h, with the relations 2a + m1 + . . . + mh = 0 and

2l = 0. The relations now form a square (h + 2)-matrix with determinant

det



2 0 0 . . . 0

1 0 p1

. . . 0
...

...
...

. . .
...

1 0 0 · · · ph

0 2 q1 · · · qh


= ±2 det


2 0 · · · 0

1 p1

. . .
...

...
...

. . .
...

1 0 · · · ph

 = ±4p1 · · · ph.

The proof is complete. �

We deduce an elegant description of all the Seifert homology spheres.

Corollary 10.3.16. For every set p1, . . . , ph of pairwise coprime inte-
gers pi > 2 there is a unique homology sphere Σ(p1, . . . , ph) Seifert-fibering
over (S2, p1, . . . , ph). Every Seifert homology sphere arises in this way.

Proof. By the previous proposition a Seifert manifold

M =
(
S, (p1, q1), . . . , (ph, qh)

)
is a homology sphere if and only if S = S2 and |ep1 · · · ph| = 1. We have

ep1 · · · ph =

h∑
i=1

qi
pi
p1 · · · ph =

h∑
i=1

qip1 · · · p̂i · · · ph =

h∑
i=1

qip
′
i

where we set p′i = p1 · · · p̂i · · · ph. The integers p1, . . . , ph are pairwise
coprime if and only if p′1, . . . , p

′
h are globally coprime (no prime number

divides all of them). The equation
∑

i=1 qip
′
i = 1 is satisfied by some

q1, . . . , qh ⇐⇒ they are globally coprime. Different solutions qi are related
by moves as in Proposition 10.3.11 (exercise) and produce the same Seifert
fibration. �

For instance, the homology spheres Σ(p1) and Σ(p1, p2) are just S3

by Example 10.3.10. The simplest homology sphere with three singular
fibres is Σ(2, 3, 5). This manifold is called the Poincaré homology sphere
and we will soon see that its fundamental group has order 120. All the
other Seifert homology spheres have infinite fundamental group: this is
related to the fact that

∑
1
pi
> 1 for all choices of (p1, . . . , ph) with h > 3

except (2, 3, 5), as we will soon see. A Seifert homology sphere of type
Σ(p1, p2, p3) is called a Brieskorn homology sphere.
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10.3.6. Coverings. We now start to investigate the coverings of Seifert
fibered spaces. Our main goal will be to subdivide the Seifert manifolds
into nine classes: this will be done in Section 10.3.9.

Like ordinary fibrations, Seifert fibrations behave well with respect to
coverings. Let M → S be a Seifert fibration and M̃ → M a covering. The
foliation into circles of M lifts to a foliation into circles or lines in M̃, with
some quotient space S̃.

Proposition 10.3.17. The quotient S̃ is an orbifold covering of S.
• If M̃ foliates in circles then M̃ → S̃ is a Seifert fibration,
• If M̃ foliates in lines then M̃ → S̃ is a line bundle.

In the second case S̃ has no singular points.

Proof. This holds on all coverings of a standard fibered solid torus
and hence holds everywhere. �

We now concentrate ourselves on the finite-degree case.

10.3.7. Finite-degree coverings. We define a finite-degree covering
of a Seifert fibration M → S to be a commutative diagram

M̃ //

��

M

��
S̃ // S

where M̃ → S̃ is a Seifert fibration, M̃ → M is a finite-degree covering, and
S̃ → S is an orbifold covering. Proposition 10.3.17 implies the following.

Corollary 10.3.18. Let M → S be a Seifert fibration. Every finite-
degree covering M̃ → M induces a finite-degree covering of Seifert fibra-
tions:

M̃ //

��

M

��
S̃ // S

The dotted arrows indicate the maps that are induced. The degree d
of such a covering M̃ → M splits into two parts:

• the horizontal degree dh is the degree of the covering S̃ → S,
• the vertical degree dv is the degree with which a regular fibre of
M̃ covers a regular fibre of M.

The vertical degree is well-defined since regular fibres in M̃ form a con-
nected set. The pre-image of a regular fibre in M consists of dh regular
fibres in M̃, each fibering with degree dv. Therefore

d = dh · dv.

A covering M̃ → M is horizontal or vertical if respectively dv = 1 or dh = 1.
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Proposition 10.3.19 (Pull-back). Let M → S be a Seifert fibration.
Every finite-degree orbifold covering S̃ → S is induced by a unique hori-
zontal covering of Seifert fibrations:

M̃ //

��

M

��
S̃ // S

Proof. Like for ordinary bundles, there is a unique way to define M̃
by pulling back the Seifert fibration on fibered solid tori. �

Recall that an orbifold is very good when it is finitely covered by a
surface. Every locally orientable 2-orbifold is very good except the bad
orbifolds S2(p1) and S2(p1, p2) with p1 6= p2, see Theorem 6.2.10 and
Corollary 6.2.11.

Corollary 10.3.20. If S is good, every Seifert fibration M → S is
finitely covered by a circle bundle over a surface.

Proof. Pull-back the fibration along the surface cover S̃ → S. �

Proposition 10.3.21. Every finite-degree covering between Seifert fi-
brations is a composition of one vertical and one horizontal covering.

Proof. Let p : M̃ → M be a covering of Seifert fibrations, with base
spaces S̃ → S. If we pull-back M to S̃ we get a horizontal covering
ph : Mh → M. There is a natural vertical pv : M̃ → Mh such that p =

ph ◦ pv. �

10.3.8. Circle bundle coverings. The Euler number of the fibration
and the Euler characteristic of the base orbifold behave well with coverings.

Proposition 10.3.22. Let p : M̃ → M be a finite covering of closed
Seifert fibrations with base orbifolds S̃, S, with degrees (dh, dv). We get

χ(S̃) = dh · χ(S),

e(M̃) =
dh

dv
· e(M).

Proof. The first equality holds for every orbifold covering S̃ → S.
Concerning the second one, by Proposition 10.3.21 we may suppose p is
either vertical or horizontal. Write

M =
(
S, (p1, q1), . . . (ph, qh)

)
and recall that M is obtained from a circle bundle N by (pi , qi)-filling the
boundary torus Ti for all i = 1, . . . , h. Set T̃i = p−1(Ti) and Ñ = p−1(N).

If p is vertical, we fix a section of Ñ and note that it projects to a
section of N: these sections induce meridians on T̃i and Ti . Here T̃i is a
single torus and T̃i → Ti wraps the fibre with degree d = dv. Since the
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covering extends to the filled solid tori, we have d |qi and T̃i is filled with
parameters (pi , qi/d). Therefore e(M̃) = e(M)/d .

If p is horizontal, we fix a section of N, and its counterimage is a
section of Ñ: these sections induce meridians on Ti and T̃i . Now T̃i consists
of some tori T̃i = T̃i ,1 t . . . t T̃i ,ki and T̃i ,j → Ti wraps the meridians with
some degree di ,j . The total sum of these local degrees is di ,1 + . . .+di ,ki =

d = dh. Similarly as above we have di ,j |pi and the filling solid torus at T̃i ,j
has parameters (pi/di ,j , qi). Therefore

e(M̃) =

h∑
i=1

ki∑
j=1

di ,jqi
pi

=

h∑
i=1

d · qi
pi

= d · e(M).

This concludes the proof. �

An important consequence is that the signs of χ(S) and e(M) are
invariant under finite coverings.

10.3.9. Commensurability classes. We now would like to subdivide
the Seifert manifolds into few classes, and to this purpose we introduce a
general equivalence relation between manifolds.

Definition 10.3.23. Two manifolds M and N are commensurable if
there is a manifold that covers both M and N with finite degrees.

Proposition 10.3.24. Commensurability is an equivalence relation.

Proof. If M is commensurable with N1 and N2, it has finite-sheeted
coverings M1,M2 that cover N1 and N2 corresponding to finite-index sub-
groups Γ1,Γ2 < π1(M). The subgroup Γ = Γ1 ∩ Γ2 has also finite index
and determines a manifold that covers both N1 and N2. �

Exercise 10.3.25. There are three commensurable classes of closed
surfaces, determined by their Euler characteristic being positive, null, or
negative.

We now classify the commensurability classes of Seifert manifolds.
The 3-torus is of course T × S1 = S1 × S1 × S1.

Proposition 10.3.26. A closed Seifert fibration M → S has:

• χ(S) > 0 and e = 0 ⇐⇒ M is covered by S2 × S1,
• χ(S) > 0 and e 6= 0 ⇐⇒ M is covered by S3,
• χ(S) = 0 and e = 0 ⇐⇒ M is covered by the 3-torus,
• χ(S) = 0 and e 6= 0 ⇐⇒ M is covered by a twisted bundle over
T ,

• χ(S) < 0 and e = 0 ⇐⇒ M is covered by Sg × S1 for some
g > 1,

• χ(S) < 0 and e 6= 0 ⇐⇒ M is covered by a twisted bundle over
Sg for some g > 1.
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χ > 0 χ = 0 χ < 0

e = 0 S2 × S1 S1 × S1 × S1 S2 × S1

e 6= 0 S3
(
T, (1, 1)

) (
S2, (1, 1)

)
∂M 6= ∅ D × S1 T × [0, 1] P × S1

Table 10.1. There are 9 commensurability classes of Seifert
manifolds: 6 closed and 3 with boundary. Every Seifert man-
ifold M is commensurable with one (and only one) of these
9 manifolds. The commensurability class of M is easily de-
tected by looking at its invariants χ and e (the latter only in
the closed case). The surfaces T, S2, D, P are the torus, the
genus-2 surface, the disc, and the pair-of-pants. Note that
S3 =

(
S2, (1, 1)

)
.

Proof. If S is a bad orbifold, then S = S2(p) or S2(p1, p2) with
p1 6= p2 and hence we get e 6= 0 and χ(S) > 0. The manifold M is a lens
space by Example 10.3.10 and is hence covered by S3.

If S is good, the fibration M → S is covered by a circle bundle M̃ → S̃

over an orientable closed surface S̃ by Corollary 10.3.20. By Proposition
10.3.22 the numbers χ(S̃) and e(M̃) have the same signs of χ(S) and
e(M). Therefore S̃ = S2, T , or Sg with g > 1, depending on whether
χ(S) is positive, null, or negative. Exercise 10.2.7 says that the circle
bundle M̃ → S̃ is trivial ⇐⇒ e(M̃) = 0 ⇐⇒ e(M) = 0. Note that a
non-trivial bundle over S2 is a lens space L(e, 1) with e 6= 0 and is hence
covered by S3.

We have proved that M is covered (according to the signs of χ and e)
by a manifold belonging to one of the six types: S3, S2 × S1, the 3-torus,
a twisted bundle over T , Sg×S1, and a twisted bundle over Sg. It remains
to prove that M cannot be covered by two manifolds M1,M2 belonging to
two different types: this holds because manifolds of distinct types are not
commensurable. To prove that, note that the finite cover of a manifold
of one of the six types is a manifold of the same type, and Corollary
10.2.10 implies that a manifold cannot belong to two different types. If
two manifolds of distinct types were commensurable they would be covered
by a manifold belonging to both types, yielding a contradiction. �

We can now easily classify all closed Seifert manifolds up to commen-
surability. To conclude we just need to solve the following exercise.

Exercise 10.3.27. Pick S = Sg and e > 0. Construct:

• a degree-e vertical covering
(
S, (1, 1)

)
→
(
S, (1, e)

)
,

• a degree-e horizontal covering
(
S̃, (1, e)

)
→
(
S, (1, 1)

)
if g > 1.
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Hint. If g > 1 then S has covers of any degree e. To construct them,
pick surjective homomorphisms π1(S)→ H1(S)→ Z/eZ. �

Corollary 10.3.28. There are six commensurability classes of closed
Seifert manifolds, depending on χ and e as shown in Table 10.1.

Proof. By the previous exercise the non-trivial (or trivial) bundles over
closed surfaces with χ < 0 (or χ = 0, χ > 0) are all commensurable. �

Corollary 10.3.29. A closed Seifert fibration M → S has e = 0 ⇐⇒
it is finitely covered by a trivial circle bundle.

We recall that a Seifert manifold M may have non-isomorphic Seifert
fibrations M → S and M → S′, and the invariants χ,χ′ and e, e ′ of the
two fibrations are not necessarily equal; however χ is positive, null, or
negative if and only if χ′ is, and e vanishes if and only if e ′ does (in the
closed case). This holds because the commensurability class of M does
not depend on its fibration. For instance, Exercise 10.3.6 shows that a
lens space M = L(p, q) with p > 0 has many fibrations, but each with
χ > 0 and e 6= 0.

We now consider the boundary case, which is simpler because circle
bundles over orientable surfaces with boundary are always trivial. Let A
denote the annulus and Sg,b be the surface of genus g with b open discs
removed.

Proposition 10.3.30. A Seifert fibration M → S with boundary has

• χ(S) > 0⇐⇒ M = D × S1,
• χ(S) = 0⇐⇒ M is covered by A× S1 = T × [0, 1],
• χ(S) < 0⇐⇒ M is covered by Sg,b × S1 for some g + b > 2.

Proof. Every Seifert manifold with boundary is covered by a circle
bundle over an orientable surface, and such a bundle is trivial here. If
χ > 0 the base surface is a disc with at most one cone point and hence
M is a standard fibered solid torus. �

Corollary 10.3.31. There are three commensurability classes of Seifert
manifolds with boundary, depending on χ as shown in Table 10.1.

Proof. The surfaces Sg,b, with b > 0 and g + b > 2 are commensu-
rable (exercise). �

We now characterise some commensurability classes by looking at the
fundamental groups.



328 10. SEIFERT MANIFOLDS

χ > 0 χ = 0 χ < 0

e = 0 Z Z3

e 6= 0 {e}
∂M 6= ∅ Z Z2

Table 10.2. There are five Seifert manifolds M with
π1(M) = Zh and they belong to distinct commensurability
classes. The fundamental group π1(N) of every other mani-
fold N in these five classes is virtually abelian: it contains Zh
as a finite-index subgroup.

10.3.10. Virtually abelian fundamental groups. A group G is virtu-
ally abelian of rank h if it contains Zh as a finite-index subgroup.

This is a finite-index-independent property: if G ′ < G has finite index,
the group G ′ is virtually abelian of rank h if and only if G is. Therefore a
manifold M has a virtually abelian fundamental group of rank h ⇐⇒ every
manifold N commensurable with M also has ⇐⇒ there is a manifold N in
the commensurability class with π1(N) = Zh.

Proposition 10.3.32. There are five commensurability classes of Seifert
manifolds with virtually abelian fundamental groups, shown in Table 10.2.

Proof. These five classes contain S2×S1, S1×S1×S1, S3, D×S1, and
A× S1. The remaining four classes do not contain manifolds with abelian
fundamental group: every manifold in these classes is covered by some
S × S1 with χ(S) < 0 or

(
Sg, (1, e)

)
with g > 1 and e > 1 (use Exercise

10.3.27). The fundamental group of such manifolds is not Zh: the former
because π1(S) is not abelian, and the latter because its abelianization
contains torsion, see Exercise 10.2.9. �

It could be reasonable to expect these five commensurability classes
to contain manifolds of some simpler topological nature, which are easier
to study and classify. We will see however in Section 10.4.7 that the
Seifert manifolds covered by S3 are quite interesting and their topological
classification is certainly not immediate: we already experienced that for
lens spaces in Theorem 10.1.12, whose classification is quite involved. The
other four classes are indeed of a simpler nature: we now prove that each
contains finitely many manifolds, and we classify them completely.

10.3.11. Finite commensurability classes. We now completely iden-
tify the commensurability classes of Seifert manifolds that contain only
finitely many manifolds.

We start by considering manifolds M with boundary. We have already
seen that the class χ > 0 contains only the solid torus. The class χ = 0

also contains few manifolds:
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Figure 10.11. Draw the orientable line bundle over the Klein
bottle as S1 × [−1, 1] × [−1, 1]/ψ where ψ identifies the
lower and upper (yellow) annuli S1× [−1, 1]×{±1} by gluing
(e iθ, t) to (e−iθ,−t). The Klein bottle is drawn in green
(left). This manifold has two fibrations: a horizontal one
with fibres S1 × x × y and base surface the green Möbius
strip (centre), and a vertical one with fibres x × y × [−1, 1]

and base surface the green disc with two cone points of order
two (the green annulus becomes a disc after identifying the
points (e iθ, 0) and (e−iθ, 0)). The two singular fibres of order
two lie above (±1, 0) and are drawn in red (right).

Proposition 10.3.33. Every Seifert fibration with boundary and χ = 0

is isomorphic to one of the following:

A× S1, S ×∼ S1,
(
D, (2, 1), (2,−1)

)
.

The Seifert manifold is correspondingly diffeomorphic to the interval bun-
dles T × I, K ×∼ I, and K ×∼ I again. Here A, S, and K are the annulus,
the Möbius strip, and the Klein bottle.

Proof. The orbifolds with boundary and χ = 0 are A, S, and (D, 2, 2).
Every Seifert fibration over (D, 2, 2) is isomorphic to

(
D, (2, 2n+1), (2, 2m+

1)
)
and does not depend on n,m ∈ Z by Proposition 10.3.11. Hence there

is only one Seifert fibration over the orbifold (D, 2, 2), which we write as(
D, (2, 1), (2,−1)

)
only for aesthetic reasons (to get e = 0).

We get three manifolds and we now prove that they are all diffeo-
morphic to some interval bundle. The diffeomorphism A × S1 ∼= T × I
is obvious. Draw K ×∼ I as S1 × [−1, 1] × [−1, 1]/ψ as in Figure 10.11.
The manifold has two fibrations: a horizontal one by circles S1 × x × y ,
and a vertical one by segments x × y × [−1, 1]. The horizontal one gives
S ×∼ S1 and the vertical one closes to a Seifert fibration over the disc with
two singular fibres of order two, and hence is (D, (2, 1), (2,−1)). �
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Corollary 10.3.34. Every Seifert manifold with boundary and χ > 0 is
diffeomorphic to D × S1, T × I, or K ×∼ I.

We now turn to closed Seifert manifolds. We have seen that K ×∼ I

fibres in two non-isomorphic ways, and this has some consequences.

Corollary 10.3.35. The following diffeomorphisms hold:(
S2, (2, 1), (2,−1), (p, q)

) ∼= (
RP2, (q, p)

)
,(

S2, (2, 1), (2, 1), (2,−1), (2,−1)
) ∼= K ×∼ S1.

Proof. Both equalities follow from
(
D, (2, 1), (2,−1)

) ∼= S ×∼ S1. In
the first we look at Figure 10.11 to check that a (p, q) curve in

(
D, (2, 1), (2,−1)

)
becomes a (q, p) curve in S ×∼ S1. The second equality is obtained by
doubling the line bundle K ×∼ I. �

We want to classify the closed Seifert manifolds with χ > 0 and e = 0.
We start with the case χ > 0.

Proposition 10.3.36. Every closed Seifert fibration with χ > 0 and
e = 0 is isomorphic to one of the following:

S2 × S1, RP2 ×∼ S1,
(
S2, (p, q), (p,−q)

)
.

The manifolds of the last type are all diffeomorphic to S2 × S1.

Proof. If the base surface S is a sphere with 6 2 singular fibres, we
use Exercise 10.3.6. Otherwise S is one of the following orbifolds (see
Table 6.1):

(S2, 2, 2, p), (S2, 2, 3, 3), (S2, 2, 3, 4), (S2, 2, 3, 5), RP2, (RP2, p)

with p > 2. In all cases except RP2, we get e 6= 0 for any choice of Dehn
filling parameters: for instance

e
(
S2, (2, q1), (2, q2), (p, q3)

)
=
q1 + q2

2
+
q3

p
6= 0.

The other cases are analogous. �

The manifold RP2 ×∼ S1 is not diffeomorphic to S2 × S1, because
they have non-isomorphic fundamental groups. Moreover, RP2 ×∼ S1 is
not prime:

Exercise 10.3.37. The two manifolds RP2 ×∼ S1 and RP3#RP3 are
diffeomorphic.

We will soon see that RP2 ×∼ S1 is the unique non-prime Seifert man-
ifold. We now turn to the χ = 0 case.

Proposition 10.3.38. Every closed Seifert fibration with χ = 0 and
e = 0 is isomorphic to one of the seven listed in Table 10.3. These seven
manifolds are all pairwise non-diffeomorphic, except(

S2, (2, 1), (2, 1), (2,−1), (2,−1)
) ∼= K ×∼ S1.
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M H1(M,Z)

T × S1 Z3

K ×∼ S1 Z× Z/2Z × Z/2Z(
S2, (2, 1), (2, 1), (2,−1), (2,−1)

)
Z× Z/2Z × Z/2Z(

S2, (3, 1), (3, 1), (3,−2)
)

Z× Z/3Z(
S2, (2, 1), (4,−1), (4,−1)

)
Z× Z/2Z(

S2, (2, 1), (3, 1), (6,−5)
)

Z(
RP2, (2, 1), (2,−1)

)
Z/4Z × Z/4Z

Table 10.3. The seven closed Seifert fibrations with χ = 0

and e = 0. Two of these manifolds are actually diffeomor-
phic, so we get six closed Seifert manifolds up to diffeomor-
phism, distinguished by their homology.

χ > 0 χ = 0 χ < 0

e = 0 2 6 ∞
e 6= 0 ∞ ∞ ∞
∂M 6= ∅ 1 2 ∞

Table 10.4. The number of Seifert manifolds in each com-
mensurability class.

Proof. The closed orbifolds with χ = 0 are

T, K, (RP2, 2, 2), (S2, 2, 2, 2, 2), (S2, 2, 3, 6), (S2, 3, 3, 3), (S2, 2, 4, 4).

It is easy to show that by imposing e = 0 we get the fibrations listed.
The homology calculation is an easy exercise and luckily distinguishes all
the manifolds except (of course) the two diffeomorphic ones (see Corollary
10.3.35). �

Summing up, there are four commensurability classes containing finitely
many manifolds, and their number is shown in Table 10.4.

10.3.12. Universal cover. We now determine the universal cover of
all the closed Seifert manifolds. Nothing strange happens: we either get
S3, S2 × R, or R3.

Proposition 10.3.39. The universal cover of a closed Seifert manifold
is shown in Table 10.5.
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χ > 0 χ = 0 χ < 0

e = 0 S2 × R R3 R3

e 6= 0 S3 R3 R3

Table 10.5. The universal cover of a closed Seifert manifold
depends on its invariants e and χ.

Proof. The universal cover of a circle bundle over a surface S with
χ(S) 6 0 is a line bundle over the universal cover R2 of S. The line bundle
is trivial since R2 is contractible and we get R2 × R = R3. �

Corollary 10.3.40. Every Seifert manifold M is irreducible or covered
by S2×R. In the latter case M is diffeomorphic to S2×S1 or RP2 ×∼ S1.

Proof. If the universal cover is S3 or R3, it is irreducible and hence also
M is. When M has boundary, we apply the proof of Proposition 10.3.39
to the interior of M and find that its universal cover is R3. �

Hence every Seifert manifold is prime except RP2 ×∼ S1 = RP3#RP3.

10.3.13. Fibre-Parallel Dehn filling. We have investigated various
topological properties of Seifert manifolds, and we are now curious: what
happens if we perform a forbidden fibre-parallel Dehn filling? We start by
looking at the basic block P × S1, where P is a pair-of-pants.

Proposition 10.3.41. A fibre-parallel Dehn filling on P × S1 produces
the connected sum of two solid tori; the fibres of P × S1 become the
meridians of the solid tori.

Proof. Let γ ⊂ ∂P be the component whose torus γ × S1 is filled.
Pick an essential arc α in P with both endpoints in γ: the fibered annulus
A = α× S1 closes up to a two-sphere S in the Dehn filling.

The sphere S separates the filled manifold into two portions, each
diffeomorphic to T × [0, 1] with a two-handle attached along a non-trivial
curve: this is a holed solid torus. Every fibre now bounds a disc there. �

We now turn to arbitrary bundles.

Exercise 10.3.42. Let S be a compact surface with b > 1 boundary
components. The fibre-parallel Dehn filling of S ×∼ S1 is diffeomorphic to
the connected sum of b−1 solid tori and −χ(S) + 2−b copies of S2×S1.

We now deduce a more general fact: a fibre-parallel Dehn filling of a
Seifert manifold is a connected sum of lens spaces and solid tori.

Corollary 10.3.43. The fiber-parallel Dehn filling of(
S, (p1, q1), . . . , (ph, qh)

)
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is diffeomorphic to the connected sum

L(p1, q1)# . . .#L(ph, qh)#k(S2 × S1)#b−1(D2 × S1)

where S has b boundary components and k = −χ(S) + 2− b.

If S is orientable then k is twice the genus of S.

Corollary 10.3.44. Every Dehn filling of a Seifert manifold is a con-
nected sum of Seifert manifolds.

If we have a Seifert manifold M with many boundary components and
we Dehn fill some of them, we are guaranteed to produce a new Seifert
manifold, unless one of the Dehn filling kills a fiber-parallel slope: in that
case the manifold “degenerates” to a connected sum of lens spaces and
solid tori. This is an interesting phenomenon to keep in mind, because it
will reproduce in Chapter 15 in the hyperbolic world: we will show that
by Dehn filling a cusped hyperbolic three-manifold we always get a new
hyperbolic manifold if we avoid a finite number of “exceptional slopes”
on every boundary torus; if some of the exceptional slopes is employed,
the manifold is possibly not hyperbolic, and it typically “degenerates” and
breaks into simpler pieces.

10.4. Classification

In the previous section we have classified the Seifert fibrations up to
isomorphism and the Seifert manifolds up to commensurability. We now
want to complete our study by classifying Seifert manifolds up to diffeo-
morphism: our final achievement will be Theorem 10.4.19 that determines
precisely the Seifert manifolds that admit non-isomorphic fibrations.

The proof of Theorem 10.4.19 is not straightforward: we will apply
different techniques to different classes of Seifert manifolds. We start by
studying the fundamental group of Seifert manifolds, showing in particular
that it fits into a nice short exact sequence. Then we study essential sur-
faces: we show that these can always be isotoped to be either in “vertical”
or “horizontal” position with respect to the fibration.

In “most” cases, a Seifert manifold contains many incompressible ver-
tical tori and these can be used to characterise the manifold. When the
Seifert manifold is “small” it contains no such tori, and we must use differ-
ent techniques: for instance we look at its fundamental group, which may
be finite or infinite.

10.4.1. Fundamental group. We study the fundamental group of
Seifert manifolds. Recall that every closed Seifert fibration has two fun-
damental invariants χ and e that determine the commensurability class of
the Seifert manifold. Finite fundamental groups are easily detected:

Proposition 10.4.1. A closed Seifert manifold has finite fundamental
group ⇐⇒ it is covered by S3 ⇐⇒ it has χ > 0 and e 6= 0.
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Proof. A compact manifold has finite fundamental group⇐⇒ its uni-
versal cover is also compact. Table 10.5 applies. �

Ordinary fibrations generate exact sequences in homotopy, and also
Seifert fibrations do. Recall that a good orbifold has a well-defined fun-
damental group, and that all locally orientable surface orbifolds are good
except (S2, p) and (S2, p1, p2) with p1 6= p2. We will ignore bad orbifolds,
since the Seifert manifolds fibering over them are lens spaces.

Proposition 10.4.2. Let M → S be a Seifert fibration over a good
orbifold S. There is an exact sequence

1 −→ K −→ π1(M) −→ π1(S) −→ 1

where K is the normal cyclic subgroup of π1(M) generated by a regular
fiber and π1(S) is the orbifold fundamental group of S.

Proof. The universal cover M̃ of M fibres over the universal cover S̃
of S. The fiber is a circle or a line, depending on whether π1(M) is finite
or infinite, see Proposition 10.3.39.

The group π1(M) acts fibre-preservingly on M̃ and hence acts also on
S̃ as a covering automorphism for S̃ → S. This induces a natural homo-
morphism π1(M)→ π1(S). Its kernel consists of all deck transformations
of M̃ that fix the fibres: these are precisely K. The homomorphism is
surjective because every loop in S lifts to a loop in M. �

We now look more closely at the normal cyclic subgroup K.

Proposition 10.4.3. The group K is infinite if and only if π1(M) is.

Proof. The group K acts freely and proper discontinuously on each
fiber of the universal cover M̃, and it quotients it to a circle. The fiber in
M̃ is compact if and only if π1(M) is finite. �

Proposition 10.4.4. The group K lies in the centre of π1(M) if and
only if S is orientable or K has order two.

Proof. If S is orientable, the manifold M is a Dehn filling of a product
S′ × S1 where the fiber is obviously in the centre, and it remains so after
the Dehn filling. If S is non-orientable, pick an orientation-reversing loop
α in S: there is a Klein bottle fibering above α and we get αgα−1 = g−1

for the fiber g ∈ K. Therefore K is central if and only if g2 = e. �

In many cases the subgroup K may be characterised intrinsically.

Proposition 10.4.5. Let M be a Seifert manifold whose fundamental
group is not virtually abelian. The subgroup K / π1(M) is the unique
maximal cyclic normal subgroup of π1(M).
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Proof. Suppose by contradiction that π1(M) contains a cyclic normal
subgroup K ′ which is not contained in K. Therefore its image in π1(S) is
a non-trivial cyclic normal subgroup.

If χ(S) < 0 then int(S) = H2/Γ for a discrete group Γ = π1(S) of
isometries of H2. Corollary 5.1.10 implies that Γ does not contain non-
trivial cyclic normal subgroups.

If χ(S) = 0 then int(S) = R2/Γ for a discrete group Γ = π1(S) of
isometries of R2, which in fact may contain cyclic normal subgroups: so
we need a more careful analysis. Since π1(M) is not virtually abelian, the
surface S is closed and e 6= 0.

The image of K ′ in π1(S) is non-trivial, normal, and cyclic, and is
hence infinite (finite cyclic groups are generated by rotations and cannot
be normal). Therefore K ′ is infinite and it intersects non-trivially every
finite-index subgroup of π1(M): up to substituting M with a finite cover
we may suppose that S is a torus.

The image of K ′ is a non-trivial subgroup of π1(S) = Z × Z. Pick
two elements a′ ∈ K ′, b ∈ π1(M) whose images in π1(S) generate a finite-
index subgroup of π1(S). Pick a generator a ∈ K. The three elements
a, a′, b generate a finite-index subgroup of π1(M). The element a is central
by Proposition 10.4.4. We have b−1a′b = (a′)±1 because K ′ = Z is
normal. The elements a, a′, b2 commute and generate a finite-index abelian
Z3 < π1(M): a contradiction. �

Corollary 10.4.6. Let M be a Seifert manifold whose fundamental
group is not virtually abelian. The centre of π1(M) is K if S is orientable
and trivial otherwise.

Proof. Use Propositions 10.4.4 and 10.4.3. �

We have collected some important information on the fundamental
group of Seifert manifolds. We now move from algebra to topology and
study the essential surfaces in Seifert manifolds: we will prove a theorem
analogous to Proposition 9.3.18, namely that every essential surface in a
Seifert manifold is either horizontal or vertical.

10.4.2. Horizontal and vertical surfaces. We now want to study how
Seifert manifolds may contain interesting surfaces. LetM → S be a Seifert
fibration. A properly embedded surface Σ ⊂ M is

• vertical if it is a union of some regular fibres,
• horizontal if it is transverse to all fibres.

If Σ is vertical, it is either an annulus, a torus, or a Klein bottle, pro-
jecting respectively to an arc, an orientation-preserving, or an orientation-
reversing simple closed curve that avoids the cone points. Vertical surfaces
are in 1-1 correspondence with 1-dimensional objects in S and are thus eas-
ily determined.
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S0

D1

D2

D3

Figure 10.12. We cut S along k (blue) arcs to get S =

S0 ∪D1 ∪ . . . ∪Dk with Di a disc containing the (red) cone
point pi : here k = 3.

Horizontal surfaces are more subtle. We first note that if Σ is hori-
zontal, the natural projection Σ → S is an orbifold covering. When does
M contain a horizontal surface? It certainly does when M has boundary.

Proposition 10.4.7. Every Seifert fibration M → S with boundary
contains a horizontal surface.

Proof. We have M =
(
S, (p1, q1), . . . , (pk , qk)

)
. We cut S along k

arcs as in Figure 10.12 to get S = S0 ∪ D1 ∪ . . . ∪ Dk with Di a disc
containing the cone point pi . Let p be a common multiple of p1, . . . , pk .
The bundle over S0 has no singular fibres and is hence S0 ×(∼)

S1. The
bundle S0 ×(∼)

S1 contains a (possibly disconnected) horizontal surface Σ

intersecting the fibres in any fixed number n of points (exercise) and we
pick one Σ with n = p.

For every i = 1, . . . , k there is a standard fibered solid torus lying
above Di , attached to S0 ×(∼)

S1 via a vertical annulus A. The meridian of
this solid torus intersects A into pi horizontal segments. Pick p

pi
parallel

meridians: both Σ and these meridians intersect A in p horizontal segments
and can hence be glued to form a horizontal surface for M. �

On closed Seifert manifolds the existence of a horizontal surface is
fully detected by the Euler number.

Proposition 10.4.8. A closed Seifert fibration M → S contains a hor-
izontal surface if and only if e = 0.

Proof. Suppose M → S contains a horizontal surface Σ. We pull-
back the fibration along the orbifold covering Σ → S to get a M̃ → Σ.
The horizontal surface Σ lifts to a section of M̃ → Σ. Since the fibration
has a section, we get e(M̃) = 0 and hence e(M) = 0.

Conversely, suppose e(M) = 0. Drill one open fibered solid torus from
M: we know by the previous proposition that the resulting fibration has
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a horizontal surface Σ. Its boundary consists of parallel curves of some
type (p, q) with p > 0. If we Dehn-fill the manifold by killing these curves
we get another Seifert manifold M ′, to which the fibration and the section
extend: therefore e(M ′) = 0. At most one pair (p, q) may produce a
manifold with e = 0, and hence M = M ′. �

10.4.3. Essential surfaces. Recall the definition of essential surface
from Sections 9.2.11 and 9.4.6. We now show that essential surfaces in
irreducible Seifert manifolds are either vertical or horizontal.

Proposition 10.4.9. Let M → S be a Seifert fibration and M be
irreducible. Every essential surface Σ is isotopic to a vertical or horizontal
surface.

Proof. See M as a Dehn filling of S ×(∼)
S1. We suppose that Σ

intersects transversely the cores of the filling solid tori in the minimum
number of points up to isotopy. After an isotopy Σ intersects the filling
solid tori into parallel horizontal discs.

Decompose S into one 0-handle and some g one-handles. We see the
0-handle as a 2g-gon and each 1-handle as a rectangle. Above each edge
of the 2g-gon or of a rectangle there is a vertical annulus A. We put Σ in
transverse position with respect to these vertical annuli and up to isotopy
we may suppose that Σ ∩ A consists either of vertical fibres or horizontal
arcs for each A. Indeed we can easily eliminate trivial circles (because Σ

is incompressible and M is irreducible) and arcs forming bigons with ∂A
(because Σ is ∂-irreducible and has minimal intersection with the solid tori
cores).

Above every polygonal handle of S there is a prismatic solid torus W .
The closed curves Σ ∩ ∂W are made of horizontal or vertical arcs and are
hence essential, forming some parallel slopes in ∂W . We can suppose that
Σ ∩W consists of essential discs or incompressible surfaces (if there is a
compressing disc D inside W , then ∂D ⊂ Σ bounds a disc in Σ which we
isotope to D reducing the intersection with the vertical annuli). We can
also suppose that Σ∩W is ∂-incompressible with respect to every vertical
annulus A ⊂ ∂W , in the sense that there is no ∂-compressing disc D with
∂D ⊂ A ∪Σ (otherwise we isotope Σ and reduce intersections).

By Proposition 9.3.16 the surface Σ ∩W consists either of essential
discs or ∂-parallel annuli (not both). In the first case Σ ∩ ∂W consists of
horizontal curves and Σ ∩ W consists of horizontal discs. In the second
case, since the annuli are ∂-incompressible with respect to the vertical
annuli in ∂W , their boundaries must be vertical circles lying in distinct
vertical annuli. Up to isotopy Σ ∩W consists of vertical annuli.

We have decomposed Σ into horizontal discs or vertical annuli, and
both cannot coexist. Hence Σ is either horizontal or vertical. �

Corollary 10.4.10. Every Seifert manifold is irreducible and ∂-irreducible,
except S2 × S1, RP2 ×∼ S1, and D × S1.
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(1) (2) (3) (4)

Figure 10.13. A vertical torus or annulus is essential, unless
its projection is: the boundary of a disc containing zero (1) or
one (2) singular cone points, an arc parallel to the boundary
(3), or a ∂-parallel closed curve (4).

Figure 10.14. Essential vertical annuli and tori in a Seifert
manifold fibering over a disc with 2 or 3 singular points.

Proof. We already know it is irreducible with the first two exceptions.
If it contains an essential disc D, it contains a horizontal one which covers
the base surface S of the fibration, hence χ(S) > 0 and we get D×S1. �

We now prove a converse to Proposition 10.4.9.

Proposition 10.4.11. Let M → S be a Seifert fibration and M be
irreducible. Let Σ ⊂ M be an orientable connected surface. Suppose that

• Σ is horizontal, or
• Σ is vertical and its projection is not as in Figure 10.13.

Then Σ is essential.

Proof. If Σ is horizontal, it finitely covers S and hence π1(Σ) injects
in π1(S). Therefore it injects also in π1(M) and Σ is incompressible. By
doubling everything along ∂M we get a horizontal DΣ inside DM, which
must also be incompressible: this implies that Σ is ∂-incompressible. It is
also clearly not ∂-parallel, so it is essential.

If Σ is vertical, by cutting along it we get one or two Seifert fibrations.
Since Σ is not as in Figure 10.13, the base orbifolds of these fibrations have
χ 6 0, so their boundary is incompressible by Corollary 10.4.10. Therefore
Σ is incompressible and ∂-incompressible. Moreover it is not a ∂-parallel
torus because none of the cut Seifert manifold is A× S1. �

Example 10.4.12. The curves in Figure 10.14 determine vertical es-
sential annuli and tori in Seifert manifolds fibering over the disc with 2 or
3 singular fibres.
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We can now fully detect essential tori in almost all Seifert manifolds.

Corollary 10.4.13. Let M → S be a Seifert fibration and M be irre-
ducible. If M is not covered by a 3-torus or T × [0, 1], every essential torus
or annulus is vertical.

Proof. Horizontal tori or annuli may arise only when χ = 0 and ∂M 6=
0 or e = 0. �

10.4.4. Simple Seifert manifolds. We want to classify Seifert mani-
folds up to diffeomorphism. To do so, we group them into some classes,
and use different techniques on each class. Recall that a 3-manifold is
simple if it contains no essential sphere, disc, annulus, or torus.

Proposition 10.4.14. A Seifert manifold is simple ⇐⇒ it fibres over
S2 with at most three singular fibres and is not covered by S2 × S1 or the
3-torus.

Proof. Let M → S be a Seifert fibration. The manifold M contains
an essential vertical torus or annulus ⇐⇒ the orbifold S contains an arc
or an orientation-preserving simple closed curve that is not as in Figure
10.13. The only orbifolds that do not contain such arcs or curves are: D
with at most one fiber, S2 with at most three fibres, and RP2 with at most
one fiber. In the first case M is a solid torus, which contains an essential
disc, and in the third caseM also fibres over S2 with at most three singular
fibres, see Corollary 10.3.35.

We are left to consider horizontal closed essential surfaces with χ > 0.
These arise only when e = 0 and χ(S) > 0, i.e. when M is covered by
S2 × S1 or the 3-torus. �

We note in particular that all the simple Seifert manifolds are closed.

Remark 10.4.15. Among the nine commensurability classes of Seifert
manifolds, three contain simple manifolds: those with empty boundary and
e 6= 0. The Euler characteristic χ of a sphere with 3 singular fibres may
in fact be positive, null, or negative. In particular there are simple Seifert
manifolds with finite and with infinite fundamental group.

10.4.5. Seifert manifolds with boundary. To classify Seifert mani-
folds up to diffeomorphism, we will show that (except a few explicit excep-
tions) a generic Seifert manifold has a unique fibration up to isomorphism.
We start with the easier non-empty-boundary case.

Proposition 10.4.16. Every Seifert manifoldM with non-empty bound-
ary admits only one fibration up to isomorphism, except in the following
cases:

• M = D × S1 fibres as
(
D, (p, q)

)
,

• M = S ×∼ S1 fibres as
(
D, (2, 1), (2,−1)

)
.

Here S is the Möbius strip.
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Proof. If M fibres over an orbifold S with χ(S) > 0, we have already
proved this in Section 10.3.11. Suppose that M has two fibrations M → S

and M → S′ with χ(S), χ(S′) < 0.
Pick a minimal collection of properly embedded arcs in S that avoid

the cone points and decompose S into discs, each containing at most one
cone point. Each arc determines an essential vertical annulus in M → S.
The complement of these annuli consists of vertical fibered solid tori.

By Proposition 10.4.11 these annuli are essential and by Proposition
10.4.9 they are isotopic to vertical annuli with respect to the other fibration
M → S′ (they cannot be horizontal since χ(S′) < 0). Therefore we
may isotope the fibration M → S′ so that the annuli are vertical in both
fibrations, and by further isotoping we can in fact suppose that the two
fibrations coincide on a neighbourhood of these annuli.

The complement of this neighbourhood consists of solid tori. The two
fibrations are obtained from the same fibration by Dehn-filling along the
same slopes, and hence they are isomorphic. �

10.4.6. Seifert manifolds with infinite fundamental group. We now
turn to closed Seifert manifolds. We start by examining the χ 6 0 case.

Proposition 10.4.17. Every closed Seifert manifold M not covered by
S3 or S2 × S1 admits only one fibration up to isomorphism, except:(

S2, (2, 1), (2, 1), (2,−1), (2,−1)
) ∼= K ×∼ S1.

Proof. If the Seifert manifold M is covered by the 3-torus, we have
already proved this in Proposition 10.3.38. Suppose that M is not covered
by S3, S2 × S1, or the 3-torus. Let M have two fibrations M → S and
M → S′.

We first suppose that M contains an essential torus. We try to pro-
ceed as in the proof of Proposition 10.4.16 using vertical tori instead of
annuli. Essential tori are vertical to both fibrations by Corollary 10.4.13.
In particular both S and S′ are not spheres with at most three singular
points.

Let Ṡ ⊂ S be S without its singular points. Pick two multicurves
C1, C2 ⊂ Ṡ without puncture-parallel components, that fill Ṡ and intersect
minimally. By filling Ṡ we mean that Ṡ\(C1∪C2) consists of discs or once-
punctured discs, and minimality implies that no such disc is an unpunctured
bigon.

Let T1, T2 be the collections of tori fibering above C1, C2. The set T1

consists of disjoint essential tori, and we can isotope the fibration M → S′

so that they are vertical with respect to the fibrations M → S, M → S′.
We turn to the tori T2, that are vertical with respect to M → S.

Up to isotopy, each simple closed curve in T1 ∩ T2 is either horizontal or
vertical with respect to M → S′. Each annulus in T2 \ T1 is essential
in M \ T1 and hence it is correspondingly horizontal or vertical after an
isotopy. Horizontal annuli would glue to a horizontal torus in T2, which is
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excluded: hence the annuli are vertical with respect to M → S′. We can
therefore isotope the fibration M → S′ so that the tori T2 are also vertical.

Now T1 ∪ T2 is vertical with respect to both fibrations. Since C1 and
C2 fill, every torus in T1 intersects one in T2 and viceversa, so T1 ∪ T2 is
made of vertical annuli attached along the vertical curves T1 ∩ T2. Up to
isotopy the fibrations M → S and M → S′ coincide on the vertical annuli,
hence on T1 ∪ T2, hence on a neighbourhood of T1 ∪ T2.

The complement M \ (T1 ∪ T2) consists of vertical solid tori and we
conclude as in Proposition 10.4.16 that the two fibrations are isomorphic.

We are left to consider the case where M contains no essential tori,
and hence is a simple manifold. Both S, S′ are spheres with exactly three
singular points by Proposition 10.4.14 (not less than three singular points
since M is not covered by S3 or S2 × S1).

By Corollary 10.4.6, the fundamental groups π1(S) and π1(S′) are
both isomorphic to π1(M) quotiented by its centre. Exercise 3.6.13 implies
that the two orbifolds are isomorphic, so S = S′ = (S2, p1, p2, p3) for some
p1, p2, p3 > 2. Consider the exact sequence

1 −→ K −→ π1(M) −→ π1(S) −→ 1.

Fix a generator l ∈ K and coherently an orientation for the fibres of both
fibrations M → S and M → S′. The Von Dyck group π1(S2, p1, p2, p3)

has a presentation

〈 r1, r2, r3 | r p1
1 , r

p2
2 , r

p3
3 , r1r2r3 〉

and the three generators r1, r2, r3 are intrinsically determined up to si-
multaneous conjugation or inversion, see Exercise 3.6.13. Fix three lifts
m1, m2, m3 of r1, r2, r3 in π1(M) with m1m2m3 = 1: these lifts determine
sections for the fibrations M → Ṡ and M → Ṡ′ with boundary meridians
m1, m2, m3. We use these sections to determine the parameters qi and q′i
in both fibrations, for i = 1, 2, 3.

The centre K is infinite since π1(M) is, see Proposition 10.4.3. There-
fore mpi

i ∈ K equals lq
′′
i for some unique q′′i ∈ Z. By construction we have

q′′i = qi and q′′i = q′i , hence qi = q′i . The two fibrations M → S and
M → S′ are isomorphic. �

10.4.7. Seifert manifolds with finite fundamental group. This long
journey through Seifert manifolds is almost finished: it remains to classify
the Seifert manifolds with finite fundamental group, that is that are covered
by the three-sphere.

Proposition 10.4.18. Let M be a Seifert manifold covered by S3 that
is not a lens space. It has a unique fibration over one of the orbifolds

S = (S2, 2, 2, p), (S2, 2, 3, 3), (S2, 2, 3, 4), (S2, 2, 3, 5)

for some p > 2. The centre of M is the cyclic group K in

1 −→ K −→ π1(M) −→ π1(S) −→ 1.
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fibration e(M) |π1(S)| |π1(M)| |H1(M,Z)|(
S2, (2, 1), (2, 1), (p, q)

)
p+q
p

2p 4p|p + q| 4|p + q|(
S2, (2, 1), (3, 1), (3, q)

)
5+2q

6
12 24|5 + 2q| 3|5 + 2q|(

S2, (2, 1), (3, 1), (4, q)
)

10+3q
12

24 48|10 + 3q| 2|10 + 3q|(
S2, (2, 1), (3, 1), (5, q)

)
25+6q

30
60 120|25 + 6q| |25 + 6q|

Table 10.6. The non-lens Seifert manifolds M with finite
fundamental group. For each fixed base orbifold S, the fi-
bration is determined by the order of H1(M,Z): when two
different parameters q give the same order of H1(M,Z), the
fibrations are actually the same (with opposite orientations
and hence Euler numbers).

The manifold M is determined by S and H1(M), see Table 10.6.

Proof. We haveM → S with χ(S) > 0 and hence S is either a sphere
with at most two singular points (soM is a lens space), one of the orbifolds
listed, or RP2 with one singular point; in the latter case M also fibres over
(S2, 2, 2, p) by Corollary 10.3.35.

The subgroup K is central by Proposition 10.4.4. Suppose that π1(M)

contains a central element disjoint from K: its image in π1(S) is a non-
trivial central element. However S is spherical and π1(S) is a non-cyclic
group of rotations of S2: two rotations with different axis never commute.

The subgroup K < π1(M) is intrinsically determined as the centre,
hence the quotient π1(S) is also determined, and S also is by Exercise
3.6.13. Therefore M cannot fiber on two different orbifolds in the list.

To conclude, we prove that the fibration M → S is determined by
S and the finite number |H1(M,Z)|. We analyse each case separately.
First, we transform the fibration as in Table 10.6: using the move from
Proposition 10.3.11-(8) we manage to transform each (2, q′) in (2, 1) and
(3, q′) in either (3, 1) or (3, 2), and by reversing orientation (see Remark
10.3.14) we transform (3, 2) into (3,−2) and hence into (3, 1).

Using Proposition 10.3.15 we see that |H1(M)| is as in Table 10.6.
The only cases where different values of q give the same |H1(M)| are the
following:

• S = (S2, 2, 2, p) and |p + q| = |p + q′|, hence q′ = −q − 2p,
• S = (S2, 2, 3, 3) and |5 + 2q| = |5 + 2q′|, hence q′ = −q − 5

which implies q, q′ ≡ 2 (mod 3).

In these cases it is easy to verify that the fibrations with q and q′ are
isomorphic using Proposition 10.3.11-(8) and Remark 10.3.14.



10.4. CLASSIFICATION 343

The order |π1(M)| in Table 10.6 is obtained using the formula

|π1(M)| =
4e(M)

χ(S)2

that we now prove. Since the orbifolds are good, the fibration is covered
horizontally by a fibration over S2, which is in turn covered vertically by(
S2, (1, 1)

)
= S3. The total degree is d = dh · dv. Proposition 10.3.22

gives

dh =
χ(S2)

χ(S)
=

2

χ(S)
, 1 = e(S2, (1, 1)) =

dh

dv
· e(M).

Therefore dv = dh · e(M) and

d = dh · dv = d2
h · e(M) =

4e(M)

χ(S)2

as required. �

10.4.8. Summary. We now summarise the topological classification
of Seifert manifolds in a single statement.

The Seifert fibrationsM → S are fully classified by Proposition 10.3.11
and Corollary 10.3.13. The latter says that two Seifert fibrations(

S, (p1, q1), . . . , (ph, qh)
)
,
(
S′, (p′1, q

′
1), . . . , (p′h′ , q

′
h′)
)

with pi , p′i > 2 are orientation-preservingly isomorphic if and only if S = S′,
h = h′, e = e ′, and up to reordering pi = p′i and qi ≡ q′i (mod pi) for all i .

We easily understand when two Seifert fibrations are isomorphic. To
classify Seifert manifolds up to diffeomorphism it only remains to under-
stand which Seifert manifolds can have non-isomorphic fibrations. A long
discussion has shown the following. We write S2 × S1 as the lens space
L(0, 1).

Theorem 10.4.19. Every Seifert manifold has a unique Seifert fibration
up to isomorphism, except the following:

• L(p, q) fibres over S2 with 6 2 singular points in many ways,
• D × S1 fibres over D with 6 1 singular point in many ways,
•
(
D, (2, 1), (2,−1)

) ∼= S ×∼ S1,
•
(
S2, (2, 1), (2,−1), (p, q)

) ∼= (
RP2, (q, p)

)
,

•
(
S2, (2, 1), (2, 1), (2,−1), (2,−1)

) ∼= K ×∼ S1.

Here S and K are the Möbius strip and the Klein bottle.

10.4.9. References. The main sources that we have consulted for
this long chapter are Hatcher [26] and Scott [52]. Some material can also
be found in Fomenko – Matveev [18]. Two classical references are Seifert’s
original paper [53] and Orlik [43].





CHAPTER 11

Constructions of three-manifolds

In the previous chapter we have introduced and fully classified an im-
portant family of three-manifolds called Seifert manifolds, and we now ad-
dress the following question: how can we construct more three-manifolds?

The most popular techniques employed for the construction and ma-
nipulation of three-manifolds are of cut-and-paste type: we build three-
manifolds by gluing some blocks altogether, and we try to describe both
the blocks and their gluing with some reasonable combinatorial formalism.

The choice of the right blocks is of course fundamental, and different
choices lead to quite different environments. The first reasonable option
may be to use tetrahedra as blocks, and in that case we talk about trian-
gulations of three-manifolds: this construction has a strong combinatorial
flavour and can be easily carried on by a computer. Other choices involve
blocks without “ridges”, that is manifolds with boundary: by using handle-
bodies we get Heegaard splittings, with knot/link complements and solid
tori we get Dehn surgery, and with product manifolds Σ× [−1, 1] we get
surface bundles. We introduce here all these topological constructions.

We end this chapter by showing that every prime three-manifold has a
canonical decomposition along disjoint embedded tori, called the geometric
decomposition – the reason for adopting this name will be evident in the
next chapters.

11.1. Heegaard splittings

A Heegard splitting is a decomposition of a closed three-manifold in
two manifolds of the simple kinds, the handlebodies.

11.1.1. Definition. The following proposition is quite surprising, be-
cause it shows that every closed orientable three-manifold decomposes into
two pieces of a very simple type.

Proposition 11.1.1. Every closed orientable 3-manifoldM decomposes
into two handlebodies of some genus g.

Proof. The 3-manifold M has a handle decomposition with 0-, 1-, 2-,
and 3-handles. The 0- and 1-handles altogether form a handlebody. The 2-
and 3-handles may be turned upside down to form a handle decomposition
into 0- and 1-handles, so another handlebody. �

345
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H

H'

S

Figure 11.1. A stabilisation of a Heegaard splitting.

A decomposition of M into two handlebodies is called a Heegaard
splitting. The two handlebodies have necessarily the same genus g, since
their boundaries are glued together and are hence diffeomorphic surfaces.

Definition 11.1.2. The Heegaard genus g(M) of a closed orientable
M is the minimum genus of a Heegaard splitting for M.

11.1.2. Examples. The manifolds of genus zero and one are perfectly
understood.

Proposition 11.1.3. The 3-sphere has genus zero, lens spaces (except
S3) have genus one, and all the other closed orientable three-manifolds
have genus at least two.

Proof. By gluing two discs we get a 3-sphere, and by definition by
gluing two solid tori we get a lens space. �

Classifying closed manifolds of genus two is a much harder task. We
limit ourselves to a class of examples.

Exercise 11.1.4. Every Seifert manifold
(
S2, (p1, q1), (p2, q2), (p3, q3)

)
with p1, p2, p3 > 2 has genus two.

Hint. Pick two singular fibres and connect them with a horizontal arc.
A regular neighbourhood of this graph is a genus-two handlebody: prove
that its complement is also a handlebody. �

11.1.3. Stabilisation. The same manifold may have various non iso-
topic Heegaard splittings: for instance there is a simple move that modifies
a Heegaard splitting by increasing its genus in a somehow trivial way.

A stabilisation is a move as in Figure 11.1 that transforms a Heegaard
splitting M = H ∪S H′ of genus g into one of genus g + 1 of the same
manifold M. We add an unknotted handle to the surface S = ∂H = ∂H′,
so that both H and H′ are transformed into handlebodies of genus g + 1.

Example 11.1.5. The complement of a standardly embedded genus-g
handlebody in S3 as in Figure 9.6 is another handlebody, and together they
form a genus-g Heegaard splitting of S3 obtained by stabilising g times the
genus-0 Heegaard splitting of S3.
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11.1.4. Triangulations. Smooth triangulations are somehow related
to Heegaard splittings, at least in one direction.

Every compact manifold admits a smooth triangulation (see Section
1.7.7) and in dimension three we can luckily prove a converse statement,
much as we did in dimension two (in Section 6.1.5).

Let X be a three-dimensional pure simplicial complex, where: every
face is incident to two tetrahedra, every edge is contained in a cycle of
adjacent tetrahedra, and the link of every vertex is a sphere.

Proposition 11.1.6. The complex X is the smooth triangulation of a
closed three-manifold M, unique up to diffeomorphism.

Proof. By dualising X we get a handle decomposition: tetrahedra,
triangles, edges, and vertices determine 0-, 1-, 2-, and 3-handles. This
procedure constructs a smooth closed three-manifold M triangulated by
X. The way handles are attached is determined up to isotopy, and hence
M is determined up to diffeomorphism. �

As we did with surfaces, it is worth noting that this procedure (getting
a unique smooth structure from a simplicial complex) does not work in all
dimensions (here we used implicitly the non-obvious Proposition 9.2.1).

Topologists usually prefer to loosen the notion of “triangulation” by
allowing self- and multiple adjacencies between tetrahedra, see Section
14.1.2. What is important to note here is that, no matter what the
definition of “triangulation” is, a triangulated three-manifold always has
a well-defined smooth structure determined only by the combinatorics of
the triangulation. This shows that smooth three-manifolds can be treated
combinatorially, for instance by a computer.

A relation between triangulations and Heegaard splittings is the fol-
lowing: a smooth triangulation of a closed manifold with t tetrahedra gives
rise to a dual handle decomposition and hence to a Heegaard splitting of
genus t. A fundamental difference between the two notions is that there
is a bounded number of closed three-manifolds triangulated by at most
t tetrahedra for every t, while there are infinitely many manifolds with
Heegaard genus at most g for every g > 1.

11.2. Knots and links

Knots and links are fundamental and beautiful objects in geometric
topology. Knots and links in S3 have a combinatorial and mildly two-
dimensional nature because they can be treated as planar diagrams, but
they should be considered as intrinsically three-dimensional objects.

11.2.1. Definition. A link in a 3-manifold M is a compact submani-
fold of dimension one. Being compact, it consists of finitely many circles,
and a connected link is called a knot. Links and knots are usually consid-
ered up to ambient isotopy.
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Figure 11.2. Every knot may be described via a planar dia-
gram with over/under crossings (left) and its tubular neigh-
bourhood is a knotted solid torus (right).

Every link in S3 can be projected to a plane: if the link is generic
with respect to the projection, its image is a diagram as in Figure 11.2-
(left). Every link in S3 can be described via a diagram and can be thus
treated combinatorially, but it is important to note that the same link can
be represented via infinitely many diagrams and it is hard in general to tell
whether two given diagrams represent the same link. The trivial knot (or
unknot) K ⊂ S3 is the one that has a planar diagram without crossings.

11.2.2. Chirality. The mirror image of a knot or link is obtained by
reflecting it with respect to any plane in S3. On a diagram, this operation
is realised simply by inverting all crossings simultaneously.

A knot is chiral if it is not isotopic to its mirror image, and achiral
otherwise. For instance, the trivial knot is achiral, but the trefoil knot
(shown in Figure 11.2) is chiral. As in the rest of this book, we mostly
ignore orientation issues and often consider implicitly two mirrored knots
or links as equivalent.

11.2.3. Link complement. The tubular neighbourhood of a link L in
an orientable M consists of solid tori by Proposition 1.1.13, and the link
complement of L is the three-manifold with boundary obtained from M

by removing the interiors of these solid tori. If M is compact, the link
complement also is.

Proposition 11.2.1. Let K ⊂ S3 be a knot. The complement of K is
an irreducible manifold. Moreover, the following facts are equivalent:

(1) K is trivial,
(2) K bounds a disc in S3,
(3) the complement of K is a solid torus.

Proof. The complement of K is irreducible by Proposition 9.2.15.
The implication (1)⇒(2) is the smooth Jordan curve theorem, and (2)⇒(1)
holds because all discs in a connected three-manifold are isotopic.
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Figure 11.3. Connected sum of knots: put two knots in
disjoint balls and connect them with a band as shown.

A trivial knot thickens to a standardly embedded solid torus, whose
complement is a solid torus: hence (1)⇒(3). Conversely, if the com-
plement of K is a solid torus then S3 decomposes into two solid tori as
S3 = L(1, q). The meridian of the complement solid torus extends to a
disc with boundary K, hence (3)⇒(2). �

Corollary 11.2.2. All Heegaard tori for S3 are isotopic

Proof. A Heegaard torus T ⊂ S3 is by definition a torus that decom-
poses S3 into two solid tori. By the proposition the core of one of these
solid tori is always isotopic to a trivial knot and hence T is isotopic to a
standard torus. �

A link complement in S3 can be reducible: this holds precisely when
there is a sphere Σ ⊂ S3 disjoint from the link L that cut S3 into two balls,
each containing some components of L. In that case we say that the link
is split.

Corollary 11.2.3. Let L ⊂ S3 be a non-trivial knot or non-split link.
The link complement is Haken.

Proof. The link complementM is irreducible by assumption; by Propo-
sition 9.2.30, if M contains an essential disc then it is a solid torus and
hence L is the trivial knot, which is excluded. NowM is Haken by Corollary
9.4.5. �

11.2.4. Prime knots. There is an operation on knots in S3 called
connected sum, similar to the one on manifolds and described in Figure
11.3. A connected sum is trivial if one of the two knots is trivial; a non-
trivial knot is prime if it is not the result of a non-trivial connected sum,
and composite otherwise.

The crossing number of a knot is the minimum number of crossings
in a diagram describing it. Prime knots with small crossing number have
been tabulated since the XIX century: at present all the prime knots with
up to 16 crossing have been classified (by Hoste – Thistlethwaite – Weeks
[29] in 1998) and the first 14 numbers of them are listed in Table 11.1.
The prime knots with 6 7 crossings are shown in Figure 11.4: the first
three in the list are the unknot, the trefoil, and the figure-eight knot.
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c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n 1 0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972

Table 11.1. The number n of prime knots with c crossings,
for all c 6 14.

Figure 11.4. Prime knots in S3 with at most 7 crossings.
The knots 31 and 41 are the trefoil and the figure-eight knots
respectively.

Figure 11.5. A connected sum produces a sphere (dotted
in the figure) intersecting the knot in two points.

A connected sum gives rise to a sphere which intersects the new knot
in two points, see Figure 11.5. The sphere intersects the knot complement
into an essential annulus.
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Figure 11.6. The meridian m (red) and longitude l (blue) of
a standard torus are oriented as shown here, like a right-hand
screw.

Figure 11.7. The torus knot (2,−7) and the torus link (2,−8).

11.2.5. Torus knots. We now introduce a simple and natural family
of prime knots. Consider the standardly embedded torus T ⊂ S3 with
meridian m and longitude l oriented as in Figure 11.6. A pair (p, q) of co-
prime integers determines a simple closed curve in T that is homologically
qm + pl , and such a curve is called a (p, q)-torus knot. More generally, a
pair of integers (a, b) determines a multicurve in T that is homologically
bm + al , called an (a, b)-torus link.

For instance, the trefoil knot is a (2,−3)-torus knot. More examples
are in Figure 11.7. The knots 31, 51, 71 from Figure 11.4 are torus knots.

Exercise 11.2.4. If |p| 6 1 or |q| 6 1 the torus knot is the unknot.
The torus knots with parameters (p, q), (−p,−q), and (q, p) are isotopic,
the torus knot with parameters (p,−q) is the mirror image of (p, q).

The complement of a torus knot is a quite simple kind of Seifert
manifold. In the following we suppose that p, q > 1 are coprime.
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Figure 11.8. The Hopf link is the (2, 2)-torus link.

Proposition 11.2.5. The complement of a (p, q)-torus knot is a Seifert
manifold fibering over the orbifold (D, p, q). More precisely, it is(

D, (p, r), (q, s)
)

where (r, s) is any pair such that ps + qr = 1.

Proof. Let K ⊂ T ⊂ S3 be the (p, q)-torus knot. The pair (r,−s)

determines another simple closed curve α ⊂ T that intersects K in one
point. The complement of K in a tubular neighbourhood T × [−1, 1] of
T is diffeomorphic to P × S1, where P is a pair of pants. On the tori
T ×{−1} and T ×{1} the curves (∂P ×{pt})∩ (T ×{−1}) and {pt}×S1

are isotopic to α and K.
The complement of T × [−1, 1] in S3 consists of two solid tori, with

meridians (1, 0) and (0, 1). Read in the basis (α,K) the meridians are
(q, s) and (p, r). The complement of K in S3 is obtained from P × S1 by
filling these curves and hence we get

(
D, (p, r), (q, s)

)
. �

In particular the complement of the trefoil knot is
(
D, (2, 1), (3, 1)

)
. If

we suppose p, q > 2, two torus knots with distinct (unordered) parameters
have non-diffeomorphic complements and hence are not isotopic. Our
intuition says that a torus knot is prime, and we can prove this rigorously.

Proposition 11.2.6. Every torus knot is prime.

Proof. If K is obtained as a non-trivial connected sum, there is an
essential annulus in the complement, whose boundary curves are meridians
of K. There is only one essential annulus in

(
D, (p, r), (q, s)

)
and its

boundary curves are not meridians. �

The (2, 2)-torus link is called the Hopf link and is drawn in Figure
11.8.

Exercise 11.2.7. The complement of the Hopf link is T × [0, 1]. Any
two distinct fibres of the Hopf fibration form a Hopf link.
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Figure 11.9. Two satellite knots.

11.2.6. Satellite knots. We have discovered that che composite knots
contain essential annuli in their complement, and we now look for essential
tori. It is convenient to introduce the following definition.

Definition 11.2.8. A knot K ⊂ S3 is a satellite if its complement
contains an essential torus.

We now formulate an equivalent and more inspiring definition of satel-
lite knots which justifies the terminology. A knot in a solid torus D2 × S1

is local if it is contained in a ball, and a core if it is isotopic to {x} × S1.
An embedding ϕ : D2 × S1 ↪→ S3 is trivial (or unknotted) if the image of
a core is a trivial knot.

Proposition 11.2.9. A knot K ⊂ S3 is satellite ⇐⇒ it is the image of
a knot K ′ ⊂ D2 × S1 which is neither local nor a core, along a non-trivial
embedding ϕ : D2 × S1 ↪→ S3.

Proof. A knot K = ϕ(K ′) constructed in this way is satellite, because
the torus ϕ(S1×S1) is essential in the complement of K: it is incompress-
ible (on one side because ϕ is non-trivial, and on the other because K ′ is
not local) and not ∂-parallel (because K ′ is not a core).

Conversely, if K is a satellite knot then its complement contains an
essential torus T ⊂ S3. As every torus in S3, the torus T bounds a solid
torus. Since T is essential, the knot K is contained in this solid torus in a
non-local and non-core way. Moreover the solid torus is knotted, otherwise
T would be compressible on the other side. �

The non-trivial embedding ϕ sends the core curve of D2×S1 to some
non-trivial knot H ⊂ S3 called the companion of K: we should think of
K as orbiting as a “satellite” around its companion H, with orbit path
K ′. When K ′ is contained in the boundary of the solid torus D2 × S1 the
satellite knot K is called a cable knot. Some examples are in Figure 11.9.
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11.2.7. Simple complements. Recall from Section 9.4.7 that a com-
pact three-manifold is simple if it contains no essential sphere, disc, torus,
and annulus. Which knots have a simple complement? To answer to this
question, we need a general lemma on three-manifolds that identifies the
few cases where there are essential annuli without essential tori.

Lemma 11.2.10. LetM be irreducible and ∂-irreducible, with boundary
consisting of tori. The manifold M contains no essential tori but contains
some essential annuli ⇐⇒ it is diffeomorphic to one of the following:(

D, (p1, q1), (p2, q2)
)
,
(
A, (p, q)

)
, P × S1

with p1, p2 > 2. Here P is a pair of pants.

Proof. Propositions 10.4.9 and 10.4.11 imply that the Seifert mani-
folds listed contain vertical essential annuli, but not essential tori.

Conversely, let M contain an essential annulus A. Suppose that A
connects two distinct boundary tori T, T ′ of M. A regular neighbourhood
of T ∪ T ′ ∪ A is diffeomorphic to P × S1, and its boundary contains a
third torus T ′′ ⊂ M. Since T ′′ cannot be essential, it is either boundary
parallel or bounds a solid torus in M, and M is diffeomorphic respectively
to P × S1 or a Dehn filling of it. In the latter case, the Dehn filling is not
fibre-parallel because M is ∂-reducible (use Corollary 10.3.43), hence we
get a Seifert manifold of type

(
A, (p, q)

)
.

If A connects one boundary component to itself we conclude similarly
and may also get M =

(
D, (p1, q1), (p2, q2)

)
. �

We can now state and prove an important trichotomy on knots.

Proposition 11.2.11. Every knot K ⊂ S3 is either a torus knot, a
satellite knot, or has a simple complement.

Proof. We only need to prove that if the complement M contains
an essential annulus and no essential tori then K is a torus knot. The
previous lemma gives M =

(
D, (p1, q1), (p2, q2)

)
, and to get S3 back we

must have a Dehn filling S3 =
(
S2, (p1, q1), (p2, q2), (1, n)

)
. In particular

K is isotopic to a fibre and hence contained in a vertical Heegaard torus
for S3. Heegaard tori are standard by Corollary 11.2.2, and hence K is a
torus knot. �

The relevance of this proposition will be magnified later, after intro-
ducing geometrisation. Note that in particular all the composite knots are
satellite knots: where is the essential torus?

11.3. Dehn surgery

While a Dehn filling consists of attaching a solid torus to a boundary
component, a Dehn surgery is a two-step operation that consists of drilling
a tubular neighbourhood of a knot and then re-gluing it via a different map.



11.3. DEHN SURGERY 355

Using this fundamental operation we can describe every closed three-
manifold via some reasonable and combinatorial drawing on the plane:
a link diagram with some rational numbers attached to its components.
Such a combinatorial description has a strong four-dimensional flavour and
is called a Kirby diagram.

In this section we introduce some basic knot theory concepts: lon-
gitudes, Seifert surfaces, Dehn surgery, and the Lickorish-Wallace Theo-
rem which asserts that every closed orientable 3-manifold is obtained by
surgerying some link in S3.

11.3.1. Canonical longitudes. The tubular neighbourhood N of a
knot K ⊂ S3 is a solid torus. As usual with solid tori, a meridian is a
simple closed curve m ⊂ ∂N bounding a disc in N and a longitude is
any other simple closed curve l such that m and l generate H1(∂N,Z).
The meridian m is unique up to sign, but the longitude l is not: if l is a
longitude, then l + km also is for any k ∈ Z.

The purpose of this section is to define a canonical longitude.

Proposition 11.3.1. Let L ⊂ S3 be a link with k components and M
its complement. We have H1(M,Z) = Zk , generated by the k meridians.

Proof. Let N = N1 t . . . t Nk be the solid tori neighbourhoods of L
and Ti = ∂Ni . The Mayer–Vietoris sequence on S3 = M ∪ N gives

0 −→ H1(T1 t . . . t Tk) −→ H1(M)⊕H1(N1 t . . . t Nk) −→ 0

since H2(S3) = H1(S3) = 0. The equalities H1(Ti) = Z×Z and H1(Ni) =

Z imply that H1(M) = Zk . The group H1(Ti) is generated by (mi , li) and
mi goes to zero in H1(Ni). Therefore the meridians m1, . . . , mk go to
generators of H1(M). �

Corollary 11.3.2. Let K ⊂ S3 be a knot and M be its complement. A
unique (up to sign) longitude l ⊂ ∂M vanishes in H1(M,Z).

Proof. In the map Z × Z = H1(∂M) → H1(M) = Z the meridian m
goes to a generator, hence the kernel is generated by a longitude l . �

We call l the canonical longitude of K. The torus T = ∂M is hence
equipped with a canonical basis (m, l) for H1(T,Z); we orient m and l
as shown in Figure 11.6, like a right-hand screw. The pair (m, l) is well-
defined up to reversing both their signs.

11.3.2. Seifert surfaces. We now show that the canonical longitude
has a concrete geometric interpretation.

Definition 11.3.3. A Seifert surface for a knot K ⊂ S3 is any ori-
entable connected compact surface S ⊂ S3 with ∂S = K.
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Figure 11.10. A Seifert surface for the trefoil knot: it is a
punctured torus.

See an example in Figure 11.10. Every Seifert surface S determines
a longitude l for K: pick a small tubular neighbourhood N of K and set
l = S ∩ ∂N. The same knot K has plenty of non-isotopic Seifert surfaces,
but luckily these all induce the same longitude:

Proposition 11.3.4. Every knot K has a Seifert surface S. Every
Seifert surface for K induces the canonical longitude l .

Proof. Let M be the complement of K. Let S be a surface represent-
ing a generator of H2(M, ∂M) = H1(M) = Z. The long exact sequence

. . . −→ H2(M, ∂M) −→ H1(∂M) −→ H1(M) −→ . . .

implies that [S] is mapped to a non-trivial primitive element α ∈ H1(∂M) =

Z×Z that is trivial in H1(M). Therefore [∂S] = α = [l ] and ∂S consists of
an odd number of parallel copies of l and some homotopically trivial simple
closed curves in T = ∂M. The homotopically trivial components may be
eliminated by isotoping them inside M and capping them with discs; if the
parallel copies are more than 1, since their signed sum is 1, there must be
two of them that are close and with opposite signs, that can be canceled
by isotoping them inside M and capping them with an annulus. At the end
we get ∂S = K. �

The Seifert genus of K is the minimum genus of a Seifert surface.

Proposition 11.3.5. The unknot is the only knot with Seifert genus 0.

Proof. A knot has genus zero ⇐⇒ it bounds a disc. �

Figure 11.10 shows that the trefoil knot has genus one.

11.3.3. Dehn surgery. Let L ⊂ M be a link with k components in
an orientable 3-manifold M. A Dehn surgery on L is a Dehn filling of the
complement of L. That is, it is a two-step operation that consists of:

(1) (drilling) the removal of small open tubular neighbourhoods of
L, that creates new boundary tori T1, . . . , Tk ;

(2) (filling) a Dehn filling of the new boundary tori T1, . . . , Tk .
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Figure 11.11. Two Kirby diagrams describing the lens space
L(p, q) and the Poincaré homology sphere Σ(2, 3, 5).

We remove the tubular neighbourhoods of L and glue them back differently:
this explains the use of the word surgery. The outcome is a new manifold
N with the same boundary of M, that is often not diffeomorphic to M.

The surgered manifold N is determined by the slopes in T1, . . . , Tk
that are killed by the Dehn filling, see Section 10.1.1. When M = S3,
every torus Ti is equipped with a canonical basis mi , li , the slope is of
the form ±(pimi + qi li) and is hence determined by the rational number
pi
qi
∈ Q ∪ {∞}. The full surgery on the link is comfortably encoded by

assigning the number pi
qi
to the i-th component of L, for every i = 1, . . . , k.

The result of a Dehn surgery along L ⊂ S3 is a closed orientable
3-manifold. The slope ∞ = 1

0
indicates the meridian mi .

Proposition 11.3.6. An ∞-surgery on a knot K has no effect.

Proof. It consists of removing a solid torus neighbourhood of K and
regluing it back with the same map. �

A Kirby diagram is a link diagram on the plane with a rational number
pi
qi

assigned to each component. Such a diagram defines a Dehn surgery
and hence a closed orientable three-manifold. Some examples are shown
in Figure 11.11.

Exercise 11.3.7. The p
q
-surgery on the unknot yields L(p, q).

The slope 0 indicates the canonical longitude li . More generally, the
integer ni ∈ Z encodes the longitude nimi + li . The surgery is integral if
the coefficients pi

qi
are all integers.

Remark 11.3.8. The notion of integral Dehn surgery exists for any
link L ⊂ M in any 3-manifold M: a Dehn surgery is integral if the killed
slopes are longitudes of the previously removed solid tori. However on a
generic M there is no rule for choosing a canonical longitude and hence to
transform slopes into numbers.

Let N be obtained by Dehn surgery on K ⊂ S3 with coefficient p
q
.

Proposition 11.3.9. The surgered manifold N has H1(N,Z) = Z/pZ.
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Proof. Let M be the complement of the knot K. We know that the
meridian m generates H1(M) = Z while the longitude l is zero there. The
Dehn filling kills the element pm + ql = pm. �

Recall that a homology sphere is a closed 3-manifold M having the
same integral homology as S3, that is with trivial H1(M,Z).

Corollary 11.3.10. If the coefficient is 1
q
the surgered manifold N is a

homology sphere.

We have found a simple method to construct many homology spheres.

11.3.4. Torus knots. As a first example, we study the effect of a
Dehn surgery on torus knots. We suppose p, q > 1.

Proposition 11.3.11. The t
u
-Dehn surgery on a (p, q)-torus knot gives(

S2, (p, r), (q, s), (t − pqu, u)
)

if
t

u
6= pq,(11)

L(p, r)#L(q, s) if
t

u
= pq(12)

where (r, s) is any pair with ps + qr = 1.

Proof. Recall from the proof of Proposition 11.2.5 that the comple-
ment of K in T × [−1, 1] is diffeomorphic to P × S1. The meridian m of
K is isotopic to a component of ∂P ×{pt}, so the canonical longitude l of
K is isotopic to l ′ + km for some k ∈ Z, where l ′ is isotopic to {pt} × S1,
i.e. it is the framing induced by T .

By Proposition 11.2.5 the Dehn filling is
(
S2, (p, r), (q, s), (t−ku, u)

)
and we need to determine k. Recall that if t

u
= 0

1
the manifold has infinite

cyclic homology, hence it is a Seifert manifold with e = 1
pq
− 1

k
= 0 by

Proposition 10.3.15: we deduce that k = pq.
When t − pqu = 0 the filling is fiber-parallel and Corollary 10.3.43

shows that we actually get L(p, r)#L(q, s). �

Recall from Corollary 10.3.16 that for every triple (p, q, n) of pairwise
coprime natural numbers p, q, n > 2 there is a unique Seifert homology
sphere Σ(p, q, n) fibering over the orbifold (S2, p, q, n).

Corollary 11.3.12. Fix two coprime p, q > 2. The Seifert homology
sphere obtained by 1

u
-surgery on the (p, q)-torus knot is Σ(p, q, |pqu−1|).

In particular the 1-surgery on the trefoil knot (seen as a (2, 3)-torus
knot) depicted in Figure 11.11 produces the Poincaré homology sphere
Σ(2, 3, 5).

Exercise 11.3.13. Every homology sphere of type Σ(2, 3, k) may be
obtained via a Dehn surgery of the trefoil knot.

Note that when t − pqu = ±1 the Seifert manifold (11) has only two
singular fibres and is hence a lens space.
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S

A

Figure 11.12. We push γ in a collar for ∂H2 and drill a solid
torus neighbourhood, drawn here as a yellow parallelepiped.

Corollary 11.3.14. Fix two coprime p, q > 2 and n > 1. When t
u

=

pq± 1
n
the t

u
-Dehn surgery on a (p, q)-torus knot produces the lens space

L(t, uq2) = L(npq ± 1, nq2).

Proof. The Seifert manifold (11) is(
S2, (p, r), (q, s), (1,±n)

)
=
(
S2, (p, r), (q, s ± nq)

)
= L(p(s ± nq) + rq, (−q)(s ± nq) + sq)

= L(1± npq,∓nq2)

using Exercise 10.3.6. �

We note that we never get S2 × S1 or S3 via non-trivial surgeries on
non-trivial torus knots. The lens space with smallest fundamental group
that we may get is L(5, 1), which arises from a 5-Dehn surgery on the
trefoil knot.

11.3.5. The Lickorish-Wallace theorem. We now prove that the Dehn
surgery construction is as general as possible.

Theorem 11.3.15 (Lickorish-Wallace theorem). Every closed orientable
3-manifold can be described via an integral Dehn surgery along a link
L ⊂ S3.

Proof. Let M be a closed orientable 3-manifold. Pick a Heegaard
splitting M = H1 ∪ψ H2 where H1 and H2 are genus-g handlebodies and
ψ : ∂H1 → ∂H2 is a diffeomorphism. We fix an identification of both
H1 and H2 with a model handlebody H, so that ψ can be interpreted as
an element of the mapping class group MCG(S) of the genus-g surface
S = ∂H.

Example 11.1.5 shows that the three-sphere also decomposes as S3 =

H1 ∪ϕ H2 for some ϕ ∈ MCG(S). Theorem 6.5.9 says that ψ ◦ ϕ−1 is a
composition of Dehn twists

ψ ◦ ϕ−1 = T±1
γk
◦ . . . ◦ T±1

γ1
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along some curves γi ⊂ S. Set Mi = H1 ∪ψi H2 with

ψi = T±1
γi
◦ . . . ◦ T±1

γ1
◦ ϕ.

We have M0 = S3 and Mk = M. We prove that Mi can be described via
an integral Dehn surgery along a i-components link in S3 by induction on
i . To obtain that it suffices to check that Mi+1 can be obtained from Mi

via integral Dehn surgery along a knot. We have

Mi = H1 ∪ψi H2, Mi+1 = H1 ∪T±1
γi+1
◦ψi
H2.

Now fix a collar of S = ∂H2 in H2 and push γi+1 inside the collar as in Figure
11.12. Drill from H2 a solid torus around γi+1 (a yellow parallelepiped in
the figure) to get a submanifold Hdrill

2 ⊂ H2. We see Tγ±1
i+1

as a Dehn twist
supported in the annulus A ⊂ S drawn in the figure.

The Dehn twist supported on A extends product-wise to the solid torus
A× [0, 1] lying between A and the drilled yellow parallelepiped, and extends
trivially to a self-diffeomorphism T : Hdrill

2 → Hdrill
2 such that T |S = T±1

γi+1
.

We define
Mdrill
j = H1 ∪ψj H

drill
2

for j = i , i + 1. Since T |S = T±1
γi+1

the map T extends to a diffeomorphism

T : Mdrill
i −→ Mdrill

i+1.

Therefore Mi+1 is obtained from Mi by Dehn surgery along γi+1. The
surgery is integral since T sends a meridian of the drilled yellow solid torus
to a longitude. The proof is complete. �

The theorem shows that every closed orientable three-manifold can
be constructed using Kirby diagrams. As for knots and many other com-
binatorial descriptions of topological objects, it is important to note that
many different Kirby diagrams may describe the same three-manifold, and
in general it is hard to tell, given two diagrams, whether they define the
same manifold or not.

11.3.6. Four-manifolds. The theorem of Lickorish and Wallace has
a nice four-dimensional interpretation, which shows in particular that every
closed orientable three-manifold is the boundary of a simply-connected
four-manifold.

Recall from Section 1.7.5 that in dimension four a two-handle H =

D2 × D2 is attached to an orientable four-manifold W via an embedding
ψ : S1 ×D2 → ∂W . After attaching the handle H to W , the boundary of
W changes by substituting the solid torus ψ(S1 ×D2) with another solid
torus D2 × S1: in other words, it changes by Dehn surgery. The Dehn
surgery is integral because the meridians of the two solid tori intersect in
one points.

Conversely, every integral Dehn surgery on a knot K ⊂ ∂W may be
interpreted as the effect of attaching some 2-handle: it suffices to interpret
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the drilled and filled solid tori as horizontal and vertical boundaries of a
four-dimensional two-handle.

With such an interpretation, we may consider S3 as the boundary of
D4 and see the integral Dehn surgery on a link L ⊂ S3 as the result of
attaching some two-handles to D4. The Lickorish-Wallace theorem implies
the following.

Corollary 11.3.16. Every closed orientable three-manifold is the bound-
ary of a simply-connected compact four-manifold.

Proof. Every closed orientable three-manifold is the result of an inte-
gral surgery on a link L ⊂ S3 and is hence the boundary of a four-manifold
obtained by attaching some two-handles to D4. Every such manifold is
simply-connected by Van Kampen’s theorem. �

This theorem reveals in particular that it is fairly easy to construct
plenty of simply connected four-manifolds with boundary. Note that the
simply connected four-manifolds constructed in this way are not con-
tractible: indeed the following proposition shows that they have a non-
trivial second homology group.

Proposition 11.3.17. A four-manifold with one 0-handle and k 2-
handles is homotopy equivalent to a bouquet of k two-spheres.

Proof. We first deformation retract the two-handles over their core
discs, and then we shrink the whole 0-handle to a point. �

To construct contractible four-manifolds, we need to employ 1-handles.

11.3.7. Three-manifolds with boundary. The Lickorish-Wallace The-
orem extends to compact manifolds with boundary, in the appropriate way.

Proposition 11.3.18. Every compact orientable 3-manifold M with
boundary is obtained from S3 as follows: pick LtC ⊂ S3 where L is a link
and C is a 1-complex; remove an open regular neighbourhood of C and
perform an integral surgery on L.

Proof. Cap off the boundary of M by adding handlebodies Hg, to
get a closed manifold M ′. Choose a 1-complex C ⊂ M ′ whose regular
neighbourhood consists of these handlebodies, so that by removing C we
get M back.

Now M ′ is obtained from S3 via integral surgery along some link L,
and by general position we may suppose that C is disjoint from the cores
of the surgered solid tori, so we can see both C and L disjointly in S3. �

If ∂M consists of tori we may suppose that C is also a link.
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11.4. Surface bundles

Seifert manifolds have base orbifolds of dimension 2 and smooth fibres
of dimension 1. We now introduce a complementary construction where
the base orbifolds have dimension 1 and the smooth fibres have dimension
2. These are called surface bundles.

11.4.1. Surface bundles. A surface bundle over S1 is a fibre bundle
M → S1 of a compact orientable 3-manifold M (possibly with boundary)
over S1, whose fibre Σ is a connected compact orientable surface. If M
has boundary, then Σ also has, and ∂M consists of tori fibering over S1.

Proposition 11.4.1. Every surface bundle over S1 is constructed by
taking Σ× [0, 1] and glueing Σ× 0 to Σ× 1 via an orientation-preserving
diffeomorphism ψ.

Proof. One such glueing clearly gives rise to a surface bundle over
S1. Conversely, by cutting a surface bundle over S1 along a fibre we get a
surface bundle over the interval, which is a product Σ× [0, 1]. �

The diffeomorphism ψ is the monodromy of the surface bundle Mψ.
Since isotopic glueings produce diffeomorphic manifolds, the three-manifold
Mψ depends only of the class of ψ in the mapping class group MCG(Σ)

on Σ. More than that, it actually depends only on its conjugacy class:

Proposition 11.4.2. If ψ and φ are conjugate in MCG(Σ), then Mψ

and Mφ are diffeomorphic.

Proof. The diffeomorphism g : Σ→ Σ that conjugates them extends
to Σ× [0, 1] and gives a diffeomorphism Mψ → Mφ. �

The manifoldsMψ andMψ−1 are orientation-reversingly diffeomorphic.

11.4.2. Properties. We now start to investigate the topological prop-
erties of surface bundles. Let M → S1 be a surface bundle with fibre Σ.

Exercise 11.4.3. The maps Σ→ M → S1 induce an exact sequence

0 −→ π1(Σ) −→ π1(M) −→ π1(S1) −→ 0.

This implies in particular that π1(M) surjects onto Z and therefore:

Corollary 11.4.4. We have b1(M) > 1.

In other terms, the surface fibre Σ is non-separating and hence [Σ] ∈
H2(M, ∂M) is non-trivial (and has infinite order).

Note that there is an obvious degree-n regular covering Mψn → Mψ

for every n and an infinite regular covering Σ × R → Mψ induced by the
normal subgroup π1(Σ) / π1(M).

Proposition 11.4.5. The fibre Σ is an essential surface. If χ(Σ) > 0

then M is diffeomorphic to D × S1 or S2 × S1. If χ(Σ) 6 0 the universal
cover of int(M) is R3 and M is Haken.
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Proof. If χ(Σ) > 0 then MCG(Σ) is trivial and we are done, so we
suppose χ(Σ) 6 0. The fibre Σ is incompressible because π1(Σ) injects,
and is also ∂-incompressible by a doubling argument (the double DM fibres
to S1 with incompressible fibre DΣ, hence Σ is ∂-incompressible). The
fibre is clearly not ∂-parallel, hence it is essential.

The manifold M is covered by Σ × R, whose interior is covered by
R2 × R = R3: hence M is irreducible. It is also ∂-irreducible because its
double also fibres and hence is irreducible. Therefore M is Haken. �

11.4.3. Semi-bundles. The Seifert fibrations are circle bundles over
two-dimensional orbifolds, and likewise it is natural to consider surface
bundles over 1-orbifolds. The compact 1-orbifolds are S1 and the closed
segment with mirrored endpoints. We have already considered the S1 case
and we now define some surface bundles over the closed segment, called
semi-bundles.

Let Σ be a non-orientable surface, with orientable double cover p : Σ̃→
Σ and deck transformation τ that gives Σ = Σ̃/τ . We have

Σ ×∼ (−1, 1) =
(

Σ̃× (−1, 1)
)
/(τ,ι)

with ι(x) = −x . A local semi-bundle is the map Σ ×∼ (−1, 1) → [0, 1)

that sends (p, x) to |x |. The fibre over 0 is Σ, that over x ∈ (0, 1) is Σ̃.
A semi-bundle M → [−1, 1] is a map which is a local semi-bundle

when restricted to [−1, 1− ε) and (ε, 1]. The fibre over ±1 is Σ and the
fibre of x ∈ (−1, 1) is Σ̃. We should think about this object as a surface
bundle over the segment orbifold [−1, 1] with mirror points ±1.

Exercise 11.4.6. Every semi-bundle is constructed by gluing two copies
of Σ ×∼ [−1, 1] along their boundaries via some diffeomorphism.

Set I = [−1, 1]. Let M → I be a semi-bundle with fibres Σ and Σ̃.
Note that I = R/Γ where Γ < Isom(R) is generated by the reflections at
the points ±1. The orbifold fundamental group of I is

π1(I) = Γ = Z/2Z ∗ Z/2Z.

Exercise 11.4.7. The maps Σ̃→ M → I induce an exact sequence

0 −→ π1(Σ̃) −→ π1(M) −→ π1(I) −→ 0.

Proposition 11.4.8. If χ(Σ) > 0 thenM is diffeomorphic to RP2 ×∼ S1.
If χ(Σ) 6 0 the orientable fibre Σ̃ is essential, the universal cover of int(M)

is R3, and M is Haken.

Proof. Same proof as in the standard bundle case. �

Exercise 11.4.9. An orientable 3-manifold M has a (semi-)bundle
structure if and only if there is an orientable Σ ⊂ M that cuts M into
interval bundles.
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Let M → I be a semi-bundle. We may pull-back the semi-bundle
along the orbifold double cover S1 → I and get an ordinary surface bundle
M̃ → S1, so that the following diagram commutes:

M̃ //

��

M

��
S1 // I

Every semi-bundle is thus covered by an ordinary bundle.

11.4.4. Seifert manifolds. We now classify the Seifert manifolds that
have a surface (semi-)bundle structure.

Proposition 11.4.10. A Seifert manifold M has a (semi-)bundle struc-
ture if and only if one of the following holds:

• ∂M 6= ∅,
• e(M) = 0,
• M =

(
T, (1, e)

)
or
(
K, (1, e)

)
,

• M =
(
S2, (2, 1), (2, 1), (2, 1), (2, 2q + 1)

)
,

• M =
(
RP2, (2, 1), (2, 2q + 1)

)
.

The manifolds in the last two lines occur only as semi-bundles.

Proof. If ∂M 6= ∅ or e(M) = 0 thenM → S has an orientable section
Σ, which cutsM into interval bundles: hence Σ is a fibre of a (semi-)bundle
(see Exercise 11.4.9).

Let S be one of the orbifolds

T, K, (S2, 2, 2, 2, 2), (RP2, 2, 2).

It contains a circle that splits S into one or two annuli, Möbius strips, or
(D, 2, 2). Every circle fibering over these pieces is an interval bundle by
Proposition 10.3.33. Therefore every fibering M → S contains a vertical
torus that splits M into interval bundles and is hence a (semi-)bundle.

Conversely, if M has a (semi-)bundle structure the orientable fibre is
essential and is hence either horizontal or vertical: we get one of the types
listed. �

11.4.5. Torus bundles. A torus bundle is of course a surface bundle
M → S1 with fibre a torus T . We fix a basis for π1(T ), so that MCG(T ) =

SL2(Z). By what said above, every matrix A ∈ SL2(Z) defines a torus
bundle MA with monodromy A. We want to understand when MA is a
Seifert manifold.

Exercise 11.4.11. For every e ∈ Z there are diffeomorphisms

M(1 e
0 1

) ∼= (
T, (1, e)

)
, M(−1 e

0 −1

) ∼= (
K, (1, e)

)
.

The classification of torus bundles reduces to linear algebra.
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Proposition 11.4.12. Two torus bundlesMA andMA′ are diffeomorphic
if and only if A′ is conjugate to A±1 in SL2(Z).

Proof. Let MA
∼= MA′ be a diffeomorphism. Consider the tori T

and T ′ of the two fibrations both inside MA and minimise their transverse
intersection.

If T ∩ T ′ = ∅, by Proposition 9.3.18 the tori are parallel and the two
fibrations are isotopic, so A′ is conjugate to A±1. Otherwise by the same
proposition T ′ decomposes into fibered annuli in the product MA \T . One
such fibered annulus identifies a circle γ ⊂ T preserved by A. Thus A is
conjugate to

(
1 e
0 1

)
or
(−1 e

0 −1

)
, and A′ is conjugate to

(
1 e′
0 1

)
or
(−1 e′

0 −1

)
for the

same reason. Exercise 11.4.11 implies that A′ = A±1. �

Exercise 11.4.13. A matrix A ∈ SL2(Z) has finite order if and only if
A = ±I or |trA| < 2. Every finite-order A is conjugate to one of(

1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
−1 1

−1 0

)
,

(
0 −1

1 0

)
,

(
1 −1

1 0

)
or their inverses. These matrices have order 1, 2, 3, 4, 6.

Hint. Use Proposition 2.3.9. �

We can easily determine whether a torus bundle is Seifert by looking
at its monodromy A.

Proposition 11.4.14. Let M = MA be a torus bundle with monodromy
A 6= ±I. The following holds:

• if |trA| < 2 then M is a Seifert manifold with e = 0 and χ = 0,
• if |trA| = 2 then M is a Seifert manifold with e 6= 0 and χ = 0,
• if |trA| > 2 then M is not a Seifert manifold.

Proof. Consider T × [−1, 1] foliated by lines {x} × [−1, 1]. The foli-
ation extends to MA. If A has finite order, then MA is finitely covered by
MI = T × S1 and hence all fibers are compact. Therefore MA is Seifert
fibered and covered by T × S1, and we get e = χ = 0.

If |trA| = 2 then A is conjugate to
(±1 e

0 ±1

)
and we use Exercise 11.4.11.

Proposition 11.4.10 easily shows that all the Seifert manifolds that are
torus bundles are realised with |trA| 6 2, hence if |trA| > 2 the manifold
M is not Seifert by Proposition 11.4.12. �

When |trA| > 2 we say that the monodromy A is Anosov.

11.4.6. Bundles with χ(Σ) < 0. Proposition 11.4.12 does not ex-
tend to surface bundles with χ(Σ) < 0; indeed it may happen that non-
conjugate monodromies in MCG(Σ) give rise to diffeomorphic manifolds
and understanding when this happens is a hard problem.

Proposition 11.4.14 extends nevertheless and reflects the trichotomy
of mapping classes. Let Σ be a closed orientable surface with χ(Σ) < 0.
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Recall from Section 8.4 that every element ψ ∈ MCG(Σ) is either finite
order, reducible, or pseudo-Anosov.

Proposition 11.4.15. Let Mψ be a surface bundle with fibre Σ and
monodromy ψ ∈ MCG(Σ). The following holds:

• if ψ has finite order, then Mψ is Seifert with χ < 0 and e = 0,
• if ψ is reducible, then Mψ contains an essential torus,
• if ψ is pseudo-Anosov, then Mψ is simple and not Seifert.

Proof. Same proof as Proposition 11.4.14. If ψ has finite order, it
is an isometry for some hyperbolic metric on Σ, and the line fibration of
Σ× [−1, 1] glues to a Seifert fibration for Mψ.

If ψ is reducible there are some disjoint essential simple closed curves
γ1, . . . , γk with ψ(γi) = γi+1 cyclically; by gluing the annuli γi × [−1, 1] we
get a torus T ⊂ Mψ. It is essential because by cutting along it we still get
a fibration over S1 with fibers having χ 6 0.

If ψ is pseudo-Anosov there are no essential tori T ⊂ Mψ, for by
minimising T ∩ Σ then Mψ \ T would consist of essential annuli of type
γ×[−1, 1] and hence ψ would be reducible. The manifoldMψ is not Seifert
because the fibre Σ would become a horizontal surface: then M would be
covered by Σ× S1 and hence ψ would be of finite order. �

11.5. JSJ decomposition

In Chapter 9 we cut every closed three-manifold along spheres, and
it is now time to decompose it further along tori. This two-steps cutting
operation is called the JSJ decomposition of the manifold, after the names
of Jaco, Shalen, and Johansson who discovered it in the mid 1970s.

The core of this decomposition is the existence of a canonical set of
disjoint essential tori, unique up to isotopy.

11.5.1. Canonical torus decomposition. LetM be an orientable irre-
ducible and ∂-irreducible compact 3-manifold with (possibly empty) bound-
ary consisting of tori. How can we define a canonical set of disjoint essen-
tial tori in M? The answer is not obvious: for instance, if M is a Seifert
manifold, it may contain many vertical incompressible tori and there is no
canonical way to choose among them.

We will soon see that the Seifert manifolds are in fact the only possible
source of ambiguity. Let

S = T1 t · · · t Tk

be a set of disjoint essential tori Ti ⊂ int(M). We say that S is a torus
decomposition of M if it decomposes M into blocks that are either:

• torus (semi-)bundles,
• Seifert manifolds, or
• simple manifolds.
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A torus decomposition is minimal if no proper subset of S is a torus
decomposition. We prove here the following.

Theorem 11.5.1 (JSJ decomposition). Let M be an orientable irre-
ducible and ∂-irreducible compact 3-manifold with (possibly empty) bound-
ary consisting of tori. A minimal torus decomposition for M exists and is
unique up to isotopy.

Such a minimal decomposition is called the canonical torus decompo-
sition or the JSJ decomposition of M. The canonical torus decomposition
may be empty: this holds precisely when M is itself a torus (semi-)bundle,
Seifert, or simple.

Remark 11.5.2. Torus (semi-)bundles are closed: therefore ifM is not
itself a torus (semi-)bundle, the blocks of its canonical decomposition are
either Seifert or simple.

11.5.2. Existence and uniqueness. LetM be an orientable irreducible
and ∂-irreducible compact 3-manifold with (possibly empty) boundary con-
sisting of tori. We now prove Theorem 11.5.1. Let us start by showing
existence.

Proposition 11.5.3. The manifold M has a torus decomposition.

Proof. Let T1, . . . , Tk be a maximal set of disjoint non-parallel es-
sential tori in M, which exists by Corollary 9.4.8. We now prove that
S = T1 t · · · t Tk is a torus decomposition.

Suppose it is not: one block N of the decomposition is neither a
(semi-)bundle, nor Seifert, nor simple. The block N is irreducible and
∂-irreducible since these properties are preserved after cutting along in-
compressible surfaces. Being not simple, it contains an essential annulus
A or an essential torus T .

In the latter case we can add T to the family T1, . . . , Tk and get
a contradiction since S is maximal. In the former case Lemma 11.2.10
applies and N is Seifert. �

Since M has a torus decomposition, it certainly has a minimal one.
We now prove that it is unique.

Proposition 11.5.4. The manifold M has a unique minimal torus de-
composition up to isotopy.

Proof. Let S = T1 t · · · t Tk and S′ = T ′1 t · · · t T ′k ′ be two minimal
torus decompositions for M. We minimise their transverse intersections,
so that S ∩ S′ consists of essential circles cutting some tori into annuli.

Let T ′i be decomposed into some annuli. Each such annulus is essential
in M \S, hence it is contained in some non-simple block, i.e. a Seifert one.
It is contained there horizontally or vertically: in the former case, the
block is

(
D, (2, 1), (2, 1)

)
, S∗ ×∼ S1, or A× S1 with S∗ the Möbius strip.
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The first two blocks are diffeomorphic, and by swapping the fibration the
annulus becomes vertical. The third block T × I is excluded since S is
minimal.

Now all annuli in T ′i are vertical. Two consequent vertical annuli are
separated by some torus Tj ; since the two annuli are fibered, the fibers of
the two Seifert blocks incident to Tj are isotopic: hence the two blocks
glue to a bigger Seifert block and Tj can be removed, a contradiction since
S is minimal.

We have shown that S ∩ S′ = ∅. If Ti is parallel to T ′j we superpose
the two tori, cut M along Ti = T ′j and proceed by induction. Now we
suppose by contradiction that there is no parallelism.

Every T ′i is an essential vertical torus in a Seifert block of M \ S, and
vice versa. This easily implies that all the blocks in M \ S, M \ S′, and
all their intersections are Seifert! Pick one such intersection. It has a
unique Seifert fibration, unless it is K ×∼ I which may fiber in two ways.
Since ∂(K ×∼ I) is connected, one block is K ×∼ I itself and we change
the fibration on this block if necessary. Now all intersections and all blocks
have unique fibrations and they all glue to a Seifert fibration for M, a
contradiction. �

The proof of Theorem 11.5.1 is complete.

Remark 11.5.5. The sphere decomposition of Theorem 9.2.29 and
the torus decomposition of Theorem 11.5.1 differ in two aspects: (i) the
set of decomposing spheres is not canonical up to isotopy, while the set of
tori is; (ii) on the other hand, after cutting along the spheres and capping
off we get a canonical set of prime manifolds, whereas if we cut along the
tori we get some canonical manifolds with toric boundaries, but there is
no canonical way to cap them off.

11.5.3. Geometric decomposition. The geometric decomposition is
a slight variation of the canonical torus decomposition that is more suited
to the geometrisation perspective that we will encounter in the next chap-
ters. It is constructed from the canonical torus decomposition S for M as
follows. Whenever a block N of the torus decomposition is diffeomorphic
to K ×∼ I, we substitute the torus ∂N in S with the core Klein bottle K
of K ×∼ I. This substitution has the effect of deleting N from the list of
blocks of the decomposition.

The geometric decomposition consists of incompressible tori and Klein
bottles. One reason for preferring the geometric decomposition to the
canonical torus one is that it contains no interval bundles and every Seifert
block has a unique fibration up to isotopy (because we have eliminated the
K ×∼ I blocks). In particular we get the following easy criterion, whose
proof is straightforward.
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Proposition 11.5.6. Let M be an orientable irreducible ∂-irreducible
compact 3-manifold with (possibly empty) boundary consisting of tori. A
non-empty torus decomposition of M is the geometric one if and only if:

• every block is simple or Seifert with χ < 0,
• the fibrations of two adjacent Seifert blocks do not match.

Another reason for preferring the geometric decomposition is that
every Seifert block can be geometrised with finite volume, whereas K ×∼ I

needs infinite volume (this will be shown in the next chapter).
Geometric decompositions also behave well under finite coverings. Let

M̃ → M be a finite covering between two orientable irreducible and ∂-
irreducible compact 3-manifolds with (possibly empty) boundary consisting
of tori.

Proposition 11.5.7. The geometric decomposition of M̃ is the coun-
terimage of that of M.

Proof. The criterion of Proposition 11.5.6 lifts from M to M̃. �

11.5.4. Graph manifolds. Waldhausen introduced in the 1960s a sim-
ple but non-trivial class of three-manifolds using only two blocks. Here D
and P are the disc and the pair-of-pants.

Definition 11.5.8. A graph manifold is any orientable three-manifold
that decomposes along disjoint tori into pieces diffeomorphic to D×S1 or
P × S1.

One may describe any such manifold via a graph with vertices of va-
lence 1 and 3 representing the blocks, and some appropriate 2×2-matrices
labelling the edges telling the way the two incident blocks are glued. As
usual, different graphs may represent the same manifold.

Exercise 11.5.9. LetM be an orientable three-manifold. The following
are equivalent:

(1) M is a graph manifold,
(2) M = M1# . . .#Mh for some prime manifoldsMi whose geomet-

ric decompositions consist of Seifert manifolds or torus (semi-
)bundles.

Hint. Use Corollary 10.3.44 and Proposition 11.5.6. �

11.5.5. References. Most of the arguments contained in this chapter
are well-known to three-dimensional topologists and can be found in many
books. A standard introduction to knots and links is Rolfsen [50], and
much more on Dehn surgeries and their four-dimensional interpretations
is contained in Gompf – Stipsicz [23]. A proof of the JSJ decomposition
can be found in Hatcher [26], the original papers of Jaco – Shalen and
Johannson are [31] and [32]. Fomenko – Matveev [18] contains a chapter
devoted to graph manifolds; the original paper of Waldhausen is [60].





CHAPTER 12

The eight geometries

We have concluded the previous chapter by defining a geometric de-
composition of three-manifolds along sphere and tori. The reason for
using this terminology is the famous geometrisation conjecture, proposed
by Thurston in 1982 and proved by Perelman in 2003, which states that
each of the blocks of the decomposition should be geometric, in the sense
that it may be equipped with a nice Riemannian metric.

There are eight nice Riemannian metrics available in dimension three.
Three of them are the constant curvature ones (hyperbolic, elliptic, and
flat), while the other five are some kind of (sometimes twisted) products of
low-dimensional geometries. All these metrics are homogeneous: distinct
points have isometric neighbourhoods.

The Seifert manifolds studied in the previous chapters occupy precisely
six of these eight geometries, and we analyse them in detail here.

12.1. Introduction

A connected Riemannian manifold M is homogeneous if for every
p, q ∈ M there is an isometry of M sending p to q, and is isotropic if at
each point p every isometry of TpM is realised by an isometry of M. It is
easy to prove that a complete isotropic manifold is also homogeneous and
has constant sectional curvature: the fundamental examples of isotropic
spaces are Sn, Rn, and Hn.

The homogeneous condition alone (without isotropy) is more relaxed
and produces manifolds that may not have constant sectional curvature.
We introduce here eight important homogeneous simply-connected com-
plete Riemannian 3-manifolds:

S3, R3, H3, S2 × R, H2 × R, Nil, Sol, S̃L2.

The first three manifolds are also isotropic and have constant sectional
curvature, the other five are not.

Let M be one of these eight model manifolds. We say that a Rie-
mannian 3-manifold N has a geometric structure modelled on M if N is
locally isometric to M, that is if every point p ∈ N has an open neigh-
bourhood isometric to some open set in M. This implies that N is locally
homogeneous: every two points p, q ∈ N have isometric neighbourhoods
U(p) ∼= U(q), both isometric to an ε-ball at any point of M.

371
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χ > 0 χ = 0 χ < 0

e = 0 S2 × R R3 H2 × R
e 6= 0 S3 Nil S̃L2

Table 12.1. The closed manifolds modelled on six geome-
tries are precisely the six commensurable classes of Seifert
manifolds, distinguished by the numbers e and χ.

If N is complete, the developing map construction of Theorem 3.1.2
applies also in this context and shows that N = M/Γ for some discrete
group Γ < Isom(M) acting freely.

We now start a long journey through these eight geometries. The
final goal of this chapter is to prove the following.

Theorem 12.1.1. A closed orientable 3-manifold has a geometric struc-
ture modelled on one of the following six geometries:

S3, R3, S2 × R, H2 × R, Nil, S̃L2

if and only if it is a Seifert manifold of the appropriate commensurability
class, as prescribed by Table 12.1. It has a Sol geometric structure if and
only if it is a torus (semi-)bundle of Anosov type.

It is a surprising (and maybe disappointing) fact that, despite its ele-
gance and generality, the only known proof of this theorem available today
works by investigating each geometry separately and carefully, often em-
ploying quite different techniques. We start with the elliptic case.

12.2. Elliptic three-manifolds

We start our journey by investigating elliptic 3-manifolds, that is man-
ifolds modelled on S3. We want to prove the following.

Theorem 12.2.1. A closed 3-manifold M admits an elliptic metric if
and only if it is a Seifert manifold with e 6= 0 and χ > 0.

An important ingredient of the proof is the complete classification of
elliptic three-manifolds: to achieve this goal we need to study the isome-
tries of S3, and these are described elegantly via quaternions.

12.2.1. Unit quaternions. We write as usual a quaternion as

q = a + bi + cj + dk

with a, b, c, d ∈ R and i2 = j2 = k2 = i jk = −1. Quaternions form a
non-commutative algebra, identified with R4 by sending q to (a, b, c, d)

and with C2 by sending q to (a + bi, c + di). The norm is

|q| =
√
a2 + b2 + c2 + d2
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and we have |qq′| = |q||q′|. The conjugate of q is

q̄ = a − bi − cj − dk

and we have |q|2 = qq̄. Unit quaternions are identified with S3 and are
closed under multiplication: this gives S3 a Lie group structure.

Exercise 12.2.2. The centre of S3 is {±1}.

Left or right multiplication by a fixed element q ∈ S3 is an orientation-
preserving isometry of both R4 and S3. We consider the homomorphism

Ψ: S3 × S3 −→ Isom+(S3) = SO(4)

(q1, q2) 7−→
{
x 7−→ q1xq

−1
2

}
Proposition 12.2.3. The homomorphism Ψ is a degree-2 covering with

kernel {±(1, 1)}. Therefore it induces an isomorphism

SO(4) = S3 × S3/{±(1,1)}.

Proof. If (q1, q2) lies in the kernel, by setting x = 1 we get q1q
−1
2 = 1

and so q1 = q2. The general x implies that q1 = q2 lies in the centre
and hence (q1, q2) = ±(1, 1). Since SO(4) has the same dimension 6 of
S3 × S3 and is connected, we get a covering by Proposition 1.4.21. �

We now specialise Ψ to the case q = q1 = q2. The isometry

x 7−→ qxq−1

fixes 1 and hence preserves the orthogonal 3-space generated by i , j, k,
which we identify with R3. We get a homomorphism

Φ: S3 −→ Isom+(R3) = SO(3)

q 7−→
{
x 7−→ qxq−1

}
Proposition 12.2.4. The homomorphism Φ is a degree-2 covering with

kernel ±1. Therefore it induces an isomorphism

SO(3) = S3/{±1}.

Proof. The centre of S3 is {±1} and SO(3) is connected and has
dimension 3 like S3, hence Φ is a covering. �

The real part of q = a + bi + cj + dk is of course a.

Corollary 12.2.5. Two elements q, q′ ∈ S3 are conjugate if and only
if they have the same real part.

Proof. Conjugations are isometries that fix the real axis and hence
preserve the real part; rotations in SO(3) connect any two elements with
the same real part. �

Corollary 12.2.6. Every unit quaternion is conjugate to a unit complex
quaternion q = a ± bi , unique up to complex conjugation.
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The conjugacy classes in S3 are the poles +1 and −1, and the parallel
two-spheres between them. Let the imaginary two-sphere be the maximal
two-sphere consisting of all elements with zero real part.

Corollary 12.2.7. The only element in S3 of order two is −1. The
elements of order four form the imaginary two-sphere and are all conjugate.

Proof. An element of order four is conjugate to a complex one a+bi ,
which must be ±i and is hence purely imaginary. �

Exercise 12.2.8. By sending the unit quaternion (w, z) ∈ C2 to the
matrix (

w z

−z̄ w̄

)
we get a Lie group isomorphism between S3 and SU(2).

Note that q̄ = q−1 on unit quaternions. The inversion q 7→ q−1 is an
orientation-reversing isometry of S3.

12.2.2. Finite groups of quaternions. We classify the finite sub-
groups of the Lie group S3. Recall from Proposition 6.2.15 that the finite
subgroups of SO(3) up to conjugation are:

Cn, D2m, T12
∼= A4, O24

∼= S4, I60
∼= A5

with n > 1 and m > 2. Here Cn is cyclic generated by a 2π
n
-rotation,

and D2m, T , O, I are the orientation-preserving isometry groups of the
regular m-prism, tetrahedron, octahedron (or cube), and icosahedron (or
dodecahedron). The group D2m is the dihedral group. The subscript
always indicates the order of the group (except in the alternating An and
symmetric Sn that have order n!

2
and n!).

We defined above a degree-2 covering Φ: S3 → SO(3). Let

D∗4m, T ∗24, O∗48, I∗120

be the counterimages of D2m, T12, O24, I60 along Φ. They are called the
binary dihedral, tetrahedral, octahedral, and icosahedral group. We now
classify the finite subgroups of S3.

Proposition 12.2.9. Every finite subgroup of S3 is either binary or
cyclic. The finite subgroups up to conjugation are listed in Table 12.2.

Proof. If G < S3 is finite then Φ(G) = Cn, D2m, T,O, or I up to
conjugation. If Φ−1(Φ(G)) = G we are done (the counterimage of Cn is
still cyclic: exercise). This holds precisely when −1 ∈ G.

If G has even order, it contains an order-2 element which is necessarily
−1 and we are done. If G has odd order, Φ(G) has odd order and is cyclic,
so G is contained in the cyclic Φ−1(Φ(G)) and is hence cyclic. �
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name elements

Cn cyclic
{
e

2aπi
n
}
a=1,...,n

D∗4m binary dihedral
{
e
aπi
m , e

aπi
m j
}
a=1,...,2m

T ∗24 binary tetrahedral
{
± 1,± i ,± j,± k, 1

2

(
± 1± i ± j ± k

)}
O∗48 binary octahedral T ∗24 ∪

{±1±i√
2
, ±1±j√

2
, . . . , ±i±k√

2
, ±j±k√

2

}
I∗120 binary icosahedral T ∗24 ∪

{
± 1

2
i ±

√
5−1
4
j ±

√
5+1
4
k, . . .

}
Table 12.2. Every finite subgroup of S3 is conjugate to one
of these groups. The group O∗48 consists of T ∗24 and the
6 × 4 = 24 numbers obtained from ±1±i√

2
by permuting the

elements 1, i , j, k and varying the signs. The group I∗120 con-
sists of T ∗24 and the 12 × 8 = 96 numbers obtained from

± 1
2
i ±

√
5−1
4
j ±

√
5+1
4
k by permuting the elements 1, i , j, k

with an even permutation and varying the signs.

The smallest non-abelian group in the list is the quaternion group
Q8 = D∗8 consisting of the Lipschitz units

Q8 = {±1,±i ,±j,±k}.

The quaternion group is contained in T ∗24 as a normal subgroup, giving an
exact sequence

(13) 0 −→ Q8 −→ T ∗24 −→ Z3 −→ 0.

The binary dihedral group D∗4m contains the index-two cyclic group C2m,
giving an exact sequence

(14) 0 −→ C2m −→ D∗4m −→ Z2 −→ 0.

Remark 12.2.10. Every group Γ in Table 12.2 acts freely and isomet-
rically on S3 by right multiplication, hence S3/Γ is an elliptic manifold with
fundamental group Γ. The only perfect group in the list (i.e. with trivial
abelianisation) is I∗120 and we will soon see that S3/I∗120

is the ubiquitous
Poincaré homology sphere Σ(2, 3, 5), defined in Section 10.3.5.

12.2.3. Regular polytopes. There are six regular polytopes in dimen-
sion four, listed in Table 12.3, and the finite groups of S3 can be used to
describe five of them. The convex hull of Q8 in R4 is the 16-cell, whose
dual is the hypercube. The group T ∗24 consists of the vertices of the 16-cell
and of the dual hypercube altogether.

The convex hull of T ∗24 is the 24-cell : this is the unique self-dual
regular polytope in all dimensions n > 3 which is not a simplex! See Figure
12.1. The group O∗48 consists of the vertices of the 24-cell and of its dual.
Finally, the convex hull of I∗120 is the 600-cell, whose dual is the 120-cell.
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name vertices edges faces facets Schläfli

simplex 5 10 10 5 tetrahedra {3, 3, 3}

hypercube 16 32 24 8 cubes {4, 3, 3}

16-cell 8 24 32 16 tetrahedra {3, 3, 4}

24-cell 24 96 96 24 octahedra {3, 4, 3}

120-cell 600 1200 720 120 dodecahedra {5, 3, 3}

600-cell 120 720 1200 600 tetrahedra {3, 3, 5}

Table 12.3. The six regular polytopes in dimension four,
with their Schläfli notation (see Section 3.3.3). The groups
Q8, T ∗24, and I

∗
120 consist of the vertices of the 16-cell, 24-

cell, and 600-cell respectively.

Figure 12.1. A stereographic projection of the tessellation
of S3 induced by the 24-cell. Its 24 vertices form the binary
tetrahedral group T ∗24. Its facets are 24 regular octahedra.

12.2.4. Classification of elliptic 3-manifolds. We now want to clas-
sify all the elliptic 3-manifolds. We start with a linear algebra exercise.

Exercise 12.2.11. Let A ∈ O(4). Then

• if detA = −1, it fixes pointwise a line,
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• if detA = +1, it preserves two orthogonal planes and acts as a
rotation on each.

Every elliptic 3-manifold is isometric to S3/Γ for some finite subgroup
Γ < O(4) acting freely. The exercise implies that Γ < SO(4), since
orientation-reversing elements fix some point in S3. Therefore we get:

Corollary 12.2.12. Every elliptic 3-manifold is orientable.

We have already encountered the lens space L(p, q) = S3/Γ where
the cyclic group Γ = Cp,q is generated by the isometry

(z, w) 7−→ (ωz, ωqw) with ω = e
2πi
p .

Another consequence of the exercise is the following.

Corollary 12.2.13. Every finite abelian group Γ < SO(4) acting freely
is conjugate to Cp,q for some coprime p, q.

Proof. An abelian Γ fixes two orthogonal planes U and V and acts on
each as rotations. The restriction map Γ→ Isom+(U) is injective because
Γ acts freely on S3. Therefore Γ is cyclic, generated by an element that
acts on both planes by rotations of order p = |Γ|, so Γ is conjugate to
Cp,q. �

We now want to construct non-abelian examples. It is convenient to
look at SO(4) as the image of S3 × S3 via the surjective map Ψ defined
above. Which elements of S3 × S3 act freely on S3? The answer is
particularly simple.

Proposition 12.2.14. The isometry Ψ(q1, q2) of S3 has a fixed point
if and only if q1 and q2 are conjugate in S3.

Proof. We have q1xq
−1
2 = x for some x ∈ S3 if and only if q1 =

xq2x
−1, that is q1 and q2 are conjugate. �

The following corollary will help to rule out many cases.

Corollary 12.2.15. If q1 and q2 have both order four, the isometry
Ψ(q1, q2) has a fixed point.

We now construct more examples.

Proposition 12.2.16. If two finite subgroups G,H < S3 have coprime
orders, the image Ψ(G ×H) acts freely on S3.

Proof. If (g1, g2) ∈ G ×H is non-trivial, the elements g1 and g2 have
coprime and hence distinct orders, thus they are not conjugate. �

Corollary 12.2.17. If G is a group from Table 12.2 and n is coprime
with the order of G, then Ψ(G × Cn) acts freely on S3.
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Γ conditions |Γ| Z Γ/Z

Cp,q p > 0, (p, q) = 1 p Cp {e}

Ψ
(
D∗4m × Cn

)
m > 1, n > 0, (4m, n) = 1 4mn C2n D2m

Γ <
2

Ψ
(
D∗4m × C4n

)
m > 1, n > 0, n even, (m, n) = 1 4mn C2n D2m

Ψ
(
T ∗24 × Cn

)
n > 0, (24, n) = 1 24n C2n T12

Γ <
3

Ψ
(
T ∗24 × C6n

)
n > 0, n odd, 3|n 24n C2n T12

Ψ
(
O∗48 × Cn

)
n > 0, (48, n) = 1 48n C2n O24

Ψ
(
I∗120 × Cn

)
n > 0, (120, n) = 1 120n C2n I60

Table 12.4. The finite subgroups Γ < SO(4) that act freely
on S3, up to conjugation in O(4). For each we show its
centre Z and the quotient Γ/Z . If Γ is not cyclic, the two
groups Z and Γ/Z determine Γ up to conjugation (note that
n satisfies some congruence equality which separates lines 2,3
and 4,5). The symbol Γ <i G indicates that Γ has index i .

This corollary produces most of the non-cyclic subgroups of SO(4)

acting freely on S3, but not all of them! Table 12.4 lists all the finite
subgroups of SO(4) acting freely, up to conjugation in O(4). The first line
shows the cyclic groups Cp,q, and the other families of groups are all of
type Ψ(G × Cn), except the third and fifth line which we now explain.

Remark 12.2.18. For all groups in Table 12.4 of type G×Cn, we have
Ψ(G × Cn) ∼= G × Cn because n is odd and hence (−1,−1) 6∈ G × Cn.

In the third line of Table 12.4, the group Γ is an index-two subgroup
of Ψ(D∗4m × C4n). It is the image along Ψ of the kernel of the map

D∗4m × C4n −→ Z2

(g1, g2) 7−→ f1(g1) + f2(g2)

where f1 is the map in (14) and f2 is the surjective homomorphism C4n →
Z2. Analogously, the group Γ in the fifth line is an index-three subgroup
of Ψ(T ∗24 × C6n): it is the image along Ψ of the kernel of the map

T ∗24 × C6n −→ Z3

(g1, g2) 7−→ f1(g1) + f2(g2)

where f1 is the map in (13) and f2 is any surjective homomorphism C6n →
Z3. Both f1 and f2 are well-defined only up to automorphisms of Z3, but
the kernel is well-defined up to conjugation in S3 × S3 anyway: there are
four possibilities and they are related by conjugations via the elements
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(1, j) and
(

1+i√
2
, 1
)
, as one can easily check (these conjugations permute

the cosets of C2n / C6n and Q8 / T
∗
24).

Proposition 12.2.19. The finite subgroups of SO(4) shown in Table
12.4 act freely on S3.

Proof. We only need to prove this for the groups Γ that belong to
the third and fifth family. Concerning the third, pick an element (g1, g2) ∈
S3×S3 that projects to a non-trivial element in Γ. We want to prove that
g1 and g2 have distinct orders and are hence non-conjugate.

By hypothesis f1(g1) + f2(g2) = 0 in Z2 and hence f1(g1) = f2(g2) is
either 0 or 1. In the first case we get g1 ∈ C2m and g2 ∈ C2n which have
distinct orders since (m, n) = 1 and (g1, g2) 6= ±(1, 1). In the second case
g1 ∈ D∗4m \C2m has order four (check from Table 12.2) and g2 ∈ C4n \C2n

does not have order four since n is even.
The fifth family is treated similarly. Pick (g1, g2) ∈ Γ with non-trivial

image in SO(4). If f1(g1) = f2(g2) = 0 then g1 ∈ Q8 has order 1, 2, or 4
and g2 ∈ C2n does not have order 4 since n is odd. If f1(g1) = −f2(g2) 6= 0

then g1 ∈ T ∗24 \ Q8 has order 3 or 6 (check from Table 12.2) while g2 ∈
C6n \ C2n cannot have order 3 or 6 since 3 divides n. �

We now show that Table 12.4 exhausts all possibilities.

Proposition 12.2.20. Every finite subgroup of SO(4) acting freely on
S3 is conjugate in O(4) to one in Table 12.4.

Proof. Let a finite Γ < SO(4) act freely on S3. We consider its
counterimage G = Ψ−1(Γ) in S3 × S3.

We note that the orientation-reversing isometry q 7→ q−1 of S3 con-
jugates Ψ(q1, q2) to Ψ(q2, q1), since

x 7−→ (q1x
−1q−1

2 )−1 = q2xq
−1
1 .

Therefore via conjugation in O(4) we may swap the factors of S3 × S3.
If G is a product G = G1×G2, then G1 and G2 are some groups from

Table 12.2. If they are both cyclic, then Γ is abelian and we conclude by
Corollary 12.2.13. If they are both non-cyclic, they both contain order-4
elements and we get a contradiction from Proposition 12.2.15.

Therefore G = G1 × Ck with G1 equal to D∗4m, T
∗
24, O

∗
48, or I

∗
120, and

k not divisible by four. Since (−1,−1) ∈ G we get k = 2n, and n odd
implies that Ψ(G1 × Cn) = Ψ(G1 × C2n). Moreover n is coprime with the
order of G1 otherwise Proposition 12.2.14 would easily give a fixed point.
Therefore we get a product group as in Table 12.4.

We are left to consider the case G is not a product. Let G1 × G2

(resp. G ′1×G ′2) be the smallest (resp. biggest) product subgroup of S3×S3

such that

G ′1 × G ′2 < G < G1 × G2.
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The subgroup G1 (resp. G ′1) consists of all g1 ∈ S3 such that (g1, g2) ∈ G
for some g2 (resp. such that (g1, 1) ∈ G). It is easy to check that G ′i / Gi
and

G/G′1×G
′
2

∼= G1/G′1
∼= G2/G′2 .

Each Gi and G ′i is finite and hence conjugate to one in Table 12.2. If
both G1 and G2 are cyclic, the group Γ is abelian and we are done. We
henceforth suppose that G1 and G2 are not both cyclic.

By the same reasoning above, up to reordering G ′2 contains no order-4
elements and hence G ′2 = Cs with s not divisible by four.

We now prove that G ′1 contains all the order-4 elements of G1. To
do so we pick an order-4 element g1 ∈ G1 and prove that ±g1 ∈ G ′1: this
suffices since g1 = (−g1)3. We have (g1, g2) ∈ G for some g2 of some
order 2tk with k odd. We have (gk1 , g

k
2 ) = (±g1, g

k
2 ), so up to replacing

g2 with gk2 we may suppose k = 1 and g2 has order 2t .
We have (1, g4

2 ) = (g4
1 , g

4
2 ) ∈ G and hence g4

2 ∈ G ′2. Suppose s is odd.
Therefore g4

2 ∈ G ′2 = Cs is trivial and g2 has order 2t ; thus g2 has order
1, 2, or 4. It cannot have order 4 by Corollary 12.2.15, therefore g2 = ±1

and hence ±g1 ∈ G ′1 as required.
If s is even we get the same conclusion: now (−1, g2

2 ) = (g2
1 , g

2
2 ) ∈ G

hence (1,−g2
2 ) ∈ G gives −g2

2 ∈ G ′2 and thus g2
2 ∈ G ′2 since s is even.

Again this implies that g2 has order 1,2, or 4 and we conclude as above.
We have proved that G ′1 contains all order-4 elements of G1. The

groups D∗4n, O
∗
48, and I

∗
120 are generated by their order-4 elements (exer-

cise), hence G ′1 6= G1 implies that G1 is not one of them. Then it is either
cyclic or T ∗24.

If G1 = Ch is cyclic, then G ′1 and G1/G′1
∼= G2/G′2 also are. By as-

sumption G2 is not cyclic, but it contains the cyclic G ′2 with non-trivial
cyclic quotient: the only possibility from Table 12.2 is that G2 = D∗4m and
G ′2 = C2m. Therefore G is an index-two subgroup of G1 × G2 = Ch ×D∗4m
as in the third line of Table 12.4.

We need to prove that h = 4n with n even and (n,m) = 1. Since
G ′1 < G1 has index two, h is even. Since (1,−1) ∈ G ′1 ×C2m < G, we also
have (−1, 1) ∈ G and hence −1 ∈ G ′1. Therefore |G ′1| is even and 4|h.
Since G ′1 contains all order-4 elements of G1, four divides |G ′1| and hence
8|h. Therefore h = 4n with n even, as required. Moreover (m, n) = 1

since G ′1 × G ′2 = C2n × C2m ⊂ G.
If G1 = T ∗24 the order-4 elements generate the index-three subgroup

Q8 and hence G ′1 = Q8 and G2/G′2
∼= G1/G′1

∼= Z3. Recall that G ′2 = Cs

with s not divisible by four. As above, −1 ∈ G ′1 implies −1 ∈ G ′2 and hence
s = 2n with n odd. Therefore G2 has order 6n and must hence be cyclic.

The group G is an index-3 subgroup of G1 ×G2 = T ∗24 ×C6n as in the
fifth line of Table 12.4. We must have 3|n otherwise G contains an ele-
ment (g1, g2) with both g1, g2 having order 3 (see the proof of Proposition
12.2.19). �
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We can finally summarise our discoveries:

Corollary 12.2.21. Table 12.4 lists all the finite subgroups Γ < SO(4)

acting freely on S3 up to conjugation in O(4), without repetitions.

Proof. There are no repetitions because the non-cyclic groups listed
are all non-isomorphic: the isomorphism types of the centre Z and Γ/Z
suffice to determine Γ in that list, see Table 12.4 (note that n satisfies
some congruence equality which separates the lines 2,3 and 4,5).

To compute |Γ|, we use Remark 12.2.18 and note that (−1,−1) be-
longs to (D∗4m × C4n) and (T ∗24 × C6n).

To compute Z and Γ/Z , we note that in all the non-cyclic cases Γ

is the image of a subgroup in some product G∗ × Ckn which is “diagonal”,
in the sense that it maps surjectively to both factors G∗ and Ckn. The
map onto G∗ pushes-forward to a surjection Γ→ G, whose kernel is easily
detected as being the centre Z and isomorphic to C2n in all cases. �

12.2.5. Seifert fibrations of elliptic 3-manifolds. We now turn back
to Seifert manifolds and prove Theorem 12.2.1. Let S1 ⊂ S3 be the unit
complex numbers. Recall that S3 × S3 acts on S3 via Ψ. The following
proposition is crucial: it says that a big Lie subgroup of S3 × S3 preserves
the Hopf fibration; later on we will discover that every finite subgroup Γ

of S3 × S3 acting freely may be conjugated into this big group and hence
every quotient S3/Γ inherits a Seifert structure from the Hopf fibration,
hence every elliptic three-manifold is Seifert.

Proposition 12.2.22. The group S1×S3 preserves the Hopf fibration.

Proof. Represent quaternions as pairs (z1, z2) of complex numbers.
The Hopf fibration S3 → CP1 is the map (z1, z2) → [z1, z2]. One checks
easily that quaternion multiplication acts as follows:

(z1, z2)(w1, w2) = (z1w1 − z2w̄2, z2w̄1 + z1w2).

Therefore right-multiplication by (w1, w2) ∈ S3 acts C-linearly on C2 and
hence preserves the Hopf fibration.

Left multiplication by (w1, w2) is not C-linear in general, but it is
so when (w1, w2) = (w1, 0) ∈ S1, since (w1, 0)(z1, z2) = (w1z1, w1z2).

Therefore S1 × S3 preserves each fibre of the Hopf fibration. �

We can finally prove Theorem 12.2.1.

Theorem 12.2.23. A closed 3-manifold M admits an elliptic metric if
and only if it is a Seifert manifold with e 6= 0 and χ > 0.

Proof. If M is elliptic then M = S3/Γ for some finite subgroup Γ <

SO(4) acting freely. If Γ is conjugate to Cp,q we get a lens space and we
are done. Otherwise Table 12.4 shows that Γ is conjugate to the image of
a subgroup of S1 ×S3 (because Cn < S1). Therefore up to conjugation Γ
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fibration condition Γ(
S2, (2, 1), (2, 1), (p, q)

)
p + q > 0 odd Ψ

(
D∗4p × Cp+q

)(
S2, (2, 1), (2, 1), (p, q)

)
p + q > 0 even Γ <

2
Ψ
(
D∗4p × C4(p+q)

)
(
S2, (2, 1), (3, 1), (3, q)

)
3 - 5 + 2q Ψ

(
T ∗24 × C|5+2q|

)(
S2, (2, 1), (3, 1), (3, q)

)
3|5 + 2q > 0 Γ <

3
Ψ
(
T ∗24 × C6(5+2q)

)
(
S2, (2, 1), (3, 1), (4, q)

)
Ψ
(
O∗48 × C|10+3q|

)(
S2, (2, 1), (3, 1), (5, q)

)
Ψ
(
I∗120 × C|25+6q|

)
Table 12.5. The non-lens elliptic manifolds, listed without
repetitions. For each we show its Seifert fibration and fun-
damental group Γ < SO(4). Here p > 1. The integer q may
be negative, if not forbidden explicitly. In the fourth line 3

divides 5 + 2q, which must be positive.

preserves the Hopf fibration of S3, which descends to a Seifert fibration.
We have χ > 0 and e 6= 0 because the universal cover of M is S3.

Conversely, we now show that every Seifert manifold with χ > 0 and
e 6= 0 arises as an elliptic manifold S3/Γ. The Seifert manifolds were listed
in Table 10.6, and the corresponding Γ is shown in Table 12.5. To verify the
correspondence, note that the centre Z of Γ = π1(M) and the quotient
Γ/Z are shown in Table 12.4 and they fully determine Γ. Proposition
10.4.18 says that Z < π1(M) is generated by a regular fibre and Γ/Z is
the orbifold fundamental group of the base. �

In particular we have the following:

π1

(
S2, (2, 1), (2, 1), (2,−1)

)
= Q8,

π1

(
S2, (2, 1), (2, 1), (p, 1− p)

)
= D∗4p,

π1

(
S2, (2, 1), (3, 1), (3,−2)

)
= T ∗24,

π1

(
S2, (2, 1), (3, 1), (4,−3)

)
= O∗48,

π1

(
S2, (2, 1), (3, 1), (5,−4)

)
= I∗120.

The latter is Poincaré’s homology sphere, the unique elliptic three-
manifold with perfect fundamental group (see Section 10.3.5).

12.3. Flat three-manifolds

We turn to flat three-manifolds. In dimension two, every orientation-
preserving isometry of R2 is a translation, and this easily implies that every
flat orientable closed surface is a torus. In dimension three we also have
rototranslations, which produce more orientable manifolds.
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We now classify all the closed flat orientable three-manifolds up to
diffeomorphism and prove the following.

Theorem 12.3.1. A closed orientable 3-manifold M admits a flat met-
ric if and only if it is a Seifert manifold with e = χ = 0.

There are six such manifolds, listed in Table 10.3.

12.3.1. Classification. Every closed flat 3-manifold is isometric to
R3/Γ for some crystallographic group Γ < Isom(R3) acting freely, see
Section 4.4.4.

Exercise 12.3.2. Every element in Γ is either a translation or a roto-
translation (defined in Example 4.4.7).

We prove one half of Theorem 12.3.1.

Proposition 12.3.3. Every closed orientable flat 3-manifold is a Seifert
manifold with e = χ = 0.

Proof. We have M = R3/Γ. Recall the exact sequence

0 −→ H −→ Γ −→ r(Γ) −→ 0

where H / Γ is the translation subgroup and r(Γ) < SO(3) is finite by
Proposition 4.4.9. We now prove that Γ preserves a foliation of R3 into
parallel lines that projects to a Seifert structure on M.

If r(Γ) is trivial, then Γ = H consists of translations and preserves
many foliations into parallel lines that project to a Seifert structure on the
quotient 3-torus M. If r(Γ) is non-trivial, it is isomorphic to Cn, D2m, T12,
O24, or I60. If r(Γ) = Cn or D2m, it has a common fixed vector line l ⊂ R3

and Γ preserves the foliation of lines parallel to l .
If r(Γ) = T12, O24, or I60 we obtain a contradiction as follows. In all

cases we have T12 ⊂ r(Γ). The group T12 consists of the identity, the
π-rotations along the three coordinate axis, and the ± 2π

3
-rotations along

the axis spanned by (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (1,−1,−1).
Pick a rototranslation h ∈ Γ with axis l parallel to (1, 1, 1), and up to

conjugating Γ by a translation we may suppose that l contains the origin
0 ∈ R3. We have h(0) = (d, d, d) for some d 6= 0. Since h3 is a translation
we get (3d, 3d, 3d) ∈ H.

The group Γ and hence T12 acts on H via conjugation. Therefore H
is T12-symmetric and (3d,−3d,−3d) ∈ H using the π-rotation along the
first axis. Hence t = (6d, 0, 0) = (3d, 3d, 3d)+(3d,−3d,−3d) ∈ H. The
composition t ◦ h2 has a fixed point, because it sends 0 to (2d, 2d, 2d)−
(6d, 0, 0) = (−4d, 2d, 2d) which is orthogonal to l : a contradiction.

In all cases M has a Seifert structure. By Bieberbach’s Theorem
(stated as Corollary 4.4.11) the manifold M is finitely covered by the 3-
torus, and hence χ = e = 0 by Proposition 10.3.26. �

We now prove the other half.
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Figure 12.2. The six closed orientable flat 3-manifolds, up
to diffeomorphism. Each is constructed by pairing isometri-
cally the faces of a polyhedron in R3 according to the labels.
When a face has no label, it is simply paired to its oppo-
site by a translation. The polyhedra shown here are three
cubes, two prisms with regular hexagonal basis, and one par-
allelepiped made of two cubes.

Proposition 12.3.4. Every closed Seifert manifold M with e = χ = 0

admits a flat metric.

Proof. There are six such Seifert manifolds up to diffeomorphism,
listed in Table 10.3. We build a flat metric for each in Figure 12.2.

The figure shows six flat manifolds, constructed by identifying isomet-
rically the faces of a polyhedron in R3. The reader is invited to check that
each construction gives indeed a flat manifold, by verifying that the flat
metric extends to the edges and to the vertices.

In all cases the foliation by parallel horizontal lines (orthogonal to the
P faces) descends to a Seifert fibration on the flat manifold. By looking at
these lines one checks that the base surface of the fibration is respectively

T, (S2, 2, 2, 2, 2), (S2, 2, 4, 4), (S2, 2, 3, 6), (S2, 3, 3, 3), (RP2, 2, 2).

These orbifolds are obtained respectively from the figures by considering:
the square torus, its quotient via a π-rotation, via a π

4
-rotation, the quo-

tient of a hexagon torus by a π
3
-rotation, by a 2π

3
-rotation, and the quotient

of a Klein bottle via a π-rotation.
These flat Seifert manifolds have e = 0 by Proposition 12.3.3, and

hence they are precisely those listed in Table 10.3. �
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Figure 12.3. The Hantsche-Wendt manifold M = R3/Γ.
The group Γ is generated by three rototranslations along the
three red axis shown, each of angle π and with unit displace-
ment (this is a unit cube). A fundamental domain for Γ is
made of two unit cubes as in Figure 12.2-(bottom, right).

We have proved Theorem 12.3.1.

Remark 12.3.5. The rotational image r(Γ) < SO(3) of Γ for the six
flat manifolds M = R3/Γ constructed in Figure 12.2 is respectively {e},
C2, C4, C6, C3, and the dihedral D4 = C2 × C2. The sixth manifold is
called the Hantzsche-Wendt manifold : the group Γ is generated by three
rototranslations as in Figure 12.3.

In contrast with the hyperbolic case, a finite-volume complete flat
manifold is necessarily closed (see Proposition 4.4.12). The Seifert mani-
folds with boundary and χ = 0 are diffeomorphic to the bundles T × I and
K ×∼ I. Their interiors T ×R and K ×∼ R may be given an infinite-volume
complete flat structure. The lack of a finite-volume complete flat struc-
ture for K ×∼ R is a reason for preferring the geometric decomposition to
the canonical torus decomposition, see Section 11.5.3.

12.4. The product geometries

The eight three-dimensional geometries include the three isotropic
ones, plus five more. Among the five non-isotropic geometries, two are
products of lower-dimensional geometries. We analyse them here.

12.4.1. S2×R geometry. We equip S2×R with the product metric.
The product S2 × R is the poorest of the eight geometries, in the sense
that there are very few manifolds modelled on S2 × R.

Recall that the sectional curvature is a number assigned to every plane
in the tangent space of every point p ∈ S2×R. One such plane is horizontal
if it is tangent to the S2 factor and vertical if it contains the line tangent
to the R factor.

Proposition 12.4.1. The sectional curvatures of horizontal and vertical
planes are 1 and 0, respectively.

Proof. Let γ ⊂ S2 be a closed geodesic. The surfaces S2×y and γ×R
are totally geodesic, because they are fixed by some isometric reflections
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of S2 ×R. Thus the sectional curvatures of horizontal and vertical planes
equal the gaussian curvatures of these surfaces, which are 1 and 0. �

Proposition 12.4.2. We have

Isom(S2 × R) = Isom(S2)× Isom(R).

Proof. We certainly have the inclusion ⊃, which gives to every point
x ∈ S2 × R a stabiliser in Isom+(S2 × R) isomorphic to SO(2) o C2, a
proper maximal subgroup of SO(3) by Proposition 6.2.15.

If there were more isometries that that, there would be more fixing p
since they act transitively on S2×R and the stabiliser would be the whole
of SO(3), a contradiction because the sectional curvature of S2×R is not
constant. �

Since the isometry groups of S2 and R have two connected compo-
nents each, the group Isom(S2 ×R) has four connected components, two
of which are orientation-preserving.

Proposition 12.4.3. An orientable manifold M admits a finite-volume
S2×R geometry⇐⇒M is a closed Seifert manifold with e = 0 and χ > 0.

Proof. The closed Seifert manifolds with e = 0 and χ > 0 are just
S2 × S1 and RP2 ×∼ S1, and they are diffeomorphic to (S2 × R)/Γ where
Γ is generated respectively by{

(id, τ)
}
,

{
(ι, r), (ι, r ′)

}
where τ is any translation, ι is the antipodal map and r, r ′ are reflections
with respect to distinct points in R.

Conversely, pick an orientable M = (S2 × S1)/Γ. The discrete sub-
group Γ < Isom(S2)×Isom(R) preserves the foliation into spheres S2×{x}
which descends into a foliation into spheres and/or projective planes for
M. Therefore M decomposes into orientable interval bundles S2 × I and
RP2 ×∼ I, and is hence either S2 × S1 or RP2 ×∼ S1. �

12.4.2. H2 ×R geometry. We give H2 ×R the product metric. The
discussion of the previous section applies as is to this case, showing that
horizontal and vertical planes in the tangent spaces have sectional curva-
ture −1 and 0. This in turn implies that

Isom(H2 × R) = Isom(H2)× Isom(R)

has four connected components, two being orientation-preserving. It is
convenient to write the exact sequence

0 −→ Isom(R) −→ Isom(H2 × R)
p−→ Isom(H2) −→ 0.

A discrete group Γ < Isom(X) is cofinite if X/Γ has finite volume.

Proposition 12.4.4. A discrete group Γ < Isom(H2 × R) is cofinite if
and only if both p(Γ) and Γ ∩ ker p are discrete and cofinite.
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Proof. If p(Γ) is discrete we get

(15) Vol
(

(H2 × R)/Γ

)
= Area(H2/p(Γ))× Length

(
R/Γ∩ker p

)
.

This surprisingly simple formula is proved by picking a fundamental domain
D ⊂ H2 for p(Γ) and noticing that

Vol
(

(H2 × R)/Γ

)
= Vol

(
p−1(D)/Γ∩ker p

)
.

We deduce that Γ is cofinite if and only if both p(Γ) and Γ ∩ ker p are.
If p(Γ) is not discrete, we prove that Γ cannot be cofinite. Up to

replacing Γ with an index-four subgroup we may suppose

Γ < Isom+(H2)× Isom+(R) = Isom+(H2)× R.

Pick a neighbourhood U ⊂ Isom+(H2) × R of e such that [U, U] ⊂ U

and U ∩ Γ = {e}. Let f , g ∈ Γ be two elements. We now prove that if
p(f ), p(g) ∈ p(U) then f and g commute. We note that the commutator
[f , g] depends only on the images p(f ) and p(g), and since they lie in p(U)

we may suppose that f , g ∈ U and get [f , g] ∈ U∩Γ, which must be trivial.
The elements in p(Γ) ∩ p(U) commute. Two non-trivial elements in

Isom+(H2) commute if and only if they are both hyperbolic, parabolic, or
elliptic fixing the same line, point in ∂H2, or point in H2. Therefore all the
isometries in p(Γ) ∩ p(U) are of the same type and fix the same line or
point.

Analogously, for every f ∈ Γ we pick a neighbourhood Uf of e such
that [f , Uf ] ⊂ U and conclude that f commutes with all the elements in
Γ projecting to p(Uf ). (There are non-trivial such elements since p(Γ) is
not discrete.) Therefore p(f ) also fixes the same line or point as above.

We have proved that p(Γ) fixes a line, a horocycle, or a point in H2 and
hence fixes its inverse image in H2×R which is a line or a Euclidean plane.
Moreover Γ acts freely and proper discontinuously on it: hence Γ = Z or
Z2 up to finite index and it is easy to deduce that Γ is not cofinite. �

Corollary 12.4.5. If the interior of a compact orientable manifold M
admits a finite-volume complete H2 × R geometry then M is a Seifert
manifold with χ < 0. If M is closed then also e = 0.

Proof. We have int(M) = (H2×R)/Γ with Γ cofinite: by Proposition
12.4.4 the group Γ ∩ ker p quotients every line {x} × R to a circle in M,
giving a Seifert fibration M → S onto the finite-area orbifold S = H2/p(Γ).
We have χ(S) < 0, and either e(M) = 0 or ∂M 6= ∅ because H2 × y
projects to a section for M → S. �

We now prove the converse of Corollary 12.4.5.

Proposition 12.4.6. If M is a Seifert manifold with χ < 0 and either
∂M 6= ∅ or e = 0, the interior of M admits a finite-volume complete
H2 × S1 geometry.
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Proof. By hypothesis there is a section Σ of M → S, which is the
fibre of a bundle M → O over a 1-orbifold O, see Section 11.4.4. The two
structures give two exact sequences

0 −→ K −→ π1(M)
f−→ π1(S) −→ 0,

0 −→ π1(Σ) −→ π1(M)
g−→ π1(O) −→ 0.

Since χ(S) < 0 we may write S = H2/Γ and identify π1(S) with Γ <

Isom(H2). Analogously we consider π1(O) inside Isom(R). The map

(f , g) : π1(M) −→ Isom(H2)× Isom(R)

is injective and its image is discrete and acts freely on H2 × R, inducing a
finite-volume H2 × R structure on M. �

12.5. Nil geometry

There are still three non-isotropic geometries to analyse. These ge-
ometries are not products, but they have a reasonable bundle structure, so
that many of the arguments of the previous section can be extended with
not much effort.

We start with the geometry Nil, which is a R-bundle over R2. This
geometry is fully carried by a Lie group called the Heisenberg group.

12.5.1. The Heisenberg group. The Heisenberg group consists of
all matrices 1 x z

0 1 y

0 0 1


with x, y , z ∈ R, with the multiplication operation. This is a nilpotent (but
non-abelian) Lie group (see Exercise 1.4.4) and is hence also called Nil. It
is clearly diffeomorphic to R3. There is a Lie groups exact sequence

0 −→ R −→ Nil −→ R2 −→ 0

where R = [Nil,Nil] is the centre of Nil and consists of all matrices with
x = y = 0. Therefore Nil is naturally a line bundle over R2. We identify Nil
with R3 using the coordinates (x, y , z). The product operation becomes

(x, y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + xy ′).

Exercise 12.5.1. The commutator of two elements is[
(x, y , z), (x ′, y ′, z ′)

]
= (0, 0, xy ′ − x ′y).

12.5.2. The geometry of Nil. Every left-invariant Riemannian struc-
ture on a Lie group G is constructed by fixing a scalar product at the
tangent space TeG of e ∈ G and then extending it by left-multiplication.
Here e = (0, 0, 0) and we give TeNil = R3 the Euclidean scalar product.
This defines a left-invariant Riemannian structure on Nil.
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x

y

z

Figure 12.4. The planes orthogonal to the z axis in Nil form
the standard contact structure on R3.

Exercise 12.5.2. The metric tensor at (x, y , z) is1 0 0

0 x2 + 1 −x
0 −x 1

 .
The following triple is an orthonormal basis at (x, y , z):

(16) (1, 0, 0), (0, 1, x), (0, 0, 1).

The planes spanned by the first two vectors form the standard contact
structure in R3 shown in Figure 12.4. It is a non-integrable distribution of
planes: no surface is tangent to it at every point.

We remark that the metric tensor has unit determinant at every point:
therefore the volume form on Nil is the standard one on R3.

We can calculate the Christoffel symbols Γkij by hand or using a com-
puter code; these are all zero except the following:

Γ1
22 = −x, Γ1

23 = Γ1
32 =

1

2
,

Γ2
12 = Γ2

21 =
x

2
, Γ2

13 = Γ2
31 = −1

2
,

Γ3
12 = Γ3

21 =
x2 − 1

2
, Γ3

13 = Γ3
31 = −x

2
.

The Ricci tensor at (x, y , z) is

Ri j =
1

2
·

−1 0 0

0 x2 − 1 −x
0 −x 1

 .
When x = 0 the Ricci tensor is a diagonal matrix with entries − 1

2
,− 1

2
, 1

2
.

For a unit vector v ∈ TpNil, recall that Ri jv iv j equals twice the average
value of the sectional curvatures of the planes containing v : this average
value ranges here from − 1

4
to 1

4
and is maximal when v = (0, 0,±1). This

holds when x = 0 and hence at all points p ∈ Nil by left-multiplication.
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12.5.3. The isometry group of Nil. The group Nil acts on itself iso-
metrically by left-multiplication. Left-multiplication by (a, b, c) preserves
the bundle Nil→ R2 and induces on R2 a translation by the vector (a, b).

There are also more complicate isometries of Nil that preserve the
bundle structure but induce rotations on R2: one such isometry ϕ sends
(x, y , z) to(
x cos θ− y sin θ, x sin θ+ y cos θ, z +

1

2
(x2 − y 2) sin θ cos θ− xy sin2 θ

)
.

This map preserves the bundle and induces a rotation on R2.

Proposition 12.5.3. The map ϕ is an isometry of Nil.

Proof. Set (x ′, y ′, z ′) = ϕ(x, y , z). The differential dϕ at (x, y , z) is cos θ − sin θ 0

sin θ cos θ 0

x sin θ cos θ − y sin2 θ −y sin θ cos θ − x sin2 θ 1


and may be rewritten as cos θ − sin θ 0

sin θ cos θ 0

x ′ sin θ x ′ cos θ − x 1.


The differential dϕ sends the orthonormal basis (16) to

(cos θ, sin θ, x ′ sin θ), (− sin θ, cos θ, x ′ cos θ), (0, 0, 1).

These vectors at (x ′, y ′, z ′) are also orthonormal. �

We deduce the following.

Proposition 12.5.4. Every isometry of Nil preserves the line bundle
and induces an isometry of R2. We have

0 −→ R −→ Isom+(Nil)
p−→ Isom(R2) −→ 0

where R is the centre of Nil. The group Isom+(Nil) has two components.

Proof. The rotational isometries ϕ with angle θ introduced above
form a S1-subgroup of Isom+(Nil). The subgroups S1 and Nil belong to the
component Isom+

◦ (Nil) < Isom+(Nil) containing the identity, which hence
has dimension at least 1 + 3 = 4 and acts transitively on Nil. Stabilisers
have dimension at least 4 − 3 = 1 and cannot have bigger dimension by
Proposition 6.2.15, otherwise Nil would have constant sectional curvature:
therefore dim(Isom+

◦ (Nil)) = 4 and Isom+
◦ (Nil) is generated by S1 and Nil,

and it preserves the line bundle since S1 and Nil do.
The subgroup Isom+

◦ (Nil) preserves the orientation of the fibres and
of R2. We leave as an exercise the existence of another component of
Isom+(Nil) which inverts the orientation of the fibres and of R2. �
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F

Figure 12.5. The Nil manifold M = Nil/Γ is obtained by
identifying the faces of this unit cube as follows: the trian-
gular faces are glued via the affine maps as shown by the
labels, and the pairs of unlabelled opposite square faces are
identified by translations. The cube is a fundamental domain
for Γ.

Example 12.5.5. A manifold M = Nil/Γ modelled on Nil is described
in Figure 12.5. The figure shows a fundamental domain for the group
Γ < Isom+(Nil) generated by the isometries

(x, y , z) 7−→ (x + 1, y , z + y),

(x, y , z) 7−→ (x, y + 1, z), (x, y , z) 7−→ (x, y , z + 1).

obtained by left-multiplication with the canonical basis of R3. Both the
unit cube and M have volume one. The manifold M is clearly a torus
bundle with monodromy

(
1 1
0 1

)
and is hence diffeomorphic to the Seifert

manifold
(
T, (1, 1)

)
by Exercise 11.4.11.

A group Γ < Isom(X) is cocompact if X/Γ is compact. We prove that
cocompact groups in Isom(R2) do not lift.

Proposition 12.5.6. Let Γ < Isom(R2) be discrete and cocompact.
There is no homomorphism f : Γ→ Isom+(Nil) such that p ◦ f = id.

Proof. Up to taking a finite-index subgroup we may suppose that
Γ is generated by two translations along independent vectors (x, y) and
(x ′, y ′). We prove that two lifts ϕ,ϕ′ ∈ Isom+(Nil) of these translations
never commute, thus forbidding the existence of a homomorphism f .

If ϕ, ϕ′ ∈ Nil, Exercise 12.5.1 gives [ϕ,ϕ′] = xy ′ − x ′y 6= 0. All the
other lifts are of type gϕ, g′ϕ′ for some g, g′ ∈ R, hence we get the same
commutator. �

Let Isom+
0 (Nil) < Isom+(Nil) be the component containing e.

Exercise 12.5.7. We have[
Isom+

0 (Nil), Isom+
0 (Nil)

]
= R.

Therefore Isom+
0 (Nil) is nilpotent.
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Corollary 12.5.8. If a three-manifold M has a Nil geometry, then
π1(M) is virtually nilpotent.

Proof. It has a nilpotent subgroup of index at most two, because the
subgroup Isom+

0 (Nil) < Isom+(Nil) is nilpotent and has index two. �

12.5.4. Nil geometry. We classify the manifolds modelled on Nil.

Proposition 12.5.9. A discrete group Γ < Isom+(Nil) is cofinite if and
only if both p(Γ) and Γ ∩ ker p are discrete and cofinite.

Proof. We follow the proof of Proposition 12.4.4. Up to taking finite-
index subgroups we may suppose that Γ < Isom+

0 (Nil). If p(Γ) is discrete
the proof of Proposition 12.4.4 applies also here; note that the formula
(15) holds because the volume form in Nil is the standard one on R3.

If p(Γ) is not discrete then that proof shows that there is a neigh-
bourhood U ⊂ Isom+(Nil) of e such that every two elements f , g ∈ Γ

projecting in p(U) commute. (It is still true that [f , g] depends only on
p(f ) and p(g) since ker p = R is central.) We deduce again that the
isometries in p(Γ) commute: hence they are either rotations fixing the
same point or translations.

In the former case Γ is not cofinite. In the latter, we get Γ < Nil acting
as left-multiplication. Every two f , g ∈ Γ projecting to p(U) commute and
hence project to parallel translations by Exercise 12.5.1. As in the proof
of Proposition 12.4.4 we deduce that p(Γ) preserves a line, and hence it
is not cofinite. �

Corollary 12.5.10. If the interior of a compact orientable manifold M
admits a finite-volume complete Nil geometry then M is a closed Seifert
manifold with χ = 0 and e 6= 0.

Proof. We have int(M) = Nil/Γ with Γ cofinite and Proposition 12.5.9
provides a Seifert fibration M → S over a finite-area orbifold S = R2/p(Γ).
Finite-area flat orbifolds have χ(S) = 0 and are closed (there are no cusps
in flat geometry), hence M is closed.

We have e 6= 0, otherwise up to finite-index we would getM = T ×S1

contradicting Proposition 12.5.6. �

We prove the converse.

Proposition 12.5.11. If M is a closed Seifert manifold with χ = 0 and
e 6= 0, then M admits a Nil geometry.

Proof. We have

M =
(
S, (p1, q1), . . . , (pk , qk)

)
.
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Suppose S is a closed orientable surface of genus g > 0. In the following
π1(S) is the orbifold fundamental group. We have:

π1(S) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | [a1, b1] · · · [ag, bg]c1 · · · ck , cpii 〉,
π1(M) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck , l | [a1, b1] · · · [ag, bg]c1 · · · ck , cpii l

qi ,

[ai , l ], [bi , l ]〉.

We fix any flat structure on the orbifold S and get an injection π1(S) →
Isom+(R2). We now want to lift this map to an injection π1(M) →
Isom+(Nil), so that the resulting diagram commutes:

π1(M) //

��

Isom+(Nil)

��
π1(S) // Isom+(R2)

Recall that Isom+
0 (Nil) contains the group R of vertical translations: we

use the multiplicative notation and indicate it as R>0. We note that R>0

is central in Isom+
0 (Nil) because it commutes with Nil and the isometries

ϕ from Proposition 12.5.3, which altogether generate Isom+
0 (Nil).

We identify π1(S) with its image in Isom+(R2). We lift arbitrarily
ai , bi , ci inside Isom+(Nil) and pick l ∈ R>0. We get

[a1, b1] · · · [ag, bg]c1 · · · ck = eµ,

c
pi
i l

qi = eλi

for some µ, λi ∈ R. To get a homomorphism π1(M) → Isom+(Nil) we
need µ = λi = 0. To obtain that we change the lifts as c ′i = eti ci , l ′ = eu l

to get

[a1, b1] · · · [ag, bg]c ′1 · · · c ′k = et1+...+tk+µ,

(c ′i )
pi (l ′)qi = etipi+uqi+λi .

We want

t1 + . . .+ tk = −µ,
tipi + uqi = −λi .

The determinant of the k × k coefficient matrix was already calculated in
the proof of Proposition 10.3.15, and is

±
∑ qi

pi
(p1 · · · pk) = ±e · p1 · · · pk 6= 0.

Therefore the linear system has a unique solution (t1, . . . , tk , u). The lift l ′

is necessarily non-trivial, otherwise we would get a lift π1(S)→ Isom+(Nil)

that is excluded by Proposition 12.5.6. Therefore the lift is injective.
If S is non-orientable the proof is similar and left as an exercise. �
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12.6. S̃L2 geometry

The S̃L2 geometry is similar to Nil, but it is now a R-bundle over H2.
The geometry is again fully carried by the Lie group S̃L2, which is the
universal cover of both SL2(R) and PSL2(R). It is convenient to identify
PSL2(R) with the unit tangent bundle of H2.

12.6.1. The unit tangent bundle. The tangent bundle TM of a Rie-
mannian n-manifold M has a natural Riemannian structure, which we
briefly introduce.

The tangent space at any point x ∈ TM splits into a vertical sub-
space Vx = ker dpx where p : TM → M is the projection, and a horizontal
subspace Hx determined by the metric tensor on M as follows: use the
parallel transport to move the tangent vector x along all geodesics exiting
from p(x); the result is a small n-surface in TM containing x and we set
Hx to be its tangent space at x .

To define a metric on TM we impose that Vx and Hx be orthogonal
and we give to each space the metric of TxM, via the natural identification
Vx = TxM and via the isomorphism dpx : Hx → TxM.

The unit tangent bundle UM ⊂ TM consists of all unitary tangent
vectors and inherits a Riemannian structure. Every isometry f : M → M

induces an isometry df : UM → UM.

12.6.2. The space UH2. We now focus on the case M = H2 we are
interested in. Parallel transport was defined explicitly in Section 2.4.4. We
represent H2 using the upper half-plane model H2 = {=z > 0}, so that
TH2 = H2 × C and UH2 = H2 × S1 has coordinates (z, θ). The tangent
space T(z,θ)UH

2 is naturally identified with C× R = R3.

Lemma 12.6.1. The metric tensor of UH2 at (z, θ) is2y−2 0 y−1

0 y−2 0

y−1 0 1


where z = x + iy .

Proof. We first consider the disc model D2 of H2 with TD2 = D2×C
and T(z,v)TD

2 = C × C. We focus at a point (0, v) and determine the
decomposition

T(0,v) = H(0,v) ⊕ V(0,v).

We have V(0,v) = 0 × C and we now determine H(0,v). Every geodesic
through 0 is a Euclidean line l and the parallel transport of v ∈ T0D

2

along l forms a constant angle with l : the parallel transport of v at z ∈ l
is just the rescaled vector (1− |z |2)v . Parallel transports of v along lines
passing through 0 form a surface, which is the graph of the function f (z) =

(1− |z |2)v , whose tangent plane at 0 is H(0,v) = C× 0 since ∂f
∂x

= ∂f
∂y

= 0

at 0.
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We have discovered that the horizontal and vertical planes at (0, v)

are just the coordinate ones of T(0,v) = C × C. By definition these are
orthogonal and inherit a metric tensor from that of T0D

2, which is 4 times
the Euclidean one. Therefore the metric tensor at T(0,v) = C2 is 4 times
the Euclidean one.

We now turn to the unitary sub-bundle UD2 = D2 × S1. We use the
natural identifications T(0,θ)UD

2 = C × R = R3 and we deduce that the
vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ T(0,θ) are orthogonal and have norm
2, 2, 1 respectively.

The Möbius transformation

f (z) =
z − i
iz − 1

is an isometry between the two models D2 and H2 that sends 0 to i . It is
holomorphic and its complex derivative is

f ′(z) =
−2

(iz − 1)2
.

The isometry f : D2 → H2 induces an isometry f∗ : UD2 → UH2, that is
f∗ : D2 × S1 → H2 × S1, which is as follows:

f∗(z, θ) =

(
z − i
iz − 1

, θ + arg(f ′(z))

)
=

(
z − i
iz − 1

, θ + π − 2arg(iz − 1)

)
=

(
z − i
iz − 1

, θ + π − 2= log(iz − 1)

)
.

In particular f∗(0, θ) = (i , θ + π). Recall that the Jacobians of a holomor-
phic g and of log g are

Jg =

(
<g′ −=g′
=g′ <g′

)
, J(log g) =

(
< g′
g
−= g′

g

= g′
g

< g′
g

)
.

The differential of f∗ at the point (z, θ) is hence

(df∗)(z,θ) =

<
−2

(iz−1)2 −= −2
(iz−1)2 0

= −2
(iz−1)2 < −2

(iz−1)2 0

−2= 1
z+i

−2< 1
z+i

1

 .
In particular at z = 0 we get

(df∗)(0,θ) =

−2 0 0

0 −2 0

2 0 1

 .
Since this is an isometry, the three image vectors (−2, 0, 2), (0,−2, 0), and
(0, 0, 1) are orthogonal with norm 2, 2, 1, hence (1, 0,−1), (0, 1, 0), and
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(0, 0, 1) form an orthonormal basis at T(i ,θ+π)UH
2 and the metric tensor

there is 2 0 1

0 1 0

1 0 1

 .
The tensor is independent of θ. To find its value at (z, θ) for a generic
z ∈ H2 it suffices to transport it via an isometry that sends i to z . Every
such isometry is a composition of a horizontal translation (which does not
change the tensor) and a dilation g(z) = λz with λ > 0. We have g′(z) =

λ and g∗(z, θ) = (λz, θ), therefore dg∗ sends the above orthonormal basis
at T(i ,θ) to the basis (λ, 0,−1), (0, λ, 0), (0, 0, 1). The metric tensor at
(λi, θ) is hence 2λ−2 0 λ−1

0 λ−2 0

λ−1 0 1

 .
The proof is complete. �

At a point (x, y , θ) ∈ UH2, an orthonormal basis is

(17) (y, 0,−1), (0, y , 0), (0, 0, 1).

The planes orthogonal to (0, 0, 1) form a contact structure similar to the
one drawn in Figure 12.4.

We remark that the metric tensor at (x, y , θ) has determinant y−4,
like in the product metric H2 × S1: therefore the volume form in UH2 is
the same as in the product metric (although the metric tensor is not).

The non-zero Christoffel symbols at (x, y , θ) are:

Γ1
12 = Γ1

21 = − 3

2y
, Γ1

23 = Γ1
32 = −1

2
,

Γ2
11 =

2

y
, Γ2

13 = Γ2
31 =

1

2
, Γ2

22 = −1

y
,

Γ3
12 = Γ3

21 =
1

y 2
, Γ3

23 = Γ3
32 =

1

2y
.

The Ricci tensor is

Ri j =
1

2
·

−2y−2 0 y−1

0 −3y−2 0

y−1 0 1

 .
When y = 1 we can represent the Ricci tensor in the orthonormal basis
(17) and get a diagonal matrix with values − 3

2
, − 3

2
, 1

2
. For a vector

v ∈ T(z,θ)UH2, recall that Ri jvivj is twice the average value of the sectional
curvatures of the planes containing v : this average value ranges from − 3

4

to 1
4
and is maximal when v = (0, 0,±1). This holds when y = 1 and

hence for any z ∈ UH2 by acting via isometries of H2.
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12.6.3. S̃L2 geometry. Let S̃L2 be the universal cover of SL2 =

SL2(R). As a universal cover of a Lie group, it is also a Lie group. We
have coverings

S̃L2 −→ SL2 −→ PSL2(R) = Isom+(H2).

The group PSL2(R) acts freely and transitively on UH2 and hence we can
identify PSL2(R) with UH2. With this identification PSL2(R) inherits a
left-invariant Riemannian metric that lifts to a left-invariant Riemannian
metric on the Lie group S̃L2.

In the previous section we have identified UH2 with H2 × S1 and we
can likewise identify S̃L2 with H2 × R, and get an explicit metric tensor
from Lemma 12.6.1.

Since UH2 is a circle bundle over H2, likewise S̃L2 is a line bundle over
H2. The group R acts isometrically on S̃L2 by translating every fibre.

Proposition 12.6.2. Every isometry of S̃L2 preserves the line bundle
and induces an isometry of H2. We have

0 −→ R −→ Isom+(S̃L2)
p−→ Isom(H2) −→ 0.

The group Isom+(S̃L2) has two components.

Proof. The groups R and S̃L2 belong to the component Isom+
◦ (S̃L2)

containing e which has dimension at least 1 + 3 = 4. We conclude as in
the proof of Proposition 12.5.4. �

Exercise 12.6.3. The unit tangent bundle of a finite-area complete
hyperbolic surface is naturally a manifold modelled on S̃L2.

As for Nil, cocompact groups do no lift.

Proposition 12.6.4. Let Γ < Isom(H2) be discrete and cocompact.
There is no homomorphism f : Γ→ Isom+(S̃L2) such that p ◦ f = id.

Proof. Up to taking a finite index subgroup we may suppose that
Γ acts freely and hence S = H2/Γ is a closed hyperbolic surface. If Γ

lifts, consider the group G < Isom+(S̃L2) generated by f (Γ) and 2π ∈ R,
isomorphic to Γ × Z. The quotient S̃L2/G is naturally the unit tangent
bundle of S and is hence the Seifert manifold

(
S, (1, χ(S))

)
by Remark

10.2.8. Its fundamental group is however not a product Γ×Z by Exercise
10.2.9. �

Proposition 12.6.5. A discrete group Γ < Isom+(S̃L2) is cofinite if
and only if both p(Γ) and Γ ∩ ker p are discrete and cofinite.

Proof. Same proof as Proposition 12.4.4, with a minor variation: if
p(Γ) is not discrete, up to taking an index-two subgroup we suppose that
p(Γ) < Isom+(H2); the R-action commutes with Γ and [f , g] depends only
on p(f ) and p(g), so that proof applies. �
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We now classify the manifolds having a S̃L2 geometry.

Corollary 12.6.6. If the interior of a compact orientable manifold M
admits a finite-volume complete S̃L2 geometry thenM is a Seifert manifold
with χ < 0. If M is closed then e 6= 0.

Proof. We have int(M) = S̃L2/Γ with Γ cofinite. Proposition 12.6.5
furnishes a Seifert fibration M → S over the finite-area orbifold S =

H2/p(Γ). If M is closed we get e 6= 0: if not, up to taking a finite index
subgroup we would get M = S×S1 contradicting Proposition 12.6.4. �

We now prove the converse.

Proposition 12.6.7. If M is a Seifert manifold with χ < 0 and either
∂M 6= ∅ or e 6= 0, the interior of M admits a finite-volume S̃L2 geometry.

Proof. If M is closed we apply the proof of Proposition 12.5.11. If
∂M 6= ∅ the presentations of π1(S) and π1(M) are as described there,
except that they do not contain the relator cpii whenever ci represents a
boundary component of M. So we have less constraints and we easily see
that a solution to the final linear problem exists also in this case. �

12.7. Sol geometry

The Sol geometry is the least symmetric one among the eight. It has
a bundle structure, but with a one-dimensional basis: it is a R2-bundle over
R. Again, the geometry is fully governed by a Lie group Sol.

12.7.1. The Lie group Sol. The Lie group Sol is the space R3 equipped
with the following operation

(x, y , z) · (x ′, y ′, z ′) = (x + e−zx ′, y + ezy ′, z + z ′).

Exercise 12.7.1. We have

(x, y , z)−1 = (−xez ,−ye−z ,−z),

[(x, y , z), (x ′, y ′, z ′)] =
(
x(1−e−z

′
)−x ′(1−e−z), y(1−ez

′
)−y ′(1−ez),0

)
,

[(x, y , z), (x ′, y ′, 0)] =
(
− x ′(1− e−z),−y ′(1− ez), 0

)
.

The subgroup R2 consisting of all elements (x, y , 0) is the centre of
Sol and by setting p(x, y , z) = z we get an exact sequence

0 −→ R2 −→ Sol
p−→ R −→ 0.

Therefore Sol is a plane bundle over R. Exercise 12.7.1 implies the follow-
ing.

Exercise 12.7.2. We have [Sol,Sol] = R2 and hence Sol is solvable.
However [Sol,R2] = R2 and hence Sol is not nilpotent.
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We define a Riemannian metric on Sol by assigning the scalar producte2z 0 0

0 e−2z 0

0 0 1


to the point (x, y , z). The metric is left-invariant and every plane z = k

is isometric to the Euclidean R2. This is the geometry with the smallest
amount of symmetries.

We remark that the metric tensor has unit determinant at every point:
therefore the volume form on Sol is the standard one on R3.

The non-zero Christoffel symbols at (x, y , z) are

Γ1
13 = Γ1

31 = 1,

Γ2
23 = Γ2

32 = −1,

Γ3
11 = −e2z , Γ3

22 = e−2z .

The Ricci tensor is 0 0 0

0 0 0

0 0 −2

 .
The average value of the sectional curvatures of the planes containing
v ∈ T(x,y ,z)Sol ranges from −1 to 0, and is minimal when v = (0, 0,±1).

12.7.2. Sol geometry. We start with a simple exercise.

Exercise 12.7.3. The eight maps

(x, y , z) 7→ (±x,±y, z), (x, y , z) 7→ (±y,±x,−z)

are isometries and form the dihedral group D8. The orientation-preserving
ones form the subgroup D4 = Z2 × Z2.

Let Isom∗(R2) < Isom(R2) be the subgroup consisting of all maps
v 7→ ±v + b. It has two components, one being the translations R2.

Proposition 12.7.4. Every isometry of Sol preserves the plane bundle
and induces an isometry of R. We have

0 −→ Isom∗(R2) −→ Isom+(Sol)
p−→ Isom(R) −→ 0.

The group Isom+(Sol) has four components, one of which is Sol acting by
left-multiplication.

Proof. The group Sol acts transitively and freely on Sol itself, and
to conclude it suffices to check that the stabiliser of the origin 0 is the
dihedral D4 described in Exercise 12.7.3.

The Ricci tensor tells us that an isometry fixing a point also fixes the
vertical axis and the horizontal plane. Therefore the vertical unitary con-
stant vector field X = (0, 0, 1) is preserved up to sign by any isometry of
Sol. The covariant differentiation v 7→ ∇vX defines an endomorphism of
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TpSol for all p ∈ Sol. We have ∇eiX = Γki3ek and therefore the endomor-
phism is 1 0 0

0 −1 0

0 0 0

 .
The three coordinate axis are precisely the eigenvectors of the endomor-
phism, and being intrinsically defined they are preserved by every isometry.
Therefore the orientation-preserving stabiliser of a point is D4. �

Proposition 12.7.5. A discrete group Γ < Isom+(Sol) is cofinite if and
only if both p(Γ) and Γ ∩ ker p are discrete and cofinite.

Proof. If p(Γ) is discrete we get

Vol
(

Sol/Γ

)
= Length(R/p(Γ))× Area

(
R2/Γ∩ker p

)
.

This formula is proved as above by taking a fundamental domain for p(Γ).
We now prove that p(Γ) is in fact discrete (since Γ is).

Up to taking an index-four subgroup we suppose that Γ < Sol. If
γ ∈ Sol does not lie in R2, then it fixes a vertical line. To prove that, note
that γ = (x, y , z) acts on R3 as an affine transformation, which permutes
the vertical lines and acts on R2 as (x ′, y ′) 7→ (x + e−zx ′, y + ezy ′). If
z 6= 0 this map has a fixed point (because 1 is not an eigenvalue of its
linearisation).

If Γ is abelian, either it is contained in R2 or it fixes a vertical line: in
both cases we get a discrete p(Γ). If Γ is non-abelian, then [Γ,Γ] < R2 is
non-trivial so Γ contains a non-trivial element γ ∈ R2 and another η 6∈ R2.
The elements γ and ηγη−1 are both in R2 and independent, hence R2/Γ∩ker p

is compact. This implies easily that p(Γ) is discrete (since Γ is). �

We now classify the manifolds modelled on Sol. Recall that every
semi-bundle is doubly covered by a canonical bundle. A torus bundle is of
Anosov type if its monodromy is Anosov. A torus semi-bundle is of Anosov
type if its double-covering is.

Proposition 12.7.6. The interior of a compact orientable manifold M
admits a finite-volume complete Sol geometry if and only if it is a torus
(semi-)bundle of Anosov type.

Proof. If int(M) = Sol/Γ has finite volume, then both Γ ∩ ker p and
p(Γ) are discrete and cofinite. The horizontal foliation of Sol into Euclidean
planes z = k is preserved by Γ and projected to a surface bundle over the
1-orbifold R/p(Γ), which is either S1 or an interval. The fibres are flat and
have finite area, hence they are tori or Klein bottles.

If p(Γ) acts by translations, then M is a torus bundle with an Anosov
monodromy ±

(
e−z 0

0 ez

)
for some z > 0. If M is a semi-bundle, this holds on

its double-covering.
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Conversely, let MA be a torus bundle with Anosov monodromy A ∈
SL2(Z). We have MA = R3/Γ where Γ is generated by the affine maps

(x, y , z) 7→ (x+1, y , z), (x, y , z) 7→ (x, y+1, z), (x̄ , z) 7→ (Ax̄, z+h)

where x̄ = (x, y) and h > 0 is any positive number. A linear isomorphism
ψ of R2 conjugates A into a diagonal matrix ±

(
e−a 0

0 ea

)
for some a > 0 and

transforms the generators into

(x̄ , z) 7→ (x̄+ v̄ , z), (x̄ , z) 7→ (x̄+ w̄ , z), (x, y , z) 7→ (±e−ax,±eay, z+h)

where v̄ = ψ(1, 0) and w̄ = ψ(0, 1). If trA > 0 and h = a these maps are
left-multiplications by the following elements of Sol:

(v̄ , 0), (w̄ , 0), (0̄, a)

where 0̄ = (0, 0), and we are done. If trA < 0 we compose the third
generator with the isometry (x, y , z) 7→ (−x,−y, z).

If M is a semi-bundle double-covered by MA, we represent it as R3/Γ′

where Γ′ is generated by the group Γ representing MA plus the element

(x, y , z) 7→
(
x +

1

2
,−y,−z

)
which will be transformed via ψ into an isometry of Sol. �

Corollary 12.7.7. If a closed three-manifold M has a Sol geometry,
then π1(M) is virtually solvable but not virtually nilpotent.

Proof. It is virtually solvable because Sol has finite index in Isom+(Sol).
The proof of Proposition 12.7.6 shows that up to finite index M = Sol/Γ

and Γ is generated by

(v̄ , 0), (w̄ , 0), (0̄, a).

Exercise 12.7.1 implies that [(0̄, a), (v̄ , 0)] = (v̄ ′, 0) for some v̄ ′ 6= 0 and
hence Γ is not nilpotent. This holds for any Γ of this kind, and therefore
Γ is not virtually nilpotent, either. �

12.8. Summary

We have proudly completed the proof of Theorem 12.1.1. We state
that theorem again here:

Theorem 12.8.1. A closed orentable 3-manifold has a geometric struc-
ture modelled on one of the following six geometries:

S3, R3, S2 × R, H2 × R, Nil, S̃L2

if and only if it is a Seifert manifold of the appropriate commensurability
class, as prescribed by Table 12.1. It has a Sol geometric structure if and
only if it is a torus (semi-)bundle of Anosov type.

We can deduce that the eight geometries are mutually exclusive:
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Proposition 12.8.2. Two closed 3-manifolds admitting different ge-
ometries are not diffeomorphic, and not even commensurable.

Proof. We already know that the six Seifert geometries form six dis-
tinct commensurability classes. A manifold of type Sol is not Seifert by
Proposition 11.4.14. A closed hyperbolic manifold is neither Seifert nor
Sol because its fundamental group is infinite and does not contain an infi-
nite normal abelian subgroup by Corollary 5.1.10 (as opposite to the other
geometries, see Proposition 10.4.3).

Two manifolds having different geometries cannot be commensurable,
since a common finite cover would inherit both geometries. �

In fact one can tell the geometry of the manifold directly from its
fundamental group.

Proposition 12.8.3. Let M be a closed manifold modelled on one X of
the eight geometries; this flowchart shows how to determine X from the
fundamental group π1(M):

• if π1(M) is finite, then X = S3; otherwise
• if π1(M) is virtually cyclic, then X = S2 × R; otherwise
• if π1(M) is virtually abelian, then X = R3; otherwise
• if π1(M) is virtually nilpotent, then X = Nil; otherwise
• if π1(M) is virtually solvable, then X = Sol; otherwise
• if π1(M) contains a normal cyclic group K, then:

– if a finite-index subgroup of the quotient lifts, X = H2×R,
– otherwise X = S̃L2;

• otherwise X = H3.

Proof. The virtually abelian cases were settled in Section 10.3.10.
The Nil and Sol geometries were considered by Corollaries 12.5.8 and
12.7.7.

If X = H2 × R or S̃L2 then π1(M) surjects onto π1(S) for some
closed hyperbolic surface S. This implies that π1(M) is not solvable, for
otherwise (by Propositions 1.4.3 and 1.4.10) the group π1(S) would also
be, and hence it would contain a normal cyclic subgroup, contradicting
Corollary 5.1.10.

If X = S̃L2 then π1(S) = π1(M)/K and no finite-index subgroup of
π1(S) can lift to π1(M) by Proposition 12.6.4.

Finally, if X = H3 then π1(M) contains no normal cyclic group K by
Corollary 5.1.10 again. �

The boundary case is slightly different. Of the eight geometries, only
three produce non-compact finite-volume complete orientable manifolds:

H3, H2 × R, S̃L2.

These non-compact finite-volume manifolds are diffeomorphic to the inte-
rior of a compact manifold M with boundary consisting of tori.
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Theorem 12.8.4. Let M be a compact orientable 3-manifold with
boundary consisting of tori. The following are equivalent:

• M has a finite-volume complete H2 × R structure,
• M has a finite-volume complete S̃L2 structure,
• M is Seifert with χ < 0.

In contrast with the closed case, a non-closed M may admit two dif-
ferent geometric structures of Seifert type. On the other hand, a manifold
M cannot admit both a hyperbolic and a Seifert structure.

12.9. The geometrisation conjecture

We can finally state the famous Geometrisation Conjecture, proposed
by Thurston in 1982 and proved twenty years later by Perelman in 2002.

12.9.1. Statement and main consequences. We say that a compact
3-manifold with (possibly empty) boundary consisting of tori is geometric
if its interior has a finite-volume complete geometric structure modelled
on one of the eight geometries:

S3, R3, H3, S2 × R, H2 × R, Nil, Sol, S̃L2.

The following conjecture was formulated by Thurston in 1982:

Conjecture 12.9.1 (Geometrisation Conjecture). Let M be an irre-
ducible orientable compact 3-manifold with (possibly empty) boundary
consisting of tori. Every block of the geometric decomposition of M is
geometric.

The conjecture has been proved by Perelman in 2002 and its proof
goes very very far from the scope of this book. It is however quite easy to
deduce important consequences from it.

Conjecture 12.9.2 (Poincaré conjecture). Every closed simply con-
nected three-manifold M is diffeomorphic to S3.

Proof using geometrisation. Via the prime decomposition we may re-
strict to the case M is prime, hence irreducible. The group π1(M) is trivial
and hence does not contain Z × Z: every torus in M is thus compress-
ible and the geometric decomposition is trivial. By geometrisation M is
itself geometric. The only geometry with finite fundamental groups is S3,
and hence M = S3/Γ is elliptic. Since M is simply connected, the group
Γ = π1(M) is trivial and hence M = S3. �

Conjecture 12.9.3 (Elliptisation). Every closed 3-manifold M with fi-
nite π1(M) is elliptic.

Proof using geometrisation. Same proof as above. Note that this is
not a consequence of Poincaré conjecture in general, for a manifold covered
by Sn needs not to be elliptic a priori. �
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Conjecture 12.9.4 (Hyperbolisation). Every closed irreducible 3-manifold
M with infinite π1(M) not containing Z× Z is hyperbolic.

Proof using geometrisation. Since π1(M) does not contain Z×Z ev-
ery torus is compressible and the geometric decomposition of M is trivial.
By geometrisation M is geometric. Its geometry is not S3 since π1(M) is
infinite, and is not S2 × R since M is irreducible. In the other Seifert ge-
ometries and in Sol the fundamental group π1(M) always contain a Z×Z
(there is always a finite covering containing an incompressible torus). �

Corollary 12.9.5. Let M̃ → M be a finite covering. If M̃ is geometric,
then M also is (with the same geometry).

Proof using geometrisation. Note that this is stronger than Conjec-
ture 12.9.3. Since M̃ is geometric, it is irreducible and hence also M is.
Proposition 11.5.7 implies that the geometric decomposition ofM is trivial,
and by geometrisation M is geometric. �

Concerning bounded manifolds, we get the following simple statement.

Corollary 12.9.6. Every simple compact manifold M bounded by a
non-empty collection of tori is hyperbolic.

Proof using geometrisation. Being simple, it is geometric. Seifert
manifolds with boundary are never simple. �

That statement is not true for closed manifolds, because many Seifert
manifolds fibering over S2 with at most 3 singular fibres are simple.

12.9.2. Surface bundles. There is a nice way to formulate geometri-
sation for surface bundles. We start with the much simpler torus case.

Proposition 12.9.7. Let MA be a torus bundle with monodromy A 6=
±I. The following holds:

• if |trA| < 2, i.e. A has finite order, then MA is flat;
• if |trA| = 2, i.e. A is reducible, then MA is Nil;
• if |trA| > 2, i.e. A is Anosov, then MA is Sol.

Proof. Use Proposition 11.4.14. �

We now turn to the generic case. Let Σ be a closed orientable surface
with χ(Σ) < 0.

Theorem 12.9.8. Let Mψ be a surface bundle with fibre Σ and mon-
odromy ψ ∈ MCG(Σ). The following holds:

• if ψ has finite order, then Mψ has a H2 × R geometry,
• if ψ is reducible, then Mψ contains an essential torus,
• if ψ is pseudo-Anosov, then Mψ is hyperbolic.

Proof using geometrisation. Use Proposition 11.4.15. �
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Theorem 12.9.8 was initially proved by Thurston in the 1980s. In
the same years Thurston also proved the geometrisation conjecture for
all Haken 3-manifolds. Before Perelman’s proof the conjecture was open
“only” in the non-Haken case, and it naturally split in three parts: the
Conjectures 12.9.2, 12.9.3, and 12.9.4. Perelman’s proof certifies ge-
ometrisation in all cases with a unified technique.

12.9.3. References. This chapter contains many technical proofs.
Most of them were taken from Scott [52], that is the standard refer-
ence on the geometrisation of Seifert manifolds, and Thurson’s book [57].
We have also consulted a nice survey of Bonahon [8], that contains in par-
ticular the suggestion of calculating the Ricci tensors in the non-product
geometries. Thurson’s geometrisation conjecture appears in [58] in 1982,
while Perelman’s proof consists of three papers that he sent to the arXiv
in 2003 [45, 46, 47].





CHAPTER 13

Mostow rigidity theorem

We have defined in Chapter 7 the Teichmüller space Teich(Sg) of
a genus-g closed orientable surface Sg as the space of all the hyperbolic
metrics on Sg, considered up to isometries isotopic to the identity; we have
then proved that Teich(Sg) is homeomorphic to R6g−6 using the Fenchel–
Nielsen coordinates.

This definition of Teich(M) actually applies to any closed hyperbolic
manifoldM, and we show here a striking difference between the dimensions
two and three: if dimM = 3 then Teich(M) is a single point. This strong
result is known as the Mostow rigidity Theorem.

The impact of Mostow’s rigidity on our knowledge of 3-dimensional
topology cannot be overestimated. Thanks to this theorem every geo-
metric information on a given closed hyperbolic three-manifold M like its
volume, geodesic spectrum, etc. is promoted to a topological invariant
of M, that is it depends on the differentiable structure of M only. In its
strongest version, Mostow’s rigidity says that the hyperbolic metric of M
is fully determined by the group π1(M) alone.

We expose here Gromov’s proof of Mostow’s rigidity, which uses hy-
perbolic tetrahedra and introduces a nice invariant on closed manifolds of
any dimension, called the simplicial volume.

13.1. Volume of tetrahedra

The volume of an ideal hyperbolic tetrahedron is a simple (but integral)
formula that involves the Lobachevsky function: we now prove this formula
here. As a consequence we show that the regular ideal tetrahedron is the
hyperbolic tetrahedron with maximal volume.

13.1.1. The Lobachevsky function. The Lobachevsky function is

Λ(θ) = −
∫ θ

0

log |2 sin t|dt.

The function log |2 sin t| is −∞ on πZ but is integrable, hence Λ is well-
defined and continuous on R. Its first derivatives are

Λ′(θ) = − log |2 sin θ|, Λ′′(θ) = − cot θ.

The function Λ has derivative +∞ on πZ and is an odd function, because
its derivative is even.

407
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Proposition 13.1.1. The function Λ is π-periodic. We have Λ(0) =

Λ
(
π
2

)
= Λ(π) = 0. The function Λ is strictly positive on

(
0, π

2

)
, strictly

negative on
(
π
2
, π
)
, and has absolute maximum and minimum at π

6
and

5
6
π. For all m ∈ N the following holds:

Λ(mθ) = m

m−1∑
k=0

Λ

(
θ +

kπ

m

)
.

Proof. We prove the equality for m = 2:

Λ(2θ)

2
= −1

2

∫ 2θ

0

log |2 sin t|dt = −
∫ θ

0

log |2 sin 2t|dt

= −
∫ θ

0

log |2 sin t|dt −
∫ θ

0

log
∣∣∣2 sin

(
t +

π

2

)∣∣∣ dt
= Λ(θ)−

∫ π
2 +θ

π
2

log |2 sin t|dt

= Λ(θ) + Λ
(
θ +

π

2

)
− Λ

(π
2

)
.

By setting θ = π
2
we get Λ(π) = 0. Since the derivative Λ′ is π-periodic

and Λ(π) = 0, also Λ is π-periodic. Since Λ is π-periodic and odd, we have
Λ
(
π
2

)
= 0. We have also proved the formula for m = 2.

To prove the formula for generic m we use a generalisation of the
duplication formula for the sinus. From the equality

zm − 1 =

m−1∏
k=0

(
z − e−

2πik
m

)
we deduce

2 sin(mt) =

m−1∏
k=0

2 sin

(
t +

kπ

m

)
and hence

Λ(mθ)

m
= − 1

m

∫ mθ

0

log |2 sin t|dt = −
∫ θ

0

log |2 sin(mt)|dt

= −
m−1∑
k=0

∫ θ

0

log

∣∣∣∣2 sin

(
t +

kπ

m

)∣∣∣∣ dt
= −

m−1∑
k=0

(∫ θ+ kπ
m

0

log |2 sin t|dt −
∫ kπ

m

0

log |2 sin t|dt

)

= −
m−1∑
k=0

Λ

(
θ +

kπ

m

)
+ C(m)
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Figure 13.1. Every pair of opposite edges in an ideal tetra-
hedron has an axis orthogonal to both which is a symmetry
axis for the tetrahedron.

where C(m) is a constant independent of θ. By integrating both sides we
get

1

m

∫ π

0

Λ(mθ) = −
m−1∑
k=0

∫ π

0

Λ

(
θ +

kπ

m

)
+ C(m)π.

Since Λ is odd and π-periodic, we have∫ π

0

Λ(mθ) = 0

for any integer m. Hence C(m) = 0 and the formula is proved. Finally
we note that Λ′′(θ) = − cot θ is strictly negative in (0, π

2
) and strictly

positive in ( π
2
, π), hence Λ is strictly positive in (0, π

2
) and strictly negative

in ( π
2
, π). �

13.1.2. Volumes of ideal tetrahedra. An ideal tetrahedron in H3 is
the convex hull of four non-planar ideal points. Quite surprisingly, every
ideal tetrahedron has some non-trivial symmetries.

Proposition 13.1.2. For any pair of opposite edges in an ideal tetra-
hedron ∆ there is a unique line r orthogonal to both as in Figure 13.1 and
∆ is symmetric with respect to a π-rotation around r .

Proof. The opposite edges e ed e ′ are ultraparallel lines in H3 and
hence have a common perpendicular r . A π-rotation around r inverts both
e and e ′ but preserve the 4 ideal vertices of ∆, hence ∆ itself. �

As a consequence, two opposite edges in ∆ have coinciding dihedral
angles as in Figure 13.2-(left). Moreover, we have α+β+ γ = π because
a small horosphere based at a vertex intersects ∆ into a Euclidean triangle
with inner angles α, β, and γ. The regular ideal tetrahedron has of course
equal angles α = β = γ = π

3
.
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Figure 13.2. The dihedral angles α, β, γ of an ideal tetrahe-
dron. Opposite edges have the same angle and α+β+γ = π

(left). To calculate the volume we use the half-space model,
send a vertex to ∞, and divide the tetrahedron in six sub-
tetrahedra (right).

Theorem 13.1.3. Let ∆ be an ideal tetrahedron with dihedral angles
α, β and γ. We have

Vol(∆) = Λ(α) + Λ(β) + Λ(γ).

Proof. We represent ∆ in the half-space model H3 with one vertex v0

at infinity and three vertices v1, v2, v3 in C. Let C be the circle containing
v1, v2, and v3: up to composing with elements in PSL2(C) we can suppose
that C = S1. The Euclidean triangle T ⊂ C with vertices v1, v2, and v3

has interior angles α, β, and γ.
We first consider the case 0 ∈ T , that is α, β, γ 6 π

2
. We decompose

T into six triangles as in Figure 13.2: the tetrahedron ∆ decomposes
accordingly into six tetrahedra lying above them, and we prove that the
one ∆α lying above the yellow triangle has volume Λ(α)

2
. This proves the

theorem.
The tetrahedron ∆α is the intersection of four half-spaces: three ver-

tical ones bounded by the hyperplanes y = 0, x = cosα, and y = x tanα,
and one bounded by the half-sphere z2 = x2 + y 2. Therefore

Vol(∆α) =

∫ cosα

0

dx

∫ x tanα

0

dy

∫ ∞
√

1−x2−y2

1

z3
dz

=

∫ cosα

0

dx

∫ x tanα

0

dy

[
− 1

2z2

]∞
√

1−x2−y2

=
1

2

∫ cosα

0

dx

∫ x tanα

0

1

1− x2 − y 2
dy.

To solve this integral we use the relation

1

1− x2 − y 2
=

1

2
√

1− x2

(
1√

1− x2 − y
+

1√
1− x2 + y

)
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and hence Vol(∆α) equals

1

4

∫ cosα

0

dx√
1− x2

([
− log(

√
1− x2 − y)

]x tanα

0
+
[

log(
√

1− x2 + y)
]x tanα

0

)
=

1

4

∫ cosα

0

dx√
1− x2

(
− log(

√
1− x2 − x tanα) + log(

√
1− x2 + x tanα)

)
.

By writing x = cos t and hence dx = − sin t dt we obtain

Vol(∆α) =
1

4

∫ α

π
2

− sin t

sin t

(
− log

sin t cosα− cos t sinα

sin t cosα+ cos t sinα

)
dt

= −1

4

∫ α

π
2

log
sin(t + α)

sin(t − α)
dt = −1

4

∫ α

π
2

log
|2 sin(t + α)|
|2 sin(t − α)|dt

=
1

4

∫ π
2 +α

2α

log |2 sin t|dt − 1

4

∫ π
2 −α

0

log |2 sin t|dt

=
1

4

(
−Λ
(π

2
+ α

)
+ Λ(2α) + Λ

(π
2
− α

))
=

1

4

(
−Λ
(π

2
+ α

)
+ 2Λ(α) + 2Λ

(π
2

+ α
)
− Λ

(π
2

+ α
))

=
1

2
Λ(α)

using Proposition 13.1.1.
If 0 6∈ T the triangle T may be decomposed analogously into triangles,

some of which contribute negatively to the volume, and we obtain the same
formula. �

Corollary 13.1.4. The regular ideal tetrahedron is the hyperbolic tetra-
hedron of maximum volume.

Proof. It is easy to prove that every hyperbolic tetrahedron is con-
tained in an ideal tetrahedron: hence we may consider only ideal tetrahe-
dra. Consider the triangle T = {0 6 α, β, α+ β 6 π} and

f : T −→ R
(α, β) 7−→ Λ(α) + Λ(β) + Λ(π − α− β).

The continuous function f is null on ∂T and strictly positive on the interior
of T because it measures the volume of the ideal tetrahedron of dihedral
angles α, β, γ = π − α − β. Hence f has at least a maximum on some
interior point (α, β). The gradient ∇f is equal to(

Λ′(α)− Λ′(π − α− β)

Λ′(β)− Λ′(π − α− β)

)
=

(
− log |2 sinα|+ log |2 sin(π − α− β)|
− log |2 sinβ|+ log |2 sin(π − α− β)|

)
and it must vanish there: this holds if and only if sinα = sin(π−α−β) =

sinβ, i.e. if and only if the tetrahedron has all dihedral angles π
3
. �
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13.2. Simplicial volume

Gromov has introduced a topological invariant on closed manifolds of
any dimension called the simplicial volume. This nice invariant can be used,
among other things, to prove Mostow’s rigidity theorem.

13.2.1. Definition. Gromov has introduced a measure of “volume”
of a closed manifold M which makes use only of the homology of M.
Quite surprisingly, this notion of volume coincides (up to a factor) with
the Riemannian one when M is hyperbolic.

Consider a topological space X and its homology with ring R. We
define the norm of a cycle α = λ1α1 + . . .+ λhαh as follows:

|α| = |λ1|+ . . .+ |λh|.

Definition 13.2.1. The norm of a class a ∈ Hk(X,R) is the infimum
of the norms of its elements:

|a| = inf
{
|α|
∣∣ α ∈ Zk(X,R), [α] = a

}
.

Recall that a seminorm on a real vector space V is a map |·| : V → R>0

such that

• |λv | = |λ||v | for any scalar λ ∈ R and vector v ∈ V ,
• |v + w | 6 |v |+ |w | for any pair of vectors v, w ∈ V .

A norm is a seminorm where |v | = 0 implies v = 0. The following is
immediate.

Proposition 13.2.2. The norm | · | induces a seminorm on Hk(X,R).

Although it is only a seminorm, the function | · | is called a norm for
simplicity. Let now M be an oriented closed connected manifold: we know
that Hn(M,Z) ∼= Z and the orientation of M determines a fundamental
class [M] ∈ Hn(M,Z) that generates the group. Moreover Hn(M,R) ∼= R
and there is a natural inclusion

Z ∼= Hn(M,Z) ↪→ Hn(M,R) ∼= R

hence the fundamental class [M] is naturally in Hn(M,R) and has a norm.

Definition 13.2.3. The simplicial volume ‖M‖ ∈ R>0 of a closed ori-
ented connected M is the norm of its fundamental class:

‖M‖ = |[M]|

Since |[M]| = | − [M]| the simplicial volume actually does not depend
on the orientation. WhenM is non-orientable we set ‖M‖ =

∥∥M̃∥∥/2 where
M̃ is the orientable double cover of M. The definition of ‖M‖ is relatively
simple but has various non-obvious consequences.
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13.2.2. Properties. A continuous map f : M → N between closed
oriented n-manifolds induces a homomorphism f∗ : Hn(M,Z)→ Hn(N,Z),
and recall that the degree of f is the integer deg f such that

f∗([M]) = deg f · [N].

Proposition 13.2.4. Let f : M → N be a continuous map between
closed oriented manifolds. The following inequality holds:

‖M‖ > | deg f | · ‖N‖.

Proof. Every description of [M] as a cycle λ1α1 + . . .+λhαh induces
a description of f∗([M]) = deg f [N] as a cycle λ1f ◦ α1 + . . . + λhf ◦ αh
with the same norm (or less, if there is some cancelation). �

Corollary 13.2.5. If M and N are closed orientable and homotopically
equivalent n-manifolds then ‖M‖ = ‖N‖.

Proof. A homotopic equivalence consists of two maps f : M → N

and g : N → M whose compositions are both homotopic to the identity.
In particular both f and g have degree ±1. �

Corollary 13.2.6. If M admits a continuous self-map f : M → M of
degree at least two then ‖M‖ = 0.

Corollary 13.2.7. Every sphere Sn has norm zero. More generally we
have ‖M × Sn‖ = 0 for every closed M and any n > 1.

Proof. A sphere Sn admits self-maps of degree > 2, and hence also
the product M × Sn does. �

Among the genus-g surfaces Sg, we deduce that the sphere and the
torus have simplicial volume zero. We will see soon that every surface of
genus g > 2 has positive simplicial volume. When the continuous map is a
covering the inequality from Proposition 13.2.4 is promoted to an equality.

Proposition 13.2.8. If f : M → N is a degree-d covering we have

‖M‖ = d · ‖N‖.

Proof. The reason for this equality is that cycles can be lifted and
projected through the covering. More precisely, we already know that
‖M‖ > d · ‖N‖. Conversely, let α = λ1α1 + . . .+λhαh represent [N]; each
αi is a map ∆n → N. Since ∆n is simply connected, the map αi lfts to d
distinct maps α1

i , . . . , α
d
i : ∆n → N. The chain α̃ =

∑
i j λiα

j
i is a cycle in

M and f∗(α̃) = dα. Hence ‖M‖ 6 d · ‖N‖. �

We also note the following fact.

Proposition 13.2.9. If M is triangulated with k simplices, ‖M‖ 6 k.
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Proof. Up to taking a double cover we may suppose that M is ori-
ented. The closed n-manifold M is triangulated into simplices ∆1, . . . ,∆k ,
and we fix an orientation-preserving parametrisation si : ∆ → ∆i of each.
We would like to say that s1 + . . .+ sk is a fundamental cycle, however this
singular chain is not necessarily a cycle because the restriction to adjacent
faces coincide only up to the symmetries Sn+1 of ∆.

We can fix this problem easily by averaging each si on all its permu-
tations, that is we substitute each si with 1

(n+1)!

∑
σ∈Sn+1

(−1)sgn(σ)si ◦ σ.
Now s = s1 + . . .+ sk is a fundamental cycle and |s| = k. �

13.2.3. Seifert manifolds. We can now calculate the simplicial vol-
ume of Seifert manifolds.

Proposition 13.2.10. IfM is a closed Seifert 3-manifold then ‖M‖ = 0.

Proof. Every Seifert manifold is finitely covered by a product S × S1

(if e = 0) or by a bundle
(
S, (1, 1)

)
with Euler number 1 (if e 6= 0). In the

first case we are done since ‖S × S1‖ = 0.
In the second, if S = S2 then

(
S2, (1, 1)

)
= S3 and ‖S3‖ = 0, so

we suppose χ(S) 6 0. There is a universal K > 0 such that
(
S, (1, 1)

)
triangulates with at most K|χ(S)|+K tetrahedra (exercise) and therefore∥∥(S, (1, 1)

)∥∥ 6 K|χ(S)|+K. Exercise 10.3.27 shows that for every e > 0

there is a degree-e covering S̃ → S and two degree-e coverings(
S̃, (1, 1)

)
−→

(
S̃, (1, e)

)
−→

(
S, (1, 1)

)
which compose to a degree-e2 covering

(
S̃, (1, 1)

)
→
(
S, (1, 1)

)
. Thus∥∥(S, (1, 1)

)∥∥ =

∥∥(S̃, (1, 1)
)∥∥

e2
6
K|χ(S̃)|+K

e2
6
Ke|χ(S)|+K

e2
→ 0

as e →∞. �

13.2.4. Simplicial and hyperbolic volume. In the next pages we will
prove the following theorem. Let v3 be the volume of the regular ideal
tetrahedron in H3.

Theorem 13.2.11. Let M be a closed hyperbolic 3-manifold. We have

Vol(M) = v3‖M‖.

The theorem furnishes in particular some examples of manifolds with
positive simplicial volume and shows that Vol(M) is a topological invariant
of M, thus generalising the Gauss-Bonnet theorem to dimension n = 3.
Mostow rigidity will then strengthen this result in dimension n = 3, showing
that the hyperbolic metric itself (not only its volume) is a topological
invariant.

Both quantities Vol(M) and ‖M‖ are multiplied by d if we substitute
M with a degree-d covering. In particular, up to substituting M with its
orientable double cover we can suppose that M is orientable.
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13.2.5. Cycle straightening. The straight singular k-simplex with
vertices v0, . . . , vk ∈ Hn is the map

α : ∆k −→ Hn

(t0, . . . , tk) 7−→ t0v0 + . . .+ tkvk

defined using convex combinations, see Section 2.4.3. If the k + 1 ver-
tices are not contained in a (k − 1)-plane the singular k-simplex is non-
degenerate and its image is a hyperbolic k-simplex.

The straightening αst of a singular simplex α : ∆k → Hn is the straight
singular simplex with the same vertices of α. The straightening αst of a
singular simplex α : ∆k → M in a hyperbolic manifold M = Hn/Γ is defined
by lifting the singular simplex in Hn, straightening it, and projecting it back
to M by composition with the covering map. Different lifts produce the
same straightening in M because they are related by isometries of Hn.

The straightening extends by linearity to a homomorphism

st : Ck(M,R)→ Ck(M,R)

which commutes with ∂ and hence induces a homomorphism in homology

st∗ : Hk(M,R)→ Hk(M,R).

Proposition 13.2.12. The map st∗ is the identity.

Proof. We may define a homotopy between a singular simplex σ and
its straightening σst using the convex combination

σt(x) = tσ(x) + (1− t)σst(x).

This defines a chain homotopy between st∗ and id via the same technique
used to prove that homotopic maps induce the same maps in homology.

�

The abstract volume of a straightened singular n-simplex α : ∆n → M

is the volume of its lift in Hn and may also be calculated as∣∣∣∣∫
α

ω

∣∣∣∣
where ω is the volume form on M pulled back along α. If α is non-
degenerate, we say that its sign is positive if α is orientation-preserving
and negative otherwise: equivalently, it is the sign of

∫
α
ω.

We now concentrate on the dimension n = 3 where we know that
a tetrahedron has maximum volume v3 if and only if it is both regular
and ideal: a straight simplex is compact and hence its abstract volume is
strictly smaller than v3. We can now easily prove one inequality.

Proposition 13.2.13. Let M be a closed hyperbolic 3-manifold. We
have

Vol(M) 6 v3‖M‖.
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Proof. As we said above, we can suppose that M is orientable. Take
a cycle α = λ1α1 + . . . + λkαk that represents [M]. We can suppose it
is straightened, because the straightening preserves both the coefficients
and the homology class. Let ω be the volume form on M. We get

Vol(M) =

∫
M

ω =

∫
α

ω = λ1

∫
α1

ω + . . .+ λk

∫
αk

ω.

The quantity
∣∣ ∫

αi
ω
∣∣ is the abstract volume of αi . Hence

∣∣ ∫
αi
ω
∣∣ < v3 and

Vol(M) <
(
|λ1|+ . . .+ |λk |

)
v3.

This holds for all α, hence Vol(M) 6 v3‖M‖. �

The proof of the converse inequality is less immediate.

13.2.6. Efficient cycles. Let M = H3/Γ be a closed oriented hyper-
bolic 3-manifold. An ε-efficient cycle for M is a straightened cycle

α = λ1α1 + . . .+ λkαk

representing [M] where the abstract volume of αi if bigger than v3−ε and
the sign of αi is coherent with the sign of λi , for all i .

We will construct an ε-efficient cycle for every ε > 0. This will con-
clude the proof of Theorem 13.2.11 in virtue of the following:

Lemma 13.2.14. If for every ε > 0 the manifold M admits an ε-
efficient cycle, then we have Vol(M) > v3‖M‖.

Proof. Let α = λ1α1 + . . . λkαk be an ε-efficient cycle and ω be the
volume form on M. Coherence of signs gives λi

∫
αi
ω > 0 for all i . We get

Vol(M) =

∫
M

ω =

∫
α

ω = λ1

∫
α1

ω + . . .+ λk

∫
αk

ω

>
(
|λ1|+ . . .+ |λk |

)
· (v3 − ε).

Therefore Vol(M) > ‖M‖ · (v3 − ε) for all ε > 0. �

It remains to construct ε-efficient cycles.

Exercise 13.2.15. If ∆i is a sequence of tetrahedra inH3 whose vertices
tend to the vertices of a regular ideal tetrahedron in ∂H3, then

Vol(∆i)→ v3.

For any t > 0, let ∆(t) be a regular tetrahedron obtained as in Sec-
tion 3.2.4 as follows. Pick a point x ∈ H3 and a regular tetrahedron in
the Euclidean tangent space TxH3, centred at the origin with vertices at
distance t from it, project the vertices in H3 via the exponential map, and
pick their convex hull.

A t-simplex is a tetrahedron isometric to ∆(t) equipped with an or-
dering of its vertices: the ordering allows us to consider it as a straightened
singular simplex. Let S(t) be the set of all t-simplices in H3.
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Exercise 13.2.16. The group Isom(H3) acts on S(t) freely and tran-
sitively.

Recall from Corollary 2.4.8 that Isom(H3) is unimodular: the Haar
measure on Isom(H3) induces an Isom(H3)-invariant measure on S(t).

Let M = H3/Γ be a closed hyperbolic 3-manifold and π : H3 → M

the covering projection. Fix a base point x0 ∈ H3 and consider its orbit
O = Γx0. Consider the set

Σ = Γ4/Γ

of the 4-uples (g0, g1, g2, g3) considered up to the diagonal action of Γ:

g · (g0, g1, g2, g3) = (gg0, gg1, gg2, gg3).

An element σ = (g0, g1, g2, g3) ∈ Σ determines a singular simplex σ̃ in H3

with vertices g0(x0), g1(x0), g2(x0), g3(x0) ∈ O only up to translations by
g ∈ Γ, hence it gives a well-defined singular simplex in M, which we still
denote by σ. We now introduce the chain

α(t) =
∑
σ∈Σ

λσ(t) · σ

for some appropriate real coefficients λσ(t) that we now define. The base
point x0 determines the Dirichlet tessellation of H3 into domains D(g(x0)),
g ∈ Γ. For σ = (g0, g1, g2, g3) we let S+

σ (t) ⊂ S(t) be the set of all positive
t-simplices whose i-th vertex lies in D(gi(x0)) for all i . The number λ+

σ (t)

is the measure of S+
σ (t). We define analogously λ−σ (t) and set

λσ(t) = λ+
σ (t)− λ−σ (t).

Lemma 13.2.17. The chain α(t) has finitely many addenda and is a
cycle. If t is sufficiently big the cycle α(t) represents a positive multiple
of [M] in the group H3(M,R).

Proof. We prove that the sum is finite. Let d, T be the diameters of
D(x0) and of a t-simplex. We write σ = (id, g1, g2, g3) for all σ ∈ Σ: that
is, all simplices have their first vertex at x0. If λσ(t) 6= 0 then d(gix0, x0) <

2d + T for all i : therefore α(t) has finitely many addenda (because O is
discrete).

We prove that α(t) is a cycle. The boundary ∂α(t) is a linear com-
bination of straight 2-simplices with vertices in (g0x0, g1x0, g2x0) as g0, g1,
and g2 vary. The coefficient of one such 2-simplex is∑
g∈Γ

(
− λ(g,g0,g1,g2)(t) + λ(g0,g,g1,g2)(t)− λ(g0,g1,g,g2)(t) + λ(g0,g1,g2,g)(t)

)
.

We prove that each addendum summed along g ∈ Γ is zero; for simplicity
we consider the last addendum and get∑

g∈Γ

λ(g0,g1,g2,g)(t) =
∑
g∈Γ

λ(g0,g1,g2,g)(t)+ −
∑
g∈Γ

λ(g0,g1,g2,g)(t)−.
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The first addendum measures the positive t-simplices whose first 3 ver-
tices lie in D(g0(x0)), . . . , D(g2(x0)), the second measures the negative
t-simplices with the same requirement. These two subsets have the same
volume in S(t) because they are related by the involution r : S(t)→ S(t)

that mirrors a simplex with respect to its first facet.
We show that for sufficiently big t the cycle is a positive multiple of

[M]. Let t be sufficiently big so that two vertices in a t-simplex have
distance bigger than 2d . This condition implies that if there is a positive
t-simplex with vertices in D(g0(x0)), . . . , D(g3(x0)), then any straight sim-
plex with vertices in D(g0(x0)), . . . , D(g3(x0)) is positive. Therefore in the
expression

α(t) =
∑
σ∈Σ

λσ(t) · σ

the signs of λσ(t) and σ are coherent and∫
α(t)

ω =
∑
σ∈Σ

λσ(t) ·
∫
σ

ω > 0.

Therefore α(t) is a positive multiple of [M]. �

For sufficiently big t we have α(t) = kt [M] in homology for some
kt > 0. The rescaled ᾱ(t) = α(t)/kt hence represents [M]. We have
found our ε-efficient cycles.

Lemma 13.2.18. For any ε > 0 there is a t0 > 0 such that ᾱ(t) is
ε-efficient for all t > t0.

Proof. Let d be the diameter of the Dirichlet domain D(x0). Let
a quasi t-simplex be a simplex whose vertices are at distance < d from
those of a t-simplex. By construction ᾱ(t) is a linear combination of quasi
t-simplices.

We now show that for any ε > 0 there is a t0 > 0 such that for all t >
t0 every quasi t-simplex has volume bigger than v3 − ε. By contradiction,
let ∆t be a sequence of quasi t-simplices of volume smaller than v3 − ε
with t → ∞. The vertices of ∆t are d-closed to a t-simplex ∆t

∗, and we
move the pair ∆t ,∆t

∗ isometrically so that the t-simplices ∆t
∗ have the same

barycenter. Now both the vertices of ∆t and ∆t
∗ tend to the vertices of an

ideal regular tetrahedron and Exercise 13.2.15 gives a contradiction. �

The previous lemmas together prove the second half of Theorem
13.2.11.

Corollary 13.2.19. Let M be a closed hyperbolic 3-manifold. We have

Vol(M) > v3‖M‖.

Theorem 13.2.11 has some non-trivial consequences.
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Corollary 13.2.20. Let M,N be two closed orientable hyperbolic 3-
manifolds. If there is a map f : M → N of degree d then Vol(M) >
|d | · Vol(N).

Corollary 13.2.21. Two homotopically equivalent and closed hyper-
bolic 3-manifolds have the same volume.

Remark 13.2.22. If we are able to prove that the regular ideal simplex
has the maximum volume vn among hyperbolic n-simplices in Hn, then the
whole proof extends as is from H3 to Hn and shows that Vol(M) = vn · |M|
for any closed hyperbolic n-manifoldM. This is obviously true when n = 2,
and we get v2 = π.

13.3. Mostow rigidity

13.3.1. Introduction. We want to prove the following.

Theorem 13.3.1 (Mostow rigidity). Let M and N be closed connected
orientable hyperbolic 3-manifolds. Every isomorphism π1(M)

∼→ π1(N)

between fundamental groups is induced by a unique isometry M ∼→ N.

This powerful theorem says that an algebraic isomorphism between
fundamental groups suffices to produce and characterise an isometry.

Corollary 13.3.2. Two closed orientable hyperbolic 3-manifolds with
isomorphic fundamental groups are isometric.

We prove Mostow’s rigidity in this section. All the ingredients are
already there, we only need to make a little last effort.

We note that closed hyperbolic manifolds are aspherical because their
universal cover Hn is contractible. For such manifolds every isomorphism
π1(M)→ π1(N) is induced by a homotopy equivalence f : M → N, unique
up to homotopy: see Corollary 1.7.7. To prove Mostow’s theorem we need
to promote this homotopy equivalence to an isometry in dimension n = 3.
We already know that Vol(M) = Vol(N) by Corollary 13.2.21.

13.3.2. Proof of Mostow’s theorem. Let f : M → N be a smooth
homotopy equivalence. Recall from Theorem 5.2.1 that f lifts to a map
f̃ : H3 → H3 which extends continuously to a homeomorphism f̃ : ∂H3 →
∂H3 of the boundary spheres. We start with a lemma.

Lemma 13.3.3. The extension f̃ : ∂H3 → ∂H3 sends the vertices of
every regular ideal simplex to the vertices of some regular ideal simplex.

Proof. Let w0, . . . , w3 be vertices of a regular ideal simplex and sup-
pose by contradiction that their images f̃ (w0), . . . , f̃ (w3) span a non-
regular ideal simplex, which has volume smaller than v3 − 2δ for some
δ > 0. By Exercise 13.2.15 there are neighbourhoods Ui of wi in H3 for i =

0, . . . , 3 such that the volume of the simplex with vertices f̃ (u0), . . . , f̃ (u3)

is smaller than v3 − δ for any choice of ui ∈ Ui .
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In Section 13.2.6 we have defined a cycle

α(t) =
∑
σ∈Σ

λσ(t) · σ

where t depends on ε. We say that a singular simplex σ ∈ Σ is bad if its
i-th vertex is contained in Ui for all i . Let Σbad ⊂ Σ be the subset of all
bad singular simplices and define

α(t)bad =
∑
σ∈Σbad

λσ(t) · σ.

We want to estimate |α(t)| and |α(t)bad|. We prove that

|α(t)| =
∑
σ∈Σ

|λσ(t)|

is a real number independent of t: let S0 ⊂ S(t) be the set of all t-
simplices having the first vertex in the Dirichlet domain D(x0) of the fixed
base point x0 ∈ H3. It follows from the definitions that |α(t)| equals the
measure of S0 for sufficiently big t. Moreover the set S0 is in natural
correspondence with the set of all isometries that send x0 to some point
in D(x0): its volume does not depend on t.

To estimate |α(t)bad| we fix g0 ∈ Γ so that D(g0x0) ⊂ U0. Let Sbad ⊂
S(t) be the set of all bad t-simplices with first vertex in D(g0x0). If t is
sufficiently big, the volume of Sbad is bigger than a constant independent
of t (exercise).

We have proved that |α(t)bad|/|α(t)| > C > 0 independently of t.
We may suppose that α(t) represents [M] up to renormalising. The map
f : M → N has degree ±1 and it sends α(t) to a class

f∗(α(t)) =
∑
σ∈Σ

λσ(t) · (f ◦ σ)st

representing ±[N]. Since a C-portion of α(t) is bad, a C-portion of sim-
plices in f∗(α(t)) has volume smaller than v3 − δ and hence

Vol(N) =

∣∣∣∣∫
f∗(α(t))

ω

∣∣∣∣ < |α(t)|((1− C)v3 + C(v3 − δ)) = |α(t)|(v3 − δC).

Since this holds for all t and |α(t)| → ‖M‖ we get

Vol(N) < ‖M‖(v3 − δC) = Vol(M)− δC · ‖M‖.

Corollary 13.2.21 gives Vol(M) = Vol(N), a contradiction. �

Proposition 13.3.4. Every ideal triangle in H3 is the face of precisely
two regular ideal tetrahedra.

Proof. Pick the line l orthogonal to the barycenter of the triangle:
the vertex of a regular ideal tetrahedron must be an endpoint of l . To
prove that these vertices give regular ideal tetrahedra, note that all ideal
triangles in H3 are isometric, so one concrete example suffices. �



13.3. MOSTOW RIGIDITY 421

We turn back to Mostow rigidity.

Proposition 13.3.5. Let f : M → N be a smooth homotopic equiv-
alence between closed hyperbolic orientable 3-manifolds. The restriction
f̃ |∂H3 : ∂H3 → ∂H3 is the trace of an isometry ψ : H3 → H3.

Proof. Let v0, . . . , v3 ∈ ∂Hn be vertices of a regular ideal tetrahedron
∆. By Lemma 13.3.3 the lift f̃ sends them to the vertices of some regular
ideal tetrahedron, and let ψ be the unique isometry of H3 such that ψ(vi) =

f̃ (vi) for all i .
By Proposition 13.3.4 there is a unique point v4 6= v3 such that

v0, v1, v2, v4 are the vertices of an ideal regular tetrahedron, and ψ(v4)

is the unique point other than ψ(v3) such that v0, v1, v2, ψ(v4) are the
vertices of an ideal regular tetrahedron. By Lemma 13.3.3 we also have
f̃ (v4) = ψ(v4).

If we mirror ∆ along its faces iteratively we get a tessellation of H3 via
regular ideal tetrahedra, whose ideal vertices form a dense subset of ∂H3.
By iterating this argument in all directions the functions ψ and f̃ coincide
on this dense subset and hence on the whole of ∂H3. �

We can finally prove Mostow’s rigidity theorem.

Theorem 13.3.6 (Mostow Rigidity). Let f : M → N be a homotopic
equivalence between closed orientable hyperbolic 3-manifolds. The map f
is homotopically equivalent to an isometry.

Proof. Set M = H3/Γ and N = H3/Γ′ , and pick a lift f̃ . We have

(18) f̃ ◦ g = f∗(g) ◦ f̃ ∀g ∈ Γ

for an isomorphism f∗ : Γ→ Γ′. We may suppose f smooth. The boundary
extension of f̃ is the trace of an isometry ψ : H3 → H3 and hence

(19) ψ ◦ g = f∗(g) ◦ ψ ∀g ∈ Γ

holds at ∂H3. Both terms in (19) are isometries, and isometries are de-
termined by their boundary traces: hence (19) holds for all points in H3.
Therefore ψ descends to an isometry

ψ : M → N.

A homotopy between f and ψ may be constructed from a convex combina-
tion of f̃ and ψ in Hn, which is also Γ-equivariant and hence descends. �

13.3.3. Consequences of Mostow rigidity. The most important con-
sequence is that the entire geometry of a closed hyperbolic 3-manifold is a
topological invariant: numerical quantities like the volume of the manifold,
its geodesic spectrum, etc. depend only on the topology of the manifold.
We single out another application.
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Corollary 13.3.7. Let M be a closed orientable hyperbolic 3-manifold.
The natural map

Isom(M)→ Out(π1(M))

is an isomorphism.

Proof. We already know that it is injective by Proposition 4.3.6. We
prove that it is surjective: every automorphism of π1(M) is represented by
a homotopy equivalence since M is aspherical (see Corollary 1.7.7), which
is in turn homotopic to an isometry by Mostow’s rigidity. �

We note that this is false in dimension n = 2, where Isom(S) is finite
and Out(π1(S)) is infinite.

13.3.4. Orbifolds and cone manifolds. While by Mostow’s theorem
an orientable closed 3-manifold M can have at most one hyperbolic struc-
ture, it may have plenty of hyperbolic cone manifold or orbifold structures,
typically distinguished by their singular sets and their cone angles. For
instance M = S3 has plenty of such structures, as we will see.

For the moment we note that the volumes of these hyperbolic orbifold
structures may be arbitrarily big, but not arbitrarily small:

Proposition 13.3.8. Let a closed orientable 3-manifold M be the un-
derlying space of a hyperbolic orbifold O. We have

Vol(O) > v3‖M‖.

Proof. By Selberg’s Lemma there is a degree-d orbifold covering N →
O which is a closed hyperbolic manifold. We have Vol(N) = dVol(O), and
since the covering is a degree-d map N → M we can apply Corollary
13.2.20 and get ‖M‖ 6 ‖N‖

d
= Vol(N)

dv3
= Vol(O)

v3
. �

13.3.5. References. Most of the proofs presented in this chapter
were taken from Benedetti – Petronio [4], and are also contained in Thur-
son’s notes [56]. The proof of Mostow’s rigidity presented here was pro-
posed by Gromov and applies to every dimension n > 3, because ideal
regular simplexes have indeed the maximum volume by Haagerup and
Munkholm [24].



CHAPTER 14

Hyperbolic three-manifolds

We have studied and classified the three-manifolds having seven of
the eight geometries, and we are now left with the most interesting ones:
hyperbolic three-manifolds.

In dimension two every closed hyperbolic surface is constructed by
gluing some geodesic pair-of-pants. In dimension three, although closed
hyperbolic three-manifolds are everywhere, it is somehow harder to con-
struct them explicitly: the most general procedure to determine a hy-
perbolic metric (if any) on a given closed 3-manifold consists of solving
Thurston’s equations.

Thurston’s equations arise naturally in the attempt of constructing
a hyperbolic three-manifold by triangulating it into hyperbolic tetrahedra.
The most relevant and unexpected aspect of the theory is that it is much
easier to employ hyperbolic ideal tetrahedra than compact ones. The
combinatorial framework in the ideal case is so convenient, that we use it
also for closed three-manifolds.

In this chapter we describe these equations and use them to determine
various finite-volume hyperbolic 3-manifolds. We start with the cusped
case and then turn to the slightly more complicate closed one.

14.1. Cusped three-manifolds

We know that every cusped finite-volume complete hyperbolic surface
is constructed by gluing isometrically finitely many ideal triangles along
their edges (see Proposition 7.4.6). Likewise, we now construct plenty
of cusped hyperbolic three-manifolds by gluing isometrically finitely many
ideal tetrahedra along their faces.

14.1.1. Ideal tetrahedra. Ideal triangles are all isometric, but ideal
tetrahedra are not! We now show that they can be described up to isometry
by a single complex parameter z with =z > 0.

An ideal tetrahedron is determined by its ideal vertices v1, v2, v3, v4 ∈
∂H3. We use the half-space model H3 and recall that ∂H3 = C ∪ {∞}
and Isom+(H3) = PSL2(C), hence there is a unique orientation-preserving
isometry of H3 that sends the vertices v1, v2, v3, v4 respectively to 0, 1,∞, z
for some z . Up to mirroring with the orientation-reversing reflection z 7→ z̄

we can suppose that =z > 0.

423
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Figure 14.1. An ideal tetrahedron with three vertices in
0, 1,∞ in the half-space mode is determined by the posi-
tion z ∈ C ∪ {∞} of the fourth vertex. A small horosphere
centred at the ideal vertex intersects the tetrahedron in a
Euclidean triangle uniquely determined up to similarities.

z
z

z
0 1

z

z-1
z

1
1- z

z-1
z

z-1
z

1
1- z 1
1- z

Figure 14.2. At each ideal vertex we have a Euclidean tri-
angle defined up to similarities: each vertex of the triangle
has a well-defined complex angle (left). We can assign the
complex angles directly to the edges of the tetrahedron. The
argument is the dihedral angle of the edge (right).

Remark 14.1.1. By definition the number z is the cross-ratio of the
four complex numbers v1, v2, v3, v4.

A horosphere centred at the vertex v3 = ∞ is a horizontal Euclidean
plane that intersects the ideal tetrahedron in a Euclidean triangle as in
Figure 14.1. The oriented similarity class of the triangle depends only on
the vertex v3, because a horosphere change results in a dilation: we can
represent it as a triangle in C = R2 with vertices at 0, 1, and z as in Figure
14.2-(left). The complex angle of a vertex of the triangle is the ratio of
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Figure 14.3. A truncated tetrahedron.

the two adjacent sides, taken with clockwise order and seen as complex
numbers. The three complex angles shown in Figure 14.2-(left) are:

z,
1

1− z ,
z − 1

z
.

The argument is the usual angle, and the modulus is the ratio of the two
lengths of the adjacent sides.

Proposition 13.1.2 shows that some symmetries of an ideal tetrahe-
dron act on its vertices like the alternating group A4 and hence transi-
tively. Therefore every vertex has the same triangular section as in Figure
14.2-(left), and all the sections can be encoded by assigning the complex
numbers directly to the edges of ∆ as shown in Figure 14.2-(right). These
labels on the edges are called moduli and determine the ideal tetrahedron
up to orientation-preserving isometries of H3. The argument of a modulus
is the dihedral angle of the edge.

On a regular ideal tetrahedron the triangular sections are equilateral
and hence all edges have the same modulus z = e

πi
3 .

14.1.2. Ideal triangulations. Let ∆1, . . . ,∆n be identical copies of
the standard oriented 3-simplex. As in the two-dimensional case, a trian-
gulation T is a partition of the 4n faces of the tetrahedra into 2n pairs, and
for each pair a simplicial isometry between the two faces. The triangulation
is oriented if the simplicial isometries are orientation-reversing. If we glue
the tetrahedra along the simplicial isometries we get a topological space
X, which is not necessarily a topological manifold. Let M be X minus the
vertices of the triangulation: we say that T is an ideal triangulation for M.

Proposition 14.1.2. If T is oriented, then M is homeomorphic to the
interior of a compact oriented 3-manifold with boundary.

Proof. To prove that M is a manifold we only need to check that a
point x ∈ e in an edge e has a neighbourhood homeomorphic to an open
ball. A cycle of tetrahedra is attached to e, and since T is oriented we are
certain that a neighbourhood of x is a cone over a 2-sphere and not over
a projective plane.
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Figure 14.4. If we manage to glue all the tetrahedra incident
to an edge e inside H3 as shown, the hyperbolic structure
is defined also in e (left). Let z1, . . . , zh be the complex
moduli assigned to the sides of the h incident tetrahedra
(here h = 5). We can glue everything in H3 if and only if
z1 · · · zh = 1 and the arguments sum to 2π (right).

If we truncate the tetrahedra as in Figure 14.3 before gluing them,
we get a compact manifold N ⊂ M with boundary such that M \ N ∼=
∂N × [0, 1). Therefore M is homeomorphic to int(N). �

We will always suppose that T is oriented and M is connected, so
M = int(N) for some compact N with boundary. Every ideal vertex v in T
is locally a cone over a small triangulated closed surface Σ ⊂ M obtained
by truncating the tetrahedra incident to v . We call such a Σ the link of v .

14.1.3. Hyperbolic ideal triangulations. Let T be an oriented ideal
triangulation with tetrahedra ∆1, . . . ,∆n of a 3-manifold M. We now sub-
stitute every ∆i with an ideal hyperbolic tetrahedron and pair their faces
with orientation-reversing isometries. As opposite to the two-dimensional
case, the ideal hyperbolic tetrahedra are not unique (they depend on a
complex modulus zi) but the isometric pairing of their faces is uniquely
determined in virtue of the following.

Proposition 14.1.3. Given two ideal triangles ∆ and ∆′, every bijection
between the ideal vertices of ∆ and of ∆′ is realised by a unique isometry.

Proof. We see the ideal triangles in H2 and recall that for any two
triples of points in ∂H2 there is a unique isometry sending pointwise the
first triple to the second. Alternatively, we may use the barycentric de-
composition shown in Figure 7.15-(left). �
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If we substitute each ∆i with an ideal hyperbolic tetrahedron, we im-
mediately get a well-defined hyperbolic structure on M minus the edges of
T . We now try to extend this hyperbolic structure to the edges: we can
do this if we are able to glue all the h tetrahedra around each edge e inside
H3 as in Figure 14.4. Let z1, . . . , zh be the complex moduli associated to
the edges of the h tetrahedra incident to e. As shown in the figure, if
z1 · · · zh = 1 and the sum of their argument is 2π (and not some higher
multiple of 2π) then all tetrahedra can be glued simultaneously inside H3

and the hyperbolic structure extends naturally to e. If this holds at every
edge e of T then M inherits a hyperbolic structure and T is said to be a
hyperbolic (or geometric) ideal triangulation for M.

14.1.4. Consistency equations. We want to parametrize the hyper-
bolic structures on M that may be constructed in this way from a fixed
ideal triangulation T . We pick an arbitrary edge for every tetrahedron ∆i

and assign to it a complex variable zi with =zi > 0, and the other edges
of ∆i are automatically labeled by one of the variables zi ,

zi−1
zi

, or 1
1−zi

as
indicated in Figure 14.2 (recall that the tetrahedra are oriented). As we
have seen, for every edge e in T we obtain an equation of type

w1 · · ·wh = 1

(to which we must add the condition that the sum of the arguments is
2π), where each wj equals zi ,

zi−1
zi

, or 1
1−zi

for some i .
We have thus obtained a system of consistency equations, with a

variable zi for each tetrahedron and an equation w1 · · ·wh = 1 for each
edge. A solution z = (z1, . . . , zn) to these equations produces a hyperbolic
ideal triangulation and hence a hyperbolic structure on M. Recall that we
assume =zi > 0 ∀i .

As in the two-dimensional case, the resulting hyperbolic structure is
not necessarily complete, and to get a complete hyperbolic manifold we
must add more equations.

14.1.5. Completeness equations. Our aim is to construct a com-
plete finite-volume hyperbolic metric on M. By Corollary 4.2.18 if M has
such a metric the link of every ideal vertex of T is a triangulated torus and
identifies a cusp of M, so we will henceforth suppose that the links of all
vertices are tori. In other words M is the interior of a compact 3-manifold
N bounded by some c > 0 tori.

Let z = (z1, . . . , zn) be a solution to the consistency equations, pro-
viding a hyperbolic structure to M. Every boundary torus T ⊂ ∂N is
triangulated by T : every triangle in T is the truncation triangle of some
∆i and hence inherits the complex moduli of the three adjacent edges of
∆i as in Figure 14.5-(left), thus it has a Euclidean structure well-defined
up to similarities. We want to study the following problem: do these Eu-
clidean structures on the triangles glue to form a Euclidean structure on
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Figure 14.5. Every boundary torus T ⊂ ∂N is triangulated,
and each triangle has a Euclidean structure well-defined up
to similarities and inherits three complex moduli w1, w2, w3

at its vertices (left). At every vertex of the triangulation,
the product of the adjacent moduli is 1, for instance here
w12w15w16w19w23 = 1. The red path contributes to µ(γ)

with the factor −w30w29w25w24w23w19w20 (right).

w1

w2

w3 w1

w2

w3

Figure 14.6. This move for γ does not affect µ(γ).

T? We will see that M is complete if and only if the answer is “yes” at
each boundary torus T .

Pick γ ∈ π1(T ) = H1(T,Z) ∼= Z2. We represent γ as a simplicial path
in the triangulation of T and then define µ(γ) ∈ C∗ to be (−1)|γ| times
the product of all the complex moduli that γ encounters at its right side,
with |γ| being the number of edges of γ, see Figure 14.5-(right).

Proposition 14.1.4. The element µ(γ) is well-defined and µ : π1(T )→
C∗ is a homomorphism.

Proof. Two different paths for γ are related by moves as in Figure
14.6. This move does not affect µ(γ) since w1w2w3 = −1 and the product
of the moduli around a vertex is +1. The map µ is clearly a homomorphism.

�

Let C(T ) ⊂ M be a closed collar of the torus T in N, intersected with
M. It is diffeomorphic to T × [0,+∞).

Proposition 14.1.5. The following facts are equivalent:
(1) the homomorphism µ is trivial,
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(2) there is a Euclidean structure on T that induces all the moduli,
(3) the manifold C(T ) is complete and contains a truncated cusp.

Proof. The equivalence (1)⇔(2) is a simple exercise. If (2) holds we
may choose small horosections of all the hyperbolic tetrahedra incident to
v that match to give a Euclidean torus T∗ ⊂ C(T ). The non-compact
part of C(T ) bounded by T∗ is a truncated cusp with base T∗ and is thus
complete. On the other hand, if (1) does not hold, there is a path of
horosections from a tetrahedron to itself which ends at a bigger height
and we conclude that C(T ) is not complete as in the two-dimensional
case, see the proof of Proposition 7.4.8. �

Corollary 14.1.6. The hyperbolic manifold M is complete ⇐⇒ µ is
trivial for every torus T ⊂ ∂N.

Fix for every boundary torus T two generators m, l for H1(T,Z). The
homomorphism µ is trivial ⇐⇒ the following two equations are satisfied:

µ(m) = 1, µ(l) = 1.

Each equation is of some type w1 · · ·wk = 1. We get two equations
for each of the c boundary tori and hence 2c equations in total, called
the completeness equations for the triangulation T . We summarise our
discussion:

Proposition 14.1.7. Let T be an ideal triangulation of M = int(N)

with n tetrahedra and ∂N consisting of c tori. If a point z = (z1, . . . , zn)

with =zi > 0 satisfies the n consistency equations and the 2c completeness
equations, then M admits a finite-volume complete hyperbolic metric.

14.1.6. Examples. On a triangulation T , the valence of an edge e
is the number of tetrahedra incident to it, counted with multiplicity. The
simplest kinds of solutions arise in the following construction.

Proposition 14.1.8. Let T be a triangulation where all edges have
valence six. The point (e

πi
3 , . . . , e

πi
3 ) is a solution of both the consistency

and completeness equations and defines a hyperbolic structure where all
the ideal tetrahedra are regular.

Proof. Note that when z = e
πi
3 the tetrahedron is regular and we get

z =
z − 1

z
=

1

1− z = e
πi
3 .

Therefore the moduli are e
πi
3 everywhere. The consistency equations are

satisfied since (e
πi
3 )6 = 1 and also the completeness equations are, because

by assigning length 1 to each edge of the triangulation of a torus T we
get a global Euclidean structure on T tessellated into isometric equilateral
triangles. �
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F

J

J

RP F
P R

Figure 14.7. An oriented triangulation with 2 tetrahedra:
faces with the same letter F, J, P,R are paired with a simpli-
cial map that matches the letters. We get two edges with
valence six (the red and white dots).

P P

FF
J
L
R

Y G
G

QQ
J
L

R
Y

Figure 14.8. By pairing the faces of two ideal regular octa-
hedra as shown we get a cusped complete hyperbolic three-
manifold. Faces with the same letter are paired with the
unique isometry that matches the letters. We get six edges
with valence four (marked with coloured dots).

Figure 14.7 shows an ideal triangulation with two tetrahedra and two
edges, each with valence six: this defines a cusped finite-volume com-
plete hyperbolic three-manifold M that decomposes into two regular ideal
tetrahedra.

Every finite covering M̃ of M is another example: the ideal triangu-
lation T lifts to an ideal triangulation T̃ where all the edges have valence
six. Since the fundamental group π1(M) is residually finite (see Proposition
4.3.9) there are plenty of such coverings.

Exercise 14.1.9. Construct a triangulation T with one tetrahedron
and one edge. The edge has valence six and hence the construction of
Proposition 14.1.8 produces a cusped hyperbolic manifold. Note however
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that the triangulation is not orientable and a cusp section is a Klein bottle!
This non-orientable hyperbolic manifold is called the Gieseking manifold.

Similar kinds of “regular” examples may be constructed using some
other platonic solids. The ideal regular octahedron is particularly inter-
esting and useful because it is right-angled, see Section 3.2.4. If we
pick finitely many oriented regular ideal octahedra O1, . . . , Oh and pair
orientation-reversingly their triangular faces in a way that every resulting
edge has valence four, we construct a finite-volume cusped hyperbolic man-
ifold M because 4× π

2
= 2π. An example with two octahedra is shown in

Figure 14.8.
We can further decompose each regular ideal octahedron into four

non-regular ideal tetrahedra (there are three ways to do this: you must
choose a diagonal connecting two opposite vertices) to get an ideal trian-
gulation T for M. The moduli of each such tetrahedron are

i ,
1

1− i =
1 + i

2
,
i − 1

i
= 1 + i

and they satisfy the consistency and completeness equations in a less trivial
way than before. The edges of the resulting triangulation have varying
valences 4, 6, and 8.

14.1.7. SnapPea. It is of course hard to construct ideal triangulations
by hand, except in some very symmetric and simple cases like the one
just described. And it is even more difficult to solve the consistency and
completeness equations.

There is a beautiful computer program that does all this for you! This
is SnapPea, written by Jeff Weeks in the 1980s. Using SnapPea you can
draw any link diagram L and the program immediately constructs an ideal
triangulation for the complement of L in S3. Then it uses the Newton
method to find a numerical solution to the consistency and completeness
equations: the solution is only numerical, but then one can use some a
posteriori argument to confirm it rigorously.

For instance, if we draw the trefoil knot, SnapPea triangulates its
complement and finds no solution to the equations: this is not surprising
since its complement is Seifert and hence not hyperbolic, see Proposition
11.2.5.

If we draw the figure-eight knot in Figure 14.9-(left), SnapPea con-
structs precisely the ideal triangulation of Figure 14.7, and we have hence
discovered that the complement of the figure-eight knot is hyperbolic and
decomposes into two ideal regular tetrahedra.

We may draw links with many components, and discover for instance
that the complement of the Borromean rings from Figure 14.9-(right) is
hyperbolic and decomposes into two right-angled ideal regular octahedra.
We can also Dehn-fill some boundary components to obtain more cusped
manifolds that are not link complements in S3.
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Figure 14.9. The figure-eight knot and the Borromean rings
are hyperbolic, that is their complements admit complete hy-
perbolic metrics.

tetrahedra 1 2 3 4 5 6 7

1 cusp 2 9 52 223 913 3388
2 cusps 4 11 48 162
3 cusps 1 2

Table 14.1. The number of cusped orientable hyperbolic
three-manifolds that can be triangulated with at most 7 ideal
tetrahedra.

SnapPea can calculate numerically a wealth of geometrical invariants
with some precision, including the volume and the first segment of the
geodesic spectrum. It can manipulate manifolds (Dehn-filling, drilling along
short simple closed geodesics, finite covers) and change triangulations. It
provides beautiful pictures of the Dirichlet domain and of the cusp shapes.

Is SnapPea guaranteed to find a hyperbolic structure on M if there
is one? No, it is not, although in practice it succeeds most of the time.
The fact that M is hyperbolic does not guarantee that there is a solution
to Thurston’s equations on a given triangulation T , and the existence of
a solution does not guarantee that SnapPea will be able to find it.

We note that for most ideal triangulations T of a hyperbolic M there
is no solution to Thurston’s equations, and SnapPea is clever enough to
modify T to increase the probability to find one. In all known examples,
a cusped hyperbolic M admits at least one geometric ideal triangulation,
but whether this holds true for all cusped hyperbolic 3-manifolds M is still
an open question.

14.1.8. Cusped census. As with knots tabulations, topologists have
used computers to list the cusped hyperbolic manifolds that can be trian-
gulated with few ideal tetrahedra.
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Name Volume Homology Symmetry SG C

M21 2.0298832128 Z D4 1.09 a
M22 2.0298832128 Z + Z5 Z2 + Z4 0.86 a
M31 2.5689706009 Z + Z5 D4 0.65 c
M32 2.5689706009 Z + Z3 D4 0.65 c
M33 2.6667447834 Z + Z2 D4 0.63 c
M34 2.6667447834 Z + Z6 D4 0.63 c
M35 2.7818339124 Z Z2 0.51 c
M36 2.8281220883 Z D4 0.56 c
M37 2.8281220883 Z Z2 0.58 c
M38 2.8281220883 Z + Z7 D4 0.56 c
M39 2.9441064867 Z Z2 0.43 c

Table 14.2. The 1-cusped orientable hyperbolic manifolds
that can be triangulated with at most 3 ideal tetrahedra.
The nameMij indicates that the manifold is the one with j-th
smallest volume among those that can be triangulated with i
tetrahedra. The column SG shows the length of the shortest
closed geodesic (volume and SG values are truncated after
few digits). The column C indicates whether the manifold is
achiral (a) or chiral (c), that is if it admits an orientation-
reversing isometry or not.

Name Volume Homology Symmetry SG C

M42
1 3.6638623767 Z + Z D8 1.06 c

M42
2 3.6638623767 Z + Z D8 0.96 c

M42
3 4.0597664256 Z + Z D12 0.86 c

M42
4 4.0597664256 Z + Z D8 0.86 a

Table 14.3. The 2-cusped orientable hyperbolic manifolds
that can be triangulated with 4 ideal tetrahedra. The name
Mikj indicates the k-cusped manifold with j-th smallest vol-
ume among those that are triangulated with i tetrahedra.

The number of cusped hyperbolic orientable manifolds that can be
ideally triangulated with n tetrahedra (and not less than n) is written in
Table 14.1 for all n 6 7. The 1-cusped manifolds with n = 2, 3 are listed
with more detail in Table 14.2 and the 2-cusped ones with n = 4 are in
Table 14.3. These tables were produced by Callahan – Hildebrand – Weeks
[10] in 1999 via a computer enumeration.

The figure-eight knot complement is M21, while M22 is another hy-
perbolic manifold that decomposes into two regular ideal tetrahedra: it
is not a knot complement in S3 since its homology is not Z, but it is
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Figure 14.10. A remarkable sequence of hyperbolic links.
These are the figure eight knot, the Whitehead link, and
some particular chain links with 3,4,5 components.

the complement of a knot K in the lens space L(5, 1), called the figure-
eight knot sibling. This knot is obtained by performing a (−5)-surgery
on one component of the Whitehead link shown in Figure 14.10: since
this component is trivial, the surgered manifold is L(5, 1) and the other
unsurgered component is our knot K. Both manifolds M21 and M22 have
volume 2.0298832128 . . . since the volume of the ideal regular tetrahedron
is 3Λ

(
π
3

)
= 1.0149416064 . . .

The manifold M42
1 is the Whitehead link complement, that can be

obtained by pairing the faces of a single ideal regular octahedron O. Indeed
the volume of O is 8Λ

(
π
4

)
= 3.6638623767 . . .

After the figure eight knot and the Whitehead link, a notable sequence
of hyperbolic links in S3 with increasing number of components is shown
in Figure 14.10. Their complements are conjectured to be the smallest
hyperbolic manifolds with i = 1, . . . , 5 cusps (see the references at the
end of the chapter).

14.1.9. Hyperbolic knots. How many hyperbolic knots are there in
the three-sphere? There are in fact infinitely many hyperbolic knots, and
infinitely many non-hyperbolic knots. Geometrisation translates hyperbol-
icity into an appealing topological condition:

Theorem 14.1.10. A knot K ⊂ S3 is either a torus knot, a satellite
knot, of a hyperbolic knot.

Proof using geometrisation. Proposition 11.2.11 says that K is either
a torus knot, a satellite knot, or has simple complement M. In the latter
case M is hyperbolic by Corollary 12.9.6. �

Note that the three cases are mutually exclusive. The number of prime
knots with c 6 14 crossings in each of the three classes is shown in Table
14.4, taken from Hoste – Thistlethwaite – Weeks [29]: the table shows
a strong predominance of hyperbolic knots, but it is unknown whether it
persists also when c tends to infinity.
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c 3 4 5 6 7 8 9 10 11 12 13 14

torus 1 0 1 0 1 1 1 1 1 0 1 1
satellite 0 0 0 0 0 0 0 0 0 0 2 2
hyperbolic 0 1 1 3 6 20 48 164 551 2176 9985 46969

Table 14.4. The number of torus, satellite, and hyperbolic
prime knots with c crossings, for all c 6 14.

14.2. Closed hyperbolic three-manifolds

We have described in Section 14.1 a method to construct cusped
finite-volume hyperbolic three-manifolds. How can we now build some
closed hyperbolic three-manifolds?

Following the same path, we could try to parametrize compact hyper-
bolic tetrahedra via some variables, and then encode the isometric gluings
of their faces via some equations. However, it is really hard to parametrize
compact tetrahedra and their gluings, and nobody has ever constructed
any closed hyperbolic three-manifold in this way!

The usual procedure for building closed hyperbolic three-manifolds
consists of using (again) ideal tetrahedra: we start with a cusped manifold,
and then we slightly modify the completeness equations to allow some
appropriate Dehn-filling of some (or all) cusps.

14.2.1. Dehn filling parameters. We now consider an orientable 3-
manifold M = int(N) where N is compact and ∂N = T1 t . . .tTc consists
of tori. For simplicity we will always assume that each Ti is incompressible,
so that π1(Ti) = Z× Z injects in π1(N) = π1(M) for all i .

We fix once for all two generatorsmi , li of π1(Ti) for each i = 1, . . . , c.
A Dehn filling parameter s = (s1, . . . , sc) is a sequence where each si is
either a pair (p, q) of coprime integers or the symbol ∞. It is useful to
think of si as a point in the two-sphere S2 = R2 ∪ {∞}.

A Dehn filling parameter s determines a Dehn filling of N as follows:
for every i , if si = (p, q) we fill Ti by killing the slope pmi + qli , while
if si = ∞ we do nothing. The result is a new compact manifold, whose
interior we denote by Mfill, that may be closed (if there are no ∞ in s) or
may be bounded by some tori.

We fix a Dehn filling parameter s, producing a filled manifold Mfill.

14.2.2. The modified equations. Let T be an oriented ideal triangu-
lation for M. We now describe some equations similar to that of Section
14.1, whose solutions now identify hyperbolic structures on Mfill instead of
M. The equations of course will depend on the Dehn filling parameter s,
since the manifold Mfill does.
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The triangulation T consists of some n tetrahedra ∆1, . . . ,∆n; we
choose an edge in each ∆i and we assign it the variable zi ∈ C with
=zi > 0 as we did in Section 14.1.

The edges of all tetrahedra are coloured with moduli zi , 1
1−zi

, zi−1
zi

that
lie in the upper half-plane and as such may be written in polar coordinates
as ρe iθ with θ ∈ (0, π). It is convenient to consider these variables as
elements of the multiplicative group

C̃∗ =
{
ρe iθ

∣∣ ρ ∈ R>0, θ ∈ R
}

that covers C∗ and is isomorphic to C via the map exp: C→ C̃∗.
Every edge of T furnishes a consistency equation in C̃∗ as described

in Section 14.1, of the form

w1 · · ·wh = e2πi .

Note that e2πi 6= 1 in C̃∗, so by interpreting the consistency equations in
C̃∗ we have also incorporated the request that all angles sum to 2π.

Let z = (z1, . . . , zn) be a solution to the consistency equations. We
have defined in Proposition 14.1.4 a homomorphism µ : π1(Ti) → C∗ for
every boundary torus Ti , and we now lift it to C̃∗.

Definition 14.2.1. Represent each non-trivial γ ∈ π1(Ti) as a simplicial
path that lifts to an embedded path in the universal cover of Ti . Define
µ̃(γ) to be e−|γ|πi times the product of all the moduli that γ encounters at
its right side, considered now as elements in the group C̃∗. If γ is trivial,
set µ̃(γ) = 1.

Exercise 14.2.2. The element µ̃(γ) ∈ C̃∗ is well-defined and

µ̃ : π1(Ti)→ C̃∗

is a homomorphism.

We now define some new completeness equations at Ti for each i =

1, . . . , c that depend on the Dehn filling parameter si . There are two cases
to consider for each i = 1, . . . , c. If si = ∞, the completeness equations
relative to Ti are the two equations

µ(mi) = µ(li) = 1

already considered in Section 14.1.5. (If we wish, we can substitute them
with the equations µ̃(mi) = µ̃(li) = 1. Both choices will work.)

If si = (p, q) we define one new completeness equation

µ̃(mi)
p · µ̃(li)

q = e2πi .

The total number of completeness equations therefore varies from c to 2c,
depending on the number of cusps that are left unfilled. The main goal of
this section is to prove the following.
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Theorem 14.2.3. A solution z = (z1, . . . , zn) to the consistency and
completeness equations determines a hyperbolic structure on M whose
completion M is a complete hyperbolic manifold diffeomorphic to Mfill.

If s 6= (∞, . . . ,∞) the solution z determines an incomplete hyperbolic
metric on M, and the miracle here is that the completion M is another
hyperbolic manifold!

We note that both the consistency and completeness equations are
of type w1 · · ·wh = 1 or e2πi . The rest of this section is mainly devoted
to the proof of Theorem 14.2.3. We start with a short discussion that
introduces (truncated) solid tori with cone angles: these objects will be
crucial in the proof of the theorem.

14.2.3. The infinite branched covering. Let l ⊂ H3 be any line and
recall the universal cover

π : X −→ H3 \ l

already considered in Section 3.5.4 when we introduced manifolds with
cone singularities. The manifold X is incomplete and its completion X is
obtained by adding a copy l̃ of l .

We use the half-space model and represent l as the vertical axis, so
that H3 \ l = C∗ × R>0 and we can write

X = C̃∗ × R>0.

Note that C̃∗ acts on X via isometries: the element w ∈ C̃∗ acts as

(z, t) 7−→ (wz, |w |t).

When w = eαi this is the rotation of angle α that was used to define
hyperbolic cone manifolds. When |w | 6= 1 the map projects to a hyperbolic
isometry of H3 with axis l and translation distance log |w |.

14.2.4. Tubes with cone angles. A non-trivial discrete group Γ <

C̃∗ ∼= C is either isomorphic to Z or to Z×Z; it acts freely on X and (not
necessarily freely!) on the line l̃ . Concerning Z × Z, there are two cases
to consider.

If Γ = Z × Z contains a non-trivial rotation, it is generated by some
maps

(z, t) 7→ (eαiz, t), (z, t) 7→ eλ(eβiz, t)

with λ 6= 0, and it acts on l̃ as translations whose step is an integer multiple
of λ. The quotient X/Γ is naturally a complete hyperbolic manifold with
cone angles: it is an open solid torus with singular locus a closed geodesic
of length |λ| and with cone angle α. We call it a tube with cone angle
α. When α = 2π we get an ordinary tube as in Section 4.1.2, with no
singular points.

If Γ = Z×Z does not contain a rotation, it acts on l̃ as an indiscrete
group of translations and hence X/Γ is not a hyperbolic manifold with
cone angles (it is not even Hausdorff). We also note that X/Γ is not the
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completion of the hyperbolic manifold X/Γ in that case, but it only maps
surjectively onto it: the completion adds a single point to X/Γ.

Tubes have natural truncations. For every R > 0 the R-neighbourhood
NR(l̃) ⊂ X of the singular line l̃ projects onto the R-neighbourhood NR(l)

of l , which is a Euclidean cone with axis l . The group Γ preserves NR(l̃)

and in the first case its quotient is a truncated tube with cone angles.

14.2.5. Incomplete solutions. We now go back to our triangulation
T , and we let z = (z1, . . . , zn) be a solution to the consistency equations
for T . The solution z furnishes a hyperbolic metric on M, which might
not be complete: we want to understand the metric completion M of
M. Recall that M is diffeomorphic to the interior of a compact N whose
boundary consists of c tori.

We pick a boundary torus T ⊂ ∂N and define a collar C(T ) ⊂ M of T
to be the intersection of a closed collar of T in N with M. We know from
Proposition 14.1.5 that when µ : π1(T ) → C∗ is trivial there is a collar
C(T ) isometric to a truncated cusp, that is the truncated quotient of H3

by a discrete Z× Z of parabolic elements.
When µ is not trivial, we now show that a similar (but different) con-

figuration arises: there is a collar C(T ) isometric to a truncated quotient
of the hyperbolic manifold X considered above by a discrete Z × Z. The
crucial difference is that C(T ) now is incomplete, because X is. To prove
this fact we use developing maps and holonomies.

The hyperbolic ideal triangulation T of M determined by z lifts to
a hyperbolic ideal triangulation T̃ for the universal cover M̃ → M with
infinitely many tetrahedra. The triangulated torus T is the link of a vertex
v of T . We fix a lift ṽ of v in T̃ , and the link of ṽ is a triangulated surface
T̃ that covers T . Since T is incompressible, π1(T ) injects in π1(M) and
hence T̃ is a plane.

Recall from Section 3.5.3 that there is a developing map D : M̃ → H3

and a holonomy ρ : π1(M) → Isom+(H3), and both are determined once
we define D on an ideal tetrahedron in T̃ . We choose for our convenience
one ideal tetrahedron incident to ṽ and we map it to the half-space model
H3 with an isometry D that sends ṽ to ∞.

The developing map D sends all tetrahedra of T̃ incident to ṽ to
vertical ideal tetrahedra in H3 with one vertex at ∞. If γ ∈ π1(T ), then
ρ(γ) permutes these tetrahedra and fixes ∞. Therefore the holonomy ρ
sends π1(T ) = Z×Z to a group of commuting elements in PSL2(C) fixing
∞. Every such element may be written as z 7→ az + b, and there are two
possibilities:

• the group consists of translations z 7→ z + b,
• the group fixes a point p ∈ C.

In the second case we may suppose p = 0 up to translating everything,
so the maps are all of type z 7→ az . Not surprisingly, the holonomy ρ is
tightly connected with the homomorphism µ : π1(T )→ C∗.
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Exercise 14.2.4. The derivative ρ(γ)′, that is the coefficient 1 or a in
the above examples, equals µ(γ).

We now suppose that µ is non-trivial and hence the first possibility
is excluded: the group ρ(π1(T )) consists of maps z 7→ az and we can
identify ρ with µ. The map D induces a developing map D : T̃ → C with
holonomy µ.

Proposition 14.2.5. The image D(T̃ ) misses the origin.

Proof. The vector field v(z) = z on C is µ(π1(T ))-invariant and
hence pulls-back via D to a vector field on T . If 0 ∈ D(T̃ ) then this
vector field on T has some zeroes, all with index 1: a contradiction since
χ(T ) = 0. �

Let Stṽ ⊂ M̃ be the open star of ṽ , that is the union of all ideal
tetrahedra incident to ṽ , with the faces not incident to ṽ removed: it is
homeomorphic to T̃ × [0,+∞) and hence simply connected. The propo-
sition implies that the restriction D|Stṽ of the developing map misses the
entire vertical line l ⊂ H3 above the origin and hence lifts to a map

D̃ : Stṽ −→ X.

Likewise the holonomy ρ at π1(T ) lifts to a holonomy

ρ̃ : π1(T ) −→ C̃∗ < Isom+(X)

which is of course related to the homomorphism µ̃ : π1(T )→ C̃∗.

Exercise 14.2.6. We have ρ̃ = µ̃.

After this long discussion, we can finally discover how a collar C(T )

of T looks like.

Proposition 14.2.7. If µ is non-trivial then µ̃ is injective with discrete
image. There is a collar C(T ) that is isometric to a truncation of X/Im µ̃.

Proof. We have defined a lifted developing map D̃ : Stṽ → X with
holonomy ρ̃ = µ̃.

Let ∆i1 , . . . ,∆ih be the tetrahedra incident to v (with multiplicities),
and let ∆̃i1 , . . . , ∆̃ih be any lifts in T̃ incident to ṽ . We fix a sufficiently
small R0 > 0 such that the cone NR0 (l̃) ⊂ X does not intersect the lower
faces of the tetrahedra D̃(∆̃i1 ), . . . , D̃(∆̃ih), see Figure 14.11-(left). Since
NR0 (l̃) is ρ(π1(T ))-invariant, it does not intersect the lower faces of any
ideal tetrahedron in the image of D̃, and hence it intersects every ideal
tetrahedron in a curved triangle as in Figure 14.11-(right).

We define C̃(T ) ⊂ M̃ as the preimage of NR0 (l̃) along D̃. By con-
struction it is a π1(T )-invariant submanifold that projects to a submanifold
C(T ) ⊂ M. This submanifold intersects every tetrahedron incident to v
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0 0

l l

Figure 14.11. For sufficiently small R > 0 the cone neigh-
bourhood NR(l̃) of l̃ does not intersect the lower faces of
the developed images of ∆̃i1 , . . . , ∆̃ih (left). These tetrahe-
dra intersect ∂NR(l̃) into triangles that glue up to determine
a torus TR in C(T ) (right).

into a cone neighbourhood of v and is hence a collar for T . We want to
prove that the map

D̃ : C̃(T ) −→ NR0 (l̃) \ l̃
is an isometry. Being a local isometry, it suffices to prove that it is injective
and surjective. We prove this using the natural foliation of NR0 (l̃) \ l̃ into
the sheets ∂NR(l̃) with R 6 R0.

For every R 6 R0 the map D̃ restricts to a local isometry of surfaces

D̃R : T̃R → ∂NR(l̃)

where T̃R = D̃−1(∂NR(l̃)) is π1(T )-invariant and covers a torus TR ⊂ M
parallel to T . Since TR is compact, the cover T̃R is complete. Therefore
D̃R is a covering by Proposition 1.2.19 and is hence an isometry since
∂NR(l̃) is simply-connected. In particular it is a bijection for all R < R0,
and hence D̃ is a bijection.

Since D̃ is an isometry, its holonomy ρ̃ is discrete and injective and

C(T ) ∼=
(
NR0 (l̃) \ l̃

)
/ρ̃(π1(T )).

The proof is complete. �

14.2.6. The completion. We now have an isometric model for the
collar C(T ) of T and we study its completion. This analysis will lead to a
proof of Theorem 14.2.3.

We suppose that µ is non-trivial and hence C(T ) is not complete. By
Proposition 14.2.7, the completion C(T ) of C(T ) depends on the Z × Z
group Im µ̃ < C̃∗ acting on X: see Section 14.2.4 where we defined in
particular the (truncated) tubes with cone angles.
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Proposition 14.2.8. If Im µ̃ contains a non-trivial rotation then C(T )

is a truncated tube with some cone angle; otherwise it is a one-point
compactification of C(T ).

In the first case, there are generators γ, η for π1(T ) such that

µ̃(γ) = eαi , µ̃(η) = eλ+βi

and the core geodesic of C(T ) has cone angle α and length |λ|. The curve
γ is a meridian of the truncated tube.

Proof. We know that C(T ) is isometric to a truncation of X/Im µ̃ and
we apply the discussion of Section 14.2.4. �

We now look at M globally: every boundary torus Ti ⊂ ∂N has its
own homomorphisms µ and µ̃.

Corollary 14.2.9. Suppose that at every boundary torus Ti ⊂ ∂N one
of the following holds:

(1) µ is trivial, or
(2) there is a primitive γi ∈ π1(Ti) such that µ̃(γi) = eαi i .

The completion M is a complete hyperbolic cone manifold obtained by
Dehn filling the slopes γi . The core of the i-th Dehn filling is a closed
geodesic with cone angle αi .

Theorem 14.2.3 now follows immediately.
Proof of 14.2.3. The equation µ̃(mi)

pµ̃(li)
q = e2πi implies that µ̃(pmi +

qli) = e2πi and therefore the completion is a hyperbolic manifold (with no
cone angles since α = 2π) diffeomorphic to Mfill. �

14.2.7. Generalised Dehn filling invariants. We have proved Theo-
rem 14.2.3 and we now make some comments that will be useful in the
next chapter. Let z be a solution of the consistency equations and consider
a boundary torus Ti ⊂ ∂N with fixed generators mi , li for π1(T ).

Proposition 14.2.10. If µ is non-trivial, there is a unique (p, q) ∈ R2

such that µ̃(mi)
pµ̃(li)

q = e2πi .

Proof. We know from Proposition 14.2.7 that µ̃ is injective and has
discrete image. Therefore µ̃(mi) and µ̃(li) form a basis of C̃∗ considered
as a R-vector space. �

We now define the generalised Dehn filling invariant (p, q) ∈ S2 =

R2 ∪ {∞} of the solution z at the torus Ti to be:
• (p, q) =∞ if µ is trivial,
• the (p, q) ∈ R2 from Proposition 14.2.10 if µ is non-trivial.

If (p, q) =∞ there is a complete collar C(Ti) of Ti that is a truncated
cusp; if (p, q) ∈ R2 then Proposition 14.2.7 provides a nice incomplete
collar C(Ti) and Proposition 14.2.8 tells us everything about its completion
C(Ti). Namely, the following holds:
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• if p
q
∈ Q ∪ {∞} then (p, q) = k(r, s) for a unique real number

k > 0 and coprime integers (r, s), and C(Ti) is a solid torus with
meridian rm+ sl , isometric to a truncated tube with cone angle
2π
k
;

• if p
q
6∈ Q∪{∞} then C(Ti) is the much less interesting one-point

compactification.
We deduce the following:

• if (p, q) are coprime integers then C(Ti) is a standard truncated
tube; if this holds at all boundary tori Ti then M is a hyperbolic
manifold;

• if (p, q) are integers then k is a natural number and the cone
angle divides 2π; if this holds at all boundary tori Ti then M may
be interpreted as an orbifold thanks to Proposition 3.6.18;

• if p
q
∈ Q ∪ {∞} at all boundary tori Ti then M is a hyperbolic

cone manifold.

Corollary 14.2.11. If the generalised Dehn filling invariants (p, q) at
each Ti are either ∞ or coprime integers, the completion M is a complete
hyperbolic manifold obtained by (p, q)-Dehn filling the cusps of the second
type.

We end this discussion by calculating (p, q) explicitly. We define

ui = log µ̃(mi), vi = log µ̃(li)

and find the following.

Proposition 14.2.12. If µ is non trivial we have

p = −2π
<vi
=(ūivi)

, q = 2π
<ui
=(ūivi)

.

Proof. The pair (p, q) is the unique solution of

(20) pui + qvi = 2πi

when ui , vi 6= 0, or is ∞ otherwise. Note that ui = 0 ⇔ vi = 0. The
relation

i=(ūiv) = −(<vi)ui + (<ui)vi
implies easily that the pair (p, q) stated above is a solution to (20). �

14.2.8. Closed census. The Lickorish-Wallace Theorem 11.3.15 says
that every closed orientable three-manifold M is the result of a Dehn
surgery along some link L ⊂ S3, and as such it can be easily presented
to SnapPea. The program tries to solve numerically the consistency and
completeness equations for M, based on some ideal triangulation for the
complement of L.

If it succeeds to find a solution z , the closed manifold M is hyperbolic
and SnapPea calculates numerically various geometric invariants of M:
the volume (which is just the sum of the volumes of the ideal tetrahedra),
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Name Volume Homology Symmetry SG C

Vol1 0.94270736 Z5 + Z5 D12 0.5846 c
Vol2 0.98136883 Z5 D4 0.5780 c
Vol3 1.01494161 Z3 + Z6 S16 0.8314 a
Vol4 1.26370924 Z5 + Z5 D8 0.5750 c
Vol5 1.28448530 Z6 D4 0.4803 c
Vol6 1.39850888 {e} D4 0.3661 c
Vol7 1.41406104 Z6 D4 0.7941 c
Vol8 1.41406104 Z10 D4 0.3648 c
Vol9 1.42361190 Z35 D4 0.3523 c
Vol10 1.44069901 Z3 D4 0.3615 c

Table 14.5. The ten closed hyperbolic three-manifolds with
smallest volume known. Here S16 is the semidihedral group of
order 16 with presentation 〈x, y | x8 = y2 = 1, y−1xy = x3〉,
SG indicates the length of the shortest geodesics (volume
and SG values are truncated after few digits), and C indi-
cates whether the manifold is achiral (a) or chiral (c), that
is whether it admits an orientation-reversing isometry or not.

the length of the core geodesics of the filling solid tori (using Proposition
14.2.8), a segment of the geodesic spectrum, a Dirichlet domain, etc.

Various closed manifolds M have been tested and listed, and the ten
closed hyperbolic three-manifolds of smallest volume known today are in
Table 14.5, taken from Hodgson – Weeks [28].

14.2.9. References. The material contained in this chapter originated
from Thurston’s notes [56] and Neumann – Zagier [42], see also Benedetti
– Petronio [4]. The program SnapPea is freely available and can now be
used via a Python interface [15]. We have used the computer censuses
of Callahan – Hildebrand – Weeks [10], Hoste – Thistlethwaite – Weeks
[29], and Hodgson – Weeks [28].

It is conjectured in [1] that each link in Figure 14.10 with c = 1, . . . , 5

cusps has minimum volume among orientable hyperbolic manifolds with c
cusps. This has been proved for c = 1 by Cao and Meyerhoff [11], for
c = 2 by Agol [1], and for c = 4 by Yoshida [61]. The manifold Vol1 from
Table 14.5 is called the Fomenko – Matveev – Weeks manifold and has
indeed smallest volume among all complete hyperbolic three-manifolds by
Gabai – R. Meyerhoff – P. Milley [22].





CHAPTER 15

Hyperbolic Dehn filling

We have completely classified in Chapter 10 the closed three-manifolds
that belong to the six Seifert geometries, and now we long for a similar
catalogue that displays all the closed hyperbolic three-manifolds that exist
in nature. Is there something like a “name” to assign to each closed hy-
perbolic three-manifold, together with some reasonable tables that list all
possible names?

There is not yet one such thing, and we do not know if there will ever
be one: we still do not understand hyperbolic three-manifolds globally.
The main difficulty is that there are really many hyperbolic three-manifolds
around, so many that topologists often say informally that “most three-
manifolds are hyperbolic.”

This folk sentence is supported by a fundamental theorem that we
prove in this chapter, the Hyperbolic Dehn filling Theorem, which says
roughly that by Dehn-filling generically a cusped hyperbolic three-manifold
we still get a hyperbolic manifold.

15.1. Introduction

It sometimes happens in three-dimensional topology, that a topological
or geometric property of a manifold is preserved under Dehn fillings, with
only few exceptions. For instance, the Dehn filling of a Seifert manifold
is again a Seifert manifold, with only one exception (a fibre-parallel Dehn
filling gives a connected sum of Seifert manifolds, see Corollary 10.3.44).

The most striking appearance of this phenomenon is the Hyperbolic
Dehn filling Theorem, proved by Thurston at the end of the 1970s. This
theorem says roughly that “most” Dehn fillings of a cusped hyperbolic
manifold are still hyperbolic.

15.1.1. Generalised Dehn filling parameters. In all this chapter, we
consider a compact oriented three-manifold N with ∂N = T1 t . . . t Tc
consisting of tori, and we fix generators mi , li for every π1(Ti).

Let a generalised Dehn filling parameter s = (s1, . . . , sc) be a sequence
where each si is either the symbol ∞ or a rationally related pair of real
numbers (p, q) = (kp′, kq′) = k(p′, q′) where k > 0 is real and (p′, q′) are
coprime integers. We think at si as lying in the two-sphere S2 = R2∪{∞}.

445
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A generalised Dehn filling parameter s determines a Dehn filling Nfill

of N as follows: for every i , if si = k(p′, q′) we fill Ti by killing the slope
p′mi + q′li , while if si = ∞ we do nothing. The result is a new compact
manifold, that may be closed (if there are no ∞ in s) or be bounded by
some tori. We also mark the cores of the filled solid tori with the label
αi = 2π

k
> 0.

15.1.2. The Hyperbolic Dehn filling Theorem. This chapter is mainly
devoted to the proof of the following theorem.

Theorem 15.1.1. Let M = int(N) be a complete orientable finite-
volume cusped hyperbolic three-manifold. There is a neighbourhood U of
(∞, . . . ,∞) in S2 × . . . × S2 such that for every generalised Dehn filling
parameter s ∈ U the interior Mfill of the manifold Nfill obtained by Dehn
filling N along s admits a finite-volume complete hyperbolic structure with
cone angles.

The cores of the filling solid tori are closed geodesics with cone angles
αi . The singular locus of Mfill consists of the core geodesics with αi 6= 2π.

If s ∈ U is an ordinary (not extended) Dehn filling parameter (see
Section 14.2.1), that is if si is either ∞ or a coprime pair (p, q) for all i ,
then αi = 2π and Nfill is a hyperbolic manifold without cone angles: this
is of course the case of most interest.

Corollary 15.1.2. Let M = int(N) be a complete orientable finite-
volume hyperbolic three-manifold. For every i = 1, . . . , c there is a finite
set Si of slopes in Ti such that for every Dehn filling parameter s with
si 6∈ Si for all i , the filled manifold Mfill = int(Nfill) is hyperbolic.

When M has one cusp, the corollary may be stated simply as follows.

Corollary 15.1.3. If M is a complete orientable finite-volume hyper-
bolic three-manifold with one cusp, all but finitely many Dehn fillings Mfill

are hyperbolic.

To appreciate the power of these theorems, consider for instance a
hyperbolic link L ⊂ S3 (recall that L ⊂ S3 is hyperbolic if S3 \ L admits a
finite-volume complete hyperbolic metric). By the hyperbolic Dehn filling
theorem, there is a finite subset S ⊂ Q such that every surgery on L with
coefficients in Q \ S produces a closed hyperbolic manifold.

15.1.3. Examples. We describe a couple of clarifying examples. We
know that the figure eight knot K ⊂ S3 is hyperbolic: by the Dehn filling
Theorem, there is an open neighbourhood U ⊂ S2 of ∞ such that every
Dehn surgery on K with parameter s ∈ U produces a hyperbolic cone
manifold.

We will prove in the next section that the subset U shown in Figure
15.1 fulfils this requirement. The only coprime pairs (p, q) that are not
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0

(-4,-1) (4,-1)

(-4,1) (4,1)

(-5,0) (5,0)

U

Figure 15.1. Hyperbolic Dehn fillings on the figure-eight
knot complement.

p
q

manifold

0 T( 3 1
−1 0

)
±1

(
S2, (2, 1), (3, 1), (7,−6)

)
±2

(
S2, (2, 1), (4, 1), (5,−4)

)
±3

(
S2, (3, 1), (3, 1), (4,−3)

)
±4

(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

) (D, (2, 1), (3, 1)
)

Table 15.1. The non-hyperbolic Dehn surgeries of the
figure-eight knot. We get a torus bundle with Anosov mon-
odromy and hence of Sol geometry, three Seifert manifolds
of S̃L2 geometry, and a graph manifold that splits into two
Seifert manifolds via a map that interchanges the fibres and
the boundary sections of the two portions (the map is here
denoted by a matrix in the section-fibre basis).

contained in U are those with p
q
equal to one of the following

(21) −4,−3,−2,−1, 0, 1, 2, 3, 4,∞.

Every other surgery on K yields a closed hyperbolic three-manifold. For
instance, the manifold Vol2 from Table 14.5 can be obtained with p

q
= ±5

(there is a symmetry of K sending p
q
to − p

q
).

On the other hand, a p
q
surgery from the list (21) does not produce a

hyperbolic manifold: see Table 15.1, taken from Martelli – Petronio [38].
More generally, a parameter k(p, q) ∈ U produces a hyperbolic closed

manifold with a core geodesic of cone angle 2π
k
, which may be interpreted

as an orbifold when k ∈ N. In particular, if (p, q) = (1, 0) the closed
manifold is just S3, because an ∞-surgery on a knot in S3 gives S3 back.
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Figure 15.2. We truncate the tetrahedra and flatten their
boundary. We assign a modulus z and w to them. The edge
numbered i = 1, 2, 3 has modulus zi (on the left tetrahedron)
or wi (on the right tetrahedron).

By looking at Figure 15.1 we discover that for every k > 5 there is a
hyperbolic structure on S3 with cone angle 2π

k
on the figure-eight knot K.

We now consider a link with two components. The Whitehead link
L shown in Figure 14.10 is hyperbolic: it is hard to determine an explicit
open set U ⊂ S2 × S2 in this case, but a careful computer-aided analysis
carried with SnapPy [15] shows the following, see [38].

Theorem 15.1.4. A ( p
q
, r
s

) surgery on the Whitehead link produces a
closed hyperbolic manifold, unless one of the following holds:

• either p
q
or r

s
belongs to the set {0, 1, 2, 3, 4,∞},

• up to permutation the pair
(
p
q
, r
s

)
belongs to the set{

(−4,−1), (−3,−1), (−2,−2), (−2,−1),
(

3
2
, 5
)
,
(

4
3
, 5
) (

5
2
, 7

2

)}
.

The proposition is symmetric in the two coefficients because the link
itself has a symmetry that interchanges the two components. All the
Dehn filling parameters listed in the theorem indeed produce non-hyperbolic
manifolds. For instance, if p

q
∈ {1, 2, 3} we get a Seifert manifold fibering

over the disc with two singular fibres, see [38].
We first prove Theorem 15.1.1 for the figure-eight knot, where the

combinatorics is so simple that everything can be verified by hand. We will
then prove the theorem in general in Section 15.2 using more sophisticated
tools.

15.1.4. The figure-eight knot example. We now discuss in detail the
standard example: the figure-eight knot complement, one of the very few
cases where the consistency and completeness equations can be solved by
hand. This part will not be needed in the proof of Theorem 15.1.1, so the
reader may wish to skip it and go directly to Section 15.1.5.
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w1 w3

w2

w1 w3
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w2 w1

w3

w2 w1

w3

Figure 15.3. The triangulated boundary is a torus obtained
by identifying the opposite edges of this parallelogram. The
triangulation T has two edges, that we colour in red and
white. Their endpoints are shown here.

Let T be the triangulation with two tetrahedra shown in Figure 14.7.
The truncated version is in Figure 15.2. We assign the complex variable z
and w to the left and right tetrahedron, respectively. We set

z1 = z, z2 =
1

1− z , z3 =
z − 1

z

and define w1, w2, w3 similarly. Recall that

(22) z1z2z3 = w1w2w3 = −1.

The modulus of an edge in Figure 15.2 labeled with i ∈ {1, 2, 3} is zi or
wi depending on the tetrahedron. With some patience one sees that the
boundary triangulated surface is a torus T as in Figure 15.3. The triangu-
lation T has two edges shown in Figure 14.7, each yielding a consistency
equation. Figure 15.3 shows that the consistency equations are

z2
2 z3w

2
2w3 = 1, z2

1 z3w
2
1w3 = 1.

Using (22) we see that the equations are both equivalent to

z2w2 = z1w1,

that is

(23) z(1− z)w(1− w) = 1.

We now look at the boundary torus T . Let m and l be the generators of
π1(T ) shown in Figure 15.3. We have

(24) µ(m) = −z1z3w1 = w(1− z), µ(l) = z2
2 z

2
3w

4
1w

2
2w

2
3 =

z2

w 2
.

The completeness equations are

(25) w(1− z) = 1, z2 = w 2.

Exercise 15.1.5. The only solution to (23) and (25) is z = w = e
πi
3 .

We have confirmed that the figure-eight complement M has a com-
plete hyperbolic structure obtained by representing both tetrahedra with
ideal regular hyperbolic tetrahedra. We now investigate the non-complete
solutions of the consistency equations.
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R s

d

Figure 15.4. Every w ∈ R determines a hyperbolic structure
for M (left). The Dehn filling generalised invariants d map
R onto a neighbourhood of ∞ (right).

The two ideal tetrahedra have moduli w and z and the consistency
equations reduce to one equation (23) which we rewrite as

z2 − z +
1

w(1− w)
= 0.

The solutions are

z =
1±

√
1− 4

w(1−w)

2
.

We are only interested in solutions with =z,=w > 0. For every w with
=w > 0 there is a unique solution z with =z > 0, except when ∆ ∈ R>0.

Exercise 15.1.6. We have ∆ = 1 − 4
w(1−w)

∈ R>0 if and only if w

belongs to the half-line s =
{

1
2

+y i with y >
√

15
2

}
, see Figure 15.4-(left).

We define the open region

R = {w ∈ C | =w > 0} \ s.

Every w ∈ R determines a hyperbolic structure for M. The complete
structure is obtained at w0 = 1

2
+
√

3
2
, see Figure 15.4-(left).

The manifold M is a knot complement and hence the boundary torus
T is equipped with its natural meridian/longitude basis m′, l ′, see Section
11.3.1. Using SnapPea we find out that

m′ = m, l ′ = l + 2m.

From (24) we get

(26) µ̃(m′) = w(1− z), µ̃(l ′) =
z2

w 2
w 2(1− z)2 = z2(1− z)2.

We fix m′, l ′ as generators for π1(T ). We defined in Section 14.2.7 the
generalised Dehn surgery invariant (p, q) = d(w) for every non-complete
solution w ∈ R \ {w0}. This gives a continuous map

d : R −→ S2

that sends w0 to ∞.
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Proposition 15.1.7. The image d(R) contains the coloured region
shown in Figure 15.4-(right).

Proof. The domain R is an open disc and its abstract closure R̄ is
homeomorphic to the closed disc. We show that d extends to a continuous
map R̄→ S2 which sends ∂R to the almost-rectangle shown in Figure 15.4.

The invariants d(w) = (p, q) are such that

(27) w p(1− z)p+2qz2q = e2πi .

The region R has two involutions (determined in fact by isometries of
M):

• the involution τ(w) = z =
1±

√
1− 4

w(1−w)

2
. This involution sends

µ(m) to µ(m)−1 = µ(m−1), hence d(τ(w)) = −d(w);
• the involution σ(w) = 1− w : using (26) we get d(σ(w)) =

d(w).

Now we note that when w tends to a point in the line l+ = [1,+∞] then
z tends to a point in l− = [−∞, 0]. Therefore the argument of w, z, 1− z
tends respectively to 0, π, 0. Equation (27) implies that q → 1.

If w → 1 then z → −∞ and (27) implies that p + 2q + 2q = p +

4q → 0, so (p, q) → (−4, 1). If w → +∞ then z → 0 and equation
z(1−z)w(1−w) = 1 implies that |z ||w |2 → 1; here (27) gives |w |p−4q →
1, hence p − 4q → 0, so (p, q) → (4, 1). We have proved that d maps
[1,+∞] onto the segment

(−4,+1), (+4,+1).

Using the involution τ we deduce that d maps [−∞, 0] onto the segment

(+4,−1), (−4,−1).

When w is near the right side of the half-line s, the number z tends to
the segment (0, 1

2
]. Therefore the arguments of z and 1 − z tend to 0

and (27) implies that the argument of w p tends to 2π. When w ∈ s the
argument of w is at least arctan

√
15 = 1.31811607 . . . and hence p is at

most 2π

arctan
√

15
= 4.374 . . . < 5. This implies that we can connect (4, 1)

and (4,−1) while staying inside the image of d with a curve as in Figure
15.4. �

15.1.5. A road map. The rest of this chapter is mostly devoted to the
proof of Theorem 15.1.1. Here is our plan: we first study the combinatorial
properties of an arbitrary ideal triangulation T forM, and we prove that the
solutions to the consistency equations form a complex manifold Def(M, T )

of (complex) dimension c equal to the number of cusps ofM. The manifold
Def(M, T ) is nicely parametrized by the holonomies on any c fixed curves
at different cusps.

The manifold Def(M, T ) is often empty, but since M is hyperbolic we
expect that there should be some ideal triangulation T for which Def(M, T )
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is not empty and contains a solution z that also satisfies the completeness
equations (we are unfortunately not able to prove this in general, and this
will be a technical issue). The generalised Dehn filling invariants defined
in Section 14.2.7 furnish a local diffeomorphism d : Def(M, T ) → S2 ×
. . . × S2 that sends z to (∞, . . . ,∞). In particular this map is open and
its image covers a neighbourhood U of (∞, . . . ,∞). We conclude thanks
to the discussion of Section 14.2.7.

We start by defining and exploring the solution space Def(M, T ).

15.2. The solution space

In this section we study the combinatorial properties of ideal trian-
gulations of three-manifolds in general. We study the space of solutions
to the consistency equations, we prove that it is a complex manifold and
exhibit a concrete parametrisation via the holonomy of peripheral curves.

15.2.1. Edges and tetrahedra. Throughout this section, we let N be
a compact oriented three-manifold N with ∂N = T1 t . . . t Tc consisting
of tori, and define M = int(N). Let T be any ideal triangulation for M.

Proposition 15.2.1. The ideal triangulation T has the same number
n of tetrahedra and edges.

Proof. The total space |T | of the triangulation T has v vertices, e
edges, f faces, and t tetrahedra. Since χ(∂N) = 2χ(N) for every compact
3-manifold N and ∂N consists of tori, we get χ(N) = 0. Therefore

v = v + χ(N) = χ(|T |) = v − e + f − t = v − e + t

since f = 2t. Then e = t. �

Recall that in the consistency equations we get one complex variable
zi for each tetrahedron and one equation for each edge; since we have the
same number of edges and tetrahedra, one would guess that the solutions
form typically a discrete set of points, but this is surprisingly not the case:
we now show that some equations are redundant, leaving some space for
a higher-dimensional space of solutions. The origin of this redundancy lies
in the combinatorial properties of three-dimensional triangulations.

15.2.2. Incidence matrices. We denote respectively by ∆1, . . . ,∆n

and e1, . . . , en the tetrahedra and edges of T . We fix an orientation on M,
which induces an orientation on each tetrahedron, and we assign numbers
1, 2, and 3 to pairs of opposite edges on each ∆i in a way that is orientation-
preservingly isomorphic to Figure 15.5.

We now define a 2n×3n integral matrix A that encodes some combi-
natorial adjacencies between tetrahedra. The matrix A should be seen as
a 2× 3 rectangle of n × n sub-matrices as in Figure 15.6-(left), where:
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Figure 15.5. We label the edges of every oriented tetrahe-
dron as shown: the labelling is determined once we chose
arbitrarily a pair of opposite edges and label them with 1
(left). The vertices of every oriented triangle in the triangu-
lated boundary inherit labels as in the figure (right).
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Figure 15.6. The incidence matrices A and B count the
incidences between edge pairs, tetrahedra, edges, and ideal
vertices.

• each column of A corresponds to a pair of opposite edges of
one tetrahedron, more precisely the columns i , i + n, and i + 2n

correspond the opposite edges of type 1,2,3 of ∆i ;
• the first n rows of A correspond to the tetrahedra ∆1, . . . ,∆n;
• the last n rows of A correspond to the edges e1, . . . , en.

When i 6 n, the entry Ai j is 1 or 0 depending on whether ∆i contains the
j-th edge pair. In other words, the top three n × n sub-matrices of A are
three identity matrices, see Figure 15.6-(left).

When i = n + i ′ with i ′ > 0, the entry Ai j counts how many edges in
the j-th edge pair are glued to the i ′-th edge ei ′ : this number is hence 0,
1, or 2.

Exercise 15.2.2. The entries on each column of A sum to 3.

Let now v1, . . . , vc be the ideal vertices of T . We define another c×2n

integral matrix B, which consists of two c × n sub-matrices as in Figure
15.6-(right), where:

• the rows of B correspond to the ideal vertices v1, . . . , vc ;
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• the first n columns of B correspond to the n tetrahedra ∆1, . . . ,∆n;
• the last n columns correspond to the edges e1, . . . , en.

When j 6 n, the entry Bi j is minus the number of times ∆j is incident
to vi , and when j = n + j ′ with j ′ > 0 the entry Bi j is plus the number of
times ej ′ is incident to vi . The possible entries are 0,−1,−2,−3,−4 and
0, 1, 2 respectively.

Exercise 15.2.3. The entries on each column of B sum to −4 or 2.

The matrices A and B are designed to be interpreted as linear maps,
and to be composed.

Proposition 15.2.4. The following sequence is exact:

R3n A−→ R2n B−→ Rc −→ 0.

The proof of this proposition splits into three lemmas.

Lemma 15.2.5. We have BA = 0.

Proof. The i-th row of B corresponds to the ideal vertex vi and the
k-th column of A corresponds to the k-th pair of opposite edges. The
sum

∑2n
j=1 Bi jAjk counts minus the number of times vi is incident to the

tetrahedron containing the edge pair, plus the number of times it is incident
to the two edges of the pair. These numbers are equal and hence we get
0. �

Lemma 15.2.6. The c rows in B are independent vectors.

Proof. Suppose there is a vanishing linear combination
∑c

i=1 λiBi = 0

of the rows Bi of B. If the edge ej has endpoints at va and vb, the entries in
the (n+ j)-th column Bn+j are 1 at the rows a and b and zero everywhere
else: therefore we get λa +λb = 0. If we apply this argument to the three
edges of a triangle we get

λa + λb = 0, λb + λc = 0, λc + λa = 0

which implies λa = λb = λc = 0. Then all coefficients λa vanish. �

Lemma 15.2.7. The c rows in B generate ker(Aᵀ).

Proof. Since BA = 0 implies AᵀBᵀ = 0, we already know that the
rows in B are contained in ker(Aᵀ), and we must prove that they generate
it. We pick a generic horizontal vector q = (q1, . . . , q2n) ∈ R2n with
qA = 0 and we need to prove that q is generated by the rows Bi of B.

Recall that the columns Aj , Aj+n, Aj+2n of A correspond to the edge
pairs of type 1, 2, and 3 of the tetrahedron ∆j . We label the vertices of ∆j

as a, b, c, d , the edges of ∆j as pairs like ab, and the corresponding vertices
and edges in T as j(a) and j ′(ab), interpreted as numbers in {1, . . . , c} and
{1, . . . , n} respectively. Moreover we set j(ab) = j ′(ab) + n. We suppose
that ab, ac, ad are of type 1, 2, 3.
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The conditions qAj = qAj+n = qAj+2n = 0 say that

qAj = qj + qj(ab) + qj(cd) = 0,

qAj+n = qj + qj(ac) + qj(bd) = 0,

qAj+2n = qj + qj(ad) + qj(bc) = 0.

This implies that

(28) qj(ab) + qj(cd) = qj(ac) + qj(bd) = qj(ad) + qj(bc) = −qj .

We now prove that q =
∑
λiBi where the coefficients λi are defined as

follows. Consider an ideal triangle in ∆j with vertices a, b, c and define

λj(a) =
qj(ab) + qj(ca) − qj(bc)

2
.

We check that λj(a) does not depend on the ideal triangle: the triangle in
∆j with vertices a, b, d gives

λj(a) =
qj(ab) + qj(da) − qj(bd)

2
=
qj(ab) + qj(ca) − qj(bc)

2

using (28). Two triangles incident to the ideal vertex vj(a) are connected
by a path of adjacent tetrahedra and hence λj(a) is well-defined.

Finally, we need to check that indeed q =
∑
λiBi . We consider the

edge j(ab) and recall that the (n + j(ab))-th column of B is everywhere
zero except at rows j(a) and j(b); hence the (n+j(ab))-th entry of

∑
λiBi

is λj(a) + λj(b), which by definition equals qj(ab), so we are done.
Analogously, the j-th column of B is everywhere zero except at the

rows j(a), j(b), j(c), j(d) and hence the j-th entry of
∑
λiBi is −(λj(a) +

λj(b) + λj(c) + λj(d)) which equals −qj(ab) − qj(cd) = qj . The proof is
complete. �

These three lemmas imply Proposition 15.2.4. In particular we get
the following:

Corollary 15.2.8. We have rkA = 2n − c.

15.2.3. A symplectic form. We define an alternating bilinear form ω

on R3n as follows: for every i = 1, . . . , n consider the form

ωi =

 0 1 −1

−1 0 1

1 −1 0


on the subspace Vi generated by ei , ei+n, and ei+2n, and define ω = ⊕iωi .
Strictly speaking, the form ω is not symplectic because it is degenerate:
its radical is generated by all vectors of type ei + ei+n + ei+2n, that is by
the first n rows of the matrix A. The form ω becomes symplectic after
quotienting R3 by the radical.

Proposition 15.2.9. The rows of A generate a lagrangian subspace.
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Proof. In other words, we need to prove that ω(Aj , Ak) = 0 for any
rows Aj , Ak of A. The first n rows lie in the radical, hence we are left to
check that ω(An+j , An+k) = 0 for all 0 < j < k 6 n corresponding to the
j-th and k-th edge of the triangulation.

Each tetrahedron ∆i contributes to the number ω(An+j , An+k) as fol-
lows: if two edges contained in some face f of ∆i correspond to the edges
j and k of the triangulation, they contribute with a ±1; the face f is also
contained in an adjacent tetrahedron where they contribute with opposite
sign, and hence everything sums to zero. �

15.2.4. The solution space. We now employ the combinatorial re-
sults of the previous sections to study the consistency equations for T .
We assign the variables zj , 1

1−zj
, and zj−1

zj
to the edges of type 1, 2, and 3

in each tetrahedron ∆j . These three variables lie in the upper half-plane

C+ =
{
=z > 0

}
which we see as the subset C+ ⊂ C̃∗ consisting of all ρe iθ with 0 < θ < π.
The consistency equation at the edge ei is the following equation in C̃∗:

(29) gi(z) =

n∏
j=1

z
An+i ,j

j

(
1

1− zj

)An+i ,n+j
(
zj − 1

zj

)An+i ,2n+j

= e2πi .

The elements 1
1−zj

,
zj−1

zj
∈ C+ ⊂ C̃∗ depend holomorphically on zj ∈ C+.

We have defined a complex function

g : Cn+ −→
(
C̃∗
)n

by setting g = (g1, . . . , gn). The solution space is the set

Def(M, T ) = g−1(e2πi , . . . , e2πi).

This space consists precisely of the solutions to the consistency equations
of T . Each solution z ∈ Def(M, T ) gives a hyperbolic metric on M, which
“deforms” as z varies: this justifies the use of the symbol “Def”. We want
to prove that Def(M, T ) is a complex manifold of dimension c.

15.2.5. Complex differentials. We now use the biholomorphic map
log : C̃∗ → C and define the function G(z) = log g(z) for all z ∈ Cn+. Now

Def(M, T ) = G−1(2πi, . . . , 2πi).

We may write

Gi(z) =

n∑
j=1

A′i ,j log zj + A′i ,n+j log(1− zj) + Niπi

where A′ is the n × 2n integral matrix defined by

A′i ,j = An+i ,j − An+i ,2n+j , A′i ,n+j = −An+i ,n+j + An+i ,2n+j
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and Ni is some fixed integer that depends on the way we interpret log(1−
zj). The complex differential at z splits as a composition of linear maps

dGz : Cn Z−→ C2n A′−→ Cn

where

Z =



1
z1

0 . . . 0

0 1
z2

. . . 0
...

...
. . .

...
0 0 . . . 1

zn
1

z1−1
0 . . . 0

0 1
z2−1

. . . 0
...

...
. . .

...
0 0 . . . 1

zn−1


is obtained by differentiating log zj and log(1− zj). Let now

B′ : Cn −→ Cc

be the linear map defined by the right (c × n)-sub-matrix B′ of B, that is

B′i ,j = Bi .n+j .

Proposition 15.2.10. The following sequence is exact:

C2n A′−→ Cn B′−→ Cc −→ 0.

Proof. Lemma 15.2.7 shows that B is surjective, and its proof actually
shows that B′ is surjective. Recall that A decomposes into six square
matrices, and via Gauss moves on columns we get

(30) A=

(
I I I

A1 A2 A3

)
−→

(
0 0 I

A1 − A3 −A2 + A3 A3

)
=

(
0 I

A′ A3

)
Now BA = 0⇒ B′A′ = 0, and rkA = 2n − c ⇒ rkA′ = n − c. �

This shows in particular that the image of G lies in a fixed affine
subspace parallel to kerB′ of complex codimension c. We now consider
the standard symplectic form ω =

(
0 I
−I 0

)
on R2n.

Proposition 15.2.11. The rows of A′ generate a lagrangian subspace.

Proof. We know that the rows of A generate a lagrangian subspace
with respect to the degenerate form on R3n by Proposition 15.2.9. The
Gauss moves (30) imply the assertion. �

Proposition 15.2.12. For every z ∈ Cn+ the following sequence is exact:

Cn dGz−→ Cn B′−→ Cc −→ 0.
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Proof. We have dGz = A′Z. Proposition 15.2.10 gives an exact
sequence

C2n A′−→ Cn B′−→ Cc −→ 0.

We only need to prove that Im (A′Z) = ImA′, that is rk(A′Z) = n − c.
We prefer to consider the transpose matrix M = (A′Z)ᵀ = Zᵀ(A′)ᵀ. Then

Zᵀ =


1
z1

0 . . . 0 1
z1−1

0 . . . 0

0 1
z2

. . . 0 0 1
z2−1

. . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1

zn
0 0 . . . 1

zn−1

 .
The map Zᵀ : C2n → Cn is obviously not injective, but its restriction

Zᵀ|R2n : R2n −→ Cn

is an isomorphism of real spaces because 1
zi
and 1

zi−1
are independent over

R (we use here that zi 6∈ R).
We define a symplectic form Ω on the real vector space Cn by pushing-

forward ω along Zᵀ|R2n , that is we set Ω(Zᵀv, Zᵀw) = ω(v, w). By
construction Ω is a sum of symplectic forms on the coordinate complex
lines of Cn. Note that a symplectic form on C is unique up to rescaling.

Since Im zi > 0, the complex numbers 1
zi
and 1

zi−1
form a negatively-

oriented R-basis of C, and this implies that Ω(v, iv) < 0 for every non-zero
vector v ∈ Cn. In particular 〈·, ·〉 = −Ω(·, i ·) is a positive-definite scalar
product that induces a norm ‖ · ‖ on Cn.

On each coordinate complex line of Cn, the form Ω is just a rescaling
of the standard symplectic form and hence 〈, 〉 is a rescaling of the standard
scalar product. In particular Ω(iv , iw) = Ω(v, w) and 〈iv , iw〉 = 〈v, w〉.

Finally, we suppose by contradiction that rkM < n − c. Since Zᵀ|R2n

is injective, the real subspace M(Rn) has real dimension n − c. Since
rkM < n−c, there are vectors v1, v2 ∈ Rn such that M(v1 + iv2) = 0 while
Mv1 6= 0 and Mv2 6= 0. Proposition 15.2.11 gives

Ω(Mv1,Mv2) = ω((A′)ᵀv1, (A′)ᵀv2) = 0

and therefore

0 = ‖M(v1 + iv2)‖2 = ‖Mv1‖2 + ‖iMv2‖2 + 2〈Mv1, iMv2〉

= ‖Mv1‖2 + ‖Mv2‖2 − 2Ω(Mv1,−Mv2)

= ‖Mv1‖2 + ‖Mv2‖2

implies Mv1 = Mv2 = 0, a contradiction. �

Corollary 15.2.13. The solution space Def(M, T ) ⊂ Cn+ is either
empty or a complex submanifold of dimension c.
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Figure 15.7. We mark with a dot all the interior angles that
γ encounters on its right as in the picture: each dot deter-
mines an edge in some tetrahedron ∆j and hence an edge pair
(left). We also consider the “degenerate path” consisting of
a single point “run counterclockwise”, and recover the last n
rows of A in this way (right).

Proof. The image of G : Cn+ → Cn lies entirely in a (n−c)-dimensional
complex affine space S parallel to kerB′ ⊂ Cn and by the previous propo-
sition the holomorphic map G : Cn+ → S is a submersion onto its image.
Therefore the counterimage of any point is a either empty or is a complex
submanifold of dimension n − (n − c) = c. �

We now want to define a nice holomorphic parametrisation for the
manifold Def(M, T ), and to this purpose we need to investigate further the
combinatorial properties of T by looking more closely at its ideal vertices.

15.2.6. Boundary curves. Recall that M = int(N) and the ideal ver-
tices v1, . . . , vc of T correspond to the boundary tori T1, . . . , Tc of N, which
are triangulated by T . Recall also that there are n tetrahedra ∆1, . . . ,∆n

in T and each ∆i has three edge pairs labeled with i , n + i , and 2n + i .
Every simplicial closed oriented curve γ in a triangulated torus Ti

determines an integer vector vγ ∈ R3n that counts the (right-)incidences
between γ and the 3n edge pairs of T . More precisely, each interior angle
of a triangle in Ti determines an edge in some tetrahedron ∆j and hence
an edge pair: we define (vγ)j to be the number of times γ encounters the
j-th edge pair on its right, as in Figure 15.7-(left).

We defined an alternating degenerate form ω on R3n and we now want
to extend Proposition 15.2.9. We denote by γ ·γ ′ the algebraic intersection
of γ and γ ′ in H1(∂M,Z).

Proposition 15.2.14. Let γ, γ ′ be simplicial closed curves in ∂N. Then

• ω(vγ , vγ′) = 2γ · γ ′,
• ω(vγ , Ai) = 0 for every row Ai of A.

Proof. The row Ai with i 6 n lies in the radical of ω, and An+i records
the incidences of the i-th edge ei of T with the 3n edge pairs. We may
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Figure 15.8. We draw the paths γ, γ′ and their dots in blue
and red.

+1 0 -1

Figure 15.9. Two dots in a triangle contribute to ω(γ, γ′)
with +1, 0, or −1 according to their mutual position.

write An+i = vγ′ where γ ′ is a “degenerate” closed path consisting of a
single point (one of the endpoints of ei), see Fig 15.7-(right). Now the
second assertion is just a special case of the first.

We draw the two paths γ and γ ′ in blue and red as in Figure 15.8,
marking with dots the angles they encounter on their right. A couple of
blue and red dots in the same triangle contribute to ω(γ, γ ′) according
to their mutual position as shown in Figure 15.9. Therefore portions of
blue and red paths intersecting the same triangle contribute to ω(γ, γ ′) as
shown in Figure 15.10.

For every contribution +1 as in Figure 15.10-(top-left), there is an
analogous but opposite contribution −1 provided by the other triangle
adjacent to the edge joining the coloured endpoints: these all cancel. We
are left with a +1 every time the red path exits leftward from an intersection
with the blue path, a −1 every time it enters from the left, and the opposite
contributions with the blue/red colours interchanged. We easily get a total
of 2γ · γ ′.

The proof is not yet complete, because every tetrahedron ∆i deter-
mines four triangles in ∂N and some contributions to ω(γ, γ ′) arise also
from paths intersecting distinct triangles of the same ∆i : we need to prove
that these contributions all cancel.
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+1 0

1-1=0

+1

01-1+1=1 1-1=0

-1

Figure 15.10. Two portions of blue and red paths that inter-
sect the same triangle contribute to ω(γ, γ′) as shown here.
The contribution depends on their mutual configuration, and
changes by a sign if we interchange the blue/red colours. If
one of the two portions contains at least two edges (as in
bottom-right) it determines a vector in the radical, and the
contribution is always zero.

=

-1

=

+1

=

-1

=

+1

e e

Figure 15.11. When γ and γ′ encounter in different trun-
cated triangles of the same tetrahedron ∆i , they also con-
tribute to ω(γ, γ′).
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I I I n

n

nnn

c

Figure 15.12. The enlarged matrix Ā.

Up to symmetries of the tetrahedron and up to interchanging the
colours, the possible non-zero contributions are all shown in Figure 15.11.
Each configuration as in the first row cancels with an opposite one pro-
duced by the tetrahedron adjacent to the grey face. The contributions in
the second row arise when γ and γ ′ cross the endpoints of an edge e on
opposite sides, and one checks that the contributions of all the cycle of
tetrahedra incident to e sum to zero (exercise). �

15.2.7. Holonomy parameters. We now fix a non-trivial oriented
simple closed curve γi on each Ti and a representation of γi as a sim-
plicial (possibly non-injective) path in the triangulated Ti .

We enlarge the incident 2n × 3n matrix A to a (2n + c)× 3n matrix
Ā by adding the vectors vγ1 , . . . , vγc at its bottom, see Figure 15.12.

Proposition 15.2.15. We have rkĀ = 2n. The rows of Ā generate a
maximal lagrangian subspace in R3n.

Proof. Let µi ⊂ Ti be a simplicial closed curve with γi · µi = 1. We
already know that the first 2n rows of Ā generate a lagrangian subspace
of dimension 2n−c, and to conclude it suffices to use Proposition 15.2.14
and deduce that vµi is ω-orthogonal to all the rows of Ā except Ā2n+i = vγi .
Therefore rkĀ = rkA+ c = 2n. �

Every point z ∈ Def(M, T ) determines a hyperbolic structure on M
and a homomorphism

µ̃z : π1(Ti)→ C̃∗

for each i = 1, . . . , c, see Definition 14.2.1. We define

hi(z) = µ̃z(γi) = e−|γi |πi
n∏
j=1

z
Ā2n+i ,j

j

(
1

1− zj

)Ā2n+i ,n+j
(
zj − 1

zj

)Ā2n+i ,2n+j
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and get a holomorphic function

h : Cn+ −→
(
C̃∗
)c
.

We want to prove that h furnishes a nice parametrisation for the c-
dimensional space Def(M, T ). The letter h stands for “holonomy”: recall
that hi is the holonomy of γi , see Exercise 14.2.6.

As in Section 15.2.5, we define H(z) = log h(z). We get a map

G ×H : Cn+ −→ Cn × Cc .

As above, the differential splits as a composition of linear maps

d(G ×H)z : Cn Z−→ C2n Ā′−→ Cn × Cc

where Ā′ is constructed from Ā exactly as A′ from A.

Proposition 15.2.16. The differential d(G×H)z is injective ∀z ∈ Cn+.

Proof. As above, Proposition 15.2.15 implies that the rows of Ā′ form
a lagrangian subspace of dimension n and we conclude with the same proof
as Proposition 15.2.12. �

Corollary 15.2.17. The restriction

h|Def(M,T ) : Def(M, T ) −→
(
C̃∗
)c

is a local biholomorphism.

A complete solution z ∈ Def(M, T ) is one that determines a complete
metric on M, that is such that h(z) = (1, . . . , 1).

Corollary 15.2.18. Every complete solution in Def(M, T ) is isolated.

The local biholomorphism h depends on the isotopy class of the curves
γi chosen: different choices give different parametrisations. Note however
that the condition that hi(z) = 1 corresponds geometrically to the com-
pleteness of Ti and hence does not depend on γi .

15.3. Proof of the theorem

We now conclude the proof of Theorem 15.1.1. Through all this
section, we let M = int(N) be a complete orientable finite-volume cusped
hyperbolic three-manifold. We have ∂N = T1 ∪ . . . ∪ Tc for some c > 1.
We also fix a positive pair mi , li of generators for π1(Ti) at each Ti . Recall
that each Ti has Euclidean structure, defined up to rescaling.
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15.3.1. Near the complete solution. We now suppose that M has a
geometric decomposition T into ideal hyperbolic tetrahedra, in other words
the space Def(M, T ) is non-empty and contains a complete solution z0.
We want to study Def(M, T ) near z0.

We defined in Section 14.2.7 the generalised Dehn filling invariant of
a solution z ∈ Def(M, T ) at Ti to be ∞ if µ(mi) = µ(li) = 1, or the
unique point (p, q) ∈ R2 such that µ̃(mi)

pµ̃(li)
q = e2πi otherwise. We

denote this invariant by di(z) ∈ S2 = R2 ∪ {∞} and get a map

d : Def(M, T ) −→ S2 × . . .× S2︸ ︷︷ ︸
c

such that d(z0) = (∞, . . . ,∞).

Proposition 15.3.1. The map d is a local homeomorphism at z0.

Proof. We set

ui = log µ̃(mi), vi = log µ̃(li).

The sets (u1, . . . , uc) and (v1, . . . , vc) are both biholomorphic coordinates
on Def(M, T ) which vanish at z0. Moreover vi vanishes precisely where ui
does (on solutions that are complete at Ti).

Recall from Exercise 14.2.4 that µ = ρ′ is the derivative of the holo-
nomy ρ at Ti . When ui = vi = 0 the solution is complete at Ti and up to
conjugation we have

ρ(mi) : z 7→ z + 1, ρ(li) : z 7→ z + wi

for some wi ∈ C with =wi > 0 which determines the cusp shape of Ti .
When ui , vi 6= 0 the solution is incomplete and

ρ(mi) : z 7→ az, ρ(li) : z 7→ bz

for some a, b 6= 0. When ui , vi → 0, a fundamental domain of Im ρ with
vertices at x, ax, bx, abx tends up to rescaling to one with vertices at
x, x + 1, x + wi , x + 1 + wi . Since a, b → 1 we get

vi = log b ∼ b − 1 ∼ wi(a − 1) ∼ wi log a = wiui

where ∼ means first-order equality. Therefore vi
ui

= wi at the complete
solution v = u = 0. We deduce in particular that the function vi

ui
is analytic

on Def(M, T ). In what follows we only use that =wi > 0.
We consider the following map, defined whenever (pi , qi) 6= (0, 0) for

all i :

ϕ
(

(p1, q1), . . . , (pc , qc)
)

= 2πi

(
1

p1 + q1w1
, . . . ,

1

pc + qcwc

)
.

We extend it continuously to the case (pi , qi) = ∞ by setting the i-th
component of the image to be zero. By composing Φ = ϕ ◦ d we get
a map Φ: Def(M, T ) → Cc that sends the complete solution u = 0 to
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(0, . . . , 0). We prove that Φ is differentiable and dΦ0 is invertible: this
will conclude the proof. When uj , vj 6= 0 we have

pjuj + qjvj = 2πi

and Proposition 14.2.12 gives

pj = −2π
<vj
=(ūjvj)

, qj = 2π
<uj
=(ūjvj)

.

Near u = v = 0 we have vj ∼ wjuj and hence

pj ∼ −2π
<wj<uj −=wj=uj

|uj |2=wj
, qj ∼ 2π

<uj
|uj |2=wj

and therefore

ϕj = 2πi
1

pj + qjwj
∼ i |uj |2=wj
−<wj<uj + =wj=uj + wj<uj

= i
|uj |2=wj

=wj=uj + i=wj<uj
= i
|uj |2=wj
i ūj=wj

= uj

giving dΦ0 = id. �

If M has a geometric decomposition T into ideal tetrahedra, we can
easily conclude the proof of Theorem 15.1.1 as follows: the geometric
ideal triangulation T determines a complete solution z0 ∈ Def(M, T ),
and by Proposition 15.3.1 the image of the generalised Dehn filling map
d : Def(M, T ) → S2 × . . . × S2 is an open set U containing (∞, . . . ,∞).
The discussion in Section 14.2.7 finishes the proof.

However, we still do not know if every complete cusped finite-volume
M decomposes into ideal tetrahedra! If that were the case, we would be
done. Unfortunately we are not able to prove this, so more effort is needed
to complete the proof.

15.3.2. Triangulations with flat tetrahedra. As we said, we are not
able to prove that every cusped finite-volume M decomposes into ideal
tetrahedra. The best that we can do is to show that M decomposes into
ideal tetrahedra that are either ordinary or “flat”, that is degenerated to
an ideal quadrilateral. We show this using the Epstein–Penner canonical
decomposition.

The Epstein-Penner canonical decomposition (see Theorem 5.1.21)
partitionsM into some ideal polyhedra P1, . . . , Pk , glued isometrically along
their faces. Can we further subdivide this partition to get a geometric
triangulation of M? We start by triangulating each Pi individually.

Proposition 15.3.2. Every ideal polyhedron P ⊂ H3 subdivides into
ideal tetrahedra.

Proof. We can use the Klein model, so that ideal polyhedra in H3

correspond to Euclidean polyhedra with vertices in S2. We fix a vertex
v ∈ P , and a vertex vi in every face fi of P not incident to P . We
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v

v'

Figure 15.13. The triangulations of two isometric faces that
do not match (left) because they are obtained by coning
along distinct vertices v 6= v ′ (centre). We can add some
additional “flat” tetrahedra to correct this (right).

triangulate each fi by coning along vi , and then we triangulate P by coning
all the triangulated faces fi along v . �

The problem is, that we are not able to guarantee that the trian-
gulations of the polyhedra P1, . . . , Pk match at each pair of glued faces.
The typical situation is shown in Figure 15.13-(left): two isometric n-gons
(with n > 4) are triangulated by coning on distinct vertices v 6= v ′.

There is one thing that we can do, however: we can insert some
flat tetrahedra between the two n-gons that connect the two mismatching
triangulations as in Figure 15.13-(right), and obtain a partially-flat ideal
triangulation of M. The flat tetrahedra can be inserted as follows: if v
and v ′ share an edge we insert n−3 flat tetrahedra as suggested by Figure
15.13-(right); otherwise, the diagonal joining v and v ′ is common to both
triangulations and we proceed inductively on each of the two sub-polygons
cut by this diagonal.

The resulting ideal triangulation T contains n tetrahedra ∆1, . . . ,∆n;
each ∆i is either fat (it lies inside some polyhedron Pj) or flat (it connects
two faces of the Pj). We now fix arbitrarily a pair of opposite edges in
each ∆i and denote by zi ∈ C the modulus of ∆i at these edges. If ∆i is
fat, then =zi > 0 as usual; if ∆i is flat, the modulus zi still makes sense
as a number in R \ {0, 1}: the vertex triangle of Figure 14.2-(left) is a
degenerated flat triangle with three vertices 0, 1, zi . The flat tetrahedron
has three real moduli zi ,

zi−1
zi
, 1

1−zi
; two arguments are 0 and one is π.

We set z0 = (z1, . . . , zn). By construction, the point z0 satisfies the
consistency equations (29).
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15.3.3. Perturbations. We now let U be a small contractible neigh-
bourhood of z0 in (C \ {0, 1})n. Note that U necessarily contains some
points z with =zi < 0 for some i . The consistency equations (29) make
sense in U, and we define DefU ⊂ U to be the set of solutions. We still
have DefU = G−1(2πi, . . . , 2πi).

Does a solution z ∈ DefU determine a hyperbolic structure on M? In-
tuitively, each modulus zj with =zj = 0 should represent a flat tetrahedron,
each zj with =zj < 0 a negatively oriented fat tetrahedron, and positively
and negatively oriented tetrahedra should overlap; although appealing, it
is however hard (and sometimes impossible) to translate this idea into a
concrete definition in general.

Our aim is to prove Theorem 15.1.1 by perturbing z0, so we only need
here to furnish a geometric interpretation for the solutions z that lie in a
sufficiently small neighbourhood U. We do this as follows.

If z is sufficiently close to z0, all the fat tetrahedra that triangulate a
single polyhedron Pi stay positively fat, and since they satisfy the consis-
tency equations along the internal edges of Pi they glue to form a possibly
non-convex polyhedron Pi(z) ⊂ H3. The original faces of Pi are now bent
in Pi(z) along their diagonals.

We now consider the originally flat tetrahedra joining two faces of
two polyhedra Pi(z) and Pj(z). We assign all of them to one of the
two polyhedra, say Pi(z), and forget about Pj(z). These tetrahedra are
attached to some n-gonal face f of Pi(z), bent along its diagonals. The
effect of each attached tetrahedron ∆j is to flip a diagonal, and we modify
Pi(z) accordingly by replacing the two ideal triangles in f incident to the
old diagonal with the two triangles sharing the new one. Geometrically,
this corresponds to adding ∆j if =zi > 0, or to cut ∆j away from Pj(z) is
=zj < 0. At the end of the process, we get a new polyhedron P ′j (z) with
the same vertices as Pj(z), whose faces are bent along different diagonals.

The new possibly non-convex polyhedra P ′j (z) glue isometrically along
their paired faces, that are now bent along the same diagonals. The con-
sistency equations are satisfied along these diagonals, hence we get a hy-
perbolic structure for M. We summarise our discoveries:

Proposition 15.3.3. If U is sufficiently small, every solution z ∈ DefU
represents naturally a hyperbolic structure on M.

15.3.4. Local smoothness. We have seen that every solution z that
is sufficiently close to z0 determines a hyperbolic metric on M. We now
need to extend Corollary 15.2.13.

Proposition 15.3.4. If U is sufficiently small then DefU is a complex
manifold of dimension c.

Proof. As in Corollary 15.2.13, it suffices to prove that dGz0 : V n →
kerB′ has maximum rank and is hence invertible.
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The only place where we used =zj > 0 is the proof of Proposition
15.2.12, and we now modify it so that it applies also to our partially flat
solution z0. We have M = Zᵀ(A′)ᵀ and we need to prove that rkM =

rkA′ = n − c.
We needed zi 6∈ R to prove that Zᵀ|R2n is injective: this is not the

case here, since 1
zi
and 1

zi−1
are not R-independent when ∆i is flat. Now

we have

kerZᵀ|R2n = Span{ziei + (1− zi)ei+n | ∆i is flat}.

For K = R,C we write

K2n = K2n
fat ⊕K2n

flat, Kn = Kn
fat ⊕Kn

flat

where K2n
fat (K2n

flat) is generated by the ei , ei+n such that ∆i is fat (flat), and
similarly Kn

fat (Kn
flat) is generated by the ei such that ∆i is fat (flat).

The following restriction of Zᵀ is still an isomorphism:

Zᵀ|R2n
fat

: R2n
fat −→ Cnfat.

We use it to push-forward ω to a symplectic form Ω on Cnfat, and we extend
it trivially to an alternating bilinear form Ω on Cn with radical Cnflat.

It is still true thatM(R2n) has real dimension n−c, because (A′)ᵀ(R2n)

intersects kerZᵀ trivially. To prove this, suppose that a vector v ′ ∈ R2n

that is R-generated by the rows of A′ lies in the kernel of Zᵀ, that is:

• (v ′i , v
′
i+n) = (0, 0) for every fat ∆i ,

• (v ′i , v
′
i+n) = ki(zi , 1− zi) for some ki ∈ R, for every flat ∆i .

We define v ∈ R3n by setting

vi = v ′i , vn+i = −v ′n+i , , v2n+i = 0

for all i = 0, . . . , n − 1. We note that each triple (vi , vn+i , v2n+i) is either
(0, 0, 0), or it contains three pairwise distinct real numbers. The vector
v ′ ∈ R2n is generated by the n rows of A′ ⇐⇒ the vector v ∈ R3n is
generated by the n rows of A (exercise).

We interpret v as a colouring of the 3n edge pairs in T . The colouring
v is everywhere zero on all fat tetrahedra, and on each flat tetrahedron it
is either (0, 0, 0) or consists of three pairwise distinct numbers. We must
prove that it is zero everywhere.

The vector v is contained in the lagrangian subspace generated by the
rows A1, . . . , A2n of A. In particular we have ω(v, An+i) = 0 for all i . Every
row An+i corresponds to an edge e of T , and this equality says that the
colours on all tetrahedra incident to e of the edge pairs not containing e
sum to zero, provided that they are counted with signs in each tetrahedron.
This implies the following: if all such tetrahedra except one ∆j have colour
zero on all their edge pairs, then two edge pairs on ∆j have the same
colours, and by what just said on v this implies that all colours are zero
also on ∆j .
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Consider a sequence ∆1, . . . ,∆k of flat tetrahedra that connects two
faces of two polyhedra Pi and Pj of the Epstein-Penner decomposition.
There is one edge of ∆1 that is incident only to fat tetrahedra except
∆1, and the above discussion implies that all the colours on ∆1 are zero;
by induction we deduce that all the flat ∆i have zero colours. Therefore
v = 0, as required.

We have proved that dimM(R2n) = n− c, and we conclude as in the
proof of Proposition 15.2.12. The form Ω defines a positive semidefinite
scalar product 〈, 〉 on Cn with radical Cnflat. If rkM < n − c, there are two
vectors v1, v2 ∈ Rn such thatM(v1 + iv2) = 0 whileMv1 6= 0 andMv2 6= 0.
We get ‖Mv1‖ = ‖Mv2‖ = 0 as in the proof of Proposition 15.2.12, and
this implies that Mv1,Mv2 both lie in the radical Cnflat.

If Mv1,Mv2 ∈ Cnflat then both Mv1 and Mv2 are real since 1
zi
, 1
zi−1
∈ R

for every flat ∆i . Now 0 = M(v1 + iv2) = Mv1 + iMv2 implies that
Mv1 = Mv2 = 0, a contradiction. �

15.3.5. Conclusion of the proof. The proof of Theorem 15.1.1 fin-
ishes like in the geometric triangulation case. All the discussion of Section
15.2.7 applies here: the holonomies are defined also in this context and
may be used to parametrize the complex manifold U(z0). The strategy of
Section 15.3.1 is still valid: the generalised Dehn filling invariant map d
sends U(z0) to an open neighbourhood of (∞, . . . ,∞) in S2× . . .×S2 and
the discussion in Section 14.2.7 finishes the proof. We have completed the
proof of Theorem 15.1.1.

15.3.6. Mostow–Prasad rigidity. We can use the Dehn filling Theo-
rem 15.1.1 to extend Mostow Rigidity Theorem 13.3.1 from the closed to
the cusped case. The cusped case was proved by Prasad in 1973, hence
the theorem is known as Mostow–Prasad Rigidity Theorem.

Let N a be compact orientable three-manifold bounded by some c > 0

tori, and let M = int(N).

Theorem 15.3.5 (Mostow–Prasad rigidity). The manifold M admits
at most one finite-volume complete hyperbolic metric up to isometries
homotopic to the identity.

Proof. The c = 0 case is Theorem 13.3.1, so we suppose c > 1.
Roughly, the metric on M is unique because it is the limit of hyperbolic
metrics on its closed Dehn fillings, that are unique by Theorem 13.3.1. (We
are using the hyperbolic Dehn filling theorem as a trick to extend Mostow’s
rigidity from the closed to the cusped case: this is certainly not Prasad’s
original proof, that was published before any hyperbolic Dehn filling was
studied, and more importantly it applies to all dimensions n > 3.)

More precisely, let M have two finite-volume hyperbolic metrics m1

and m2. The Dehn filling Theorem holds for both, and yields sequences
M j
i of closed hyperbolic three-manifolds obtained from M by Dehn filling

with parameter s j such that s j → (∞, . . . ,∞), for i = 1, 2.
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Mostow theorem furnishes an isometry M j
1 → M j

2 homotopic to the
identity. The core closed geodesics of the filling solid tori are unique in their
homotopy classes, hence by removing them we get isometric incomplete
metrics. Since m1 and m2 are limits of these, they are also isometric.

This latter sentence can be made rigorous as follows: let T be a
partially flat ideal triangulation for M in the metric m1. Pick an ideal
tetrahedron ∆ in T and note that it can be straightened uniquely also in
the incomplete metrics forM close to the complete ones, just by extending
the construction in the proof of Proposition 7.4.9 from dimension two
to three (an orientation of the core geodesics is needed to define the
straightening unambiguously). The modulus z ∈ C>0 ∪ (R \ {0, 1}) of the
straightened ∆ in M is intrinsically determined as the limit of the moduli of
the straightenings of ∆ in the M j

i , hence it is the same for both metrics m1

and m2. It follows that m2 has the same geometric ideal decomposition of
m1, and hence m1 = m2 after a homotopy. �

15.4. Volumes

We have discovered that “most” Dehn fillings of a cusped finite-volume
hyperbolic manifold are hyperbolic, and we now discuss their volumes.

LetM be a complete orientable finite-volume cusped hyperbolic three-
manifold. We say that a Dehn filling of M is non-trivial if it fills at least
one boundary torus; in other words, it is determined by some Dehn filling
parameter s different from (∞, . . . ,∞), after fixing some arbitrary homol-
ogy bases for the boundary tori. We prove in this section the following
theorem.

Theorem 15.4.1. If a non-trivial Dehn filling Mfill of M admits a com-
plete finite-volume hyperbolic metric, then

Vol(Mfill) < Vol(M).

If s i is any sequence of non-trivial Dehn filling parameters converging to
(∞, . . . ,∞), and M i is the manifold obtained by filling M along s i , then
M i is eventually hyperbolic and

Vol(M i)↗ Vol(M).

The cores of the filling solid tori are eventually simple closed geodesics and
their lengths tend to zero.

We already know that if s i → (∞, . . . ,∞) then Vol(M i) → Vol(M)

and the cores of the solid tori are closed geodesics whose length tend to
zero: this follows from the construction of the metric on M i via geometric
ideal triangulations. In some sense (that we will not make precise), the
metric on M i converges to that of M, and the core geodesics become so
short that they disappear in the limit producing cusps.

The only new fact to prove is that the volume strictly decreases under
any Dehn filling Mfill, not only those that are close to (∞, . . . ,∞): this is
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rather subtle, because the hyperbolic metric on Mfill might not be obtained
by completing ideal triangulations of M. (For instance, the core tori in
Mfill may not be isotopic to closed geodesics.)

We prove the theorem as follows. We first consider the case where M
has an ideal geometric triangulation T : in that case Def(M, T ) is a nice
smooth complex manifold and we investigate the volume function

Vol : Def(M, T ) −→ R>0

that computes the volume of each hyperbolic structure on M. We show
that the volume function makes sense in a bigger convex set containing
Def(M, T ) and is also easier to study there. This bigger convex set is the
set of angle structures on T . We prove that the volume function is strictly
concave there, and the complete solution is a global maximum.

We conclude with a couple of finite-covering tricks to pass from local
(near (∞, . . . ,∞)) to global, and to deal with more general manifolds M
that do not decompose into hyperbolic ideal tetrahedra.

15.4.1. Angle structures. Let M = int(N) where N is an orientable
compact three-manifold bounded by c > 0 tori, equipped with an oriented
ideal triangulation T with n tetrahedra ∆1, . . . ,∆n and n edges e1, . . . , en.
We identify orientation-preservingly each ∆i with the one shown in Figure
15.5, and we label the edge pairs of type 1, 2, 3, with the numbers i , i+n,
and i + 2n respectively.

An angle structure θ on M is the assignment of an angle 0 < θj < π

to the j-th edge pair in T , with the following requirements:

(1) at each tetrahedron ∆i we have θi + θi+n + θi+2n = π,
(2) at each edge ei , the sum of the incident angles is 2π.

The set of angle structures is thus a subset A ⊂ R3n
>0. It is the intersection

of the affine subspace in R3n determined by the conditions (1) and (2)
with the cone R3n

>0, so in particular it is convex. By definition this affine
subspace is the solution space of the linear system

Aθ =

(
π

2π

)
where A is the incidence 2n × 3n defined in Section 15.2.2 and depicted
in Figure 15.6-(left), and θ = (θ1, . . . , θ3n) ∈ R3n.

What is the geometric meaning of an angle structure θ on T ? Thanks
to condition (1), every ∆i is realised by a unique ideal hyperbolic tetrahe-
dron with dihedral angles θi , θi+n, and θi+2n whose complex modulus is

(31) zi =
sin θi+n
sin θi+2n

e iθi .

Angle structures are then in natural 1-1 correspondence with the realisa-
tions of the tetrahedra ∆1, . . . ,∆n as ideal hyperbolic tetrahedra, with the
mild condition (2) that their dihedral angles around edges must sum to
2π.
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Condition (2) is only “half” of the consistency equation at each ei ,
which requires the product of the complex moduli to be 1: condition (2)
alone does not guarantee that by gluing these tetrahedra we get a hyper-
bolic structure on M: some “shearing” may arise around an edges.

With this geometric description, the deformation space Def(M, T ) is
naturally a smooth submanifold of A.

15.4.2. Dimensions. We will henceforth suppose that Def(M, T ) is
non-empty and contains a complete solution z0, that is T can be realised
as a geometric ideal triangulation. This implies in particular that A is
also non-empty and has dimension dim kerA = 3n − (2n − c) = n + c by
Corollary 15.2.8. The space Def(M, T ) is a real smooth submanifold of
dimension 2c.

The tangent space TθA at any point θ ∈ A is of course kerA. We now
construct an explicit set of generators for kerA. Recall from Section 15.2.6
that every simplicial closed oriented curve γ in a triangulated boundary
torus Ti defines an integer vector vγ ∈ R3n.

Recall the alternating form ω on R3n from Section 15.2.3: we consider
it as a matrix and write v ∗ = ωv for all v ∈ R3n, so that ω(v, w) = 〈v, w ∗〉
where 〈, 〉 is the Euclidean scalar product. We denote by Ai the i-th row
of A, considered as a vector in R3n.

We fix two arbitrary generators mi , li of π1(Ti) for all i = 1, . . . , c.

Proposition 15.4.2. The tangent space TθA = kerA is generated by
the (not independent) n + 2c vectors A∗n+1, . . . , A

∗
2n, v

∗
m1
, v ∗l1 , . . . , v

∗
mc , v

∗
lc .

Proof. Propositions 15.2.9 and 15.2.14 say that the rows of A are ω-
orthogonal to themselves and to vγ for any γ, hence they are 〈, 〉-orthogonal
to all vectors A∗i and v

∗
γ , in other words A∗i , v

∗
γ ∈ kerA.

To prove that the n + 2c listed vectors generate kerA it suffices to
show that they span a subspace of dimension n + c. Proposition 15.2.15
says that if we add the rows vm1 , . . . , vmc to A we get a rank-2n matrix.
The same proof shows that by further adding the rows vl1 , . . . , vlc we get
a rank-(2n + c) matrix.

The vectors A1, . . . , A2n, vm1 , vl1 , . . . , vmc , vlc span a dimension-(2n +

c) space. Since dim kerω = n, the vectors A∗1, . . . , A
∗
2n, v

∗
m1
, v ∗l1 , . . . , v

∗
mc , v

∗
lc

span a space of dimension at least 2n + c − n = n + c. Since A∗1 = . . . =

A∗n = 0, we are done. �

15.4.3. The volume function. The volume function on Def(M, T )

extends naturally to a function

Vol : A −→ R>0

which assigns to each angle structure θ the sum of the volumes of the ideal
hyperbolic realisations of ∆1, . . . ,∆n determined by θ. Recall from Section
13.1 that the volume of ∆i is

Vol(∆i) = Λ(θi) + Λ(θi+n) + Λ(θi+2n)
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where Λ is the Lobachevsky function

Λ(α) = −
∫ α

0

log |2 sin t|dt.

We therefore get a simple-looking formula

Vol(θ) =

3n∑
j=1

Λ(θj)

which implies immediately the following important fact.

Proposition 15.4.3. For every θ ∈ A and v ∈ TθA we have

∂Vol

∂v
=

3n∑
j=1

−vj log sin θj ,
∂2Vol

∂v 2
< 0.

Proof. We consider a single addendum Λ(θj) of Vol(θ). We have

∂Λ(θj)

∂v
= Λ′(θj)

∂θj
∂v

= − log |2 sin θj |vj = −vj log 2− vj log sin θj .

Since v ∈ TθA we have vi +vi+n+vi+2n = 0 for all i and hence
∑

j vj sin 2 =

0. This proves the first equality. To estimate the second derivative, we
may suppose up to symmetries that θi , θi+n < π

2
and we get

−∂
2Vol(∆i)

∂v 2
= v 2

i cot θi + v 2
i+n cot θi+n + v 2

i+2n cot θi+2n

= v 2
i cot θi + v 2

i+n cot θi+n + (vi + vi+n)2 1− cot θi cot θi+n
cot θi + cot θi+n

=
(vi + vi+n)2 + (vi cot θi − vi+n cot θi+n)2

cot θi + cot θi+n
> 0.

Indeed the denominator is positive since θi , θi+n < π
2
, and if the numerator

is 0 then vi = −vi+n and hence cot θi = − cot θi+n, a contradiction. �

We have proved that Vol is a smooth strictly concave function on A.

15.4.4. The complete solution. We now remember that Def(M, T )

contains a complete solution z0 by assumption.

Proposition 15.4.4. The function Vol : A → R>0 has a unique global
maximum at the complete solution z0.

Proof. The complete solution z0 has an angle structure θ. Proposition
15.4.3 says that

∂Vol

∂v
=

3n∑
j=1

−vj log sin θj

for all v ∈ TθA. At every edge ei , the consistency equation is of type∑
j logwj = 2πi where w1, . . . , wk are the moduli of the incident tetrahe-

dra. The imaginary part of this equation is satisfied at every point of A,
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so we look at the real part and using (31) we discover that

0 = <
∑
j

logwj =
∑
j

log |wj | =
∑
j

(
log sinα1

j − log sinα2
j

)
where α1

j and α
2
j are the other two angles in the tetrahedron with modulus

wj , in counterclockwise order. The latter expression is equivalent to

−
3n∑
j=1

(A∗n+i)j log sin θj =
∂Vol

∂A∗n+i

which is hence zero for all i = 1, . . . , n.
We make some analogous considerations for the completeness equa-

tions. Since z0 is complete, for every simplicial boundary curve γ we have∑
j logwj = |γ|πi where w1, . . . , wk are the moduli encountered by γ at

its right, and the real part of this equation implies that ∂Vol
∂v∗γ

= 0.
Proposition 15.4.2 shows that vectors of type A∗n+i and v

∗
γ generate

TθA, hence the gradient of Vol vanishes at θ. Since Vol is strictly concave,
this critical point is the unique global maximum. �

Corollary 15.4.5. The space Def(M, T ) contains at most one com-
plete solution.

15.4.5. Volumes and Dehn filling. We can now prove Theorem 15.4.1
on manifolds having a geometric ideal triangulation. We start with a “local”
version which also considers generalised Dehn fillings, see Section 15.1.1.

Lemma 15.4.6. If M has a geometric ideal triangulation, there is
a neighbourhood U of (∞, . . . ,∞) such that Vol(Mfill) < Vol(M) for
every non-trivial generalised Dehn filling parameter s ∈ U. Moreover
Vol(Mfill)↗ Vol(M) as s tends to (∞, . . . ,∞).

Proof. The Dehn Filling Theorem 15.1.1 says that all Dehn fillings in
an open neighbourhood U of (∞, . . . ,∞) are hyperbolic and constructed
by completing solutions in Def(M, T ), and they have smaller volume than
M in virtue of Proposition 15.4.4. (The completion adds a circle to M
which does not contribute to the volume.)

The volume of Mfill depends smoothly on s ∈ U and has a global
maximum at (∞, . . . ,∞). In particular, when s → (∞, . . . ,∞) we get
Vol(Mfill)→ Vol(M) from below. �

We now need to drop the open set U and prove that volume decreases
under any Dehn filling of M.

Lemma 15.4.7. Let M have a geometric ideal triangulation. If a non-
trivial Dehn filling Mfill admits a complete finite-volume hyperbolic metric,
then Vol(Mfill) < Vol(M).
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Proof. Let s = (s1, . . . , sc) be the Dehn filling parameter giving Mfill

and let U be the open neighbourhood of (∞, . . . ,∞) furnished by Lemma
15.4.6. For sufficiently big integer k > 0 we have ks ∈ U and hence Mfill

also admits a hyperbolic metric with cone angles 2π
k
on the core geodesics

of the filling solid tori, with volume strictly smaller than Vol(M). We may
interpret this metric as a hyperbolic orbifold O, and we have Vol(O) <

Vol(M).
If Mfill is closed Proposition 13.3.8 gives

Vol(M) > Vol(O) > v3‖Mfill‖ = Vol(Mfill)

and we are done.
If Mfill is not closed, we can find some closed fillings of Mfill with

volume arbitrarily close to Vol(O) that can be interpreted as orbifolds, and
get Vol(O) > Vol(Mfill) as a limit. �

The proof of Lemma 15.4.7 shows also the following.

Lemma 15.4.8. Let M have a geometric ideal triangulation. We have
v3‖Mfill‖ < Vol(M) for every closed Dehn filling Mfill of M.

We prove a lemma that will be useful below.

Lemma 15.4.9. Let M have a geometric ideal triangulation. If Mi is
a hyperbolic Dehn filling of M with parameter s i and Vol(Mi)→ Vol(M),
then s i → (∞, . . . ,∞).

Proof. We may suppose that the Mi are closed, since every sequence
of Dehn fillings can be approximated by a sequence of closed ones. If s i

lies definitely in the open set U furnished by Theorem 15.1.1, the asser-
tion follows because the volume function there has Vol(M) as a unique
maximum (thanks to Proposition 15.4.4).

Otherwise, there is a fixed big k ∈ N such that ks i ∈ U for all i , but
ks i does not converge to (∞, . . . ,∞). Therefore Mi admits a hyperbolic
orbifold structure Oi with Vol(M) − ε > Vol(Oi) and Proposition 13.3.8
gives Vol(M)− ε > Vol(O) > v3‖Mi‖ = Vol(Mi) for all i . �

Again, the proof shows also the following.

Lemma 15.4.10. Let M have a geometric ideal triangulation. If Mi is
a closed Dehn filling of M with parameter s i and v3‖Mi‖ → Vol(M), then
s i → (∞, . . . ,∞).

To conclude the proof of Theorem 15.4.1 we only need to consider
the unlucky case where M has no geodesic ideal triangulations. We prove
that geometric triangulations exist on some finite cover of M, and this will
suffice for our purposes.
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15.4.6. Geometric triangulations exist virtually. We prove here the
following result.

Theorem 15.4.11. Every cusped complete finite-volume 3-manifoldM
has a finite-sheeted cover M̃ with a geometric ideal triangulation T .

Proof. The Epstein-Penner decomposition subdivides M into ideal
polyhedra P1, . . . , Pk . If distinct vertices of Pi lie in distinct cusps of M for
all i , then the decomposition can be easily subdivided into an ideal trian-
gulation: we order the cusps, so the vertices of each Pi inherit an ordering
which is preserved along the matching faces; we subdivide each Pi as in
the proof of Proposition 15.3.2 by coning on the smallest vertex at each
step: the triangulations on the paired faces match and we get a geometric
ideal triangulation for M itself.

We now show that some cover M̃ has a decomposition of this type.
The decomposition of M into P1, . . . , Pk lifts in any degree-d cover M̃ to
a decomposition of M̃ into P i1, . . . , P

i
k with i = 1, . . . , d . We now prove

that there is a M̃ such that distinct vertices of P ij lie in distinct cusps, for
all i , j .

To do so, we prove that for every pair of vertices v 6= v ′ of some
Pi there is a covering where the lifts ṽ , ṽ ′ in P ji for some j lie in distinct
cusps. This is enough to conclude: pick a regular covering M̃ that covers
all these finitely many coverings; since its desk transformation group acts
transitively on lifts, all distinct vertices on every P ji lie in distinct cusps.

We have M = H3/Γ. We fix an arbitrary lift P̃i ⊂ H3 of Pi . Two
vertices v 6= v ′ of Pi lie in the same cusp T ⇔ there is a γ ∈ Γ such
that γ(ṽ) = ṽ ′, where ṽ , ṽ ′ ∈ P̃i are the lifts of v, v ′. The subgroup
StabΓ(ṽ) = π1(T ) is separable by Corollary 4.3.13 and hence there is a
finite-index H < Γ that contains StabΓ(ṽ) but avoids γ.

No element ϕ ∈ H is such that ϕ(ṽ) = ṽ ′, otherwise we would have
γ−1ϕ ∈ StabΓ(v) < H and hence γ ∈ H, a contradiction. We have
constructed a finite-cover H3/H where in some lift P ji of Pi the two lifted
vertices ṽ , ṽ ′ lie in distinct cusps. �

15.4.7. Conclusion of the proof. We can now prove Theorem 15.4.1.
Proof of 15.4.1. Some degree-d cover M̃ of M has an ideal geometric
triangulation, hence the theorem holds for M̃.

For every Dehn filling Mfill of M, there is a Dehn filling M̃fill of M̃ such
that the cover M̃ → M extends to a degree-d map M̃fill → Mfill.

If Mfill is closed hyperbolic, we have

dVol(M) = Vol(M̃) > v3‖(M̃fill)‖ > dv3‖Mfill‖ = dVol(Mfill)

using Lemma 15.4.8, hence Vol(M) > Vol(Mfill).
If Mfill is cusped hyperbolic, it can be approximated by closed hyper-

bolic fillings Mfill
i , and there are closed fillings M̃fill

i of M̃fill with degree-d
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maps M̃fill
i → Mfill

i . By Lemma 15.4.10 there is an ε > 0 such that

Vol(M̃)− ε > v3‖M̃fill
i ‖ > dv3‖Mfill

i ‖ = dVol(Mfill
i )

for all i , hence dVol(M)− ε = Vol(M̃)− ε > dVol(Mfill). �

15.4.8. Bounded volume. How many hyperbolic manifolds are there
with bounded volume? In general, infinitely many.

We have just discovered that there are infinitely many hyperbolic mani-
folds with volume smaller than 2v3 = 2.0298832128 . . . because the figure-
eight knot complement M has Vol(M) = 2v3 and every hyperbolic Dehn
filling of M has volume smaller than Vol(M). Moreover, the volumes of
the Dehn fillings of M form an indiscrete set that tends to 2v3 from below.

Theorem 15.4.1 shows that this is the typical situation: the hyperbolic
Dehn filling produces infinite sequences of manifolds with bounded volume.
Despite this variety of manifolds, we can still control topologically the
hyperbolic manifolds having bounded volume, at least in principle.

Theorem 15.4.12. For every V > 0 there is a compact 3-manifold N
bounded by tori, such that every complete finite-volume orientable hyper-
bolic 3-manifold M with Vol(M) < V is diffeomorphic to the interior of
some Dehn filling of N.

Proof. This is a consequence of the thick-thin decomposition. Let
ε > 0 be a fixed Margulis constant: every complete finite-volume M de-
composes along disjoint embedded tori as M = Mthick ∪Mthin where Mthick

is compact and has injectivity radius > ε, and Mthin consists of truncated
cusps and tube neighbourhoods of short geodesics. In particular M is a
Dehn filling of Mthick.

We now show that there are only finitely many possible diffeomorphism
types forMthick with volume < V . This concludes the proof: by Proposition
11.3.18 every such diffeomorphism type is realised from a link L∪C ⊂ S3

by surgerying along L and drilling along C; we take a disjoint union of all
these links in S3, and the complement of the resulting link in S3 is our N.

Let X ⊂ Mthick be a maximal ε2 -net, that is a finite set of points that
stay at pairwise distance > ε

2
, such that every other point in Mthick stays

at distance < ε
2
from X (X exists because Mthick is compact). The ε

4
-

balls centred at the points in X are embedded and disjoint: hence X has
cardinality at most C(V ) = V/Vol

(
B(x, ε

4
)
)
.

The set X determines a cellularisation of Mthick as follows. Lift X
to X̃ ⊂ H3, take the Voronoi tessellation (see Section 3.3.4) determined
by X̃ and project it back to M: this furnishes a subdivision of Mthick into
polyhedra. Since X is maximal, every polyhedron has at most C ′(ε) faces
with C ′ depending only on ε. Hence there are finitely many combinatorial
types of polyhedra, depending only on ε. With at most C(V ) of them we
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obtain only finitely many manifolds. (The proof of Proposition 11.1.6 ap-
plies to polyhedra and shows that the combinatorial subdivision determines
the smooth manifold.) �

15.4.9. Volumes of hyperbolic three-manifolds. We finish this chap-
ter by furnishing some qualitative information on the set of volumes of
hyperbolic three-manifolds. We start with the following.

Proposition 15.4.13. LetMi be a sequence of non-diffeomorphic com-
plete orientable hyperbolic three-manifolds of uniformly bounded volume.
After passing to a subsequence, we may suppose that there is a hyper-
bolic manifold M such that each Mi is a Dehn filling of M with parameter
s i → (∞, . . . ,∞) .

Proof using geometrisation. We know from Theorem 15.4.12 that
there is a manifold N such that each Mi is a Dehn filling of N with pa-
rameter s i . After passing to a subsequence, we may suppose that at each
boundary torus Tj of N the slope s ij is either constant or goes to infinity.
Let M be obtained from N by Dehn filling the slopes that stay constant.

If M is hyperbolic, we are done. Unfortunately, this may not be the
case, and we use geometrisation to solve this annoying possibility (the
original proof of Jørgensen and Thurston [56] does not need geometrisation
and follows from a discussion on the geometric convergence of hyperbolic
manifolds: we employ geometrisation only for simplicity). If M is not
prime, it contains some essential spheres that always bound balls in the
filled Mi and hence we may cut M along them and cup off with balls
(reducing the components of ∂M). Now M is prime and its geometric
decomposition must contain some hyperbolic block, otherwise M would be
a graph manifold and no Dehn filling of M would be hyperbolic (it would
be a graph manifold again). The tori of the decomposition of M become
compressible inMi , so up to passing to a subsequence we may suppose that
each Mi is a Dehn filling of one fixed hyperbolic block of M. If si does not
tend to (∞, . . . ,∞) in this new setting, we restart from the beginning and
proceed by induction on the number of boundary components of M. �

Corollary 15.4.14. The set of volumes of all complete orientable hy-
perbolic three-manifolds is well-ordered. For every value V there are only
finitely many such manifolds with volume V .

Proof. Suppose that there are Mi with Vol(M1) > Vol(M2) > . . .

By the previous proposition these are all obtained by Dehn filling the same
hyperbolicM with s i → (∞, . . . ,∞), and Theorem 15.4.1 says they should
converge to Vol(M) from below, a contradiction. The same argument
show that there are finitely many manifolds of any fixed volume. �

We deduce that the volumes of all the complete orientable hyperbolic
three-manifolds are indexed by countable ordinals. The volumes v1 < v2 <
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Figure 15.14. The volumes of complete orientable hyper-
bolic 3-manifolds form a well-ordered subset of R of type ωω.

. . . , of the smallest closed manifolds converge to the volume vω of the
smallest 1-cusped manifold; the volumes vω < v2ω < . . . of the smallest
1-cusped manifolds converge to the volume vω2 of the smallest 2-cusped
manifold, and so on. The set of volumes has order type ωω, see Figure
15.14. We can also deduce the following.

Corollary 15.4.15. For every V > 0 and R > 0 there are finitely many
closed hyperbolic 3-manifolds M with Vol(M) < V and inj(M) > R.

Proof. On a sequence of closed hyperbolic 3-manifolds with bounded
volume, the length of some core geodesic tends to zero. �

15.4.10. References. To furnish a complete proof of Thurston’s Dehn
filling Theorem we have patched together a number of different sources.
The most relevant ones are as usual Thurston’s notes [56], Benedetti –
Petronio [4], and Ratcliffe [49], together with Neumann – Zagier [42].

Some arguments have been updated here in light of some new results
that were discovered more recently by some authors. The list of non-
exceptional slopes for the figure-eight knot and the Whitehead link can
be found in Martelli – Petronio [38]. The smoothness of the deformation
space stated in Corollary 15.2.13 has been proved by Choi [13] in 2004.
Many of the arguments of this chapter, including all the discussion on angle
structures, have been taken from a nice paper of Futer – Guéritaud [21].
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The first complete proof of Thurson’s Dehn filling Theorem, that takes
care of the annoying case of triangulations with flat tetrahedra, is due to
Petronio – Porti [48]. We diverge from that proof in the last arguments,
where we extend Choi’s smoothness theorem to this partially flat context
in Proposition 15.3.4 (this proposition is probably the only original result
of this book). The virtual existence of geometric triangulations was proved
by Luo – Schleimer – Tillmann [37] in 2008.
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diffeomorphism, 9
local diffeomorphism, 10

Dirichlet domain, 90
disc, 13
essential disc, 287

domain of discontinuity, 137

earthquake, 196
earthquake map, 197
elliptic manifold, 73
with cone angles, 101
with geodesic boundary, 97

embedding, 11
Epstein–Penner decomposition, 139
Euclid’s V postulate, 49
Euler characteristic, 37
of an orbifold, 163

Euler number, 314, 315, 320
exotic sphere, 182

485



486 INDEX

exponential map, 18

Fenchel–Nielsen coordinates, 204
fibre bundle, 11
finite presentation, 25
finite-order mapping class, 262
flat manifold, 73
with cone angles, 101
with geodesic boundary, 97

flat torus, 95, 132
fundamental class, 35, 412
fundamental domain, 90

Gauss–Bonnet formula, 166
gaussian curvature, 20
geodesic, 16
closed geodesic, 113
geodesic half-line, 58

geodesic current, 227
geodesic lamination, 241
full, 243
measured geodesic lamination, 243
projective measured geodesic

lamination, 256
stable and unstable measured

geodesic lamination, 266
geodesic spectrum, 123
geometric decomposition, 368
geometric group theory, 143
geometric intersection of curves, 174
geometric structure, 372
geometrisation conjecture, 403
Gieseking manifold, 431
graph manifold, 369
group
automorphism group, 125
binary group, 374
crystallographic group, 132
elementary group, 118, 136
Heisenberg group, 27, 388
Lie group, 28

unimodular Lie group, 30
mapping class group, 186
nilpotent group, 26
outer automorphism group, 125
perfect group, 272
quaternion group, 375
reflection group, 94
residually finite group, 31
Schottky group, 138
solvable group, 26
Torelli group, 186
triangle group, 92
von Dyck group, 105

handle decomposition, 40
handlebody, 280
Heegaard genus, 346
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