Corso di Geometria I

Appello del 4/7/2016

La durata della prova è di 3 ore.

Esercizio 1.

Siano V, W due \mathbb{K} -spazi vettoriali, dim V = n, dim W = p con $n \geq p$. Fissato $f \in W^*$, $f \neq 0$, si consideri l'applicazione lineare L: $\operatorname{Hom}(V, W) \to V^*$ definita da $L(g) = f \circ g$ per ogni $g \in \operatorname{Hom}(V, W)$.

- (a) Si calcoli dim Ker L.
- (b) Sia $\varphi \in V^*$, $\varphi \neq 0$. Si provi che per ogni intero $k \in \{1, ..., p\}$ esiste $g \in \text{Hom}(V, W)$ tale che $L(g) = \varphi$ e rk g = k.

Esercizio 2.

- (a) È vero che, se una conica \mathcal{C} di \mathbb{R}^2 passa per i vertici di un parallelogramma, allora \mathcal{C} ha per centro il punto di intersezione delle diagonali del parallelogramma?
- (b) Sia $A \in M(n, \mathbb{R})$ una matrice simmetrica. È vero che esiste $B \in M(n, \mathbb{R})$ simmetrica e definita positiva tale che A + B ha n autovalori distinti ed è definita positiva?
- (c) Siano $A, B \in M(n, \mathbb{C})$ matrici non nilpotenti tali che $A^4 = A^3$, $B^4 = B^3$, $\operatorname{tr}(A) = \operatorname{tr}(B)$ e dim Ker $A = \dim \operatorname{Ker} B$. Per quali $n \geq 3$ dalle ipotesi segue che A e B sono simili?

Esercizio 3.

Sia Φ un prodotto scalare su uno spazio vettoriale V e sia $f \in End(V)$ un endomorfismo triangolabile tale che $\Phi(f(v), f(w)) = \Phi(v, w)$ per ogni $v, w \in V$. Si supponga che il cono isotropo $\mathcal{I}(\Phi)$ non contenga autovettori di f. Si provino i seguenti fatti:

- (a) esiste una base ortogonale di V di autovettori per f
- (b) Φ è non degenere
- (c) $f^2 = id$.

Esercizio 4.

Sia H il piano di \mathbb{R}^3 di equazione x-y+1=0 e sia \mathcal{L} la famiglia delle rette $r_{a,b}$ di \mathbb{R}^3 di equazioni parametriche x=2+t, y=b-1+at, z=1-at, al variare di $a,b\in\mathbb{R}$.

- (a) Si determini l'insieme \mathcal{R} delle rette $r_{a,b} \in \mathcal{L}$ aventi distanza $\sqrt{2}$ dal piano H e sghembe con la retta ρ di equazioni x = 3 t, y = 6 + 2t, z = 4t.
- (b) Se ρ_H è la riflessione ortogonale rispetto al piano H, si determini, se esiste, una retta $s \in \mathcal{L}$ tale che $\rho_H(s)$ passi per i punti (1,3,1) e (-1,2,3).