Esercizi impegnativi: una stella Foglio di Esercizi 4 Corso di Teoria Geometrica della Misura Anno Accademico: 2012-2013

Università di Pisa Dipartimento di Matematica magnani@dm.unipi.it

Pisa, 26 Maggio 2013

- 1. Denotiamo con \mathcal{L}^1 la misura di Lebesgue su \mathbb{R} e consideriamo $f:[a,b]\to\mathbb{R}$ con $-\infty < a < b < +\infty$.
 - (a) Dall'Esercizio 9, Foglio di Esercizi 1, dedurre che ogni insieme di $\mathcal{P}(\mathbb{R})$ che sia \mathcal{L}^1 -misurabile è anche $(\mathcal{L}^1 \sqcup [a,b])$ -misurabile. Provare che d'altra parte il viceversa non è vero.
 - (b) Provare che i boreliani di [a, b] sono contenuti nei boreliani di \mathbb{R} .
 - (c) Considerare due possibili definizioni di assoluta continuità per f.
 - A) Per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $n \in \mathbb{N}^+$ e $a \le t_1 < t_2 < \dots < t_{2n} \le b$ con $\sum_{i=1}^n [t_{2i} t_{2i-1}] \le \delta$, allora abbiamo $\sum_{i=1}^n |f(t_{2i}) f(t_{2i-1})| \le \varepsilon$.
 - B) Per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $n \in \mathbb{N}^+$ e

$$a \le t_1 < t_2 \le t_3 < t_4 \le t_5 < t_6 \dots < t_{2n} \le b \tag{1}$$

con $\sum_{i=1}^{n} [t_{2i} - t_{2i-1}] \leq \delta$, allora abbiamo $\sum_{i=1}^{n} |f(t_{2i}) - f(t_{2i-1})| \leq \varepsilon$. Provare che tali definizioni sono equivalenti.

(d) Assumiamo che f sia crescente e assolutamente continua. Definiamo inoltre per ogni $A \subset [a, b]$, la funzione

$$v_f(A) = \inf \left\{ \sum_{j=0}^{\infty} \zeta(I_j) : A \subset \bigcup \{I_j : j \in \mathbb{N}\}, I_j \text{ interval odi } [a, b] \right\}, \quad (2)$$

ove $\zeta(I) = f(\sup I) - f(\inf I) = \sup f(I) - \inf f(I)$ per ogni intervallo $I \subset [a, b]$. Provare le seguenti affermazioni.

- i. La v_f è una misura esterna su $\mathcal{P}([a,b])$ che è anche di Radon e limitata.
- ii.* Se $E \subset [a, b]$ e $\mathcal{L}^1(E) = 0$, allora $v_f(E) = 0$.
- ii. Ogni insieme \mathcal{L}^1 -misurabile contenuto in [a,b] è anche v_f -misurabile.

iii. Se
$$a \le \alpha < \beta \le b$$
, allora $f(\beta) - f(\alpha) = \int_{\alpha}^{\beta} f' d\mathcal{L}^1$.

- 2. Consideriamo $A, E \subset \mathbb{R}^n$ e le mappe $f: A \to \mathbb{R}^m$ e $g: E \to \mathbb{R}^m$. Provare le seguenti affermazioni.
 - (a) Se f ha un differenziale L in x, ovvero f(y) f(x) L(y x) = o(y x) per $y \in A$ e $y \to x$, ed inoltre $x \in A \cap D(A)$, allora L è unico.
 - (b) Vale l'uguaglianza insiemistica $D(A) \cap D(E) = D(A \cap E)$.
 - (c) Se $x \in D(A \cap E) \cap A \cap E$, f è differenziabile in x, ovvero f ha un differenziale ed è unico, g è lipschitziana e $g|_{A \cap E} = f_{A \cap E}$, allora g è differenziabile in x e Dg(x) = Df(x).
 - (d) Se A = E, $f = g \mathcal{L}^n$ -q.o. in A, g ed f sono differenziabili \mathcal{L}^n -q.o. in A, allora $Df = Dg \mathcal{L}^n$ -q.o. in A.