Corso di Geometria analitica e algebra lineare

Appello del 19/1/2016

La durata della prova è di 3 ore.

Esercizio 1.

Siano n, k due numeri naturali, $n \geq 2$ e $k \geq 1$. Sia $A \in M(n, \mathbb{C})$ tale che $A^{k+1} = A^k$. Si provi che:

- (a) $tr(A) = rk(A^k)$.
- (b) $tr(A) = tr(A^h)$ per ogni $h \in \mathbb{N}, h \ge 1$.
- (c) Il polinomio minimo di A^k divide t(t-1).
- (d) A è diagonalizzabile se e solo se rk(A) = tr(A).
- (e) Se esiste solo un sottospazio vettoriale di \mathbb{C}^n di dimensione n-1 e A-invariante, allora $k \geq n$.

Esercizio 2.

Sia V uno spazio vettoriale reale di dimensione $n, f \in V^*$ un funzionale non nullo e ϕ un prodotto scalare su V. Si supponga che $\phi(v,v) > 0$ per ogni $v \in V \setminus \operatorname{Ker} f$

- (a) Si provi che ϕ è semidefinito positivo.
- (b) Si provi che, se $\phi|_{\text{Ker }f}$ è semidefinito negativo, allora i funzionali ϕ -rappresentabili sono quelli di tipo αf , al variare di $\alpha \in \mathbb{R}$.
- (c) Fissato $V = \mathbb{R}^3$, si consideri il funzionale lineare dato da f(x, y, z) = 2x 2y + 3z per ogni $(x, y, z) \in \mathbb{R}^3$. Si costruisca un prodotto scalare ϕ su \mathbb{R}^3 tale che
 - i) $\phi(v,v) > 0$ per ogni $v \in \mathbb{R}^3 \setminus \operatorname{Ker} f$
 - ii) $\phi|_{\text{Ker }f}$ è semidefinito negativo
 - e si determini $Y \in \mathbb{R}^3$ tale che $f(X) = \Phi(Y, X) \quad \forall X \in \mathbb{R}^3$.

Esercizio 3.

(a) Siano r_1, r_2 le rette affini di \mathbb{R}^3 date da

$$r_1 = \{t(0,2,-1) \mid t \in \mathbb{R} \}$$
 $r_2 = \{(2,-2,1) + s(0,0,1) \mid s \in \mathbb{R} \}.$

Sia inoltre $f: r_1 \to r_2$ l'isomorfismo affine dato da

$$f(0,2t,-t) = (2,-2,1+t)$$
.

e sia $W \subseteq \mathbb{R}^3$ l'unione di tutte le rette della forma

$$P + t \overrightarrow{Pf(P)}, \ t \in \mathbb{R}$$
.

al variare di P in r_1 . Si mostri che W è il supporto di una quadrica affine C, e si determini il tipo affine di C.

- (b) Sia \mathcal{D} la quadrica di \mathbb{R}^3 di equazione $x^2 + y^2 2x 4y 4 = 0$. Si provi che se r e l sono due rette distinte contenute nel supporto di \mathcal{D} , allora r e l sono parallele.
- (c) Sia \mathcal{G} una quadrica di \mathbb{R}^3 che contiene nel suo supporto una retta r e tale che, se l è un'altra retta contenuta nel supporto di \mathcal{G} , allora r e l sono parallele. Si dica se \mathcal{G} è affinemente equivalente a \mathcal{C} e se \mathcal{G} è affinemente equivalente a \mathcal{D} .