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These extensions were studied by Helton and Howe [73]. They cor-
respond to clements of H,(X;Z), which is a canonical subgroup of
K_1(X). The corresponding extensions are the ‘uninteresting’ ones which
we found in Chapter 4.

The best way to think of the situation is probably in terms of
pseudo-differential operators [144]. In practice J will be given by a
pseudo-differential operator of order zero. The commutator [/, M.
when f is a smooth function, will then be an operator of order —~1. On a
manifold of dimension d such an operator belongs to the ideal %, if r > d.
It will thus not normally be Hilbert—Schmidt if d > 1.

Example. Let us consider the polarization corresponding to the Dirac
operator on a torus X of odd dimension d =2m — 1, i.e. X = R%/227%
The spin bundle on X is a trivial bundle whose fibre A =C" (where
N=2""%is an irreducible module for the Clifford algebra C, generated
by elements ey, ..., ¢ such that ¢ =1 and ee; = —¢e; when i#]. The

Dirac operator on the space & of maps X'— A is -
3
D=~} gm—.
iTesy

If we expand the functions in Fourier series, so that H is identified with
€%(Z%; A) then D becomes the multiplication operator

K} = {oh}

(Here p € Z%, and pf, € A is got by-acting with p € R = C, on f, € A.) The
corresponding polarization operator J is multiplication by p/ljp|. The
commutator [J, & 6:]’ where M, is multiplication by the scalar-valued
function f = ¥, £,&'*%’, is represented by the kernel

@ @)= fo-q- {p/llell - q/llall} (6.10.3)
on Z¢ x Z% Now p/||pl —g/|lg|| is a self-adjoint operator on A whose

- $quare is

2(1- p, ) ) =452

ol lgll/ =" 27

where ¢ is the angle between p and g. If p—g is held fixed then
4 sin*(¢p/2) decays like {|p[[™ as p—w. The kemel (6.10.3) is therefore
square-summable only if dim(X)=1. In general it belongs to the
Schatten class .$. when r > dim{X).

7

THE GRASSMANNIAN OF HILBERT SPACE
AND THE DETERMINANT LINE BUNDLE

Because we are studying loop groups by regarding them as groups of
operators in Hilbert space we shall need to have a rather detailed
knowledge of the structure of the Grassmannian of Hilbert space. This
chapter is devoted to that subject. The most important part is the
construction of the determinant line bundle in Section 7.7, and the reader
interested in that can omit everything between Sections 7.1 and 7.7
except for the definition of an ‘admissible basis’ in Section 7.5.

7.1 The definition of Gr(H)

Suppose that H is a separable Hilbert space with a given polarization
H=H ®H_: we assume that H, and H_ are infinite dimensional
orthogonal closed subspaces. We shall study the Grassmannian of closed
subspaces of H which are ‘comparable’ in size with H... Before giving the
formal definition of this class of subspaces, let us explain that they are a
completion of the class of subspaces W which are commensurable with
H,, i.e. those such that W N H, has finite codimension in both W and
H,. They may, however, have zero intersection with H, : for example the
graph Wi of every Hilbert—Schmidt operator T': H, — H_ is included, but
Wr is commensurable with H, only if T is of finite rank.

Definition (7.1.1). Gr(l) is the set of all closed subspaces W of H such
that

(i) the orthogonal projection pro:W—H, is a Fredholm operator,
and

(i) rhe orthogonal projection pr_:W->H_ is a Hilbert—Schmidt
operator.

Fredholm and Hilbert—Schmidt operators have been discussed already
in Section 6.2. We recall that a bounded operator is Fredholm if its
kernel and cokernel are finite dimensional.

Another way of stating the definition (7.1.1) is: W belongs to Gr(H) if
it is the image of an operator w:H, — H such that pr.. ¢ w is Fredholm
and pr_ o w is Hilbert-Schmidt. As the sum of a Fredholm operator and
a Hilbert~Schmidt operator is Fredholm, we see that if W belongs to
Gr(H) then so does the graph of every Hilbert-Schmidt operator
W W, These graphs form the subset Uy of Gr(H) consisting of all W’
for which the orthogonal projection W'— W is an isomorphism: it is in
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one-to-one correspondence with the Hilbert space %H(W;W*) of
Hilbert~Schmidt operators W-» W+, In fact

Proposition (7.1.2). Gr(H) is a Hilbert manifold modelled on
Io(H. s H).

Before .proving this we need one further observation. The group
GL.(H) introduced in Section 6.2 acts on the set Gr(H). We have

Proposition (7.1.3). The subgroup U, (H) of GL.(H) acts transitively
on Gr(H), and the stabilizer of H, is U(H,) X U(H).

Proof of (7.1.3). Suppose W € Gr(H); we shall find 4 ¢ Ues(H) such that
AH,)=W. Let w:H,~H be an isometry with image W, and
w™:H_— H an isometry with image W*. Then

wOwH. BH.—H, ©&H.
is & unitary transformation A such that A(H,) = W. We write it

A= (W* wi).

w_ wi

Because W belongs to Gr(H) we know that w, is Fredholm and w. is
Hilbert-Schmidt. But because A is unitary it follows that wi is
Hilbert-Schmidt also (for wiwi+wXwi=0), and so A belongs to
Usee(H).

The assertion about the stabilizer of A, is obvious.
Proof of (7.1.2). Suppose that Uy, and Uy, are the subsets of Gr(H)
described above corresponding to the Hilbert spaces J, = %,(W,; W) and
L= F(Wi; Wi). Let Uy, 1 Uy, correspond to Iy, in I, and I, in L. We
must show that I, and &, are open sets, and that the ‘change of
coordinates’ fy, ~> 14 is smooth.

Let the matrix of the identity transformation

WD W W, 0 Wi

9 -

(i.e. a is a map Wo—> W;, etc.) From the proof of (7.1.3) we know that @
and 4 are Fredholm, and b and ¢ are Hilbert—Schmidt. Suppose that
W e Gr(H) is simultaneously the graph of Tp: Wy~ W¢ and T;: W, ~» W+

0 T

from W, to W, ® Wi must coincide, where g is some isomorphism

be
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Wy—> W,. We conclude that
Ti={c+dh)(a+bT) ™" (7.1.3)
Thus 7] is a holomorphic function of T; in the open set
In={TyeLy:a + bT, is invertible}.

For a subspace W of H which is comumensurable with H, it is natural to
define the virtual dimension of W relative to H, as

dim(W/W N H,) — dim(H,/W 1 H,).

The generalization of this for an arbitrary W e Gr(H) is the index of the
perpendicular projection pr : W— H,, i.e.

virt.dim W = dim(ker pr,) — dim(coker pr..).
Equivalently,
virt.dim W = dim(W N H_) — dim(W* N H,).

The virtual dimension separates Gr(H) into disconnected pieces. In
fact the subspaces with a given virtual dimension form a connected set;
we shall see presently, for example, that the spaces of virtual dimension
zero are the closure of the coordinate patch consisting of the graphs of all
Hilbert-Schmidt operators H, —» H_. Notice also that if

a b
A= (c d)
belongs to GL (H), then
virt.dim A(W) = virt.dim W + x(a),

where y(a) 1s the index of the Fredholm operator a.

To proceed further we shall introduce an orthonormal basis in H. That
amounts to identifying H with the space L*(S'; C) with its natural basis
{z"}4ez- (As usual z=¢'%.) We then have a collection of special points
{Hs} in Gr(H): Hs is just the closed subspace spanned by z* for s € §,
where § is a subset of Z which has finite difference from the positive
integers N (i.e. S is bounded below, and contains all sufficiently large
integers). We shall write & for the collection of such sets §. Notice that

virt.dim 5 = card(S — N) — card(N — 5).
We shall call this number the virtual cardinal of §.

Proposition (7.1.6). For any W e Gr(H) there is a set § € & such that the
orthogonal projection W —» Hg is an isomorphism. In other words the sets
{UsYses, where Us = Uy, form an open covering of Gr{H).

Proof. Because the projection W-» H, has finite dimensional kernel one
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can“find $, & & such that the projection W— Hy is injective. If it is not
also surjective there is some s & S; such that z° is not in its range. Then
the projection W—> Hg,, where 8 =8, ~ {s}, is still injective. Repeating
this finitely many times gives us the desired S.

We now have quite explicit coordinate charts on Gr(H), indexed by &.
A point of Us is the graph of a Hilbert—Schmidt operator Fg—> H¥, and
is represented by an S XS matrix, where §=7 ~S. The transitions
between the charts are given by (7.1.5) where the matrix (7.1.4) is a
permutation matrix; in particular, the components & and ¢ have only
finitely many non-zero entries.

72 Some dense submanifolds of Gr(#H)

We shall describe in terms of the coordinate charts just introduced four
important dense submanifolds of Gr(H). The reason for being interested
in them will appear later.

(i) Gro(H) consists of all subspaces W such that zH, « W < z7%H,
for some k Such subspaces can be identified with subspaces of
H_i.=z""H,/z"H,, and so Gry(H) is the union of the finite dimen-
sional classical Grassmannians Gr(H_,.). In terms of the coordinate
charts, Gro(H) consists of the graphs of operators Hy— H# with only
finitely many non-zero matrix entries: these are dense in So(Hy; H 7).

(ii) Gry(H) consists of all subspaces W which are commensurable with
H,. These are the graphs of all operators Hs~> H$ of finite rank.

(1) Gr,(H) consists of the graphs of all operators T : Hg~> H whose
matrix entries T,, (for p €5, g ¢ S} are such that »*~97,, is bounded for
some r with 0<r < 1.

(iv) Gr.(H) cousists of graphs of all operators T :Hg—> H¥ whose
entries 7, are rapidly decreasing, i.. such that |p — ¢/™7,, is bounded
for each m.

Without entering fully into the muotivation for introducing these
subspaces, let us notice that if W belongs to Gr..(H) then it has a dense
subspace consisting of smooth functions: that is so because the finjte
linear combinations of the smooth functions

— »q P
Wy =2 "I"E Tpqz
7

are dense in W. Similarly, if W belongs to Gr,(H) then real-analytic
functions are dense in W, and if W belongs to Gro(H) then trigonometric

7.2 SOME DENSE SUBMANIFOLDS OF Gr(H) 105

poi'ynomia.ls are dense in it. These conditions do not, however, charac-
terize Gry, Gr,, and Gr,.. Thus the graph Wrof T:H, ~> H_, where
1

TzF = Z z7k

does not belong to any of them, though the trigonometric polynomials

are obvmusl.y dense in it. (At the other extreme, it is not hard to show

that a generic W e Gr{(H) contains no non-zero smooth function at all.)
The subspace Gr.(H) can be described in the following way.

Proposition (7.2.1). Gr..(H) consists precisely of the subspaces W e
Gr(H) for which the images of both orthogonal projections

pro:W—H_ and pr.:W*—>H,

consist of smooth functions.

FProof. That the images do consist of smooth functions if W belongs to
Gr., is immediate from the definition. (Notice that if W is the graph of
T':Hs— Hy then W* is the graph of ~T*:Hy - H.) Conversely, if W
1s the graph of T:Hs-> H¥ and the image of pr_ consists of smooth
fonctions then so does the image of 7. Thus T defines a map from Hy to
thf: space of smooth functions on the circle. By the closed graph theorem
this must be continuous, and it can be thought of as a smooth map from
the circle into the dual of Hg. Its smoothness is equivalent to the
condition that
1
2

pI"{2 1%}

is bounded as p>o for each m. Similarly the smoothness of the image of
pr.:W*— H, is equivalent to the boundedness of

|¢ﬂm{§: II;,(,',F}i

as g— for each m; and the two conditions together imply that W
belongs to Gr.,.

An exactly analogous description can be given of Gro(H) and Gr,, (H):
for the former the proof is trivial,

The four subspaces can be considered as manifolds in their own right.
The most important for us will be Gr..(H), which we shall refer to as the
smooth Grassmannian. The description above shows that it is a manifold
modelied on the metrizable nuclear space (cf. [60]) of matrices T =
{T:p <0, g=0} whose topology is defined by the sequence of
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seminorms g,., where
pr(Ty=sup |p — g|™ | Tq|-
)24

One can also describe Gr.(H) directly in terms of the space C” of smooth
functions on the circle (with its usual topology): it consists of all closed
subspaces W of C” such that the projection W— C7. is Fredholm and the
projection W CZ is compact. (Here CZ=C"NH,.) We shall, how-
ever, omit the justification of this.

We conclude this section with a very simple application of the existence
of the dense submanifold Gry = Gro(H).

Proposition (7.2.2). Every holomorphic function f:Gr(H)->C is con-
stant on each connected component,

Proof. It is enough to show that fis locally constant on Gro,. But Grg is
the unjon of the finite dimensional Grassmannians Gr(H_, ). As these
are compact algebraic varieties every holomorphic function onr them is
locally constant.

7.3 The stratification of Gr(H)

A generic element W of Gr(H), if it has virtual dimension zero, is
trapsversal to H._, i.e. WNH_=0 and W+ H_=H. These generic
elements form a dense open subset in their connected component. The
other elements W in the same component meet H_ non trivially: it
follows from the discussion below that those such that dim(W NH.)=k
form a closed subset of codimension &% The most obvious stratification
of Gr(H) would be by the dimension of the intersection W M H_, which
is necessarily finite. We shall need, however, a finer stratification, which
records the dimension of W N z™H_ for every m.

Let us say that an element f of H = L*(§*; C) is of finite order s if it is
of the form

}i‘, fez® (7.3.1)

Joms =00

with £, 0. In other words, f is the boundary value of a function f which is
holomorphic in the hemisphere [z| >1 except for a pole of order s at
z =1, For any W e Gr(H), let W™ denote the set of elements of finite
order in W. Because elements of finite order are dense in any Hs, and
because the projection W — Hj is an isomorphism for suvitable S, we have

Proposition (7.3.2). W is dense in W.

The elements of W of order =m form the finite dimensional space
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W,,=W Nz™'H_. For given W we define
Sw = {s e Z: W contains an element of order s}.

The set Sy belongs to &, and its virtual cardinal is the virtual dimension d
of W, for the number of elements of Sy which are <m is dim W,,,, which
is m + 1+ d providing m is large enough for the projection W—z™H,
to be surjective.

For each s €Sy let w; be an element of W of the form (7.3.1) with
fi=1. Evidently {w;} is a basis of W™ in the algebraic sense, and the
projection W-»Hy, is an isomorphism. We can choose w, uniquely so
that it projects to z°; we shall call this the canonical basis of W. (This
choice is precisely the process of choosing a basis for a subspace in
‘reduced echelon form’, familiar in elementary linear algebra.)

For given § € & we shall call the set

S ={W e Gr(H): Sy = §)

the stratum of G?(H) corresponding to 5. In other words, g consists of
all W such that dim(W,,) = d,,(S) for all 7, where 4,,(S) is the number of
elements of 5 which are =m.

An indexing set § of virtual cardinal d can be written canonically

S={Seua g1, Sgrns - - -}y

With §_4s <5_401 <5_442<... and s, = k for large k. We shall order the
sets of the same virtual cardinal by defining

S8 & s.=s forallk
& da(S)=d,(S") for all m.

We shall also define the length €(S) of S by
€Sy= >, (k—s,).

k=0
Then § <" implies £(S) < £(3").
Finally, it will be convenient to introduce the ‘strictly lower triangular’

subgroup .. of GL,.., consisting of all elements A such that A(z*
Tess z"H_ )=
z*H_ and (A — 1)(z*H_) = 24" H_ for all k. ( )
The stratification is described by

Proposition (7.3.3).

() The stratum X5 is a contractible closed submanifold of the open set
Us, of codimension £(8).

(il =g is the orbit of Hs under N_.

(i) IfWelUsthen S = Sy.

(iv) The closure of Zs is the union of the strata 3. with §’ = S.
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Proof.

(i) 'We have already shown that Zg is contained in Us. Now if W e Us
then W~ H; is an isomorphism, and so W has a unique basis {w,} which
projects to {z°}. Because of the uniqueness, W belongs to Z; if and only
if w;, has order s for each s. If W is described as the graph of T': Hy— Hy,
so that w, =z + Tz, then W belongs to Zs precisely when the matrix
elements T, vanish when p > g. The number of pairs (p, g) in § X § such
that p > g is the length €(S). Thus Zg corresponds to a sub-Hilbert-space
of codimension £(S).

(i) Suppose that W e Zgis the graph of T: Hg—> Hy. Let prs: H— Hy
be the projection. Then A =1+ T oprs belongs to A, and A(Hs)=W.

(i) Perpendicular projection on to Hs can only lower the order of an
element, and so if W—> Hy is an isomorphism then Hg must have at least
as many linearly independent elements of order <m as W does, l.e.

card{s ¢ S:s sm} = card{s € Syy:s <m}

for each m. This is equivalent to the assertion § = Sy.
(iv) It follows from (iii) that the closure of Zg is contained in the
union of the £s with §' = S. But if §' > § let W, be the subspace spanned

by
(1 -~ )z + 1z

for k= —d. ¥ 0=<:¢<1 then W, belongs to Z5; if r =1 then W, = Hs €25,
This proves that the closure of Iy meets Xs. The closure must then
contain Zg because Zg is a single orbit of the group ...

7.4 The cellvlar decomposition of Gry(H)

The Grassmanmian of a finite dimensional vector space has a classical
decomposition into Schubert cells. (Cf. [68] or [116].) Our Grassmannian
Gro(H) is the union of the finite dimensional Grassmannians Gr(H ... ),
and it too can be decomposed into Schubert cells. This decomposition is
dual to the stratification of Gr(H) described in the last section in the
following sense:
(i) the same set & indexes the cells {Cs} and the strata {Zs};

(i) the dimension of Cs is the codimension of Zg;

(iii) Cs meets T transversally in a single point, and meets no other
stratum of the same codimension.

To describe Cs we begin by defining the co-order of a polynomial
element

f= 2 fiz*

k=—N
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of H as the smallest & such that £ # 0. Then for W e Gro(H) the set

S¥ = {s € Z: W contains an element of co-order s}

belongs to &, and for § € & we define
Cs={W e Gro(H):5% = §).
Proposition (7.4.1).

(i) Csis a closed submanifold of the open ser U, Gr(H ;
diffeomorphic to C'®, ? s of Gri) and i
. +(uo)f (;(’ii: the orbit of Hy under the ‘strictly upper triangular’ subgroup

(i) If W e Gro(H) belongs to Uy then S <S¥.

(iv) The closure of C is the union of the Cg. with §' <8§.

(v) Cs intersects 5. if and only if S=§', and Cy intersects Zg
transversally in the single point H;.

TEe strictll)cr upper triangular subgroup &, consists of all A such that
A(z°H,)=z"H, and (A — 1)(z*H,) & 2" H, for all k.

Proof. This _is precisely analogous to (7.3.3). The essential observation is
that Cy consists of the graphs of all operators T: Hy~> Hy whose matrix
elements T,, vanish uniess p >g.

7.5 The Plicker embedding

Points of a finite dimensional Grassmarmian are traditionally described
by Plicker coordinates. We can do exactly the same with Gr(H).

We have pointed out in Section 7.3 that any We Gr(H) has a
canonical basis. We shall find it useful, however, to introduce a class of
‘admissible bases’ for W. Suppose that W has virtual dimension 4.

De{inition (7.5.1). A sequence {W}im_s in W is called an admissible
basis for W if

(i) the linear map w:z"“H,— W which takes z* to w, is a continuous
isomorphism, and

(1}) r_he c_omposite prew, where pr:W—z""H, is the orthogonal
projection, is an operator with a determinant.

Remarks.

(i) We recall that an operator with a determinant is one which differs
from the identity by an operator of trace class. (Cf. Section 6.6.)

(i) We shall usually not distinguish between the basis {w.} and the
corresponding linear map w.

(iii} The canonical basis for W is admissible: for it, the composite prew
differs from the identity by an operator of finite rank.
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Tt is clear from the definitions that any two admissible bases for the
same space W are related to each other by a matrix which has a
determinant. Furthermore, if w is an admissible basis for W, and S Fis
a set of virtual cardinal &, and prg: W— H; is the projection, then prgew
is also an operator with a determinant. We define the Pliicker coordinate
ws(w) of the basis w as the determinant det(prgeow). If § &% does not
have virtual cardinal d we define wg(w}=0. If w' is another admissible
basis for w then :

J"‘:.S‘(M" ') = Aww’xs(w)i

where A, is the determinant of the matrix relating w’ and w; so if one
thinks of {7s}s.s a8 projective coordinates then they depend only on W.

Proposition (7.5.2). The Pliicker coordinates {7ts}s.s define a holomor-
phic embedding

7 Gr(HY— P(5) -
into the projective space of the Hilbert space 5 = {*(F).
Remark. In Section 7.7 we shall give a more invariant description of #.

Proof. We must first show that for an admissible basis w we have
>, lms(w)f <.
Se&

In fact we shall prove
> jms(w)F = det(w*w). (7.5.3)
5

(The right-hand-side is defined, for if we write w:z™“H, — H as w, @ w_
with respect to H=z"9H, @z ¢H. then w*w =ww, + w*w_, which
has a determinant because w, has a determinant and w_ is Hilbert—
Schmidt.)

It is enough to prove (7.5.3) for any one admissible basis w for each
subspace W. And by continuity it is enough to prove it when W belongs
to Gro(H). So we may assume that w, differs from the identity matrix in
only finitely many entries, and that w_ has only finitely many non-zero
entries. In that case (7.5.3) reduces to the following assertion:

If P and Q are n X m and m X n matrices, with n =< m, then

det(PQ) = >, det(Ps)det(Qs),

where S runs through the » element subsets of {1,2, ... ,m}, and P, Q5
are the corresponding n X n submatrices of P and Q. (This assertion
simply expresses the functoriality of the n™ exterior power: A"(Po Q) =

(A"P)e(A"Q).)
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To prove that ki is an embedding, let us consider first the case of a
sub3p§ce W which is the graph of an operator T:H,~>H_. The
canonical basis {Wy}=o for W is given by

= 9
w, =29+ > T,z
p<0

Suppose that § € ¥ has virtual cardinal 0, and write 4 =S — N, B=
N —S. These are two finite sets of the same size. A moment’s reflection
reveals that ms(w) is the determinant of the finite submatrix of (T0)
formed from the tows A and columns B. In particular, each entry Ty
occurs among the Pliicker coordinates. So  is certainly an embedding in
the coordinate patch U,

The other coordinate patches can be treated in exactly the same way.
We remark fially that W belongs to the patch Us if and only if
ms(w) # 0.

The stratification of Gr(#), and also the three dense subspaces Gry,
Gr,, and Gr., can be described very simply in terms of Pliicker
coordinates, as follows.

Proposition (7.5.4).

() Wels & ag(W)+0,
(i) WeZ; © a(W)+0and w5.(W)=0 when §’' <5,
() Wels & a5(W)+0 and w5 (W) =0 unless §' <S5,
(iv) WeGr, & xs(W)=0 except for finitely many S,
() WeGr, & r~*Say(W) is bounded for S ¢ &, for some r <1,
(Vi) WeGr, © &8 "ns(W) is bounded for S e &, Jor each m.

All of Fhfase qssertions are obvious except perhaps for the last two,
whose validity will become clear in the next section.

7.6 The CX,-action

The circle T acts unitarily on H = L*(S*; C) by rotating S, and the action
preserves the polarization H =H, @ H.. This means that T acts on
Gr(H). It is easy to see that the fixed points are precisely the subspaces
Hs for § € . We shall write R, : Gr(H)—» Gr(H) for the action of u e T.

The map T X Gr(H)— Gr(H) describing the action is continuous, but
not differentiable. In the coordinate chart Us = #,(H,; H3) the action of

R, gn T: Hy— H# multiplies the matrix element Top by 4777, From this
we find

Proposition (7.6.1). The T-orbit of a point W € Gr(F) is smooth (ie. the
map u> R,W is smooth) if and only if W belongs to Gr.(H). The orbit is
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real-analytic if and only if W belongs to Gr,(H). Furthermore, T acts
smoothly on the manifold Gr..(H) with its own C” topology.

The description in terms of coordinate charts shows that the action of T
extends to an action

% X Gr(H)— Gr(H) {7.6.2)

of the semigroup CZ; of non-zero complex numbers of modulus <1. The
map (7.6.2) is holomorphic on the open set C%; x Gr(H). If {u| <1 then
R, maps Gr{(H) into Gr,,(H). On the submanifold Gro(H) the action of T
extends to a holomorphic action of the whole group C*.

The action of the semigroup CZ, is very closely connected with the
stratification of Gr(H).

Proposition (7.6.3).

(1) =g consists precisely of the points W & G1(H) such that R,2W tends
to Hs as u—>0. -

(1) Cjy consists precisely of the points W e Gro(H) such that R, W tends
to Hg as u—>w,

If we restrict u to rteal values then the situation described in
Proposition (7.6.3) is very reminiscent of Morse theory. If the trajectories
ur> R, W were the gradient flow of a function F on Gr(H) then the Hg
would be the critical points of F, and Zs and Cs would be the stable and
unstable manifolds of Hs in the sense of Morse theory [142]. This picture
is essentially valid; the only qualification is that the function F is defined
only on the smooth Grassmannian Gr,., where the frajectories are
smooth. We shall find the function F in Section 7.8.

Proposition (7.6.3) follows at once from the behaviour of the Pliicker
coordinates with respect to the T-action.

Proposition (7.6.4). We have
ws(R,W) = A g(W),

where A is non-zero and independent of 5.
In other words the Pliicker embedding

7 Gr(H)— P(#)
is equivariant with respect to C%; when R, acts on % =€) by
(R.E)s= wHIEs.

Remark. This proposition will be superseded in the next section by the
more precise result {7.7.5).

Proof. If w:z “H,— W is an admissible basis for W then we can take
R, eweRI! as a basis for R, W. By continuity it is enough to prove the
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result for a dense set of ws. So for the component of virtual dimension
ZEI0 We Cam suppose

= 7% 2
w, =27+ 3, 2"
P

If S—N=A={a),...,a,}, and N—-S=pB={(b, .. ., b}, then
€(Sy=Z2 (b;—a;). The Pliicker coordinate mg(w) is the determinant of
the submatrix of T formed from the rows A and columns B. Conjugation
by R, multiplies this determinant by z =4*®= z¢®) The other con-
nected components can be treated similarly.

Remark. It is worth pointing out that if %, and &, are the smooth and
real-analytic vectors in # in the sense of representation theory [153], i.e.
the vectors whose T-orbits are smooth or real-analytic, then

Gr.(H) = n~'P(%.,), and
Gr,,(H) = n ' P(5%,).

7.7 The determinant bundle

In this section we shall construct a holomorphic line bundle Det on the
Grassmannian Gr(H). Its fibre Det(W) at W e Gr(H) is to be thought of
as the ‘top exterior power” of W. We can make sense of this by using the
concept of an ‘admissible basis’, introduced in Section 7.5. Axn element of
Det(W) is represented by definition by a formal expression

AW g AW gl AW_gia Ave., (7.7.1)

where A e C and w = {w,} is an admissible basis of W. We shall denote
the expression (7.7.1) simply by [A, w]. If w’ is another admissiblé basis
of W, then [A, w] is identified with [A det(z), w'], where z= () is the
matrix relating w and w":

—_— ’
W= 2, I;w;.
i

Det(W) is clearly a one-dimensional complex vector space, and the union
of the Det(W) for W e Gr(H) is the line bundle Det. We must, however,
explain how Det 1s a complex manifold, and why the bundle is locally
trivial.

For each indexing set Se& we have the open set Us of Gr(H),
identified with the graphs of Hilbert—Schmidt operators T:FHg—> Hj.
The graph Wy of T has the admissible basis {w;}, where

w=z7+ > T, 2" (7.7.2)
PES

with g ==5; and S = {54, S—g41, - - -}- We identify the part of Det above
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US with € x US by
(A, We) e C X Ug e [L, w] € Det,

where w is given by (7.7.2). The transitions between these local
trivializations are as follows. Suppose that Wy belongs to Us N Uy, and
Wy = Wy, where T': Hg— Hi. We know from (7.1.5) that

T'=(c+dT)(a+bT)™,

(€ )

c d

is the matrix of the permutation relating S to 5'. Then
(A‘, WT) eCx US@ ()1-’, WT') eCx Usr,

where

where

A=) det(a + bT). -

This is a holomorphic function of (A, T'), as we require. (To be quite
concrete, det(a+bT) is simply the finite dimensional determinant
formed from the rows A and columms B of T, where A =S5'-35 and
B=5-5")

The Grassmannian Gr(H) is a homogeneous space under the action of
the restricted general linear group GL. (H). It would be natural to
expect the action of GL, to lift to an action on the line bundle Det.
This, however, is not quite the case, for if w is an admissible basis for
W e Gr(H), and A € GL,.,, then Aw is not in general an admissible basis
of A(W). The extension GL, of GL,., by C* described in Chapter 6 was
constructed precisely to deal with this situation.

Theorem (7.7.3). The action of GL,., on Gr(H) is covered by an action
of GL, on the line bundle Det.

Proof. Let us first consider the connected component Gi°, consisting of
spaces W of virtual dimension (. An admissible basis for such a W is an
isomorphism w: H, — W, which we can write as a Z X N matrix

()

Woms

W

such that w, : H_—> H, has a determinant. Recall that the subgroup € of

GL,es 0 X GL{H,) is defined as the set of pairs (4, ¢) such that ag™" has a
determinant, where
a b
a=(®2)
¢ d
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We define an action of & on the set of admissible bages by
(4, q). w=Awg™l

This is well-defined because (Awg™), =aw,q~"' +bw_g™* has a deter-
minant. Then % acts on Det by

(A«" q) * [A” w] = [)"’ (A? Q)w]'

The subgroup J; of €, which consists of pairs (1, g) with det(g) =1, acts
trivially on Det, and so we have defined an action of &/J,. This is the
identity component GL ., 5 of GL.

To make GL o act on the part of Det over Gr? the set of subspaces
W of virtual dimension d, recall that we defined an automorphism & of
GL, o which covered the automorphism A= gAo™ of GL,. o Here
o:H— H is the shift map, gives by multiplication by z. We define the
action of A € GL7,, on Det | GI* as the action of 0™%s 59(4)» 0%, where

¢:Det— Det

is defined by o.[A, wl=[A, ow]. As GL7, is the semidirect product of
GL 0 and the cyclic subgroup generated by o, we now have an action of
GL; on Det.

Remarks.

() The group extension GL_, can be constructed directly from the
line bundle Det. For GLZ, is the group of all holomorphic automerph-
isms of Det | Gr° which cover the actions of elements of GL.., on Gr°.
(If A, and A, are automorphisms of Det | Gr® which cover the same map
on Gr° then A;'A, must be the operation of multiplication by a
non-vanishing holomorphic function on Gr°. But any such function is
constant (see Proposition (7.2.2)).

(fi) The line bundle Det has a natural hermitian metric for which

4, wlll* = |A]* det(w*w).

This is preserved by the action of UZ,. The unit circle bundle in Det can
therefore be identified with U /U(H,) x U{H_), and its Chern class is
represented by the invariant form defined by (6.6.5).

Let us return to the Pliicker embedding defined in Section 7.5. Each
Plicker coordinate xg can be regarded as a holomorphic section of the
line bundle Det™ dual to Det. For a holomorphic section of Det* is a
holomorphic function Det— C which is linear on each fibre. The
coordinate my defines such a function by

[A, w] Amg(w).

The Hilbert space & of Proposition (7.5.2) is therefore contained in the
dual of the space of all holomorphic sections of Det*. We shall see in
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Chapter 10 that it is a dense subspace of the dual. Meanwhile, let us
ootice simply that the embedding s=:Gr(H)-—> P() arises from a
holomorphic map

7:Det— % (7.7.4)

which is linear on each fibre. The line bundle Det is thus the pull-back of
the tautological line bundle on P(3). (Cf. Section 2.9.)

The map m:Det— 3 is norm-preserving, as we see from the formula
(7.5.3).

Proposition (7.7.5). The map n:Det— ¥ is equivariant with respect to
CZ, when R, € CZ%, acts on {E5} € ¥ by

(R.E)s =u"Dks.
Here €4(5) = £(S5) + 3d(d + 1), where d = card(S).

Proof. We combine the proof of (7.6.4) with the fact that the action of
R, on [A, w] € Det, where w:z “H,— H is an admissible basis, is given
by

R A, w] = [Aubdt@rD) R,wR;.

More general determinant bundles

The determinant bundle can actually be defined on a larger space than
Gr(H). Let Gr,,(H) denote the set of closed subspaces W of H such that
the projection W~ H, is Fredholm and the projection W-sH_ is
compact. Then our construction applies without change to define a
holomorphic line bundle Det on Gr.(#). The crucial difference,
however, is that the bundle on Gr,(H) is.not homogeneous: it is acted
on only by the subgroup of GL_(H) consisting of elements whose
off-diagonal blocks are of trace class.

The line bundle Det on Gr.,(f) is essentially the same thing as the
determinant bundle defined by Quillen [124] on the space Fred(H,) of
Fredholm operators in H,.. The fibre of Quillen’s bundle at T:H,— H.,
15

det(ker T)* ® det(coker T').

The relation between the two bundles is the following. Let & denote the
space of injective maps w: H, — H such that w{H.) belongs to Gr,,(H).
Then we have holomorphic maps

GropH) < B -> Fred(H,).

Both of these maps have contractible fibres. The determinant bundles on
Gr,(H) and Fred(H,) pull back to the same bundle on %, and the
bundle on Fred{H.,) is the quotient of the one on % by the obvious free
action of GL(H.,).
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7.8 Gr(H) as a Kihler manifold and a symplectic manifold

Because the group U, acts tramsitively on Gr(H) we can define a
hermitian metric on Gr(H) by giving 2 hermitian form on its tangent
space at the base-point H, which is invariant under the action of the
isotropy group U(H,)X U(H.). The tangent space at H, is the space
$(H,; H.) of Hilbert—Schmidt operators H,— I (on which the
isotropy group acts by left- and right-composition), and the unique
invariant inner product is

(X, Y) =2 trace(X*Y),

up to a scalar multiple. This inner product defines a Kahler structure on
Gr(H). Indeed its imaginary part

(X, Y) = —i trace(X*Y — Y*X) (7.8.1)

is the closed 2-form which we have already encountered in Proposition
(6.6.5) as the form on the Lie algebra u,, which defines the central
extension Uz, (We recall that an invariant differential form on the
homogeneous space U.,/(U, X U_) is the same thing as a skew form @
On U Which is invariant under the adjoint action of U, X U.. and in
addition satisfies (&, 1) =0 when & or 5 belongs to u, $u_.) To see
that the form (7.8.1) coincides with that of (6.6.5) we map J,(H.; H.)
into u,., by
0 -x*
X H(X 0 )

We saw at the end of the last section (see Remark (i), p. 115) that the
form w represents the Chern class of the line bundle Det on Gr(H). An
equivalent statement is that the Kahler structure of Gr(H) is induced
from the standard structure on the projective space P(¢) by the Pliicker
embedding.

On a simply connected symplectic manifold X—even if it is infinite
dimensional—any vector field £ which preserves the 2-form « arises from
a so-called Hamiltonian function F:X—»R, in the sense that the gradient
dF is the 1-form w(&, ) on X. On Gx(H) the vector field defined by any
clement of the Lie algebra u,; preserves the form , and we can ask for
the corresponding function.

Proposition (7.8.2). The Hamiltonian function F: Gr(H)— R which
defines the flow on Gr(H) corresponding to £ e u,, is given by

F(W) = ~i trace £(Jy, ~J).

Here J and J,, are the operators of square 1 which define the
decompositions H=H, B H. and H=W & W*. We leave it to the
reader to check that the operator £(Jy —J) is necessarily of trace class.
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Proof. The gradient of F at W along the tangent vector corresponding to
7€ Upes is :

dF(W;n) = —i trace &[n, Jy].

Suppose that W = gH.,, with g € U,... Then J = gJg ™", and the value of
the invariant form « at W on the tangent vectors defined by &, n is

o(W; & n) = 0(g™ 58, g7 ng)
= —i trace g ' Eglg " ng, J]
= -f trace &7, Jw]
=dF(W; 7). (7.8.3)

(Here (7.8.3) is obtained from (6.6.5) by noticing that trace (¢;b; — b;¢5)
= trace A,[A,, J].)

We cannot apply Proposition (7.8.2) directly to the rotation action of T
on Gr(H), for we saw in Section 7.6 that the action was smooth only on
the submanifold Gr.(H). This corresponds to the fact that the in-
finitesimal generator —d/d@ is an urbounded operator on A and does not
belong to the Lie algebra u,.,. Nevertheless (7.8.2) does hold for the
rotation flow on Gr.(H). We shall call the corresponding Hamiltonian
function the energy €:Gr.(H)~>R. Thus

(W) = trace a%)(fw - 1. (7.8.4)

The critical points of & are the stationary points of the rotation action,
i.e. the points Hy for § € &. Let us notice that

B(Hs) = €4(S) = £(S) +3d(d +1),
where d = card($) (Cf. (7.7.5).) More generally, we have

Propeosition (7.8.5).
W)= ES: €*(8) s (W)

. d
= <QW: l'd"“é ) QW>’
where {ms(W)} are the Pliicker coordinates of W, normalized so that
2 |rs(W)P =1, and Qyy is the corresponding unit vector in 3.

Thus € takes only positive values.

In the language of quantum mechanics we can regard Gr(H) as the
space of states of a classical system, and P(5) as the corresponding
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quantum state space. Then €y represents the quantum state correspond-
ing to W, and (7.8.5) asserts that the classical energy %(W) is the
expected value of the quantum energy operator i{(d/d8) in the state €.
The result follows from the fact that Gr(H) has the Kihler structure
induced from P(#). For in general if T is any skew-adjoint operator in
# then the Hamiltonian function corresponding to the flow on P(%¢)
induced by T is

& = (&iT¢).

It can be shown fairly easily that the Morse decomposition of Gr(H)
into the ascending and descending stable manifolds of the stationary
points of the gradient flow of % is precisely the stratification and cell
decomposition which we found in Sections 7.3 and 7.4, We shall not
pursue this discussion any further—but see Section 8.9.
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THE FUNDAMENTAL HOMOGENEOQOUS
SPACE

8.1 Imtroduction: the factorization theorems

The most important results proved in this chapter are three factorization
theorems. We shall state them here for the loop group of the general
linear group GL,(C), but this can be replaced by LG for any compact
G. The first involves the subgroup L*GL,(C) of LG"L,,(C) consisting of
loops y which are the boundary values of holomorphic maps

y:{zeC:|z|<1}—>GL,(C). .
Theorem (8.1.1). Any loop v € LGL,(C) can be factorized uniquely
Y= VYu-Ysr
with v, € QU, and v, e L*GL,{(C). In fact the product map
QU, X L*GL,(C)— LGL,(C)
is a diffeomorphism.
Here QU, denotes the base-point-preserving loops in LU, i.e. those

such that y(1) = 1. Proposition (8.1.1) will be proved in Section 8.3.

ich i i 1 Iso
The second theorem, which is due to Birkhoff [11,12], involves a
the subgroup L™GL, (C) consisting of loops y € LGL,(C) which are the
boundary values of holomorphic maps

vi{zeCUw:|z|>1}— GL,(C).

Theorem (8.1.2). Any loop v € LGL,(C) can be factorized
Y=Y-.A. Ve,

where y. & L”GL,(C), v, e L*GL,(C), and Ae T is a loop which is a
homomorphism from §* into the diagonal matrices in GL,(C), i.e. A is of

the form
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The factor A is uniquely determined by y up to conjugation in GL,, (C), i.e
up 10 the order of {ay, .. ., a,}. Loops for which A= 1 form a dense open
subset of the identity component of LGL, (C), and the multiplication map

Ly X L*— LGL,(C),
where LT ={y_eL 1y _(x)=1)}, isa diffeomorphism on to this subser.

We shall describe two important applications of Birkhoff’s theorem in
the next section. The theorem will be proved in Section 8.4,

Both theorems (8.1.1) and (8.1.2) have exact analogues for the groups
of real-amalytic, rational, and polynomial Joops, but are false for
continuous loops. The third theorem, however, applies only to the group
of polynomial loops. We shall refer to it as the Bruhat factorization. (Ct.

[791)

Theorem (8.1.3). Any polynomial loop v € LoyGL,(C) can be factorized
y=rP. 1. 4P,

where vP and y@ both belong to L2y, and A is a homomorphism from S
into the diagonal matrices.

The three theorems are precise analogues of the following three
well-known facts about GL,(C).
(i) AnyAeGL,(C) is the product of a unitary matrix and an upper
triangular matrix.
(i) Any A eGL,(C) can be factorized

A=PxrQ,

where P is lower triangular, Q is upper triangular, and = is a permutation
matrix. Furthermore 7 is determined uniquely by A, and m=1 for a
dense open subset of GL,(C)—in fact for all A whose leading principal
minors do not vanish.

(i) The same statement as (i), but with P and O both upper
triangular, and z anti-diagonal for a denge open subset,

Of course (i)} and (iii) are trivially equivalent; they are called the
‘Bruhat decomposition’ of GL., (C).

The theorems for loop 8Toups are proved in exactly the same way as
the finite dimensional results. The unitary--upper-triangular factorization
(i) is simply the ‘Gram—-Schmidt process’ for replacing an arbitrary basis
of C"—the columns of A-by an orthonormal basis. More geometrically,
it is the assertion that any flag in C* (see Section 2.8) contains an
orthonormal basis, i.e. that U, acts transitively on the flag manifold
GL,.(C)/B. (B denotes the subgroup of upper-triangular matrices.) The
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Bruhat decomposition, likewise, expresses the decomposition of the flag
manifold into its Schubert cells.

For a loop group LG the space that plays the role of the flag manifold
is the complex homogenecus space X = LGg/L*Ge. Theorem (8.1.1)
is the assertion that LG acts transitively on X, so that X=LG/G. We
shall call X the fundamental homogeneous space of LG. The analogy
between it and the flag manifold is far-reaching. In particular:

(i) itisa complex projective algebraic variety;

(i) it has a canonical stratification and cell decomposition;

(1) irreducible representations of LG can be constructed as spaces of
holomorphic sections of line bundles on it.

In Section 8.3 we shall show that when G is U, there is a beautiful
description of the space LG/G as a kind of Grassmannian; from this we
shall derive the factorization theorems. A similar description is possible
for the other classical groups, and a slightly more complicated one for a
general compact Lie group. ~

The idea of the Grassmannian model comes from ‘scattering theory’ in
the sense of Lax and Phillips [99]. We shall say a little about that point of
view in Section 8.12, as an appendix to this chapter. From a completely
different point of view the Grassmannian model is an expression of the
Bott periodicity theorem; Bott’s theorem has been mentioned in Section
6.4, but we shall return to it in Section 8.8.

The Grassmannian model reduces the study of LG/G to linear algebra.
It is also interesting, however, to thiok of LG/G as a Kihler manifold,
and to study the Morse theory of the energy function on it. We have
discussed that approach in Section 8.9. Another completely different
point of view, described in Section 8.10, is to regard LG/ G directly as a
space of holomorphic vector bundles on the Riemann sphere.

The space LG/(G is not the only complex homogeneous space of LG.
Indeed L*Ge should be thought of as a maximal parabolic subgroup of
LG in the sense of algebraic groups, so LGg/L* Gg is more accurately to
be compared with a Grassmannian GL,(C)/P, where P is a group of
echelon matrices

* A
( 0 = )’

than with the flag manifold GL,(C)/B. The difference is not, however,
very important: the subgroup B* of L*GL,(C) consisting of loops y such
that ¥(0) is upper triangular is a minimal parabolic subgroup, and we
shall see in Section 8.7 that LGL,(C)/B™ can be regarded as a space of
‘periodic flags’ in Hilbert space. Much more interesting, however, is the
existence of a quite different complex homogeneous space for LGL,(C)
which is associated to a Riemann surface. This is described in Section
8.11.
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We end this section with a technical remark. The Lie group LG is the
semidirect product of the subgroup G of constant loops and the normal
subgroup QG of loops y such that y(1)=1. (G acts on QG by
conjugation.) In particular LG =G X QG as a manifold; and the
homogeneous space LG/G can be identified with QG. We shall often
make this identification without comment, and shall think of QG as a
homogeneous space of LG. The action of y € LG on QG is therefore
@ > @, where

®(z) = y(z}oz)y(1),
and the rotation R, of S’ through the angle « acts on QG by

(Rpw)(6) = w(0 — &Yoo (—a)™". (8.1.4)

8.2 Two applications of the Birkhoff factorization

Singularities of ordinary differential equations
What we have called the Birkhoff factorization was discovered by

Birkhoff [11] in 1909 when he was investigating the singularities of
differential equations of the form

%zg =A(zyv(z) (8.2.1)

for a C"-valued function v, where A4 is a given (1 X n)-matrix-valued
function which is defined and holomorphic in a neighbourhood U of the
origin in the complex plane except for a simple pole at the origin. The
problem is to “change coordinates’ by multiplying v by a GL,{C)-valued
function 7, holomorphic in U, so that the new function # = Tv satisfies a
simpler equation. We shall use the Birkhoff factorization to prove

Proposition {(8.2.2). A generic equation (8.2.1) can be reduced to the form

o .
=2 K, (8.2.3)

where K is a constant matrix.

The precise meaning of ‘generic’ is that the residue of 4 at z=01is a
matrix of which no two distinct eigenvalues differ by an integer. It is not
true that every equation of the form (8.2.1) can be reduced to (8.2.3).

Proof. An equation of the form (8.2.1) has a ‘solution matrix’ X, a
multivalued holomorphic function defined in U~ {0} with values in
GL,(C) which satisfies dX/dz = AX. The unique soiution of (8.2.1) such
that v(zp) = v, is expressed in terms of X by

v(z) = X(2)X(z) " vo.
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The solution matrix is unique up to multiplication on the right by a
constant invertible matrix. Its many-valuedness can be described by
saying that when z travels once anti-clockwise around the origin then
X(z) is multiplied on the right by a matrix M e GL,(C) called the
monodromy matrix. A more precise statement is that there is a genuine
holomorphic function X defined in the set

{¢eC:efe U}
such that X(z) = X(log z), and
X(E + 20mi) = X (E)M.
Let us notice that a solution matrix of the equation (8.2.3) is given by
X(z)= z5 = Flos=,
Beginning with (8.2.1), let us choose X, and then choose K so that
e K = M. If we define
Y(z)=X(z)z", -
then Y is a single-valued holomorphic function U — {0}~ GL,(C). The
restriction of ¥ to a small circle |z|=¢ contained in U is a loop in
GL,(C). Birkhoff argued, not quite correctly, that in the generic case,
providing K is suitably chosen, this loop has a factorization Y=Y, Y,
where Y, is holomorphic in ¥ and Y_ is holomorphic in the whele
Riemann sphere except for the origin. (One assumes initially that ¥, and
Y_ are holomorphic for |z| < and |z|> &; but they are then automati-
cally holomorphic wherever Y is.) We can assume also that ¥_(e0) == 1.
Now define ©# =Y. The equation satisfied by ¢ is di/dz = A%,
where
A=Y7AY, — ¥, dY. /dz.

From this we see that A is holomorphic in U except for 2 simple pole at
the origin. But ¥7'=Y_z*X"?, and hence

A=z'Y_KYT*+dY_/dz. YN

This shows that A is holomorphic everywhere in the Riemann sphere
except for the origin. As Y_(z) is of the form 1 +wz™"+... we know
that Y'.(z) is O(z™%) as z—> =, and 50 zA(z)— K as z-> . By Liouville’s
theorem the only possibility is that A(z) =z~1K. (In fact it follows also
that Y..(z) =1 for all z.)

It is not sensible to try to repair Birkhoff's argument, as its importance
was historical. The simplest way to prove (8.2.2) does not use the
factorization theorem: it is better to show directly that when K is suitably
chosen the map ¥: U — {0} — GL,(C) extends holomorphically to U. For
a full discussion of the subject we refer to Turrettin {148].

The classification of holomorphic vector bundles on the Riemann sphere

The best known application—it would really be better to call it a
reformulation—of Birkhoff's theorem is to the classification of holomor-
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phic vector bundles on the Riemann sphere 52 This was first pointed out
by Grothendieck [69].

Let us write §%= Uy U U,,, where U= §%— {«} and U, =8>~ {0}. The
most obvious bundle on $? is the line bundle L which is constructed by
attaching Up X C to U, X C by the map

(z, Myr>(z, zA).
There is also the tensor power L* for any k ¢ Z: its attaching function is
(z, My (2, z°0).

(If §? is regarded as the complex projective line P(C*) whose points are
the rays in C* then L is the ‘Hopf bundle’ whose fibre at & ¢ P(C?) is the
line & < C*) Birkhoff’s theorem is equivalent to

Proposition (8.2.4). Any holomorphic vector bundle E on 5% is isomor-
phic to a sum LD...D L% where the integers {a,,...,a,} are
uniquely determined (apart from their order).

Proof. The restrictions of E to Uj and to U, are necessarily trivial, as U
and U, are Stein manifolds [66]. So E is obtained by attaching U, X C" to
U, X C” by means of a holomorphic function

v: U N Us— GL,(C).

By Birkhoff’s theorem (8.1.2) we can factorize y as y_ . A. .., where y,
and y. are holomorphic in U, and U, respectively, and A=2z" is a
homomorphism. If we change coordinates in Uy X C® by y. and in
U. % C" by y=' then we find that E can also be constructed by taking A as
the attaching function. But the bundle defined by Ais L@ ... & L%,

8.3 The Grassmannian model of U,

The group LGL,(C) acts on the Hilbert space H™ = L*(§';C"), and
hence, by Proposition (6.3.1), on the Grassmannian Gr(H®). The
subspaces W of the form yH. for y € LGL,(C) have the property that
zW oW, as the action of y commutes with multiplication by the
scalar-valued function z. It tumms out that the orbit of H, under LGL,(C)
1s essentially characterized by this property. (We shall usually write yF.,
for M,(H,) and zW for M.(W) when we do not need to emphasize that y
and z are operators.)

Definition (8.3.1). Gr™ denotes the closed subset of Gr(H™) consisting
of subspaces W such that zW < W.

This is the Grassmannian model of the loop space. Its crucial property
is
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Theorem (8.3.2). The group LU, acts transitively on G, and the
isotropy group of H., is the group U, of constant loops.

We recall (see Proposition (6.3.3)) that L;U, is the commutant of the
multiplication operator M, in U, (H™).

It is obvious that yH,=H, if and only if v € L*GL,(C), so the
assertion in Theorem (8.3.2) about the isotropy group is a kind of
‘maximum modulus’ principle. When »n =1 it is the statement that a map
§'~+T which extends to a non-vanishing holomorphic function in the disc
1% constant.

Proof of (8.3.2). The first step is to see that if W belongs to Gr then
zW has codimension » in W. Consider the commutative diagram

ZW— W

[

zH,— H, ~

where the horizonmtal maps are inclusions and the vertical ones are
orthogonal projections. The two vertical maps are Fredholm, and clearly
have the same index (equal to the virtual dimension of W). But
zH,— H, is also Fredholm, with index —n. It follows that zW— W is
Fredholm, and its index must also be —x in view of the formula
x(AB)=yx(A)+x(B) for the index of a composite [34]. Thus
dim(W/zW) = n.

Now let {wy,...,w,} be an orthonormal basis for W ©zW, the
orthogonal complement of zW in W. As in the proof of (6.1.1) we put the
vector-valued functions w; side by side to form an (n % n)-matrix-valued
function y on §'. We then find that y(8) is a unitary matrix for almost all
6eS', ie. ybelongs t0 Ly U,. To see this, let us write

Wk(G) = Z kaei’"e,

with wy,,, € C". Then
{we(8), we(6)) = 2 (Wi, We, yeir=me

= 2 (Wk: ZPWe)HeiPQ
j-1

= Ope,

where for the moment we have written { , ), for the inner product in

H“ to distinguish it from the inner product in C".
The multiplication operator M, is therefore a unitary operator in H,
and by its construction it satisfies

M,(H, ©2H.) =W © z*W
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for all k. To deduce that M, (F.) =W we must prove that (1 z*W =0,
Suppose that w belongs to { ) 2*W, and ||w] = 1. Then z~*w belongs to
W for all k. Because the projection pr_: W - H_ is a compact operator,
one can find a convergent subsequence of {pr..(z"*w)}, converging, say,
to veH. Clearly |v]=1, as zfpr.(z"w)—w. But [u|*=
lim{v, z7*w), and for any v, w € H* we have (v, z"*w)~>0as k—>w; a
contradiction, proving that () z*W = 0.
To see that M, belongs to U, we observe that its (H.— H.)
component factorizes
H,—W 2 H

—_3

and is therefore Hilbert-Schmidt. The (H.-— H.) component is also
Hilbert-Schmidt because M, is unitary.

We have now proved that L;U, acts transitively on Gr*. But any
y € LyU, such that yH, = H, must preserve the n-dimensional subspace
H, ©zH., and is completely determined by its action there. It therefore
belongs to U,.

Theorem (8.3.2) shows that Q,U, = LU,/ U, can be identified with Gr*?
as a set, and justifies the name ‘Grassmannian model’. We shall return
totthe topological aspect of the correspondence later. Meanwhile we shall
determine which subsets of €U, correspond to the four subspaces
Gr§, Gri”, Gr¥), GrM—where Gr®™ denotes Gr N Gr, (H™)—and
we shall derive the factorization theorems of Section 8.1.

Proposition (8.3.3). In the correspondence Gr'™ < Q,U,
(i) Grf corresponds to Q4 U,
(i) Gr{™ corresponds to Q.. U,
(&) Gre corresponds to Q,,U,,
(iv) Gr¥ corresponds to QU,.

We recall that the groups of polynomial, rational, real-analytic and
smooth loops have been mentioned in Section 3.3, and the corresponding
subspaces of the Grassmannian were defined in Section 7.2.

Proof. In one direction, if W belongs to Gr¥”, where & =0, 1, w, or «,
then we must show that W © zW consists of functions of the correspond-
ing kind. Let us consider the smooth case. If W belongs to Gr., then by
(7.2.1) the images of both projections W— H_ and (zW)*— H, consist
of smooth functions. So a function in W & zW has smooth projections on
to both A, and H_, and is therefore smooth. The argument for Gry and
Gr,, is identical.

In the case of Gr;, to say that the image of the projection W— H_
consists of rational functions is the same as to say that there exists a
polynomial p(z) such that p(z)W < H,. This is not automatically true
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when W eGry, but it is true under the additional hypothesis that
zW e W. For one can take for p the minimal polynomial of the
transformation induced by M, on the finite dimensional space
W/W O H,. Similarly, for the image of (zW)*->H, to consist of
rational functions we need a polynomial g(z ) such that g(z YW+ < H_.
This is equivalent to §(z)H,<W, and one can take for § the
minimum polynomial of M, on H./W N H,.

In the converse direction, it is obvious that the action of LU,
preserves Gry. And LU, preserves Gr; because the existence of
polynomials p(z} and §(z) such that

pWcH, and G(2)H,cW

is obviously sufficient as well as necessary for W to belong to Gr{®. The
smooth loop group LU, preserves Gr., by Proposition (7.2.1), and L, U,
preserves Gr,, by the corresponding characterization of Gr,. This
completes the proof of (8.3.3). ' -~

Remarks.

(i) The reason there is no simple model for the continuous loops
Q. U, is that the positive and negative frequency parts of a continuous
function are not necessarily continuous. In other words, in contrast with
the behaviour of the four classes of function just discussed, if C is the
space of continuous functions on §* it is not true that C=C, D C.,
where C,. = C N H,. Suppose, for example, that f is the function already
mentioned in Section 6.3, defined by .

— Sin k@
f(g)_,%lklogk'

This function is continuous. But f==f, +f_, where

(8.3.4)

1 eika
)= ), e
1:(0) 2i;§1klogk
and f. is unbounded in the neighbourhood of 8 = (.

{ii) Gr{” is not dense in Gr™, despite the fact that Gry(H) is dense in
Gr(H). For we saw in Section 3.5 that a loop in U, cannot be polynomial
unless its determinant is of the form z*. We shall see in Section 8.10,
however, that Gr{™ has the same homotopy type as Gr™.

The Grassmannian model for QU, gives us at once the first of the three
basic factorization theorems for loops. For the complex group LyGL,(C)
acts on Gr® as well as LyU,, and the stabilizer of H, in LyGL,(C) is
clearly the closed subgroup Li GL,(C) of loops y which are the boundary
values of holomorphic maps

y:{zeC:z|<1}— GL.(O).

§.4 THE BIRKHOFF AND BRUHAT DECOMPOSITIONS 129

Because L;U, acts transitively on Gr we have
Proposition (8.3.5). The group LyGL,(C) is the product
L;U, . L{ GL,(C).

Furthermore, exactly the same factorization property holds for smooth,
real-analytic, rational, and polynomial loops.

Remark. The proposition is false for the continuous loop group, as we
see from the unique factorization & = ™“*e¥-, where fis the function of
(8.3.4).

We have still not quite proved Theorem (8.1.1). It remains to show
that the multiplication map QU, X L™— LGL,(C) is a diffeomorphism.
For this 1t is enough to prove the smoothness of the map

u:LGL,(C)— QU,

which assigns to a loop its unitary component. The map u factorizes as
yr> #r>u(y), where A

() y7 is defined by projecting the columns (y,,...,y,) of
y &€ LGL,(C) on to (2W)*, where W = yH,: and

(i) ¥+>u(y) is defined by orthonormalizing the basis (74, . .., ¥n) of
ASEATA
The second of these maps is obviously smooth. The first is smooth
because LGL,(C) acts smoothly on the smooth Grassmannian, whose
topology, in turn, is designed to ensure the smoothness of the map

C™ X Gr(H)— C~
(f, W)= fy

which assigns to a smooth function f on the circle and a subspace
W e Gr(H) the projection fi of f on to W.

Notice that the preceding argument does not apply to the group
LyGL,(C). Using once again the function f of (8.3.4) we observe that for
any t € R the loop e” e L; factorizes as e~ But the map t—>e7 is
smooth, while the set {e~"*M . has the discrete topology on LU,
because £ — f, is unbounded.

8.4 The steatification of Gr'”: the Bixkhoff and Brukat
decompositions.

For the rest of this chapter, except for the Appendix, we shall be concerned
only with the smooth Grassmannian Gr.(H®) and its subspace Gr&, and
shall have no use for the Hilbert manifold Gr(H™). We shall therefore
change notation by dropping the subscrips, and shall write Gr(H®™) and
Gr™ for the smooth spaces.
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Because Gr'” can be identified with LGL,(C)/L*GL,(C), Birkhoff's
theorem (8.1.2) amounts to the description of the orbits of the action of
L™GL,(C) on Gr®: it asserts that each L -orbit contains a point of the
form z"HY), unique up to the order of {ay, ..., a,}. We shall prove a
slightly more precise result. If N = N"GL,.(C) is the subgroup of L~
consisting of loops ¥ such that y(x) is upper triangular with 1s on the
diagonal then we shall show that each orbit of N~ on Gr‘ contains a
unique point of the form z*H{®. In fact we shall show that the orbits of
N~ are precisely the intersections of Gr™ with the strata of Gr(H)
defined in Chapter 7.

The proof we are about to give is very elementary and explicit, but it is
nevertheless rather tedious. For that reason we shall mention in advance
the following geometrical description of what will ultimately be proved.
The fixed points of the rotation action of T on QG (see (8.1.4)) are easily
seen to be the homomorphisms A:S'— U,, corresponding to the sub-
spaces A. H, € Gr'. But the action of T extends to 3n action of the
semigroup CZ; (see Section 7.6), and for any W e Gr*” the point R, W
tends to a fixed-point of the T-action as u— 0 in C%;. It turns out that if
R,W->A. H, then W belongs to the L™-orbit of A. H.. (Notice that if
y &€ L™ then R,y tends to the constant loop y{«) as u—0.)

The stratification of Gr(H) was defined by regarding H as L*(S"; C),
whereas in this chapter we are concerned with H™ = L*(§; C*). In fact
all we need is a Hilbert space with an orthonormal basis indexed by the
integers. It is surprisingly convenient, however, to identify H with H in
the way explained in Section 6.5, and to think of its elements sometines
as vector-valued functions of z and sometimes as scalar-valued functions
of £, the two being related by the formulae (6.5.1). Thus H = H™ has
the orthorormal basis {{*}..z, and the definition of Gr™ can be
rewritten

Gr™ = {W e Gr(H): {"W c W}.

Recall that Gr(H) is the union of disjoint strata ¥, where W belongs
to 2 if § is the set of integers s such that W contains an element of order
s. If W & Gr™ belongs to = then obviously

S+nrcS.

Sets 5 e ¥ satisfying this condition are completely determined by giving
the complement S* of S+ n in §, which must consist of » elements, one
mn each congruence class modulo ». They correspond precisely to the
homomorphisms from T into the maximal torus of U,: to the homo-
morphism z* there corresponds the set S, such that $* is

{na;, nas+ 1, na+2, ..., na, +n—1}.
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The subspace Hy, spanned by {£*},q5, is z°H{. Thus the strata of Gr(H)
which meet Gr® can be indexed by the homomorphisms z*. We shall
write Z, for £5, N Gr', and H, for Hs,.

Notice that as a group of operators the subgroup N~ of LGL,(C} is the
intersection of LGL,(C) with the lower triangular subgroup &~ of
(7.3.3).%

. Proposition (8.4.1). The orbit of H, under N~ is Z,. It car be identified

with the subgroup Ly of N™, where L, = N" Nz 'Liz™"

Proof. The strata of Gr(H) are the orbits of ¥~ by Proposition (7.3.3).
As the group N is contained in N7 each orbit of N7 is certainly
contained in some Z,.

If W eZ, then the projection W— F_ is an isomorphism. Let w; be the
inverse image of z%g, where {g,,..., &,} is the standard basis of €*.
The functions w; are smooth; furthermore {zw;:1<i<nand k=0}isa
basis for W because its projection is a basis for H%"; and W™ is a dense
subspace of the space W*" of smooth functions in W, because H ig
dense in Hy". We know from (8.3.3) that the evaluation map W*"— ("
at any point z of S is surjective, for W™ contains » functions which form
the columns of a smooth map S*— U,. It follows that wy(z), . .., w,(z)

are independent in C” for any z€S?, and so w=(w,...,w,) is an
element of LGL (C), and w(H,)=W.
Now
w(e;) = z%g; + (lower terms), (8.4.2)

where ‘lower terms’ refers to the lexicographic ordering of the basis
elements {z"¢;} = {{™} of H® = H. So

wz (&) = g + (lower terms).

In other words, y =wz™" is the boundary value of a holomorphic map
from the hemisphere |z|>1 to the n X n matrices, and y(x) is upper
triangular. Furthermore y(H,)=W. But the determinant of v cannot
vanish when |z| > 1, for if it did then det(y) would have non-zero winding
number on $?, contradicting the fact that 4, and W have the same virtual
dimension.

Finally, the loop y belongs to z°LTz ™ as well as to N™. For the basis
elements occurring in the ‘lower terms’ in (8.4.2) are not only lower than
z%¢; but also belong to Hy =z"H_. This means that when the operator

1 Qur terminology concerning upper and lower triangular matrices is a little muddled, for
when discussing infinite matrices indexed by Z X Z we regard the i™ row as above the j* if
i>j, while it is customary to do the opposite with finite matrices. We have decided to
tolerate the anomaly that the positive Borel subgroup of GL_(C) is taken to be the lower
triangular matrices in this chapter, but the upper triangular matrices everywhere else in the
book.
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z™" is applied to equation (8.4.2) we have
z7%z%(g) = £ + (element of AH_).

We have now proved Proposition (8.4.1), but to complete the proof of
the Birkhoff factorization theorem (8.1.2) we must show that the
multiplication map LT X L*— LGL,(C) is a diffeomorphism on to a
dense open subset of the identity component. This is, however, very
easy. The map v+ vH, from LGL () to the smooth Grassmannian is
smooth. On the open subset of LGL,(C) where yH, belongs to the
coordinate chart Uy, i.e. where yH, is the graph of an operator
T,:H,—~H_, we have y=vy.y., where the columns of y_
are {&; + T&}. Thus y_ (and hence also v+) depends smoothly on .

The preceding argument shows also that Gr®, with its subspace
topology in the smooth Grassmannian Gr{H), is locally homeomorphic
to Ly and hence is a smooth manifold. It is also a smooth submanifold of
Gr(H): it is easy to see that in the coordinate patch U, of Gr{H),
identified with a space 9 (H,; H_) of linear maps A, — H_, there is an
open subset which is the product of UyNGr™=LT with the linear
subspace P (zH,; H_).

The proof of (8.4.1) shows that the group L is diffeomorphic to the
homogeneous space N7/ N7, where N~ is N"Nz°L*z™®, a finite
dimensional group which is the stabilizer of H, in N~. This means that
the multiplication map

LI X N"—>N" (8.4.3)

is a diffeomorphism.

The splitting (8.4.3) evidently arises from a splitting of the basis
elements of the Lie algebra of N7 into two subsets which span the two
subgroups on the left. The fact that such a splitting of the Lie algebra
induces a splitting of the group is well-known and elementary for a finite
dirnensional simply connected nilpotent group ([20] Chapter 3 Section
9.5); and (8.4.3) is really a finite dimensional result, because L; contains,
for large ¢, the normal subgroup N, of N~ consisting of loops y such that
y(z) — 1 vanishes to order ¢ at z =, and N7/N7 is finite dimensional.
(N7/N7 is nilpotent because N7 /N7, is abelian for r >0.) At present
the splitting which is of most interest to us is a slight variant of (8.4.3),
namely

Ly X Lf—=—z"L7z7", (8.4.4)

where Ly =N"Nz*L7z™, and N* is the subgroup of L* consisting of
loops y such that ¥(0) is lower triangular with ones on the diagonal.
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Theorem (8.4.5).

(i) The map yv>vH, defines a diffeomorphism between z*Lyz™" and a
contractible open neighbourhood U, of H, in Gr'*.

() The stratum =, is a contractible closed submanifold of U,, of
complex codimension

d(a) =2, la; — a — v(a),
i<
where v{(a) is the number of pairs i, j with i <j but a;> a;.
(iiiy The orbit of H, under N* is a complex cell C,, of complex
dimension d(a), which meets Z, transversally in the single point H,. The
splitting (8.4.4) defines a diffeomorphism

Z X C— U,

(iv) The union of the cells C, is Gr§?; in fact C, is the intersection of
Gr" with the cell Cs, of Gro.

Remarks.

(i) We shall call the cells C, the Bruhat cells of Gr'. Notice that part
fiv) of (8.4.5) implies the Bruhat factorization theorem (8.1.3).

(iiy The stratum Z, is contractible, and diffeomorphic to L;. But we
cannot assert, as in the analogous finite dimensional theorem, that L, is
diffeomorphic to its Lie algebra by the expomential map, for the
exponential map of L; is mot surjective. Goodman and Wallach have
given the following example of an element y of N™SL,(C) which does not
belong to the image of exp:

_(1+22"2 4z )
YR e 1227

This cannot be of the form exp(&), for

(1 4
)= ( 0 —1)
does not belong to the image of exp in SL,(C).

Proof of (8.4.5). Little more needs to be said. The contractibility of U,
and Z, follows from the contractibility of the groups LT and N7; these
consist of holomorphic functions in the disc |z] > 1, and can be contracted
by the homomorphisms ¥ >y, (for 0 st 1), where y.(z)=y(t"'z).

The orbit C, is contractible by the same argument (applied to the disc
|z} <1). It is a cell because the exponential map of the nilpotent group
L} is a diffeomorphism.

The proof that G, is the intersection of Gr' with Cg, is exactly like that
of (8.4.1)—<f. (7.4.1).
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It remains to calculate the dimension d(a) of the group L;. Because
conjugation by z* multiplies the (i, /)™ entry of a matrix by z%~%, we find
that L, is an open subset of the matrix-valued functions (f;) such that

f:=1,
fibelongs to zH, Nz""%H.. if i <j, and
Jy belongs to H, Nz%4H._ ifi>].

This leads at once to the above formula for d(a).

One thing lacking from the preceding Proposition, in comparison with
(7.3.3) and (7.4.1), is a description of the closures of the strata =, and
cells . We shall content ourselves with the slightly weaker statement in
our next proposition.

At the beginning of our discussion we asked about the orbits of L™ and
L* on Gr*, rather than of N~ and N*. It is clear that the orbit of H,
under L™ contains H,, for every permutation ¢ of {I;...,n}, where
2= (aoqy, - - - , um). The orbit does not contain H), for any other b, as
one sees from the fact that the action of L™ on W does not change the
dimension of W Nz“H_. The orbit is therefore the union of the strata
Z.5a; We shall denote it by Zj,. The orbit of H, under L*, similarly, is the
union of the cells C,,, and will be denoted by Cpy. Notice that if
ay=a=...2a, then Z, is a dense open subset of Z, and i
a;<=a,=...=ag, then C, is a dense open subset of Cray-

The set of multi-indices a such that @, = a, 2. .. = a, can be identified
with the set of conjugacy classes of homomorphisms from $* into U,. We
shall order such multi-indices by prescribing a<b if

a1+az+...+ak'-<~b1+b2‘+‘...+b;¢ for 15k<n,
and
ayta;t+...+ra,=by+by+...+b,.

The disposition of the sets Zpyy and C],,] is summarized in the following
Proposition, where all indices a are assumed to be written in decreasing
order ey a,=...=a,.

Proposition. (8.4.6).

() The orbits {4} of L™ on Gr'™ are indexed by the conjugacy
classes of homomorphisms §'— U,. The set T, is a locally closed
submanifold of Gr'™ of codimension d(a). Furthermore X, lies in the
closure of Zy,; if and only if a=h.

(i) The orbits {Cyy} of L* on Gl are indexed in the same way, and
Cl is a locally closed submanifold of Gr'™ of dimension d(3), where
a=(@p; @yr, ..., a1). The closure of Cy, contains Cyy if and only if
a<h.
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(i) Co meets Ty, if and only if a=b, and C, meets By, transversally
in the set A, of homomorphisms S'—> U, which are conjugate to z™.
Remark. A, is a generalized flag manifold of the form U,/U, X... XU, ;
its dimension is v(a) in the notation of (8.4.5).

Proof. What needs to be proved is the assertions about the ordering, and
about the intersection of Cjy; with Z,.
For any decreasing multi-index a and any integer p let us define

d,(a)= gl @ ~a)s,
where a, means a if @20 and 0 otherwise. It is easy to check that,
providing £ a4; =Z b,,
a<b< J,(a)=J,(b) for all p,
and that '
W e X, dm(W N2zfH ) = §,(a) for all p,
and
W e Cqedm(W/W N 2PH,) = §,(a) for all p.

From this it follows that a=b if Zy, is in the closure of 2}, or Cjy i3 in
the closure of Cjy, or Cy meets Ziy.
It also follows that if W e Cj, N 2y, then

W=(WnNz"H_ )® (W Nz"H,)
for all p, and hence that

W e zW = @A"zk",
i=1]

where C" = A, ® ... B A, is some orthogonal decomposition of C*. This
implies that W = AH,, where A4:5'~» U, is the homomorphism defined
by

Mz)y=zM&B .. @z

with respect to the decomposition A; @ ... P A,. Thus C\, NE,=A,.
The intersection is transversal because the tangent space to Gr'” at H,
can be identified with the Lie algebra Q. of z°Lyz™*, and then the
tangent spaces to Zj,. Cja and A, correspond to the intersection of €2,
with the factors of the decomposition Lge= L7a-® LT gc® gc. (Here
gc = gL.{(C).)

We have proved the ‘only if’ part of the three assertions about the
ordering. For the converse let us first comsider a pair a<b where
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b =a+e,, for some p <g, where
e,=0,...,0,1,0,...,0,~1,0,...,0)

with 1 and —1 in the p™ and g™ places. We shall show that there is a
complex projective line C U = in Gr™ which joins H, to H,, where b’ is b
with its p® and g™ elements interchanged, and which lies, except for its
end-points {0, »} in Zig N Cr).

There is an embedding i,, of SL,{C) in LGL,(C) which takes

G2

c d

to (f;), where (f;) differs from the identity matrix only in the p® and ¢*
rows and columns, and

(8- )

oo Jag ezt d

Consider the orbit of H, under the action of SL,(C) induced by i,,. The
stabilizer consists of the lower triangular matrices, so the orbit is a
standard projective line §%=C Ue. All of its points except the point at
infinity form the orbit of the strictly upper triangular matrices in SL,(C).

These matrices map into Ly, so 5%~ {0} is contained in X, But the
point at infinity is i,,(A).H,, where

01
A= (-1 0)’
and this is H,., which belongs to Zy,. Thus the closure of 2, contains
Zp On the other hand $*— {0} is the orbit of H, under the strictly
lower triangular matrices, and belongs to Cp,. So the closure of Cy,
contains C),, and Cyp, meets T,

That completes the proof in the case b=a+e,,. In the general case
the first two assertions about the ordering follow because whenever a<<h
one can get from a to b by successively adding multi-indices of the form
€, (See [108] (1.15).) We shall leave the third assertion to the reader.

8.5 The Grassmanniar model for the other classical groups
The Grassmannian description we have given of the Ioop space of U, can
be modified very easily to treat the orthogonal and symplectic groups.

The orthogonal group
The group O, consists of the real matrices in U, so Q0, is a submanifold
of QU..

Proposition (8.5.1). A subspace W € Gt corresponds to a loop in O, if
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and only if it belongs to
Grif = {W e Gt W+ = zW).

All the spaces W € Grff? have virtual dimension 0, but it follows from
(8.5.1) that Grf’ has two connected components, which in fact are
distinguished by the parity of the dimension of the kermel of the
projection W— H.,. (That will appear in Chapter 12: the space F(H)
considered in Section 12.4 is closely related to Gr§.)

Before proving (8.5.1) let us notice that Gr$” is a complex submanifold
of Gr®. For the map Wr>z7*W* is a holomorphic involution on
Gr(H®): in the coordinate patch consisting of graphs of operators
T:H.—H_ it is represented by the complex linear map T—> —z~17*.
The condition of (8.5.1) asserts that W is very nearly an isotropic
subspace of H for the complex bilinear form B on H™ defined by
BI§/§, 7)= (&, n}: more precisely, the radical of W with respect to B is
ZV¥Y.

Notice that we must now avoid identifying H with H, for that does
not respect the real subspaces.

Proof of (8.5.1). First suppose that v is a loop in the complex orthogonal
group O,(C). Then the multiplication operator M, preserves the complex
bilinear form B on H®, so it commutes with the operation W+ W+ of
forming the orthogonal complement with respect to B. As H., satisfies
Hi=zH,, so does yH,.

Conversely, if W* =zW, then WO zW=WNW, and so W © zW is
the complexification of a real n-dimensional subspace of L*($%; R™), and
we can find an orthonormal basis for it consisting of real functions. Thus
W = yH_. for some loop y in O,.

Proposition (8.5.1) gives us two factorization theorems immediately.
Because Grff’ is a homogeneous space of LO,(C) on which QO, acts
transitively, we have :

Propesition (8.5.2). The multiplication map
) QO, X L*0,(C)— LO,(C)

&5 a diffeomorphism, where L*O,(C) denotes the loops which are
boundary values of holomorphic maps

{zeC:lz[<1}— 0,(0).

Secondly, any element W of Gr§” in a suitable neighbourhood of H, is
transversal to H_, i.e. WNH_=0and W+ H_=H%. For such spaces
W the intersection W N zH._ is n-dimensional, and W = (W N zH_) @ zW.
We know then (see the proof of (8.4.1)) that any basis {w, ..., W)
for WNzH. forms the columns of a loop y..€ L"GL,(C) such that
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i is i rthogonal with
=y-Y+, With ¥, € L"GL,(C). If the basis is chosen orthog
Zespect ‘:o Bmwhj:h is possible because the restriction of B to W NzH.
is necessarily nondegenerate—then v.. belongs to L~0,(C), because (see
the proof of (8.3.2))

(D), we(@®)y = S (W, we, peio0+ie
p,g=0

= > W, 2w e~
r=0
= B(W;, We).
This gives us

Proposition (8.5.3). The multiplicarion map
LT0.(C)y X L*0,(C)~> LO.(C)
is a diffeomorphism on to an open subset of LO,(C).+

We could go on to derive Birkhoff and Bruha't decomposition
theorems, but we shall postpone that until the next section.

The symplectic group .
The group Sp, is the subgroup of all elements « in Uz.,_which preserve a
nondegenerate skew form on C**. Equivalently, it consists of’ th_e unitary
transformations u which are quaternionic-linear when C** is 1.de‘nt1fj1ed
with H". If J:C**— C* is the antilinear map representing multiplication
by the quaternion j, then w belongs to Sp, if and only if w/ =Ju. The
complexification of Sp, is the subgroup Sp_,,.(C) of all elements of
GL,,.(C) which preserve the skew complex-bilinear form § defined by
(&, n)= {(J§, n)-

Corresponding to (8.5.1) we have
Proposition (8.5.4). A subspace W € Gr'*? corresponds to a loop in Sp, if
and only if it belongs to

GI™ = (W e Gi®: (JW)* = zW}.

The proof is identical to that of (8.5.1); and the result implies two
factorization theorems precisely analogous to (8.5.2) and (8.5.3).

8.6 The Grassmannian model for 2 general compact Lie group

In studying Q2G for a compact semisimple group G one may as well
assume that the cenire of G is trivial. For if ¢ is a covering group of G
then the manifold QG is just the union of some of the connected

t The open subset is dense in the group of null-homotopic loops in O,(C). These form two
of the four connected components of LO,(C).
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components of QG. If the centre is trivial then G is the identity
component of the group of automorphisms of its Lie algebra g.

The most obvious Hilbert space on which LG acts is H® = LA(SY; go).
This is, essentially, its adjoint representation. We shall identify H® with
H®™, where n is the dimension of G. Thus we are regarding LG as a
subgroup of LU, by the adjoint representation of G on C". The loop
space QG is a submanifold of QU,, which can be identified with a
submanifold of Gr(H#).

Definition (8.6.1). Grf is the subser of Gr(H®) consisting of subspaces W
such that
(i) zWeWw,
(i) Wt=zW, and
(i) W*"is a Lie algebra.

Here W™ denotes the subspace of smooth functions in W, which we
know is dense. To say that it is a Lie algebra means simply that it is
closed under the bracket operation defined pointwise for ge-valued
functions.

- Theorem (8.6.2). The action of LG¢ on Gr(H?) preserves Gi®, and if the

centre of G is trivial then y > yH, defines a diffeomorphism QG — Gr®,

Proof. The first statement is obvious, as any group acts on its own Lie
algebra by Lie algebra automorphisms. (The condition (ii) arises as in
(8.5.1) because the adjoint action preserves the Killing form, so that G,
is contained in the orthogonal group O(ge).)

Conversely, suppose that W satisfies the conditions of (8.6.1). From
condition (if) we have WQ:zW=WNW. We know that W& zW
consists of smooth functions. For any point z of the circle the evaluation
map ¢,: W N W~ g¢ at z is an isomorphism, and must be an isomorph-
ism of Lie algebras. It also commutes with complex conjugation. If y is
defined by y(z) = e,ey” then y is a loop in the group of automorphisms of
g. For a group with trivial centre this means that ¥ belongs to QG. By
our usual argument we have yH, = W.

As in the preceding section we can deduce from (8.6.2) that the
multiplication QG X L*Ge— LGe is a diffeomorphism, and that the
multipheation LT G X L*Ge~> LGe is a diffeomorphism on to a dense
open subset of the identity component. We shall now go further and
determine the stratification and cell decomposition of QG corresponding
to the theorems proved earlier for .

Let us choose a maximal torus T of G, and a system of positive roots.
Then we can define the nilpotent subgroups Nj of G whose Lie algebras
are spanned by the root vectors of ge corresponding to the positive (resp.
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negative) roots. We can also define subgroups N* of L*= L*Gf:
N* consists of the loops y € L™ such that v(0) e Ny (resp. v{=)e Ng).
Thus LFfF e N* < L*.

The result we wish to prove is

Theorem (8.6.3). o

(i) Gr*=QG is the union of strata %, indexed by the lattice T of
homomorphisms A:T—T. . ‘

(i) 3 is the orbit of A.H, under N™. It is a locally closed contrac_abl_e
complex submanifold of finite codimension d, in Gr° and it is
diffeomorphic to Ly = N" N A.LT.A™% . .

(iif) The orbit of A.H. under N” is a complex cell G, of dimension d,.
It is diffeomorphic to L = N*NA.LT.A7%, and meets T, transversally in
the single point A H.,.

(iv) s The orbit o} AH, under A.LT.A"" is an open subset Uy of Gr*.
The multiplication L X Ly~ A L7.A™" defines a diffeomorphism G, X
U ) ~

(v) The union of the cells G, is Gr§=Q,G.

Once again the stratification of Gr® will be induced by that of Gr(H “)é
To define the latter we must choose an orthonormal basis {£.} of H
indexed by Z. We shall do this so that H, is spanned by {{,} for k=0,
and 28 = Eprn Thus {&o, - .., §,—y} is a basis for ge. We shall chopse it
to consist of eigenvectors of the action of T. Each vector ; (for 0=i< n)
then has a weight with respect to the action of T': either zero or a root of

G. We choose the order of the £; so that {; precedes £; whenever the

difference between the weight of &; and the weight of £; is a sum qf
positive roots. In particular, {&o, - - . , oz}, Where m= 3(n - £)and ¢ is
the rank of G, are the negative root vectors, and span the Lie algebra of
Ng, while {&pmass - - - » Cuea) Span the Lie algebra of Ng.

With respect to the basis {Z,} the group N~ acts on H® by elements of
the lower triangular subgroup &~ of (7.3.3).

The strata and cells of Gr(H®) are indexed by subsets S of Z. Arr}ong
them are the sets §; corresponding to the lattice T of homomorphisms
T— T these are defined by

H 5 = K.H_,_ .
We shall write H, for Hs . Our proof of (8.6.3) depends on the following
lemma.

Lemma (8.6.4). The strata 25 and cells Cs of Gr{H?®) which meet Gr* are
precisely the 25 _and Cs, for AeT.

We shall postpone the proof of the lemma to the end of this section,
and shall proceed with the proof of (8.6.3).
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Proof of (8.6.3). Let us define
23_ = 25;_ N Grﬂ.

The lemma tells us that GrS is the union of the Z,. Because N~ is
contained in A" it is clear that the orbit of H, is contained in 2. Thus
the main point is to show that L; acts transitively on Z;. Now from
(8.4.1) we know that any W &3, can be expressed urniquely as vH,,
where y belongs to Ly GL,(C). As L is the intersection of LIGL,(C)
with LG, it is enough to show that y belongs to LG¢. The construction
of y in (8.4.1) can be formulated as follows. If W belongs to =, then
W e zH; has dimension n, and the evaluation map e,: W NzH;— gc
at each point zeS$ is an isomorphism. The orthogonal projection
pr:WNzHy—» H, © zH; is also an isomorphism. Now y(z) is the
COMmposite

Ge—> H, © zH, 0 W A zHE 5 g

Each of the three spaces here is a Lie algebra—in the case of W M zH s
notice that (zH3)™ = AH™, Furthermore each map is a homomorphism
of Lie algebras—for pr is induced by the projection of (zH$)™ on to
zHy © Hy, and (Hi)™ is an ideal in (zH$)™. So y(z} is a homomorph-
ism of Lie algebras, and hence belongs to G, as we want.

The rest of the proof is exactly the same as for GL,,(C), and we shall
say no more about it.

The orbits of L™ and L* on Gr® and Gr§ are obtained, again just as
before, by grouping the X, and G, together into pieces Zy; and Cpy
indexed by the comjugacy classes of homomorphisms T— G, or equiv-
alently by the set of orbits T/W of the Weyl group W of G acting on the
lattice 7. This set. /W can be ordered by prescribing |A] = |u| if the
convex hull of the orbit W. A4 is contained in the convex hull of W. £
(Here T is regarded as a lattice in the vector space 1.) Without any
further discussion we record

Proposition (8.6.5).

() Zy intersects Cpyy transversally in the set A, of homomorphisms
T G which are conjugate to 1.

(i) Zp s contained in the closure of 2},
if and only

C\u1 Is contained in the closure of Ciy i 13> u|

Cay meets 2,

Because we have a cell decomposition of Gr§ whose cells are all of
even dimension the fundamental group m,(Gr§) must be trivial. Now Gr§
1s the polynomial loop space Q_,,G. The fundamental group of QG is the
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second homotopy group 7,(G). ¥ we show that Q,,G is homotopy
equivalent to QG then we shall have a proof of the well-known but
important fact that 7,(G) is zero for any compact Lie group G. This
proof is in essence the same as Bott’s Morse theory proof {14].

Proposition (8.6.6). The inclusion Gr§— Gr®, or equivalently &G~
QG, is a homotopy equivalence.

Corollary (8.6.7). The homotopy group n-{G) is zero.

Proof of (8.6.6). The idea is that Gr§ and Gr® have comesponding
stratifications by homotopy equivalent subsets._ o

Let us arrange the elements of the lattice 7 in a sequence beginning
with { so that if £, is contained in the closure of X, then l precedes u
(which we shall denote by A = u). Let Gr™* denote the union of all the
open sets U, of Gr® such that g <1, and Gr** the union of the U, such
that u < A. We shall also write Gry”* and Gry™ for the corresponding parts
of Gr§. It is enough for us to prove that Gry*— Gr** is a homotopy
equivalence for all A. (Cf. [114] Appendix.) . .

Now Gr** is the union of U, and Gr=*, and the intersection of the two
sets is U ~ Z,. (The fact that all points of U, belong to strata <1 follov&fs
from the corresponding fact for Gr(H) proved in (7.3.3).) The set U is
contractible, while U, —Z, is diffeommorphic to =, x (G, — {H,}) and so
homotopy equivalent to G, — {H, }. -

The space Grg~ is likewise the union of U a0 and Gry*, whose
intersection is Uj o~ Z; o. Whereas U, was diffeomorphic to 4. L7 . A™%,
the set U, o is homeomorphic to A. LT . A"%ee we do not know that
Grf is a manifold—and hence to %; 5 X C,. Furthermore U,  and X, , are
contractible for the same reason as U, and U, ~Z,, is homot)?p.y
equivalent to U, ~3%,. We can conclude by induction that Gri* is
homotopy equivalent to Gr™*. (We are using the fact that f X =U UV
and X'=U"UV’, where U, V, U’, V' are open subsets, then a map
f:X— X' i3 a homotopy equivalence if it induces homotopy equivalences
U= U', V=V, and UNV- U NV’ Cf. [67] (16.24).)

Proof of (8.6.4). We end this section with the postponed proof of
Lemma (8.6.4). _

Let us define an action of the circle T on Lg as follows. Choose: a
homomorphism p =exp(p):T— T such that p belongs to the po_sitwe
Weyl chamber in t, i.e. {a, p) >0 for every root «. For any sufficiently
large integer g the centralizer of p(e®*9) in G will be T. The action of T
which we want is got by simultaneously rotating with speed g and
conjugating by g:

TxLg—Lg
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takes (u, §) to S,E, where

S.8(z) = p(W)E(u™z)p(u) ™.

This action extends to ‘the Hilbert space HS, and is diagonal with respect
to the basis {{,}. In fact S8, = u™E,, where m, increases monotonically
with k& providing g is large enough. The action induces an action on
Gr(H®) which extends to an action of CX, (see Section 7.6). Furthermore
the action preserves Gr®, and also the strata Zg. For any W & Gr(H®) the
point S, W tends to a limit as u—>0, the limit being necessarily fixed
under the T-action and contained in the same stratum as W, (For the
strata are characterized by (7.5.4), and S, simply multiplies the Pliicker
coordinate xs(W) by u™®, where m(S) increases monotonically with §
and tends to « as £(S)~».) But the only fixed points of the action on
Gr® are the spaces AH, with Ae7T. Indeed if vH, is fixed for some
y € QG then

P)y(u™z)y (™) " p(u) ™ = y(z) (8.6.8)
for all u,zeT. Putting u=e>" we find that y(z} commutes with
(€9, and so y(z) belongs to 7. Equation (8.6.8) then reduces to the
condition that y:T—> T is a homomorphism. Thus every stratum contains
a point AH.., and is therefore of the form Zs,.

The argument for the cells Cs is essentially the same: one considers
S.W as u—> oo,

8.7 The homogeneous space LG/T and the periodic flag manifold

We saw in Section 2.8 that the most Important homogeneous space of a
compact group G is G/T, where T is a maximal torus of G. We have
already mentioned that the analogue of G/T for a loop group is LG/T
rather than the more natural space QG = LG/G which we have been

studying so far in this chapter. We shall now give a rapid account of
LG/T.

We know already that LG/T is a complex manifold, for it can be
identified with LG¢/B*, where B* consists of the elements yo -+ v,z +. . .
of L*Gg such that y, belongs to the positive Borel subgroup BJ of
Gc. The main property of LG/T is that it is stratified by the orbits of N~
and the strata are indexed by the affine Weyl group W,,. This group was
defined in Section 5.1. It is the semidirect product W X 7, where W is the
Weyl group of G and T is the lattice of homomorphisms T— 7. We can
regard W.e as a subset of LG/T, for W,e=(Ny. T)/T, where Ny is the
normalizer of T in G. The following Proposition is essentially a
restaterment of the proof of (5.1.2).

Proposition (8.7.1). The set of fixed points of the rotation action of T on
LG/T ES Mff‘
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The properties of the stratification of LG/T are listed in

Theorem (8.7.2).

(i) Thecomplex manifoldY = LG/T = LG-/B™ istheunion of strata =,
indexed by w &€ W

(if) The stratum Z,, is the orbit of w under N™, and is a locally closed
contractible complex submanifold of ¥ whose codimension is the length £(w)
of w. It is diffeomorphic to N, =N~ NwN~"w™

(i) X, is a closed subset of the open subset U, of Y, where U, = w. Z,.
The action of A,, = N* NwN~w™! defines a diffeomorphism

A, XE,— U,

(iv) The orbit of w under A,, is a complex cell C, of dimension €(w)
which intersects %, transversally at w. The union of the cells C, is
Ypol - LpolG/r T.

(V) IFew")=4L(w)+1then 2. is contained in the closure of Z,, if and
only if w'=ws, where s € Wiy is the reflection corresponding ro a simple

affine root.

Here the length £(w) is defined as the dimension of A,, i.e. as the
number of positive affine roots « such that w. « is negative.

The most important part of the content of Proposition (8.7.2) is the
pair of factorization theorems

LGe= |J N"wB* (8.7.3a)
and e
Lpol G‘C = wg_éﬁN;—olWB;—o]. (8.7.3]3)

These follow from (8.6.3) together with the Bruhat decomposition of the
finite dimensional group

Ge= | NgwBi = U NfwB3. {8.7.4)
weW weW

Granting (8.7.4) the proof of (8.7.2) presents nothing new. It does not
seem worth giving the details. For a proof of (8.7.4) we refer to Bourbaki
[20] Chapter 6 Section 2. We shall, however, mention the crucial point in
the proof of part (v) of (8.7.2), although it is identical with the finite
dimensional case.

If ¢ is 2 siople affine root of LG then there is (see (5.2.4)) an
associated homomorphism i, :SL,(C)~ LG which maps the torus T of
SL,(C) into T. This gives us a map i,:5°~Y, where S?=CU» is
SLACYT. If w' = ws, in W, where s, is the reflection corresponding to
a, and €(w") = £(w) + 1, then the map

zrrig(z). w
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from 57 to ¥ defines a holomorphic curve in ¥ linking w to w'. This curve

lies in Z,, except for the point iy(x).w=w’, and so the closure of I,
contains . :

In the case of U, there is a geometrical model for LU, /T which we
shall now describe: it is analogous to the Grassmannian model of QU,.

Definition (8.7.5). FI™ consists of all sequences {W.},.z of subspaces of
H® such thar
(i) each W, belongs to GT(H™),
(i) Wesr < W, for each k, and dim({W,/W,,,) =1,
(@) zWi = Wiy,

It is natural to refer to the points of FI* as periodic flags. We shall also

consider the subspace FI{” of FI consisting of flags such that each W,
belongs to Gry.

I this section it is now once again convenient to identify H with
H = L*($*; C). Then the flag {£*H, )} is a canonical base-point fa F1¢7; its
stabilizer in LGL,(C} is B*GL,(C). The following proposition is proved
in the same way as (8.3.2), and even follows from it.

Proposition (8.7.6). The group LU, acts transitively on FI®, and the
stabilizer of {§*H.} is the maximal torus T of U,.

This means that FI* = LU,/T = LGL,(C)/B™. Evidently FI* is fibred
over G by the map {W,.} > W, the fibre being the finite dimensional
flag manifold U,/T = F|(C*).

The orbits of N~ and N* provide a stratification of FI*? and a cellular
subdivision of FIf”. We shall not pursue this any further, however,
beyond explaining how the strata and cells are indexed by the affine Weyl
group W of LU,. In the present case W is the semidirect product of
the symmetric group §, with the lattice T=7", on which §, acts by
permuting the factors. When W is identified with a subgroup of LU, it
acts on H™ by permuting the basis elements {£*}. In fact it can be
identified with the group of all permutations v of Z with the property

or all & alk+ny=m(k)+n (8.7.7)

Proposition (8.7.8). The strata and the cells of FI are indexed by the
affine Weyl group Wy of LU,

Proof. We must show that any flag {W,} belongs to the orbit of w{H.},
where H, = {*H,, for some permutation  satisfying (8.7.7). Now each
W, belongs to some stratum X, of the Grassmannian, and S, — 8¢+1 has
exactly one element, say s,. The desired permutation is given by
w(k)=s.. For k=0,1,2,...,n—1 we choose a vector w,eH®™
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spanning W,/ W,.., which is of order s.. Just as in the proof of (8.3.2) we
find that {wy, wy, ..., w,.1} are the columns of a loop y such that
vi{H.} = {W;}; and yr~! belongs to N™.

The argument for the cells is precisely analogous.

8.8 Bott periodicity

We have already mentioned in Section 6.4 the Bott periodicity theorem,
which asserts that the infinite unitary group U=U, U, is homotopy
equivalent to its second loop space Q*U. Another formulation is that QU
is homotopy equivalent to

Gro(H) = | Gr(&PHL/H,).

(This formulation is well-known [17]: Gry(H) is the standard model for
the space which algebraic topologists call Z X BU.) The theory which we
have built up incorporates a proof of the theorem, for the identification
of QU, with a subspace of Gr(H) is precisely the Bott map.

Before explaining the proof, let us recall that we showed in (8.6.6) that
the polynomial loop group £2,, U, is homotopy equivalent to the shooth
loop group QU, (and hence, by very standard arguments, to the
continuous loop group Q.. U,). It is a much more elementary fact, but
can be proved by the same argument (8.6.6), that Gro(H) is homotopy
equivalent to Gr(H). So Bott's theorem is a comsequence of the
following.

Proposition (8.8.1). The inclusion
Qper Uy, = G > Gro(H)
induces an isomorphism of homotopy groups up to dimension 2n — 2.

Proof. It is enough to consider the identity components of the two

spaces. _
Gro{H) is the union of cells Cs indexed by subsets § of Z. If S satisfies

n+k+NeSek+N {8.8.2)

for some k then any W e Cs is sandwiched between £*"H, and *H,.
This implies that {"W < W, and hence that W belongs to Gri™. The cell
Cs s therefore completely contained in Gr§”. (Although we shall not
need the fact, it may be worth remarking that in the notation of (8.4.5)
the cells C, of Grf™ obtained in this way are those such that

a;= %1 or 0 for each
and

if ;=1 and a; = ~1 then i <j.)
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To prove (8.8.1) we must show that every cell Cs of Gr, such that § does
not satisfy (8.8.2) has complex dimension =», and that the same applies
to every cell C{=CsNGr§ of Grf® when n+S =S but S does not
satisfy (8.8.2).

The dimension of Cs is given (if § has virtual cardinal zero) by

€S)=2 (k—s0) (8.8.3)

k=0
by (7.4.1). The condition (8.8.2) is easily seen to be equivalent to
S,=m when m=g,+n.
So if (8.8.2) does not hold‘then k—s.=1 when k<s,+n, and
S) = ~sp+ (5o +n)=n,

as we want.

The argument is essentially the same for the cells C{. We leave it to
the reader to check that the formula of (8.4.5) for the dimension can be
rewritten in the same form as (8.8.3), except that for C§ the sum must
be taken only over the n values of k for which s, does not belong to
n + 8. There are two cases. If st —n the result is clear. If not, then s,
does not belong to n + 5 when k <s,+n, because s, < k; the preceding
argurent then applies.

Remark. The possibility of proving the Bott petiodicity theorem by the
above method was first pointed out in the announcement [57] of Garland
and Raghunathan.

8.9 QG as a Kihler manifold: the energy flow

In this section we shall look at the homogeneous space QG afresh,
thinking of it somewhat more geometrically.

Let us choose a positive definite invariant inner product { , ) on the
Lie algebra g. In Chapter 4 we introduced a skew form ¢ on Lg, defined
by -

ot m=5- [ (&(0), 76)) ao.

This defines a left-invariant closed 2-form @ on LG; because it is
mvariant under conjugation by constant loops, and because it vanishes
when £ or 7 is constant, it defines an invariant closed 2-form  on the
homogeneous space QG =LG/G. If £ is a non-zero element of the
tangent space £2g=1Lg/g to QG at its base-point then there is always
some 77 € Qg such that (& 1) #0. (One can take 7 =§&'.) We shall
therefore think of  as defining a symplectic structure on QG.
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If X' is a finite dimensional symplectic manifold with symplectic form @
then to each smooth function F:X—R there corresponds a so-called
Hamiltonian vector field Er on X characterized by

w,(Ee(x), 7) =dF(x;n), (8.9.1)

where xeX and 7 is a tangent vector to X at x. In the infinite-
dimensional case the existence of £, is not automatic, but at most one
vector field Er can satisfy (8.9.1). On the other hand it is easy to see that
if X is simply connected and £ is a vector field on X which leaves w
invariant then §=&, for some smooth function F. (For de Rham’s
theorem applies, and (x; n) = @.(&(x), n) is a closed 1-form on X.) We
shall make use of two examples of this construction.

We consider first the energy function €:QG~> R defined by
1 -1,
t =5 [ In@ v @Pw. - @92
0

(Fere and elsewhere we always use notation as if a loop y were a
matrix-valued function. Thus y(68)7*y'(6) denotes the element of g got
by left-translating to the origin the tangent vector y'(8) to G at y(8).
The formula (8.9.2) is written for y € LG, but is invariant under both left
and right multiplication by elements of G.)

Proposition (8.9.3). The Hamiltonian vector field on QG which cor-
responds to € is the generator of the flow defined by rotating the loops.

Note. In this proposition G is regarded as a homogeneous space LG/G
rather than as a subset of LG. As a subset it would not be preserved by
rotation. If one wants to regard QG as a subset of LG then the action on
v € QG of the rotation R, through the angle o must be defined by

(Rav)(8)=v(8 — a)y(—a) ™. (8.9-4)
Proof of (8.9.3). For an infinitesimal change dv in y the change in € is
- — 1 =1, 1,
d%’(y,éy)mzjrf(? ' 8y 7))
On the other hand the value at y of the vector field corresponding to

rotation is y’ {modulo the action of a constant element of g). So what we
have to show is that

51; J {y7y", 8(y v = 0, (v, O7)

==2"1; f(y“‘y’, (y=2 8v))-
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This is true because
(y7'8y) =y 6y — vy y 8y
hile =8(y" ) + [y, vy,
LIy, vy =y, v L vy =0

Coroltary (8.9.5). The critical points of the energy function & on QG are
the loops y which are homomorphisms y: 5~ G.

Proof. The- critical points are precisely the stationary points of the
corresponding Hamiltonian flow. From the formula (8.9.4) we find that
Rey =y for all @ if and only if y is a homomorphism.

Our other example of a Hamiltonjan flow is even simpler.
Proposition (8.9.6). The flow on QG generated by £ e g corresponds to
the Hamiltonian function F:QG—>R given by

1 =
EM=5= (& v(O)r0)7") ae.

The proof of this is completely straightforward. Cf. [81.

Remark (8.?.7). Combining (8.9.3) and (8.9.6) we see that the Hamil-
tonian fupctwn corresponding to the twisted rotational flow on QG which
was considered in the proof of (8.6.4) is the silted energy given by

‘3(?)=£—rf” :

ds.
This1 function has isolated critical points: they are the homomorphisms
v:8—T.

‘Y(ﬂ)"lv’(*?) —ép

It is our object to investigate the Morse theory of the energy function
on QG, Le. the trajectories of the gradient flow of 4. For this to make
sense, the manifold G must be given a Riemannian structure. There are
very many invariant Riemannian metrics on QG, but the choice is fixed
for us by the fact that QG is a complex manifold: in Section 8.6 we
proved that QG can be regarded as LGe/L*Ge, and is locally
diffeomorphic to L] Ge.

Proposition (8.9.8). The complex structure and the symplectic structure of
QG are compatible, and combine to make QG into a Kahler marnifold.

This means that if 7, is the real tangent space to QG at v, and J, is the
automorphism of T, which corresponds to multiplication by i in terms of
the complex structure of QG, then

@) & ) =w, (& n)foral & neT,
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@@ (& n)rg, (& n)=w g J,n) is a positive definite inner product
on 7.
The Kihler form on T, is then given by

(& m)—g, & n)+iw (s n)

Proof. Because both the complex structure and the form @ are invariant,
it suffices to prove (i) and (ii) when y = 1. If & is expanded as £ = ) .25,
with &, € g¢, then the action of J; on § multiplies &, by i when &k <0 and
by —i when k> 0. (The constant term 5 is to be disregarded, as we are
really working in Lg/g.) Now

o(& m) =12, k{Ex, Me),
keZ

where the inner product has been extended to a complex bilinear form on
gc. This gives us both (i) and (i), for

g& &= g hE)= 2§0k(§_k, E.) =0

For a function F on a Kihler manifold the gradient fiow of F is related
to its Hamiltonian flow simply by applying the operators J, in the tangent
bundle: the two flows are in fact the real and imaginary parts of a flow
parametrized by C. Now we have already seen in Section 7.6 and Section
8.6 that the rotation-action of T on the Grassmannian Gr(H) and on QG
extends to a holomorphic action of the semigroup CZ;. (Notice that we
have by now comnsidered three different actions of T on A. The action
studied in Section 7.6 came from the identification of H with L*(S*; C).
The one we are concerned with now comes from H = H?=L*(S"; gc).
There is also the twisted version of this which was used in Section 8.6,
where the rotation was combined with conjugation by the elements of a
one-parameter subgroup of G. All three are diagonal with respect to the
standard orthonormal basis of A, and in each case R, € T multiplies the
k™ basis vector by a power of u which increases with & and tends to < as
k—>«.) We can now reinterpret the discussion in Sections 7.6 and 8.6,
and in particular the proof of (8.6.4).

First let us recall [115] that a vector field on an infinite dimensional
manifold does not always possess trajectories, and even when it does they
need not be unique. The theory which we have developed can be
summarized as follows.

Theorem (8.9.9).
(1) There is a downwards trajectory of the energy function emanating
from every point y of QG. It is given by

ey, = Rc-’y
fort=0.

S —
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(i) The loop y. is. real-analytic when t>0, and it converges to a
homomorphism ve:8'» G as t— o,

(i) There is an upwards trajectory 1>y, defined for non-zero time
e<t=0 if and only if y is real-analytic. It is defined for all t=<0 if and
only if v is a polynomial loop, and in that case y, converges to a
homomorphism y_., as > -,

(iv) The sets 2y and Cy; of Proposition (8.6.5) are the ascending and
descending manifolds of the critical level A, of the energy; i.e.

YEZp € Vi Y€y as 1o
Y €Cp & VimrY.u€N;, a5 t-s—o0,
It is interesting to specialize this result to the case G = T. The identity

component of QT can be identified with the vector space of smooth
functions f:5'— R. We have

8() =5 | repe

The downwards gradient flow of € is {f}, where {f} is obtained by
solving the parabolic pseudo-differential equation

3 .
Friml oV 2 (8.9.10)

where A =(38/80)% If f is expanded as = 2,6%?, then
fi(8) =X q,elkl+ike

The assertions (i), (ii), (iii) of (8.9.9) are quite clear in this case. But for
a general group the equation corresponding to (8.9.10) is non-linear; and
although our results are very plausible it would probably be rather
difficult to prove them by direct methods.

Classical and quantum-mechanical energy

Combining the isomorphism G = Gr® with the Pliicker embedding of
the Grassmannian (see Sections 7.5 and 7.7) we obtain a holomorphic
embedding

7:QG— P(%).

The rotation action of the circle on H* induces an action on ¥ generated
by an unbounded hermitian operator i(d/dg). Let us think of QG as a
classical state-space, and P(%) as the corresponding quantum state-

space. For any loop ¥ let us choose a unit vector 2, belonging to the ray
sw(y) in 3.
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Proposition (§.9.11). We have
. d
#0)=(2,1:9,),

where the classical energy ¥(y) is defined using the Killing form on g.

Notice that the right-hand-side is the expected value of the quantum
energy operator i (d/dé) in the state Q,.

Proof. The result follows from the fact that the canonical I§ahler
structure of P(#) induces the Kihler structure on QG con}espondmg to
the Killing form on g. This, in turn, is true because the Kihler form_of
P(3) restricts to the standard U, (H%)-invariant form on ('érr(H §), which
corresponds to the basic Lie algebra 2—cocycle. of U, (H*). _The lattfzr
restricts to the basic 2-cocycle of Qu,,, and so—via the f:mbeddmg of G in
L, by the adjoint action——to the 2-cocycle of QG associated to the Killing

form. =

Remark. It is instructive to derive (8.9.11) more directly from the
formula (7.8.4), i.e. to prove that

d
= vy~ 1T },
(y) = trace {1 Y (yJy )
where J is the Hilbert transform of (6.3.2). It is easy to check that the

operator on the right has the kernel

— = (et 3(0 - 0). 7(9)(r(0) ~ o))

at (6, ¢) € S* x S*. When 8 = ¢ this reduces to
1
I 9 s
= 70y (6)

from which (8.9.11) follows by taking the trace and integrating by parts.

8.10 QG and holomorphic bundies

The factorization theorems for loops give us a descriptic;n of points of
QG as bolomorphic bundles on the Riemann sphere §*=CUw. (We
shall write §%= DoU D..,, where Dy={z:|z{ <1} and D, = {z:|z|=1}.)

Propesitior (8.10.1). A point of QG is the same thing as an isomorphisrzn
class of pairs (P, 1), where P is a holomorphic principal Gc~bunfile on §°,
and v is a trivialization of P over D,. The stratum to which (P, 7)
belongs—in the sense of (8.6.5)—is simply the isomorphism class of P.
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Here a ‘trivialization over 1. means a smooth cross-section of P | D,
which is holomorphic over the interior of D.,.

Proof of (8.10.1). Given (P, 1) we choose a trivialization o of P | Dy. The
transition function between ¢ and 7 over the Intersection $*=D,N D,
Is an element of LG. But ois indeterminate up to multiplication by an
element of L*Gg, so we have an element of LGo/L*Ge= QG

Conversely, given yeLG, we can choose a factorization y =
Y- 4. ¥4, where 1:8'> Gis a homomorphism. Because A extends to a
holomorphic map 4:C*—> G it defines a holomorphic bundle P, on §2
(see Section 8.2(ii)) which is canonically trivial over $§?— {w} and
§%—{0}. We assign to y the pair (P, t), where T=1y,.1,,, and 7, is the
canonical trivialization of P, | D..

A complex manifold X is completely described by giving the set of

holomorphic maps M-»>X for every complex manifold M. So QG is
completely described as a complex manifold by the following simple
generalization of (8.10.1), which was pointed out to us by Atiyah (see
[5D).
Proposition (8.10.2). A holomorphic map M-»QG, Jor any complex
manifold M, is the same thing as an isomorphism class of pairs (P, ),
where P is a holomorphic principal Ge-bundle on M % $%, and T is a
trivialization of P | M x D,

Proof. First suppose that we are given (P, ). By Proposition (8.10.1) we
know that m— (P, 7) | (m X 5%) defines a map f:M—QG. We must
show that f is holomorphic. But for any m € M we can suppose that P is
trivial over a set of the form V x Dy, where Visa neighbourhood of m in
M and Dy is {zeS%:|zl<r} for some r>1. Then f]V can be
represented by the transition function between t and a trivialization over
V X Dy. This is 2 smooth map

Vx{z:1=<|z|<r}— G,

which is holomorphic for 1< |z{ <r. Its restriction to V x §* i therefore
a holomorphic map V - LG, as we want.

Conversely, to obtain a pair (P, 7) from each map f: M~ QG it is
enough to define a pair (P, 7) over QG x §? itself. The definition of P as
a smooth bundle is clear: it is constructed by attaching trivial bundles on
QG X Dy and QG X D, by the clutching function given by the evaluation
map £:QG X $*> G. The resulting bundle has a canonical trivialization
over G X D... If we had taken QG to be the space of real-analytic loops
mstead of smooth ones it would be clear that P was a holomorphic
bundle, and the proof would be complete: for in that case £ would extend
to a holomorphic map W, N W..— G, where Wo and W, are suitable open
neighbourhoods of QG x D, and QG X D, in QG x §2. But to treat the
smooth loops QG requires more care.
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We recall from (8.6.3) that QG is covered by open sets U, such
that Uy =3, X, as a complex manifold, and G < Q,,G. Thus G,
is a space of holomorphic maps C*->Ge. Composing the projection
U, = C, with the evaluation map gives us a holomorphic map U, X C*—
Ge which defines a holomorphic bundle P, on U, X S% Proposition
(8.6.3) implies that P, is canonically isomorphic to P| U, % S* as a
smooth bundle. But the bundles P, fit together to define a holomorphic
bundle on QG x $% That is the case because the canonical smooth
isomorphism between the restrictions of P, and B, to (UyNU,)x$% is
easily seen to be holomorphic when |z]<1 and when [z|>1, and is
therefore holomorphic everywhere.

If M is a compact manifold then the trivialization v of P | M X D.. is
unique up to the action of a single element of L™Gg, for any
holomorphic map M > L* G is constant. That gives us

Proposition (8.10.3). If M is a compact complex manifold with a base
point my then the set of base-point-preserving holomorphic maps M— QG
can be identified with the set of isomorphism classes of Ge-bundles P on
M x 8% which are trivial over mq X 5% and M X D..

This result is the starting point of a circle of interesting ideas for which
we refer the reader to Atiyah [5]. We shall content ourselves with
pointing out one immediate coroflary.

Proposition (8.10.4). If M is a compact complex manifold with a
base-point then each connected component of the space of base-point-
preserving holomorphic maps M ~> QG is finite dimensional.

This follows from (8.10.3), because the space of all holomorphic
bundles of a given topological type on a compact manifold is finite
dimensional. (See Mumford and Fogarty [119].)

Proposition (8.10.4) reveals a striking difference between QG or
Gr”(H) and more familiar infinite dimensional complex manifolds such
as the projective space P(H) or the Grassmannian Gr(&) of Chapter 7.
For example, if v € H represents the base-point in P(H) then

(z0; 2) > [Zov + 2y W]

is a family of base-point preserving holomorphic maps $°—> P(H) which
is parametrized by the space of non-zero vectors w orthogonal to v. A
similar family can be defined for Gr(H).

8.11 The homogeneous space associated to a Riemann sarface: the
moduli spaces of vector bundles

Throughout the last three chapters we have always polarized the Hilbert
space H=L*S";C) as H, ® H_, where H, is the space of boundary
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values of holomorphic functions in the disc {z|<1. A rather natural
generalization of this procedure is to replace the disc by some other
Riemann surface whose boundary is a circle. :

Suppose then that X is a compact Riemann surface with a distinguished
point x., and a given local parameter around x... We shall write the local
parameter as z~: thus z is a holomorphic map from a neighbourhood of
Xa t0 a neighbourhood of « in the Riemann sphere. We shall assume that
z(x.) =, and that z is an isomorphism between a neighbourhood of x.,
and the region [z| >3 on the Riemann sphere. The standard circle S* can
then be identified with the circle |z| =1 around x., on X. We shall denote
the part of X where [z|>1 by X,,, and the complement of the region
where |z| =1 by X;. Thus

XX, =8\
Associated to these data there is a subspace H of H® = L¥(S%; C")

analogous to HYP. It is the closed subspace of H'™ consisting of the
boundary values of holomorphic maps X, C".

Proposition (8.11.1). The space HY) belongs to Gr, and has virtual
dimension —ng, where g is the genus of X,

We shall postpone the proof of this, and shall go on to characterize the
orbit of HY under the complex loop group LGL,(C) in analogy with the
description of Gt in (8.3.1) as {W e Gr(H"™):zW < W}.

Tet Ay denote the ring of ratiomal functions on X which are
holomorphic everywhere except for a pole of arbitrary order at x... Using
the local parameter z we think of Ay as a ring of functions of z. As such
it acts by multiplication operators on the Hilbert space H, and hence
on Gr(H®™).

Defirition (8.11.2).
Gr X = (W e Gr(H™): A W < W).

If X is the Riemann sphere then Ay is the polynomial ring C[z], and
then Gr™¥ coincides with Gr?. We shall prove that Gr®¥ s always a
homogeneous space of LGL,(C).

Let us recall, to begin with, that Ay is a finitely generated algebra
which 1s filtered by the order of the pole at x... It contains, up to a scalar
multiple, exactly one element of each sufficiently large degree. More
precisely, if A% is the vector space of functions in A x with poles of
orders =4, then the Weierstrass ‘gap’ theorem ([68] p. 273) asserts that
A% has dimension d-+1-—g, where g is the gemus of X, providing
d=2g.

Proposition (8.11.3). Gr¥ is the orbit of H{’ under LGL,(C).
Proof. Suppose that W belongs to Gr™*. The subspace W™ of



156 ¢ THE FUNDAMENTAL HOMOGENEOUS SPACE

functions of finite order in W, which is dense in W by Proposition (7.3.2),
is a module over Ay. Like Ay the module W™ has an increasing
filtration {W®} by the order of the pole at X.. We- know that
dm(WE /W1 = n for all large k, and it follows that W is a finitely
generated A y-module. It is obviously torsion-free, and hence projective
(because Ay is a Dedekind ring). This means that it is the module of
algebraic sections of an algebraic vector bundie E on X — {x..} whose fibre
E. at x is W/, W™, where a, = {f € Ax:f(x) =0}. As a holomorphic
bundle E is necessarily trivial, for there are no non-trivial holomorphic
vector bundles on an affine curve. Thus there are holomorphic sections
Wi, ..., W, in W whose values at any point x € X — {x..} span the fibre
E.. In particular the matrix (wi(z), . . ., w.(2)) is invertible at each point
z of the circle, and defines a loop y:5'— GL,(C) such that yH@ = W.

The stabilizer of HY in LGL,(C) is obviously the group LEGL,(C) of
loops which are the boundary values of holomorphic maps Xp— GL,(C).
So the preceding proposition gives us )

GréX = LGL,(CY/ LYGL,(C). (8.11.4)

The proof of the proposition shows also that a point of Gr»* can be
identified with an isomorphism class of pairs (E, @), where E is a
holomorphic vector bundle on X and « is a trivialization of E | X, which
extends smoothly to X,. The natural action of L™GL,(C) on Gri™¥
permutes the trivializations « tramsitively, so we have the following
generalization of the Birkhoff factorization theorem.

Proposition (8.11.5). The set of double cosets
L™GL (CN\LGL(C)/LXxGL.(C)

is the set of isomorphism classes of n-dimensional holomorphic vector
bundles on X.

It is in fact more convenient and usual to consider the double coset
space L7\L/L%. This is the set of isomorphism classes of bundles E with
a chosen identification of the fibre at x,, with C™. It is a better space than
L\L/L} because L acts freely on a dense open set % of L/Lx = G,
and is a contractible group. The quotient space, Li\%, which is
homotopy equivalent to %, is the moduli space of n-dimensional bundles
in the sense of Mumford [119]. (Cf. also Atiyah and Bott [7].)

It is interesting to consider the homotopy type of the group L¥ and the
homogeneous space Gr¥). Any loop ¥ belonging to L} has winding
number zero, i.e. is contractible to a point, for if det(y) is the boundary
value of a holomorphic function in Xj then its winding number is the
number of zeros of det(y) in Xp. On the other hand LY is not connected,
for det(y) has a well-defined integral winding number around each
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non-trivial loop in X;. In fact the group of components of L% is given by
mo(Lx) = 1% = Hom(7(Xo); Z) = H'(X; Z),

where g is the genus of X. This is the group of homotopy classes of maps
Xo—> C”, or equivalently of maps X, GL,(C). An even stronger result
is true, namely
Propositior (8.11.6).

(i) The group LXGL.(C) is homotopy equivalent to the group of
continuous maps Xp—> GL,(C).

(i) The space GiP is homotopy equivalent to the space of base-point
preserving maps X— BGL,(C), ie. to the space of topological C"-
bundles on X (with the fibre at x.. identified with C").

In part (ii) of this proposition BGL,(C) denotes the classifying space of
the group GL,(C). Thinking of the space of maps X— BGL,(C) as the
‘space’ of vector bundles on X can be justified from various points of
view. The essential point is that for a given bundle E on X the space of
pairs (f, @), where f: X BGL,(C) and a: E— f*E,y, is an isomorph-
ism between E and the pull-back of the universal bundle E, . on
BGL,(C), is contractible. This implies that the space of maps
Map(X; BGL,) is homotopy equivalent to the ‘space’ or ‘realization’ of
the category of vector bundles on X in the sense of [128]. More explicitly,
the space of maps has one connected component for each isomorphism
class of bundles on X, and the component corresponding to a bundle E
has the homotopy type of B Aut(E), the classifying space of the ‘gauge
group’ Aut(E) of all automorphisms of E. For more information about
this space we refer to Atiyah and Bott [7].

Assertion (if) above follows immediately from (i). For L/L% is
homotopy equivalent to the fibre of BL%— BL, i.e. to the fibre of

Map(Xo; BGL,)~> Map(S'; BGL,,).
The cofibration sequence S*— X,— X shows that this is Map(X; BGL,).

Froof of (i). In order not to go too far afield we shall content ourselves
zvith indicating how the statement follows simply from the results of
130].

The proof is by induction on n. Let us first consider the case n =1. We
have to prove that Hol(X,; C) is homotopy equivalent to Map(Xg; C*),
where Hol denotes the holomorphic maps which extend smoothly to X,
and Map denotes continuous maps. (It is permissible, and more
convenient, to replace Map(Xp; C*) by Map(X,; C*).) The exact se-
quence of groups

0—> Z— Hol(Xy; C) =% Hol(X,; C)— H' (X3 Z)  (8.11.7)
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shows that each connected component of Hol(Xy; C*) has the homotopy
type of a circle, as is also the case for the continuous maps. It is therefore
enough to prove that the right hand map in (8.11.7) is surjective. That is
true because its cokernel is H'(Xo; ), where ' is the sheaf of germs of
holomorphic functions on Xp. This group vanishes because X5 is a Stein

manifold. )
For the inductive step we consider the holomorphic fibration

GL,,_L]_'_> GL,, - Pn-—l’

where GL,.11 i the group of echelon matrices which is the stabilizer
of a one-dimensional subspace of C”, and P*! is (n — 1)-dimensional
complex projective space. To prove that Hol(X,; GL,) is homotopy
equivalent to Map(Xo; GL,,) it is enough to show that the sequence

Hol(Xy; GL,_1,1)— Hol(Xy; GL,)— Hol(X,; P*Y)  (8.11.8)

is a fibration (e.g. to show that it has local cross-sections) and also that
the inclusions

Hol(Xo; GLy-1,1)~> Map(Xs; GL,y,1)

and
Hol(Xy; P~ ")— Map(Xy; P*Y) (8.11.9)

are equivalences; for the sequence of spaces of continuous maps
analogous to (8.11.8) is trivially a fibration. Now GL,_, , is isomorphic
. to GL,-iXC*XC"" as a complex manifold, so Hol(Xy; GL,_;,) is
equivalent to the product

HOl(Xo; GL,-1) X Hol(Xp; C%),

and hence to Map(Xy; GL,.1,1) by the inductive hypothesis. On the other
hand it is proved in [130] that the map (8.11.9) is an equivalence. (Strictly
speaking, the proof in (130] applies to the holomorphic maps
fiXo—> P which extend real-analytically to X, for it supposes that the
homogeneous coordinates fy, ..., f, of f have only finitely many Zeros.
Rut it is easy to see that the space of sets of n subsets S,,..., 5, of X,
which have empty intersection and no points of accumulation in Xj is
homotopy equivalent to the space Q‘:‘)(Xo) of [130] by the map
550 X&, where X} is obtained from X by deleting a collar of small
width ¢ around the boundary.)

It remains to explain why (8.11.8) is a fibration. The second map is
surjective because a holomorphic map X,— "7 is the same thing as a
holomorphic line sub-bundle L of X X C" To lift the map to GL, is to
find an isomorphism between the exact sequence

L X X C* = (X X CY)/L
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and the trivial sequence
XX C=r XX O Xy X C7L

This can be dome becanse X; is a Stein manifold. In view of the
surjectivity and the fact that the total space of the bundle is a group, it is
enough to prove that (8.11.8) has a local cross-section near a constamt
map Xo— P"~'. But that is obvious because GL,— P*"* has holomor-
phic cross-sections.

Proof of (8.11.1). We conclude this section by giving the omitted proof
of Proposition (8.11.1). We shall actually prove a slightly more general
result.

Proposition (8.11.10). Ler E be an n-dimensional holomorphic vector
bundle on X with a given trivialization in a neighbourhood of X... Let W
be the closed subspace of H™ = L}(8%; C") consisting of functions which
are the boundary values of holomorphic sections of E over X,. Then W
belongs to Gr,,(H™), and its virtual dimension is

dim H(X; €) — dim H'(X; €) —n,

where € is the sheaf of holomorphic sections of E. In fact HY(X; %) and
H'(X; ) are respectively the kernel and cokernel of the orthogonal
projection W—zH, .

Proof. We observe first that the projection pr: W > H_ factorizes

WS pe L, g By
for some p such that 0<p <1. Here R, is the operator of Section 7.6
such that R,z" = p™*2*; the operator R,-1:W—> H'™ is bounded because
it assigns to the boundary value of a holomorphic section ¢ of € over X
the function z = ¢(pz), i.e. the value of ¢ on a circle slightly inside the
boundary of X;,. The operator R, : H_~» H_ is compact, 5o the projection
pr: W—=H_ is compact. It follows that the projection W —> H.. has closed
image. |

Now let U and U, be open sets of X slightly larger than X, and X..
Because U, and U, are Stein manifolds the kernel and cokernel of the
map

R,

E(Uy) @ B(U)— B(Uy N UL)

taking {(¢o, P=) 10 Po— ¢ can be identified with H(X;%) and
H'(X; ). Passing to the direct limit as U, and UL shrink towards X, and
X we find that the same groups are the kernel and cokernel of
W B 2 H s (HEH0,
and hence of
pr: Wo— zH3", (8.11.11)
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(Here W™ denotes the set of real-analytic functions in W, and so on.)
The kernel of (8.11.11) is the same as that of pr:W-»zH,, for an
element of the kernel of the latter is the common boundary value of
holomorphic functions in X; and X,. But we know that W— zH, has
closed image, so its cokernel must also coincide with the cokernel of
(8.11.11). This essentially completes the proof: it remains only to observe
that W belongs to Gr,, because it is of the form R, W for some p <1,
where W is the analogue of W constructed from the circle |z| = p on X.

8.12 Appendix: Scattering theory

The Grassmannian interpretation of loop groups arises in the approach to
‘scattering theory’ developed by Lax and Phillips [99]. We shall give a
very brief account of its role there.

Suppose that we are studying the solutions of a wave equation

&y &F

where 1 is a complex-valued function of x and ¢, and p is a positive
real-valued function independent of ¢ which vanishes outside a finite
interval. We think of the equation as describing waves which are
scattered by an obstacle described by p. Intuitively it seems plausible that
if a solution v is fairly well localized in space at time ¢ =0 then after a
long period the solution will (in the sense of its energy, to be defined
presently) be concentrated mainly in the region where p is zero. That is
to say, we expect that an arbitrary solution of (8.12.1a) will, for large
positive z, be close to a definite solution of the “unperturbed equation’

Fy Sy

Py e 0. (8.12.1b)
‘We expect that the same thing will be true also for large negative &

Now let V be the vector space of solutions of (8.12.1a) and V; that of
(8.12.1b): to begin with we shall consider solutions which have compact
support in x for each . We expect that there will be two isomorphisms
T.: V>V, which assign to a solution ¢ the solutions of the unperturbed
equation to which 1 is asymptotic as r—> +. The composite

S=T, T V,— ¥,

is called the scatzering matrix of the original equation; from one point of
view it obviously gives a good description of the behaviour of the
solutions. (It would not be reasonable to expect T, and T. to be
isomorphisms if the equation (8.12.1a) had ‘bound states’, i.e. if the
operator —3&%/8x* + p had negative eigenvalues; but that is excluded by
the positivity of p.)
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Because p is independent of ¢ there iIs a one-parameter group of
transformations {U.} of V defined by time-tramslation. This action
preserves the energy-norm

=3 LG (3 rowfes
lwlz=3] \5) ~\5g) +ev’pax
here the integral is taken along any line ¢ = constant. We can complete V
using this norm to get a Hilbert space H with a unitary group of
transformations; and ¥V, can be completed similarly to get Ej. The
transformations 7, are isometries, and they clearly commute with time
translations; so § is a unitary transformation which commutes with time
translation.

A solution of (8.12.1b) can be analysed by making a Fourier
transformation in ¢

¥ = [ voe™do. £122)

Here 1, belongs to the two-dimensional space of selutions of
Yo+ wz"pm =0,

which can be identified with £* by mapping v, to (¥,(0), ¥,(0)). Thus
H, can be identified with the Hilbert space L*(R; C?) in such a way that
the time translation U, in F; is given by multiplication by the function
& where @ is the coordinate in B. By a simple variant of Proposition
(6.1.1) we know that the unitary transformations of H, which commute
with all U, are the group of measurable maps Mapg,...(R; I%). The
scattering matrix § is therefore an element of this group, which is a kind
of loop group. (If § corresponds to a map o :R -+ U, then o(w) describes
the scattering of waves of frequency w. As very high-frequency waves are
comparatively unaffected by the potential p we shall have o(@w)—>1 as
@ — £, which justifies our regarding ¢ as a loop.)

The relevance of this discussion to the Grassmannian model of loops
comes from the theorem that to give an isomorphism between a Hilbert
space H with a unitary group {U,} and a standard space L*(R; K) with its
multiplication group {e*‘} is precisely the same thing as to prescribe
what is called an owgoing subspace in H. (Here K is an unspecified
auxiliary Hilbert space.) The standard outgoing subspace Hy in Hy is the
closure of the solutions 1 such that (s, 0)=0 for +<0. When H; is
identified by the Fourier transform (8.12.2) with the C*valued functions
of @ the space Hg consists of the boundary values of functions
holomorphic in the half-plane Im(e) < 0.

Definition (8.12.3). An outgoing subspace in a Hilbert space H with a
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one-parameter unitary group {U.} is a closed subspace W of H such thar
() U{W)<W when =0,
G) (U=,

(iti) UOU,(W) is dense in H.

The basic theorem of Lax~Phillips scattering theory [99] is that when
the data {H, {U}, W} are given one can construct a Hilbert space X and
a canonical isomorphism of the data with the standard data {H,=
L*(R; K), {¢"}, Hy'}. In other words, instead of giving the two maps
T.:H— H, it is equally informative simply to prescribe two subspaces
W, in H. Intuitively, W,, which is mapped by T, to Hy, consists of
‘outgoing waves’, while W_. consists of ‘incoming waves’, and is mapped
to (HF)* by 7_.

We shall not prove the theorem here. The variant of it which is directly
related to loop groups is that where the continuous group {U}.m is
replaced by a discrete group {u*},.z. This is very easy to prove. The
standard model is then the space H,= L*(S%; X), the group is geperated
by multiplication by z, and Hy has the meaning which is usual in this
book. When {H, u, W} is given one can determine K as W © u(W). The
theorem reduces essentially to the following.

Proposition (8.12.4). Let K be a Hilbert space, and U(K) its unitary
group. Then the measurable 100p group QuueasU(K) = Lo UK)/ U(K)
can be identified with the set of closed subspaces W of LX(§*; K) such that

@ 2WeWw,
- yr —
(i) Qoz W =0,
(i) Uosz is dense in H.
it

The proof of (8.3.2) included a proof of this result. In fact the hardest
step in proving (8.3.2) was to show that a space W e GI{H™) satisfies the
conditions of (8.12.4).

Remark. We have pointed out that there is no simple model for Q. U,.
The present result, however, shows that there is a—not very explicit—
model for the space of measurable loops.

PART II



