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If G = U, then the generators of the ring of invariant polynomials can
be taken to be Py, B, . . ., P, where P.(A) = trace(A%).

It is a fairly easy result of algebraic topology [16] that the cohomology
H*(QG; R) of the space of based loops on a simply connected group G is
a polynomial algebra on the even dimensional classes obtained by
transgressing the generators of H*(G;R), i.e. by pulling them back to
§*x QG by the evaluation map, and then integrating over S. The class
50 obtained from (4.11.1) is the (2k —2)-form on QG whose value at
¥ € G on tangent vectors represented by &, ..., £y € Qg is
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This form is naturally defined on LG. The cohomology H*(LG) is simply
the tensor product H*(G)® H*(QG), because LG=GXQG as a
space.

The differential form (4.11.2) is evidently not left-invariant, and we
have no reason to expect that the cohomology of LG can be represented
by left-invariant forms. Nevertheless we have

Proposition (4.11.3). The (2k — 2)-form (4.11.2) on LG is cohomologous
to a rational multiple of the left-invariant form obtained by making skew
the map
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Corollary (4.11.4). The natural map
H*(Lg; R)—H*(LG; R)
is surjective.

Remarks. Actually the map of (4.11.4) is an isomorphism. We shall
prove that in Section 14.6. (Cf. also Kumar [97].) The result should be
contrasted with our discovery in Section 4.2 that H*(Map(X; g)) is vastly
larger that H*(Map(X; G)) when dim(X) > 1. Quillen has pointed out to
us that the class in H*™#""(Map(X; G)) which is obtained by pulling
back the class (4.11.1) by the evaluation map X X Map(X; G)— G and
integrating it over a cycle of dimension 4 in X can be represented by a
left-invariant form if k& > d, but usually not otherwise.

Proof of (4.11.3). Let us introduce some more convenient notation, as
follows. When we pull back the Maurer—Cartan 1-form g™ dg on G (with
values in @) by the evaluation map §*X LG— G we shall write the
resulting form as & +7, where £ vanishes on tangent vectors in the
§'-direction and # vanishes along LG. (Thus 7 is y(8) " y'(6) d8 at
(6, v) € 8 x LG.) In this notation the forms of (4.11.2) and (4.11.3) are
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obtained (up to rational multiples) by integrating over §* the forms
©=P(58L---.[5 8l
and
®=P(§&).....[§ 8, § a'8),

respectively on $* X LG. (We write d’ and d” for differentiation of forms
in the §* and LG directions respectively.)
Because d(g~*dg) = —3[g™" dg, g7 dg] on G we find

d'ﬂ = —%[n’ ’T]:
d”g = “%[E: E]’

" and

d¢§+dn=~[& nl
Now consider the form ¥ =P([&, §],...,[E &), & n) on S'XLG. We
have d’[&, £]=0, so
dW=~3P([E &, ..., [5 E), M+ P(5 &L,.... 5 &, & d'E)
+P((& &), ....[5 &L &[5 n]

Using the invariance of the polynomial P, and the fact that ([& &1 %] =0
because of the Jacobi identity, the third term on the right-hand-side is
equal to ©, so that we have

d¥ =10 + @,

Integrating this relation over S* gives the desired result.
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THE ROOT SYSTEM: KAC-MOODY
ALGEBRAS

In general it is a feature of our approach to loop groups that it does not
involve any detailed analysis of the structure of the Lie algebras of the
groups. These algebras are examples of what are called Kac—Moody Lie
algebras,t and there is a very extensive literature devoted to their study.
(CE. Kac [86], Macdonald [109], Helgason [72].) In this chapter we have
attempted to explain fairly briefly how loop groups fit into that context.
The material in Sections 5.1 and 5.2 will be used Jater in classifying the
representations of loop groups, but the Kac~-Moody theary proper which
is sketched in Section 5.3 will not be referred to again.

5.1 The root system and the affine Weyl group

We have explained in Chapter 2 that the crucial step in studying the Lie
algebra g of a compact Lie group G is to decompose the complexification
gc under the adjoint action of a maximal torus 7 of G. One has

gC:t‘C®® (47998

where ¢ is the complexified Lie algebra of 7 and g, is the one-
dimensional subspace of g, where T acts by the homomorphism
@:T—T. The homomorphisms a which occur in the decomposition are
called the roots of G. They form a finite subset of the lattice T =
Hom(T; T).

The most obvious decomposition of the complexified algebra Lge of a
loop group is into its Fourier components:

Lge=D gc. 2%
keZ
Thj_s is the decomposition into eigenspaces of the action of the circle T
which rotates the loops bodily. The rotation action commutes with the

adjoint action of constant loops, so we can decompose Lg. further
according to the action of a maximal torus T of G-

L — k r's
e 292 tez @(ﬁaﬂ a.z* (5.1.1)

T The algebras were first studied, almost simult lv, b
T oy oo imultanecusly, by Kantor [89], Kac [82], and
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The pieces in this decomposition are indexed by homomorphisms
TxT—>T, ie. by elements of Zx T. Once again the homomorphisms
{k, o) which occur (with & possibly 0) are called the roots of LG.

We can reformulate what has just been said by introducing the group
TXLG, the semidirect product of T and LG in which T acts on LG by
rotating the loops. The centralizer of Tin TXLGis TX G, andso TX T
is a maximal abelian subgroup of TXLG. The complexified Lie algebra of
TXLG decomposes as

ChBt) P D te.z"® P g, 2%,
k&0 (ko)

according to the characters of T X T.

In the finite dimensional case the roots of G are permuted by the Weyl
group. This is the group of automorphisms of T which arise from
conjugation in G, i.e. W=N(T)/T, where N(T)={ne G:nTn '=T}
is the normalizer of T in G. If r is an element of N(T) then 7. ¢, = Qe
where na: T+ T is given by na(?) = a(n"'tn).

In exactly the same way the infinite set of roots of LG is pelmuted by
W= N(TxTY(TxT), where N(TXT) denotes the normalizer in
TXLG. The group W, is called the affine Weyl group, for reasons we
shall explain in a moment. Its structure is described by the following
proposition. We shall denote the ‘coweight’ lattice of G by T it is the
lattice of all homomorphisms T— T. (See Section 2.4.)

Proposition (5.1-2). W,y is the semidirect product of T by W, the Weyl
group of G.

Proof. The lattice T is a subgroup of LG, and obviously centralizes T.
On the other hand, if R, is the operation of rotating by u (ie.
R, e TcTXLG) then for any f € LG we have

f R,.f=R.,. ¢, (5.1.3)

where ¢(z) = f(uz)f(z)"L. If f is a homomorphism T—> T then ¢(z) is the
constant f(u) € T, and so T < N(T x T). Conversely, if f € LG belongs to
N(T x T) then f(uz)f(z) ™" must be constant as a function of z for each x,
which implies that z~f(z)f(1)"' is a homomorphism T->T.
Furthermore f(1) must belong to the normalizer N of T in G. It follows
that N(T x T) is in G, and this proves (5.1.2).

In the finite dimensional theory one usually thinks of the lattice T, and
hence the roots, as lying in the real vector space t*, identifying a
homomorphism @:7— T with the linear map &:t— R such that & = &'*.
One can think of the roots of LG similarly as linear forms on the Lie
algebra R Xt of TX 7. But it is more convenient to regard them as
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affine-linear functions on 1, identifying t with the affine hyperplane 1xt
in R X t. For this reason, and also to distinguish them from the roots of
G, the roots of LG are often called affine roots. The group W,y acts
linearly on R X t: the action of W is obvious, and from (5.1.3) the action
of A& T is given by

Ao(x, E)={x, E+xA).

Thus W.x preserves the hyperplane 1xi, and ie T acts on it by
translation by the vector Le T < t.

If a0, the affine root (k, @), regarded as an affine-linear function on
t, is determined up to sign by the affine hyperplane

Heo={5et:(a, §)=~k}

in t where it vanishes. This collection of hyperplanes is called the diagram
of LG. The picture when G = SU, is shown in Fig. 2.

The connected components in t of the complement of the hyperplanes
H, , are called the alcoves of the diagram. Recall that the components of
the complement of the H,, , (which form the diagram of G) are called the
chambers. Each chamber C contains a unique alcove Gy whose closure
contains the origin. ¥f one chooses a chamber C then the roots of G are
called positive or negative according to their sign on C. The set

{Eet:0<a(&)<1 for all positive roots o}

is the corresponding alcove C,. An affine root is called positive or
negative according to its sign on C,. The positive affine roots correspond-
ing to the walls of G, are called the simple affine roots.
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If G is semisimple then it is well-known that each chamber Cis a
simplicial cone, bounded by ¢ hyperplanes H,,.,..., Hy o,
corresponding to the simple roots a;,..., a, of G. Here € is the
dimension of t, called the rank of G. If G is a simple group then it has a
highest root «,., (the highest weight of the adjoint representation) which
dominates all the other positive roots. In that case the alcove Cy is an

~dimensional simplex bounded by Hpya,, ..., Hy and H; o,y and
LG has £+1 simple roots (0, ay), O, @),..., (0, &), (1, ~&ppr). In
general (G is a product of ¢ simplexes, one for each simple factor of G,
and LG has k+g simple roots, namely (0, o) for i=1,...,¢, and
(,~ax)fori=€¢+1,...,¢+ g, where wpuq, ..., &y, are the highest
weights occurring in the adjoint representation.

The finite group W is known to be generated by reflections in the
hyperplanes Hp ., and acts simply trangitively on the set of chambers.
Corzresponding statements hold for W,

Proposition (5.1.4). If G is simply connected, then
() W.g is generated by reflections in the hyperplanes H,, ., and
(i) Wog acts simply transitively on the set of alcoves.

Proof. -
(f) We know that the reflection s,, in H,_, belongs to W. It is given by

5(8) =& — a(8)ha,

where h, is the coroot corresponding to a. (See Section 2.4.) Now
a(h,) =2, so the point —4kh, belongs to Hi, o The reflection s, , in H ,
is therefore

S}c,a(‘S) = (E + %kha) - a:(& + %kha')huf - %ker
= 54(E) ~ kb, (5.1:5)

But &, belongs to the lattice T, 50 5., € WXT = W,..

Conversely, it is enough to show that the translation tr by h et
belongs to the group generated by the S.a» for the coroots k,, generate 7.
But from (5.1.5) we have

Iy = Sl,--asﬂ.a-

(i) (Cf. Bourbaki [20] Chapter 5, 83.1.) Let A be an arbitrary alcove.
We must show that y4 = G, for some ¥ € W,s. Choose a point ¢ in A.
The orbit of 2 under W is a locally finite subset S in t. We must show
that .§ meets ;. Choose a point c € G, and a point b & § whose distance
from ¢ is minimal. If b ¢ C, then b must be separated from ¢ by at least
one wall H of . Reflecting b in H will produce a point of the orbit §
closer to ¢ than b is: a contradiction. So We acts transitively on the
alcoves. Conversely, an element of W is completely determined by the



74 5 THE ROOT SYSTEM: XKAC-MOODY ALGEBRAS

alcove to which it takes G that follows at once from the corresponding
fact about the action of W on the chambers.

Remark (5.1.6). The proof of (i) actually shows that W is generated by
the reflections in the hyperplanes corresponding to the simple affine
T00ts.

5.2 Generators and relations

We can now describe the Lie algebra L g, or more precisely its universal
central extension, in terms of generators and relations. For a finite
dimensional semisimple algebra g, if one chooses for each root « a
non-zero element e, in the root-space g, (see Section 2.4) then gc is
generated by the e,, and even by ¢;=¢, and fi=e_, forj=1,..., ¢
where the «; are the simple roots. In fact [¢;, £] is 2 multiple of the coroot
h;=h, €t, and when the ¢; and f; are normalized so that [¢;, f] =ik, the
foliowing is a complete set of relations defining ge: -

e, 1= ik
e, fil =0 i jk
[h_,-, ek] = iajkek

(B, fel = —iaufy (5.2 1)‘

(ad ) e, =0
(ad £, = 0.

Here ‘ad x° means the operation y+~>[x, y], and the ay are integers
forming an € X € matrix called the Cartan matrix of g. This matrix
determines the structure of g completely. For a proof of this, see Serre
(134].

Now let us turn to loop groups. Let us choose elements ¢;, f: in Lgg
corresponding to the simple affine roots. In the notation of Section 5.1 we
can take ¢; and f to be the usual elements of go < Ly when 1=j =4,
and e =ze_,, f=2z "¢, for £<j<{+q. (Here ¢ is the number of
simple factors in g.)

Proposition (5.2.2). If g is semisimple then L,qqc is generated by the

elements ¢, f; corresponding to the simple affine roots.

Proof. We may as well assume that g is simple. Then the ¢; and f; for
j=¢ generate G¢. But e, =ze_,, where a is the highest root of q.
Because the adjoint representation is irreducible, all of zgr can be
obtained by applying elements of g¢ t0 ze..,., and s0 zgg is contained in
the algebra generated by the ¢; and f. But then z%_, is a multiple of
[zh;, ze_..], where ih; =[e;, f;] and j=<{ is chosen so that «(k;)50. This
gives us z°ge. And so on.
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We can now check at once that the set of relations (5.2.1), where Jand
k run from 1 to €+ g, hold in Lgc. The (€ + q) X (€ + ¢) Cartan matrix is
given by

@G = Brlhg)

v_zhere Bi=a;if j=<£ and §;= —a; if j > €. Because only ¢ of the §; are
linearly independent, we see that the Cartan matrix has rank £.
Although the relations (5.2.1) hold in L,,a¢ they do not define it. It is
a theorem of Gabber and Kac [52]—which we shall not prove in this
book—that the relations define the universal central extension I:polgc of
Lpagc by K¢=C? which is described by the cocycle wy of (4.2.7). We
shall content ourselves here with pointing out that the relations (5.2.1) do

hold in Lyugc. To see that, we identify L ge with L,8c @ K¢, and
define elements &, f, &; of Lpage by

&=(¢;, 0)

=00

hi=(h,0) for j=1,...,¢,

= (f;, ~3(hy, b)) for j=€+1,...,¢+q

It is easy to check that the ¢, )f-,q h; satisfy the relations (5.2.1).
Furthermore the elements generate Lpot8e, because the inner products
(B, )i, for £ <j=<€+g, span K.

With the preceding formulae in mind it is natural, whenever we are
studying a central extension LG of LG defined by a bilinear form { , )
on g, to associate to cach affine root a=(k, &) with &#0 an affine
coreot hy in Lg defined by

ho=(hy, =3k{h,, Ry )). (5.2.3)

Taking k., together with e,=(z%,, 0) and e..=(z"%e_,, 0) we then
have a copy of the Lie algebra of SU, embedded in Ly, and we can
exponentiate to obtain a homomorphism

ig:8U,— LG, (5.2.4)
The argument of the proof of (3.5.3) clearly implies the following.
Proposition (5:2.5). If G is simply connected then the € + g subgroups
io(SUL) corresponding to the simple affine roots generate L, G.

Example. The group L.uSU, is generated by the subgroup SU, of
constant loops, and the copy of S, consisting of the elements

( a bz)
-bz"l 3
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with |a[? + |6* = 1. The latter subgroup is the transform of the former by
the outer automorphism of LSIUL corresponding to the mnon-trivial
element of the centre of SU,. {Cf. (3.4.4).) :

5.3 Kac-Moody Lie algebras

1t is well known that the Cartan matrix A = (g;) of any semisimple Lie
algebra gc satisfies the following two conditions (see [20] Chapter 6,
where a; is written n{a;, o;)).

(Cl) azeZforalli j; a; =2 for all i; a; <0 if i 4 j; a; =0 whenever
4= . - .
! (C2) A is positive definite, in the sense that all the principal minors of
A are >0,

Conversely, given any £ X € matrix A satisfying (CI), thexrelations (5.2.1)
define an abstract complex Lie algebra g'(A4), which is essentially the
Kac~Moody Lie algebra defined by the Cartan matrix A._I_f A satlsﬁe_s
(C2) as well, then g'(A) will be finite dimensional and seg:msxmple, but if
(C2) does not hold, g'(A4) will be infinite dimensional. It is natural to ask
what can be said about g'(A) in this infinite dimensional case. It turns out
that, after modifying q’(4) slightly in a way which corresponds to passing
from LG to the semidirect product TXLG, one obtains an algebra to
which much of the finite dimensional structure theory can be carried
over. As it is not our purpose in this book to give a systematic exposition
of Kac-Moody Lie algebras, we shall only describe the beginning of the
theory, referring the reader to the excellent survey article of Macdonald
{109] or the book of Kac [86] for further details.

The first thing to notice is that the elements A; are linearly independf.:nt
and generate a maximal abelian subalgebra §’ of a'(A). The analogy with
the finite dimensional case now suggests that one should define the SlmpI.e
roots o} € §"* of g’(A4) by the formula &;(h;) = a;. Unfortunately, if A is
not invertible, the resulting simple roots will be linearly dependent. This
problem can be overcome by passing to a semidirect product g{A)=
D@ g’(A), where D is a space of derivations of g'(A) defined as
follows. Let D’ be spanned by the dexivations d;, i=1,..., %, deﬁne::l
by di(e))=d,¢;, and di{(f)= -5, Then ad(§’) is a subspace of b,
since ad(h;) =L ¢yd;; let b be a complementary subspace, so that
dim b =corank A. Then g(A)=b&® g'(4) is the Kac-Moody Lie
algebra with Cartan matrix A; it is independent of the choice of D
up to isomorphismi. _

With this modification, § =D @}’ is a maximal abelian subalgebra of
a(A), and the simple roots «; can be defined so that [k, ¢;] = a,(h)e, for
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all hel. Then (Ij(hg.)ma‘.j and the e; are linearly independent. The 28

remaining roots are defined in the obvious way.

To proceed further we need a complex-valued invariant symmetric
bilinear form on g(A4). Unfortunately g(A) may not have such a form; in
fact a necessary and sufficient condition for this is that the Cartan matrix
is symmetrizable, which means that there is an invertible diagonal matrix
D such that DA is symmetric. When it exists, the form is non-degenerate,
and it is unique up to a constant factor if A is indecomposable, i.e.
cannot be written as a non-trivial direct sum of two other matrices. (If A
is decomposable then g(A) is the direct product of the corresponding
subalgebras.)

If there is an invariant form { , ) on g(A) then its restriction to § is
non-degenerate. Relative to the corresponding symmetric bilinear form
on §* one has {0;, ¢;) >0 for all i. In general, {«, a) is real for each root
a, but is not always positive unless g(A) is finite dimensional: the roots «
for which (e, &) > 0 are called real, the others imaginary.

The Weyl group W of g(A) can now be defined as the group of
isometries of § generated by the reflections in the planes H,, = ker a;.
Obviously W takes real roots to real roots; in fact, the real roots are
precisely the W-orbit of the simple roots.

We must now explain where loop algebras fit into this picture. The
Cartan matrix of a Lie algebra Lg. satisfies (C1) and

(C2") detA=0 and all the proper principal minors of A are >0.

(see [86]). Conversely, the Kac~-Moody Lie algebras corresponding to
Cartan matrices satisfying (C1) and (C2') are usually called affine Lie
algebras. Thus Lgc is an affine Lie algebra, or, more precisely, the
semidirect product C7 & Lgc, where g is the number of simple factors in
Ge- (I 8c=81D...0 g, ¢ then C?P Lgc means the product of the

" algebras C@ng, where the factor C is generated by the obvious

. . d a .
derivation ~i TR of Lg;e.)
Only about half of the affine Lie algebras arise in this way. The
remainder are the Lie algebras of the twisted loop groups introduced in
Section 3.7. In the algebraic context one chooses an guter automorphism
@ of g¢ of fmite order k, so that k=1, 2 or 3, and replaces Lgc by its
subalgebra L)gc consisting of the loops f € Lge which are equivariant:

f(e7'2) = a(f(2)), (5.3.1)

where ¢ is a primitive ™ root of unity.
All affine Lie algebras admit an invariant symmetric bilinear form, and
their root systems are well understood (see Helgason [72] Chapter X §5).
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We have already discussed the root system of Lge in the preceding
section, and the twisted algebras present little extra difficulty.

if G is a simply conmected Lie group with L1e_ algebra ge, then any
automorphism of gg lifts uniquely to an automorphism of Ge and one can
define the twisted loop group Li.,Gc by the same formula (5.3.?.), where
f is now interpreted as an element of LGg. Thus every affine Lie algebra
comes from a Lie group. The extent to which this is true for an arbitrary
Kac-Moody Lie algebra is an open question. Certainly no concrete
realizations of the groups are known. (See Tits [145], [146] for the
current state of affairs.)

6

LOOP GROUPS AS GROUPS OF
OPERATORS IN HILBERT SPACE

In this chapter we shall study the natural embedding of the loop group of
GL,(C) in the restricted general linear group of Hilbert space. This
embedding will play a fundamental role throughout the rest of the book.

6.1 Loops as multiplication operators

Let H™ denote the Hilbert space L%(S%; C*} of square-summable
C"-valued functions on the circle. The group LeGL,(C) of continuous
maps §'—>GL,(C) acts on H™ by multiplication operators; if ¥ is a
matrix-valued function on the circle, we denote the corresponding
multiplication operator by M,. ,

The norm ||M, || of the operator M, is ||y, the supremum of ly(enii
for GeS’ It follows that y~M, cmbeds the Banach Lie group
LewGLA(C) as a closed subgroup (with the induced topology) of the
Banach Lie group GL(H™) of all invertible bounded operators in H®,
with the operator-norm topology. We recall that GL(H™) is an open
subset of the Banach algebra B(H™) of all bounded operators in H®
(34].

The operators M, all commute with M,, the operation of multiplication
by the scalar-valued function z = &'° on the circle. Indeed LyGL,(C) is
not far from being the commutant of M, in GL(H®).

Theorem (6.1.1). The commutant of M, in GL(HY) is the group
LneasGLA(C) of bounded measurable maps $*— GL,(C).

To say here that y is bounded means that both ||4(6)]] and ey
are bounded outside a set of measure zero.

Proof. If A e GL(H™) commutes with M,, let ¢,= A¢, & H @ where ¢,
is the " basis vector of C", identified with the corresponding constant
function in H. Thinking of the ¢; as taking values which are
n-component column vectors, we put @i, ¢, . . ., ¢, side by side to
form a measurable matrix-valued function ¢. Then A4 = M,. For we can
approximate any f € H? by elements of the form 3 p,(z)e; where each D:
is 2 polynomial in z and z™!; and because A commutes with M, we have

A (E Pi(z)fi) = Z pz)pi=M, (2 Pi(z)-‘-‘,-).
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It follows that A = M, and that [[¢(6)[| and [[¢(6)™"]| are essentially
bounded.

6.2 The restricted general linear group of Hilbert space

i ed results we must introduce a restricted general
gge:legugo(r;hggﬁéoup was first studied by Shale [136]._) It is dgﬁued
for a Hilbert space H which is equipped with a polarization, i.2. a
decomposition H=H, ®H. as the orthogonal sum of two closed
subspaces. The decomposition can be conveniently given by the unitary
operator J: H-»H which is +1 on H, and ~1 on H.. The restricted
general linear group consists of the operators which are fairly close to
preserving the decomposition H = H, ® H_.

Definition (6.2.1). GL.(H) is the subgroup of GL(H) consisting of
operators A such that the commutator [J, A] is a Hilbert—Schmidt
operator. -

We recall (cf. [125]) that an operator T:H,—H,is Hilberthchn!idt if
for some (and hence every) complete orthonormal sequence {e;} in H
the sequence L | Te,|* converges. The Hilbert-Schmidt norm |I?z’”|_i2 is
then (F || Te;||?). The Hilbert-Schmidt operators in H form a two-sided
ideal %(H) In B(H)~-it follows fl.”om this that GL,(H) really is a
group—and they are themselves a Hilbert space under the nomm || ||,

The definition of GL(H) can be reformulated as follows. If an
element A of GL(H) is written as a 2 X 2 matrix

A= (: ‘Z) 6.2.2)

with respect to the decomposition H =H.@H., then A belongs to
GL...(H) if and only if & and ¢ are Hilbert—Schmidt operators.

For yet another formulation, we introduce the Banach algebra %‘,(_H)
of all bounded operators A :H—>H such that [J, A] is Hilbert—Schmidt.

The norm || |, is defined by
Al =4l + {1, Alll-

GL.(H) is the group of units of  B,(H): we'give it the
;Ic‘,k;eoligfugeﬁned t(>y | |is» and it is then a complex Banach Lie group.

We shall also define the restricted umitary group.

Definition (6.2.3). U.(H) is the subgroup of GL.(H) consisting of
unitary operators.

U H) is 2 real Banach Lie group. The standard polar decomposition
{cf rc[5125}) of operators in Hilbert space shows that GL,.(H) is the
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topological product of U (H) and the contractible space of positive
definite elements.t GL.(H) is the complexification of U, (H).

If the operator A of (6.2.2) belongs to GL.=GL.(H) then its
components a and 4 are Fredholm operators, i.e. they have finite
dimensional kernels (null spaces) and cokermels. For an operator is
Fredholm if it is invertible modulo compact operators, and the inver-
tibility of A implies that a and 4 are invertible modulo Hilbert—Schmidt
operators, which are compact. {An account of Fredholm operators from
a topologist’s point of view can be found in the appendix to Atiyah [3]. In
Douglas [40] there is a detailed discussion from the point of view of
operator theory.) A Fredholm operator a has an integer invariant x(a),
its index, defined by

x(a) = dim ker(a) — dim coker{a).

This is invariant under continuous deformation, and divides up the space
of Fredholm operators into its connected components. It follows that the
group Gl is disconnected into pieces characterized by the integer x(a).
(Notice that y(a)= —x(d), because a&d can be deformed linearly
through Fredholm operators to the invertible operator A.) In fact two
elements A, and A, are in the same connected component if y(a,) =
x(az): that follows from the following much more precise result, which
shows that GL. has the homotopy type of the space which topologists
call Z x BU.

Proposition (6.2.4). The map Awra from GL.(H) to the space
Fred(H. ) of Fredholm operators in H. is a homotopy equivalence.

o~

L S
c d c
which assigns to an element of GL,. its first column. This is a map onto
an open subset F of Fred(H,) X F,(H,; H.), where F,(H,; H_) is the
space of Hilbert~Schmidt operators H,.— H_. On the other hand ¥ is

also the homogeneous space GL,./%B, where B is the subgroup of all
elements of the form

G o

0 dr

This subgroup is contractible, for it is the semidirect product of GL(H.)
and the vector space %(H_; H.). (We recall—see Kuiper [96]—that the
general linear group of Hilbert space is contractible.) S0 GL— F is a
homotopy equivalence.

Proof. Consider the map

TOne must check that taking the positive square-root of positive elements of %,(H) is
well-defined and continuous.
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But the projection % Fred(H,.) is also a homotopy equivalence, for
the inverse image of an element a is the contractible open set of
F(H,; H.) consisting of all operators ¢ such that.c | ker(a) is injective.
(A map with contractible fibres is a homotopy equivalence providing
certain local conditions are satisfied. (See Dold [39].) These hold
automatically for a projection from an open set of a Banach space.)

6.3 The map LGL,(C)— GL.(H™)

Returning to loop groups, we have seen that the continuous loops in
GL,(C) can be regarded as a subgroup of GL(H™). The smooth loops
are contained in GL.(H™). In defining the restricted group we shall
always decompose H" = L*(8'; C") as H{ @ H™, where

H = {functions whose negative Fourier coefficients vanish}
= {f e H™:f(6) = 3, fe'*® with f, & o:"},
k=0

= {f e H"f is the boundary value of a
function holomorphic in |z| <1},
and
HE = (W)

={ren:f(0)= 3 feel.

k<0

In other words, we have decomposed H™ essentially into the positive
and negative eigenspaces of the infinitesimal rotation operator —i d/dé.

Proposition (6.3.1). If v:S8"—» GL,(C) is continuously differentiable, then
the multiplication operator M, belongs to GL . (H™),

We shall give two proofs of this, as both are instructive,

First Proof. Let us write v as a Fourier series

7(6)= 2, 7:™°,
keZ
where the v, are #n X n matrices. With respect to the obvious orthonormal
basis of H™ the operator M, is represented by a Z X Z matrix (M,,)
whose entries are n X n matrices. In fact M, = y,_,. We must show that
the (HY—H) and (H®— HY) components of M, are Hilbert-
Schmidt, in other words that

2 lIM,P<= and E;OIIMMII’"‘<°°-

p=0,g<0 2<0,q
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This is equivalent to

2, (k| +1) [l <o,

keZ
which is certainly true if y is differentiable, as the square of the L? norm
of the derivative v is ¥ &2 |y, |[%

Second Proof. The operator J defining the decomposition B & H® js
a singular integral operator

1 2T
O =52PY [ K6, 6)1(9) 0

whose kemel X is given by

K(0, ¢)= 3 He-#)_ 3 oik(o-e)

&=0 Je<0)
=1+icot3(6 - ¢). (6.3.2)
Here PV denotes the ‘principal value’ of the integral, i.e.

A 2
m ([ +[)
&0 \Jg G+e
(7 is the analogue for the circle of the Hilbert transform J of functions on
the line (cf. [158] Vol. 2, p. 243) defined by

N =5pv [ Wf%dy. )

The commutator [M,,J] is therefore described by the kernel
K(8, ¢)(y(8)—y(¢)), and is Hilbert—Schmidt when the kermel is
square-summable, i.e. when

== @) —y(o)l?
L -[0 Mhsin%(@-—gb) dé dgp < oo,

tI'hat— is certainly true if y is continuously differentiable, for then the
integrand is a continuous function on S* x §%,

The loop group LGL,(C) is of course not 2 topological subgroup of
GL(H): it has a much finer topology than its image. In fact the
topology on LGL,(C) induced by GL..(H) can be described in the
following way.

If y=X y.z® is a matrix-valued function on S then the Hilbert—
Schmidt norm of the commutator [M,, J] is

= {S e el
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This is commonly known as the Sobolev norm corresponding to 3-

differentiable’ functions [144]. Let A denote the Banach algebra of
measurable matrix-valued functions v on $* such that

i = ylle+ lyllag <o

(Here |||l denotes the L™ norm.) The group GL,(A) will be denoted by
LyGL,(C). It is a Banach Lie group. Clearly we have

Proposition (6.3.3). LyGL,(C) is the commutant of the multiplication
operator M, in GL.(H™).

The group LyGL,(C) is of interest to us because it is the largest loop
group to which much of the theory of this book applies: in particular it is
the largest group for which the crucial central extension can be
constructed and the basic irreducible representation defined. On the
other hand it is hard to describe its elements explicitly. It contains all
loops of class CIU, but it neither contains nor is contained<in the group of
continuous loops, and the smooth loops are not dense in it. We shall now
give some examples to illustrate these facts.

Examples.
(i) Piecewise smooth loops belong to Ly if and only if they are
continuous: the typical discontinuous example is

> Sm}ce:%{n—- @) for 0<8<2n
k>0
(if) The function
< coskd
- k=1 k IOg k

satisfies ||f]|,,5 < but is not bounded near § =0 (because L 1/klogk =
oe; see Zygmund [158] Chapter 5 §1), and hence not continuous.
(iii) The function

sin k8
k(log k)-I!

g =
k=1

is continuous, but |ig||, ;= .
(iv) The function e”, where fis as in (ii), belongs to L,T, but is not
continuous. To see that ¥ belongs to LyT we begin with ¢, where
sin k6
k=1 k lOg k )

a= —

This function & is bounded and continuous and belongs to the Banach
algebra A, so e belongs to LyC*. But e” has the unique factorization
e*=eV, e, where h(z) = —i 0., 2°/k is the boundary value of a function

6.4 BOTT PERIODICITY &5

holomorphic for |z} <1. We shall see later—from Proposition (8.3.5)—
that this implies that e belongs to LyT.

6.4 Bott periodicity

The inclusion LGL,(C)=> GL(H"™) is essentially the map known to
algebraic topologists as the inverse of the ‘Bott periodicity’ map. Bott’s
theorem asserts that its restriction to the subgroup QGL, (C) of ‘based’
loops, i.e. those such that y(0) =1, induces an isomorphism of homotopy
groups 7; for i <2n —1. Because m;QGL,(C)=um;,,GL,(C), while, as
we shall see in Section 6.6,

WG liey = 70,1 GL,(C) {6.4.1)
when { <2n + 1, this means that
G (C) = m,,,GL,(C)

when i <2rn —2. We shall return to this subject in Section 8.8. Mean-
while let us potice the interesting fact that the inverse Bott map
(ordinarily defined only up to homotopy) has been realized as a
homomorphism of infinite dimensional Lie groups.

6.5 The isomorphism H™ = H and the embedding LT — LU,

Although it seems at first sight a very unnatural thing to do, we shall find
it surprisingly useful to identify the Hilbert space H® = L*($; C™) with
the standard Hilbert space H = H" = L*($*; C) by means of the obvious
lexicographic correspondence between their orthonormal bases: if
{&::1=i=n} is the standard basis of C*, we make &,z* € H* correspond

to z***'e H. More invariantly, given a vector-valued function with
components (fi, f3, . - -, f,), We associate to it the scalar-valued function f
given by

FEQY=AEY+ERED +. ..+ (L. (6.5.1a)
Conversely, given f € H, we obtain () € H® by

f) =1 3 EFD), (6:5.15)

where { runs through the n™ roots of z.

The isomorphism H®=H is an isometry. It makes continuous
functions correspond to continuous ones, and also preserves all other
reasonable classes of functioms, for example: smooth, real analytic,
rational, polynomial. Furthermore the decomposition H™ = H{" @ H®™
corresponds to the decomposition H = H, D H...

The multiplication operator M. on H™ corresponds to M,- on H.
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Identifying the commutant of M,» on H with L,...GL.(C) by (6.1.1), and
noticing that it must contain the commutant of M. on H, we have an
inclusion

LineasC™ @ Lipeas GLL(C),
inducing
LC* < LGL,(C),
LT LU,

and so on. The last inclusion has already been described in Proposition
(3.6.4).

6.6 The central extension of GL .. (H)

We shall now define a central extension of GL, by the multiplicative
group C* of pon-zero complex numbers. The motivation for the
definition will become clear in Chapter 7.

We begin by recalling a few facts about traces and determinants for
operators in Hilbert space. For proofs and further details we refer the
reader to Simon [137].

(i) An operator T:H,~» H, (where H; and H, are Hilbert spaces) is
of trace class if it is of the form

Ty = 2 Aelug, v)w,

where {u.} and {w,} are orthonormal families in H;, and H,, and
T lAk] <o, The trace norm ||T||; of T is then 1 ||, and the trace of T,
defined if H, = H,, is given by

tr(T) == 2 A {tte, W)

(i) The operators of trace class in B(H) form a two-sided ideal #,(H)
contained in the ideal $,(H) of Hilbert—Schmidt operators. The product
of two Hilbert—-Schmidt operators is of trace class.

(iti) An operator A:H->H has a determinant (by definition) if and
only if A —1is of trace class. If A has a determipant it is invertible if and
only if det(4) +0. If A, and A, have determinants, then so does 4,4,
and det{A,4,) = det(A,)det(A,).

To obtain the central extension of GL,., we begin by constructing an
extension

T B> GLY, (6.6.1)
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of the identity component of GL,. by the group 7 of all invertible
operators g : H, > H, which have a determinant. (The topology of 7 is
defined by using the trace-norm as a metric.) The extension % is of
interest in its own right. We shall see that it is a contractible Banach Lie

group. The exact sequence of homotopy groups associated to the
fibration (6.6.1) shows that

m(GLL) = =, ().

The last group is well-known to coincide with 7x;_1(GL,(C)) when
i~1<2n—see, for example, Palais [121]—and this gives us the iso-
morphism (6.4.1) already mentioned.
The definition of € is very simple. The identity component of GL,.,
consists of the operators
a b
A= (c d)

such that the Fredholm operator a has index zero. Because a has index
zero one can add to it an operator ¢ of finite rank so that g=a+tis
Invertible. We define € as a subgroup of GL,., X GL(H,):

€={(A, 9) € GL.s X GL{H..):a ~ ¢ is of trace class}.

We give it, however, not the subgroup topology, but that induced by its

embedding
4, q)—> (A, a~q)

as an open set of GL.. X % (H,). It is then a Banach Lie group. The
motivation for the definition of € will appear, as we have said, in Chapter
Seven, but it is at any rate clear that € is an extension of GL% by 7.

Proposition (6.6.2). The group € is contractible.
Proof. Consider the diagram

€ — GL(H,) x%(H)

GL o~ Fred(H.,),

where the upper horizontal map is (4, g) (g, ag™* ~ 1),

the lower horizontal map is A ~>a,

the right-hand vertical map is (g, £)~> (1 + £)¢, and

¥red®(H,) denotes the Fredholm operators of index 0 in A, .
Both vertical maps are fibrations with the group & as fibre, and the
diagram is cartesian (i.e. the fibration on the left is the pull-back of that
on the right). We know from (6.2.4) that the lower horizontal map is a
homotopy equivalence; it follows that the upper one is too. But
GL(H,) x #,(H) is contractible.
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We can use the determinant homomorphism det:J—»C* to obtain
from € an extension—obviously a central extensiop—of GL2., by C*.
This extension is simply %/, where 9, is the kermel of det. We wish,
however, to have an extension of all of GL,, not just of its identity
component. Now GL, is the semidirect product of its identity com-
ponent by Z, where we can take for Z the subgroup generated by any
element in the +1 components, for example a shift operator o:H->H
which embeds H. in itself with codimension one. The automorphism
A~ 0Ac™! of GLY, is covered by the endomorphism & of ¥ defined by

(A4, g)=>(0A0™, go),
where

_ {Uqa‘l on o(H,)
- 1 on H.9o(H,).

The endomorphism & induces g~ g, on the normal subgroup I of &,
and is not an automorphism. Indeed, though we shall not give the proof
here, there is no automorphismn of % which covers A~ gdo™?, and so
there is no extension of GL., by & which restricts to %, On the other
hand, because det(g,) = det(g), the endomorphism of % does indice an
automorphism of %/J;, and we can form the semidirect product
ZX(%/9,) to obtain a central extension GL7 of GL,, by C*. This is the
extension we have been seeking.

9o

Remark (6.6.3). It is easy to check that if o is any element of GL,, such
that o(H.) = H,, and & € GL; is a representative of &, then the above
formula

&.(A,q). 7 =(0A07%, q.)

always holds in GL,.

There is no continnous cross-section of GL— GL.. (indeed it
follows from (6.6.2) that its Chern class is the universal first Chern class
in HXZx BU)), and so the extension cannot be described by a
continuous cocycle. But there is a cross-section of €— GL, defined in
the subset U of GL.., where a is jnvertible: it is given by A — A = (4, a).
In that region, which is 2 dense open subset of the identity component of
Glies, we have

Proposition (6.6.4). If AjA;=A; in GL., and A,, A;, A; all belong to
U, then

/‘11‘42 =c(A,, Az)"is
in GL7.., where
c(A;, Ay) = det(a,a.a357).
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Notice that the operators ay, a,, @; do not themselves have deter-
minants, but only the combination a,a,a;".

The main practical utility of Proposition (6.6.4) is that it enables us to
read off the Lie algebra cocycle of the extension GL7Z,. If an extension of
a Lie group I is defined by a smooth cocycle ¢:T X I'—> K then the
corresponding Lie algebra cocycle is

(E: n)wDIDZC(E) T]) —DIDZC(YI: ‘fz‘:):

?vhen‘a DyDye d_enotes the mixed second partial derivative of ¢ at the
identity. The Lie algebra of GL.. consists of all bounded operators A
such that [J, A] is Hilbert-Schmidt. As usual we shall write them

a b
a=(3 o)
¢ d

where & and ¢ are Hilbert—-Schmidt. We find

Proposition (6.6.5). The Lie algebra cocycle corresponding to the exten-
sion GL is given by

(A1, Az) > trace([ay, a,] ~ as)
= trace{c; by — byc;)
= ltrace(J[J, A,][J, Aj]), (6.6.6)
where Az =[A,, 4,].

To conclude this section let us notice that it is natural to define Uk as

the intersection of GLz, with U(H) x U(H.,). Then U, is an extension
Of Uy = Ures(H) by T, and its complexification is GL

TS5

6.7 The central extension of LGL,(C)

We can use the homomorphism M:LGL,(C)— GL,, to pull back the
extension GL,. We obtain a central extension L of LGL,.(C)by C*. It
is a complex Lie group, because the homomorphism M is holomorphic.
The subgroup LU, of LGL,(C) maps into the unitary group .., so the
extension of U, by T pulls back to an extension [ of LU, by T; and L¢
is obviously a complexification of .

Proposition (6.7.1). The extension L of LU, induced by U, is the basic
extension constructed in Section 4.7.

Proof. We saw in Section 4.7 that the basic extension of LU, is
characterized by its Lie algebra cocycle. We shall calculate the Lie

algebra cocycle of L.
Let & and 1 be elements of Lu,, and A1, A;, A be the operators on



90 6 LOOQP GROUPS AS GROUPS OF OPERATORS

H" corresponding to &, 7, and [&, 7]. In view of (6.6.5) we must show
that

trace{[a;, a;] — as} = iw(§, ), (6.7.2)
where

o =35 [ (56) (@) a8,

and ( , ) is the standard inner product on u, given by (X, Y)=
—trace(XY).

By linearity we can suppose that &= Xz* and # = Yz™, with X, Ye
gl (C). If k+m=+0 then the left-hand-side of (6.7.2) is zero because
the matrices of [a,, ;] and a3 have no diagonal entries; and w(&, ) =0
also. If m = —k, on the other hand, then both operators [a,, 4,] and a;
preserve each of the subspaces C*.z7 of which HY is the sum (for
g=0). If g=k then [a,, a;] and a; coincide on C*. z% If g <k then
[a:, o] acts as —YX on C*. z7, while a5 acts as [X, ¥]. The left-hand-side
of (6.7.2) is therefore —k . trace(XY), i.e. k{X, Y. The right-hand-side
is the same.

Remark. Although it is not needed for the proof of (6.7.1) it is
instructive to use the remark (6.6.3) to calculate explicitly the effect of
conjugation by a loop v of winding number m on the centre of the
identity component L° of L. The centre of £° is canonically T X T, where
the first T is the scalar matrices in U, < LU, and the second T belongs to
the extension. An element x of the first T can be represented by
(v, u) € €= GL,oy X GL(H.). We can assume that M, maps H, into itself
with codimension m. Then the automorph;sm of € correspond.mcr to M,
takes (i, u) to (u, v), where v: H,— H, is multiplication by u on M, H+,
and is the identity on the m-dimensional space H, @M H,.. So
det(va™™) = ™™, as we want.

We can now prove that all of the extensions
T—LG—LG
considered in Chapter 4 possess complexifications
C*— LGe=» LGg.

It is enough to consider the case where G is simply connected and simple.
If we choose a unitary representation p of G on C", then by pulling back
the extension Lc of LGL,(C) found above we get an extension I, ne
which corresponds to the trace form { , ), of p on gq:

(& 1), = —trace(p(£)p(n)).

Now any integral invariant form on g is an integral multiple of the basic
form { , ) (see Section 4.4). The extension LG corresponding to { , )
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can be constructed as the simply connected covering group LGC of L,Gg;
groups corresponding to other forms are quotients of LGg by ﬁmte
subgroups of its centre.

6.8 Embedding DHE*(SY) in U, (H)

The group of diffeomorphisms of the circle acts on H™ = [X$; C*). In
fact one can make it act in more than one way. We shall choose to make
the action unitary, i.c. to regard the elements of H as 3-densities on $™.
Thus a diffeomorphism f:$'—S$' acts on functions &:5'—C" by
&> f. E, where

(- £)(6)=E(5(8)) - g (O] (6.8.1)
and g is the inverse of f.

Propesition (6.8.2). Diff* (§1) < U,.(H™).

Proof. This can be proved by either of the methods of (6.3.1). It is done
by the first method in [131], so here we shall sketch the alternative
argument. We represent J by the kernel K of (6.3.2). From (6.8.1) the

kernel representing the action of f is 8(g(8) - ¢)g'(9)}, where & is the
Dirac d-function. The kernel of the commutator [f, J] is therefore

[ 16(®) - Vg 61K W, )~ K0, 96~ 9)5' (W)} dv.
This reduces to

g'(6):K(g(6), 9) ~ K(8, f(#))f ()L (6.8.3)

From (6.3.2) we sce that K is a smooth function of both its variables
except on the diagonal, where

K(8, ¢)=2i/(8 — ¢) + (smooth function).

Inserting this in (6.8.3), we find that the kemel of [f,J] is continuous
(indeed smooth) everywhere, and hence that [f, J] is Hilbert—Schmidt.

There is, however, an important difference between LGL,(C) and
Diff*(S") in relation to GL,. The former maps smoothly into Gl
whereas the inclusion of D1ff+ ($*) is not even continuous. Indeed the
norm topology of GL(H")—and hence 4 fortior] that of GL .—induces
the discrete topology on Diff*(S'). (To see that, observe that for any
diffeomorphism f except the identity there is a unit vector £ ¢ H"W =
L*($*%C") such that (&, f*£)=0: take £ to have support in a small
neighbourhood of a point of S' not fixed by £) If one attempts to
calculate formally the homomorphism of Lie algebras induced by
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Diff*(§')— GL, then one finds that vector fields on §* correspond to
unbounded operators in H™: consider, for example, d/d6.

Despite this, the central extension of Diff*(S')—considered as an
abstract group-—induced by GLg; is indeed a Lie group, and its Lie
algebra cocycle can be calculated exactly as was done in (6.7.1) above,
ignoring the unboundedness of the operators. The formal calculation is
carried out in [131]; the reason for its validity is that the composite map

Diff* (51— Uee Useo/ (U X UL), (6.8.4)

where U, X U.=U(H,)x U(H.) is the commutant of J in U, is
smooth, and the 2-cocycle of 1., regarded as an invariant form on U,
actually comes from U /(U, X U.). To see that (6.8.4) is smooth we
observe first that the map A —[A, J] defines a smooth immersion from a
neighbourhood of the base-point in U, /(U, X U.) into the space of
Hilbert—Schmidt operators, and then that when fis a diffeomorphism the
commutator [f,J] is represented by a smooth kernel which depends
smoothly on f.
‘We shall record the result here.

Proposition (6.8.5). The central extension of Diff"(S') induced by
GL(H"™) is trivial over SL,(R), and has the Lie algebra cocycle

& m-g [ €O+ E@ME) a8

for E=E(0)d/d6, n=n(6)d/df in Vect(S").

Because Diff*(§?) is contained in U, it acts on the extension UL, by
conjugation, and hence on the subgroup LU, which covers LU, « GL..,.
This way of seeing that Diff*(S") acts on LU, is simpler and more natural
than the one given in Section 4.7.

Proposition (6.8.6). The action of Diff*(8') on LU, induced by the
embedding in GL,(H™) is given by the formula (4.7.3).

Proof. From the discussion in Section 4.7 we know that it is enough to
check the action on the Lie algebra Lu,, and therefore even enough to
find the action of £ € Vect(S") on # € Lu,. In notation corresponding to
that of (6.7.2) we must show that

1 rd
trace{[ay, as] —as} = — yp J; E(B)trace 1'(09) d6.

This is proved by a calculation exactly like the proof of (6.7.2): when the
action of the vector field £= 1) £.6%° d/d@ is written as a 7 X 7 matrix
whose entries are n X nn blocks, the (p, ¢)™ entry is —3i(p + ¢)&,-, 1.,
where 1, is the n X »n identity matrix.
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We can also prove the following explicit formula which will be useful
later. (It agrees with (4.7.5) when n=1.)

Proposition (6.8.7). If y:S'— U, is the homomorphism 6 > exp(0E),
and ¥ is a representative of y in LU, then the action on ¥ of the rotation
R, through the angle « is given by

R, = e~ ¥ellElF-r) 5 yla)™,
where m is the winding number of .

Proof. It is enough to consider the case when yH, < H., and then we
can use Remark (6.6.3) to calculate ¥R, 7" in GLZ,. One finds

FR.7 =Ry, v(e).u™,

where u is the determinant of the action of R, on H,©vH,.. To
calculate u we can assume that y is the diagonal loop z—
diag(z", . .., z*). Then

u = exp—ia 2, Yk~ 1) = exp - dia(|&]* ~ m).

6.9 Other polarizations of H: replacing the circle by the line, and the
introduction of ‘mass’

In two-dimensional quantum field theory one is interested primarily in
functions defined on the line R, which represents physical space, rather
than on the circle. One can identify R Uo with §' by stereographic
projection, i.e. .

efeS'e2tanifelR, : (6:9.1)

where we choose 6 € (—x, @]. The Hilbert space H=L*$%;C) is then
isometrically isomorphic to H® = LR; C) by the correspondence

peHwgpeHR,

where

$(2tan 38) = ¢ (8)cos 19. (6.9.2)

The natural polarization of H® is given by the positive and negative
eigenspaces of —id/dx on R, i.e. H® = H® @ H®, where H® consists of
the functions f whose Fourier transform 7, given by

£ =75z [ s a,

vanishes for £<0. Under the isomorphism H = H® of (6.9.2) we find

tig
H§ “«> e H,,
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where e} is an L* function on the circle with a jump discontinuity at
@ = +x. The Fourier series of e is ¥, a,e*?, with

ap=2. (1Y 2k — ).

Because Y. [ka}| does not converge, the subspace H% does not belong to
Gr(H). Conjugation by e¥® therefore does not define an automorphism
of GL.(H), and the groups GL.(H) and GL,.(H,)} defined with
respect to the natural polarizations are not mapped to each other by the
isomorphism H =2 H® of (6.9.2), even though they are isomorphic groups.

The group LT acts on H® by the correspondence (6.9.1), and similarly
LU, acts on H®® = L*(R; C"). But the embedding LU, ~ GL, (H™®)
so obtained is not interestingly different from the standard LU,—
GL,(H™), for conjugation by e induces the identity on the image of
LU,.

More interesting is to polarize the space H* = L*(R; C%) according to
the positive and negative parts of the spectrum of the operator

i 0Nd [0 m
D”‘_( 0 £)§+(m 0)

where 7 is some positive number . One should think of H* as the space
of solutions ¥ of the Dirac equation with mass m

{((1) 3) 'é%* (_? é) 5835}‘“‘"“’# (6.9.3)

for functions 1 : R%—> C?; the decomposition H* = H% @ H? is then the
decomposition according to the spectrum of the ‘energy’ operator
—i(8/8f). As usual we can form the tensor product H*" =H*QC",
and the loop group LU, acts on this by multiplication operators. (We are
again using the identification (6.9.1).)

Propesition (6.9.4). The action of LU, on H> induces an embedding
i LU, ~» GL (H>™).

Proof. If we replace functions on R by their Fourier transforms then D,,
becomes the multiplication operator on H* ® C* by the matrix-valued

function
§ m )
(> T)er
The operator J corresponding to the polarization is therefore multiplica-
tion by the function J(£) ® 1, where
1 m
I = (£
m —§

5 )@1,
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and E(E)=+V(E*+m?). (Notice that J(E*=1.) If y:R—U, is an
element of LU, 1t is enough for us to show that the commutator
[M, ey, J] is Hilbert-Schmidt. Let § be the Fourier transform of
y — y(«). The commutator is represented by the kernel (see the second
proof of Proposition (6.3.1))

TE ~ImM) @ #(E—n). (6.9.5)

Now the trace of the matrix (J(&) —J(n))? is
AE(E)E(M) — En —m?)

Y T M
and it is easy to show that
[[atn+&manscie, 6.9.6)

where C is some constant which depends only on m. The Hilbert-
Schmidt norm of the commutator (6.9.5) is therefore dominated by

REGIRE

as we want.

The embedding i, gives us nothing new when m =0, for then H®
breaks into two independent copies of H® on which we have used the
standard polarization and its opposite. It follows that the central
extension of GL, restricts trivially to LU,. This remains true in general.

Proposition (6.9.7). The central extension of GL(H*™) is trivial over
i (LU).

Proof. We use the formula (6.6.6) to calculate the Lie algebra cocycle.
Suppose that two elements of Lu, are represented by matrix-valued
functions f and g on R. We can suppose that f and g are square-
summable, for the value of the cocycle is not changed by replacing them
by f — f(e} and g — g(=). Then the cocycle is

3 [ [ireet@0@ -107E ~ ) - 1@0en - D iz an

:,,% f J trace{J(E)J(E) = I ()Y HF(E ~ ), §(n — &)) d& dn.
But this vanishes, because

JEWE) =T =2 (E) = I () ~IET (I (E)™,

which has trace 0.
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Before mentioning our final variant in this direction we should point
out that the main interest of the Dirac polarization of H* is not for
constructing representations of LU,. More important is that it leads to a
new representation of the so-called ‘canonical commutation relations’.
‘We shall prove the basic result here, but we shall postpone discussing its
significance till Chapter 10.

Let M; denote the operator on H* = L*[R; C%) given by multiplication

by
G 7)
0 f

where f:R— € is a smooth function which is constant outside a finite
interval (but perhaps with different values at the two ends of the line).
The commutator [J, ;] is Hilbert—Schmidt. (We proved this above when
F(+ =) =f( — ), but the argument works in general.) Thus the operators
M; form an abelian subalgebra % of the Lie algebra gl (H*), and the

central extension of gl is trivial when restricted to %.
Now let Ny denote the operator on H* given by

G )
0 —f7
where f:R— C is smooth with compact support. Again the commutator

[/, N7l is Hilbert~Schmidt: its kernel is
(YA~ AT (& - ),

1 0
A=
o 1)
and the calculation is essentially as before, except that because J{£)A —

AJ(n) does not vanish when £=n we need f to vanish at te. (The
estimate (6.9.6) is replaced by  ~

where

L trace(J (1 + £)A — AJ()* dn < G, + G |2].)

The operators Ny form an abelian subalgebra &' of gl (H?), and the
ceniral extension restricts trivially to it.

Let us now think of & and F* as subalgebras of the extension gl,, and
if fis a smooth function with compact support let us introduce the
notation

O(f) =27 My
() =271
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where F(x) = [Z.f(y) dy. The motivation for this notation is that we have
as operators on H®. The remarkable result is

Proposition (6.9.9). In gl the operators ®(f) and &(f) satisfy the
‘canonical commutation relations’, L.e.

[@(), 2(g)] = [(), 2(2)] =0,

and
[, ()] =~ [ F)g(e) d.
Proof. The formula (6.6.6) for the cocycle tells us that [$(f), P(g)] is
given by '
& [ [oacet10)0 (@34 - A0 ) - TENFE - MEr— ) aE .
But
trace {J(E)J(E)A — AT (M) (1) — T (8))} = 2 trace A(J(n) — J(§))
E(m) E()
=4b(E, n), say.
Because &/E(&)-» +1 as §—> oo it is clear that

Lb(n + &, nydn=-2¢,

so the commutator is

ch(C)G(“Z;) dg =i fn Flx)g(x) dx.

‘We conclude this section with one last subgroup of U, (H%). It is the
group AT of smooth maps y:R—T which have compact support—i.e.
v(x) =1 when |x| is large. We make it act on H* by associating to y the
multiplication operator

(5 1)
0 1/

It follows from the preceding discussion that this belongs to U (H®),
and that the induced central extension of AT is the basic one (i.e. the one
coming from the inclusion AT < LT).

More generally, we can embed AU, in U.(H*') in a precisely
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analogous way. The interest of these embeddings is that Carey and
Ruijsenaars [24] have shown that when m >0 the standard representation

of U, restricts to give a type III factor representation of AU, (Ct.
Section 10.7.)

6.10 Generalizations to other groups of maps

In the definition (6.2.1) of GL,,, the ideal %, = $,(H) of Hilbert-Schmidt
operators can be replaced by any other symmetrically normed two-sided
ideal # (cf. Simon [137]). Let us denote the resulting group by GL,. The
biggest such # is the ideal ¥ of compact operators; and for any p=1
there is the ideal J, consisting of operators T such that (T*T)¥? ¢ %, All
the groups GL, have properties very similar to GL,.,. Their homotopy
type is independent of # (see Palais [121]), and there is an extension

Ty~ E3—> GLy,

where & is comtractible, and 9, is the group of invertible operators
belonging to 1+ $2 But only if $2<=.9,, ie. if S5, is there a
determinant homomorphism 72— C* enabling one to construct a
central extension by C*. In other words, unless # c %, the basic
2-dimensional cohomology class of the space GL; cannot be represented
by a left-invariant differential form.

Now let us consider how far the theory of this chapter can be
generalized from the loop group LGL, to the group Map(X; GL,),
where X is a compact smooth manifold.

It 1s easy to find embeddings

MaP(X; GLR)_.} GL.‘E;

and their classification is an interesting question in algebraic topology. If
X is of odd dimension d =2m ~1 and is a ‘spin manifold—i.e. it is
orientable and satisfies the additional mild global condition that its
second Stiefel-Whitney class vanishes——then there is a complex vector
bundle E on X called the bundle of ‘spinors’. The fibres of E have
dimension 2™Y. There is also a self-adjoint first order differential
operator D, the Dirac operator, which acts on the space of sections of E.
If H is the space of L” sections of E then we can write H=H, ® H_,
where H, (resp. H_) is spanned by the eigenfunctions of I with positive
(resp. megative) eigenvalues. The group Map(X; C*) acts by multiplica-
tion operators on H, and similarly Map(X; GL,) acts on H ® C*, the
space of sections of E®C" This action defines an embedding of
Map(X; GL,) in GLy(H @ C").

More generally, an embedding

ig.n:-Map.(X; GL,)=> GLy(H @ C*) (6.10.1)
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is defined by any p'ajr (E, I, where E is a vector bundle on X and Jis a
self-adjoint operator in the Hilbert space H of L? sections of E such that

(@) Ji=1, and

(i) {, M) is compact for every continuous function f on X.

I n>%dimX then the group of connmected components of
Map(X; GL,) is, almost by definition, the generalized cohomology group
K~Y(X) of Atiyah and Hirzebruch [3]. This group is closely related to the
classical cohomology

HO(X; )= ;gd HYX; 7),

and becomes isomorphic to it when tensored with the rz%tionals. Passing
to connected components in (6.10.1) gives a homomorphism

indeg py: KX~ Z (6.10.2)

With a little more care it is not hard to show that (F,J) defines an
element oz of the generalized homology group K.,(X), and that
indg, s, is the natural pairing with ¢ (g ;. Furthermore, every element of
K_,(X) arises in this way. _

Among the embeddings i, the one defined by the Dirac operator is
basic: its class (g is the fundamental class of the manifold X, and .the
corresponding map (6.10.2) is the ‘Gysin’ map in K-theory. If X is a
sphere, then iz, is the Bott periodicity map.

The preceding statements are a rapid summary of the easy part of an
extensive theory which has been developed by Atiyah [4], Kasparov [9(?],
and Connes [32]. A slightly different way of looking at the same material
is found in the work of Brown, Douglas, and Fillmore [23], who prove
that elements of K_;(X) can be identified with isomorphism classes of

algebra extensions
H > A~ C(X),

where C(X) is the algebra of continuous complex-valued functions on X.
Such an extension of algebras clearly defines a group extension

_ T — GL(A)~> GL,(C(X)) =Mape(X; GL,).
This is the extension got by pulling back %y by g p.

But from the point of view of the present book the group GLy is not of
very much use, because nothing is known about its representations. To
embed Map(X; GL,) in GL;, we must use pairs (E, J) such that {J, M;]
is Hilbert—Schmidt when fis smooth. In the language of Brown, Douglas,
and Fillmore we must study extensions

Fr=> A D(X)

of the algebra of smooth functions by the ideal of trace-class operators.
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These extensions were studied by Helton and Howe [73]. They cor-
respond to elements of Hy(X;Z), which is a canonical subgroup of
K _1(X). The corresponding extensions are the ‘uninteresting’ ones which
we found in Chapter 4.

The best way to think of the situation is probably in terms of
pseudo-differential operators [144]. In practice J will be given by a
pseudo-differential operator of order zero. The commutator [J, M;],
when f is a smooth function, will then be an operator of order ~1. On 2
manifold of dimension 4 such an operator belongs to the ideal %, if r > d.
It will thus not normally be Hilbert—Schmidt if d > 1.

Example. Let us consider the polarization corresponding to the Dirac
operator on a torus X of odd dimension d =2m — 1, i.e. X = R%/2n7%.
The spin bundle on X is a trivial bundle whose fibre A=C" (where
N=2""") is an irreducible module for the Clifford algebra C, generated

by elements ¢, ..., e, such that e?=1 and e¢; = —e;e; when i j. The
Dirac operator on the space H of maps X— A is -
3
D =i T
Sz

If we expand the functions in Fourier series, so that H is identified with
£4(Z%; A) then D becomes the multiplication operator

(o} = {pfo}-

(Here p € Z¢, and pf, € A is got by-acting with p € R = C, on £, € A.) The
corresponding polarization operator J is multiplication by p/||p||. The
commutator [J, Md, where M; is multiplication by the scalar-valued
function f = ¥ £,e/”®, is represented by the kernel

®, )= Fp—g- (2/llpl —q/llall} (6.10.3)

on Z% X Z¢. Now p/||p|| - ¢/i|q} is a self-adjoint operator on A whose
- square is

_Apad g ®
2(s upnnqu) Aoty

where ¢ is the angle between p and g¢. If p—g¢ is held fixed then
4 5in*(¢/2) decays like ||p||™ as p~»c. The kernel (6.10.3) is therefore
square-summable only if dim(X)=1. In general it belongs to the
Schatten class %, when r > dim(X).

~

THE GRASSMANNIAN OF HILBERT SPACE
AND THE DETERMINANT LINE BUNDLE

Because we are studying loop groups by regarding them as groups of
operators in Hilbert space we shall need to have a rather detailed
knowledge of the structure of the Grassmannian of Hilbert space. This
chapter is devoted to that subject. The most important part is the
construction of the determinant line bundle in Section 7.7, and the reader
interested in that can omit everything between Sections 7.1 and 7.7
except for the definition of an ‘admissible basis’ in Section 7.5.

7.1 The definition of Gr{H)

Suppose that H is a separable Hilbert space with a given polarization
H=H, ®H : we assume that K, and H_. are infinite dimensional
orthogonal closed subspaces. We shall study the Grassmannian of closed
subspaces of H which are ‘comparable’ in size with H, . Before giving the
formal definition of this class of subspaces, let us explain that they are a
completion of the class of subspaces W which are commensurable with
H,, ie. those such that W N H, has fimite codimension in both W and
H,. They may, however, have zero intersection with A, : for example the
graph Wr of every Hilbert-Schmidt operator T: H, — H_ is included, but
Wy is commensurable with H, only if T is of finite rank.

Definition (7.1.1). Gr(H) is the set of all closed subspaces W of H such
that

(i) the orthogonal projection pr.:W—H_ is a Fredholm operator,
and

(i) the orthogonal projection pr_:W-—H_ is a Hilbert—Schmidt
operator.

Fredholm and Hilbert—Schmidt operators have been discussed already
in Section 6.2. We recall that a bounded operator is Fredholm if its
kernel and cokernel are finite dimensionat.

Another way of stating the definition (7.1.1) is: W belongs to Gr{H) if
it is the image of an operator w: A, — H such that pr, e w is Fredholm
and pr. ¢ w is Hilbert—Schmidt. As the sum of a Fredholm operator and
a Hilbert—Schmidt operator is Fredholm, we see that if W belongs to
Gr(H) then so does the graph of every Hilbert-Schmidt operator
W— W+, These graphs form the subset Uy of Gr{H) consisting of all W’
for which the orthogonal projection W'— W is an isomorphism: it is in
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one-to-one correspondence with the Hilbert space %(W;W<) of
Hilbert-Schmidt operators W-> W+, In fact

Proposiion (7.1.2). Gr(H) is a Hilbert manifold modelled on
FAH L H).

Before .proving this we need one further observation. The group
GL.(H) introduced in Section 6.2 acts on the set Gr(H). We have

Proposition (7.1.3). The subgroup U,..(H) of GL.(H) acts transitively
on Gr(H), and the stabilizer of H, is U(H.) X U(H).

Proof of (7.1.3). Suppose W € Gr(H); we shall find A € U.,(H) such that
A(H,)=W. Let w:H,—H be an isometry with image W, and
w':H.—» H an isometry with image W+. Then

whw i H, OH. —-H, ®H.
is a unitary transformation A such that A(H,) = W. We write it

A= (W" Wi).

w. wt

Because W belongs to Gr(H) we know that w, is Fredholm and w_ is
Hilbert-Schmidt. But because 4 is unitary it follows that wi is
Hilbert-Schmidt also (for wiwi+wXwl=0), and so A belongs to
UNS(H)'

The assertion about the stabilizer of H, is obvious,

Proof of (7.1.2). Suppose that Uy, and Uy, are the subsets of Gr(H)
described above corresponding to the Hilbert spaces Jo = Sy Wj; W) and
L= F(W; W1). Let Uy, N Uy, correspond to I, in I, and I, in [, We
must show that I; and I, are open sets, and that the ‘change of
coordinates’ I, — I, is smooth.

Let the matrix of the identity transformation

WD Wi - W, & Wi

¢

(i-e. @ is a map Wy— W, etc.) From the proof of (7.1.3) we know that a
and d are Fredholm, and » and ¢ are Hilbert-Schmidt. Suppose that
W & Gr(H) is simultaneously the graph of Ty: Wy— W¢ and 7} : Wy— Wi,

TQ 1

from W, to W, @ W{ must coincide, where g is some isomorphism

be
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Wy W,. We conclude that
T,=(c+dT)(a+bT) ™. (7.1.5)
Thus 7} is a holomorphic function of T; in the open set
Ioy = {Ty e ly:a + bT, is invertible}.

For a subspace W of H which is commensurable with H, it is natural to
define the virtual dimension of W relative to H,. as

dim(W/W N H,) ~ dim(H. /W N H,).
The generalization of this for an arbitrary W e Gr(H) is the index of the
perpendicular projection pr, : W— A, i.e.
virt.dim W = dim(ker pr,) - dim{coker pr..).
Equivalently,
virt.dim W = dim(W N H.) ~ dim(W* N H,).

The virtual dimension separates Gr{H) into disconnected pieces. In
fact the subspaces with a given virtual dimension form a connected set;
we shall see presently, for example, that the spaces of virtual dimension
zero are the closure of the coordinate patch consisting of the graphs of all
Hilbert-Schmidt operators H, — H_. Notice also that if

a b
A=
(c d)
belongs to GL.(H), then
virt.dim A(W) = virt.dim W + x(a),

where x(«) is the index of the Fredholm operator a.

To proceed further we shall introduce an orthonormal basis in A. That
amounts to identifying H with the space L*(S'; C) with its natural basis
{z*}1ez- (As usual z =¢'®.) We then have a collection of special points
{Hs} in Gr (H): H; is just the c¢losed subspace spanned by z° for s € S,
where S is a subset of Z which has finite difference from the positive
integers N (i.e. S is bounded below, and contains all sufficiently large
integers). We shall write & for the collection of such sets §. Notice that

virt.dim H = card(§ - W) - card(N - S).
We shall call this number the virtual cardinal of 5.

Proposition (7.1.6). For any W e Gr(H) there is a set S € ¥ such that the
orthogonal projection W — Hg is an isomorphism. In other words the sets
{Us}scy, where Us= Uy, form an open covering of Gr(H).

Proof. Because the projection W — H_. has finite dimensional kernel one



