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GROUPS OF SMOOTH MAPS

3.1 Infinite dimensional manifolds

Before discussing infinite dimensional Lie groups we must make clear
what we mean by an infinite dimensional smooth manifold, if only to
emphasize that there is nothing esoteric involved in the idea. For an
excellent short treatment of the subject we refer the reader to Milnor
[115]. We shall follow his approach closely. A more detailed account can
be found in Hamilton [70}.

The manifolds we consider will be paracompact topological spaces X
‘modelled on’ some topological vector space E, in the sense that X is
covered by an atlas of open. sets {U,} each of which. m.homeomoxphxc to
an ‘open set E, of E by a given homeomorphism ¢, : U,~> E,. The vector
space. E will .always be locally convex and complete The transition

funcuons between charts
(Pa(U M Uﬁ)“—e’ U M U'g"—-) ¢p(U M Uﬁ)

are assumed to be smooth, i.e. infinitely differentiable. The meaning of
‘infinitely differentiable’ is as follows. —

A map f:U—E, where U/ is an open set of E, is continuously
differentiable (or C?) if the limit

DF(; v) = ™ (F(u + 1) ~ ()

exists for all « € U and v € E, and is continuous as a map Df : U X E— E.
(Of course Df is linear in its second variable.) The second derivative, if it
exists, is then the map

DY¥:UXEXE-E
defined by

Df(u;v, w)= km 7 (Df (u + 1w v) ~ Df (us ),

and so on.

- 'We shall collect here some remarks about calculus on infinite dimen-
sional manifolds.
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Complex manifolds

If E is a complex topological vector space and-the transition functions are
hoiomorphlc then we have a complex manifold. To say that f: U— E is
holomorphic, where U is an open set of E, means that f is smooth and
that Df: U X E~> E is complex-linear in the second variable.

Differential forms

If U is an open set of E then a differential form of degree p on Uis a
smooth map

UXEX...XxE-E

,__.._p_,.,_,,_

which is multilinear and altcmatmg in the last _p variables, Differential
forms can then be defined in the usual way on a smooth manifold, and
the usual definition of the exterior derivative, and the proof of the
Poincaré lemma, apply without modification.

In order to make serious use of differential forms, however, one needs
to know that for each open covering of the manifold there is a
subordinate smooth partition of unity. That is true providing the
following two conditions are satisfied.

(1) The vector space E has enough smooth functions, in the sense that
for each open set U of E there is a non-vanishing smooth function E > R
which vanishes outside U.

(II) The manifold is Lindelsf, i.e. each open covering has a countable
refinement.

Both of these conditions are satisfied for all the manifolds we shall
consider.

De Rham’s theorem holds for any manifold X which has smooth
partitions of unity. The usual proof applies. In particular, if a cohomol-
ogy class ¢ e H?(X; R) is represented by a Cech cocycle {Cap...a,t With
respect to an open covering {U,} of X, then c is also represented by the
differential form

2 Copohug o, Al Add,, (3.1.1)
where {2} is a partition of unity subordinate to {U,}.

Vector fields

There is no difficulty in defining smooth vector fields, or the bracket of
two vector fields; and vector fields act as differentiation operators on
functions in the usual way. One must beware, however, that vector fields
on infinite dimensional manifolds do nor in general have trajectories. We
shall meet an interesting example of this phenomenon when we discuss
the gradient flow of the energy function on a loop space in Chapter 8.
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3.2 Groups of maps as infinite dimensional Lie. groups
Axn infinite dimensional Lie group is a group I" which is at the same time

a1 minite aﬁnenswnal smooth ‘manifold, and is such that the composition.

law [ X I'—T and f the operatmn of inversion I'>1I" are given by smooth
maps. The tangent space to I at the identity element is its Lie algebra,
the bracket belncr defined by identifying tangent vectors at the identity
element with left-invariant vector fields on I'. If for each element £ of the
Lie algebra there is a unique one-parameter subgroup yg:R--T such
that y3(0) = &, then the exponential map is defined. This is the case in all
known examples.

For infinite dimensional Lie groups modelled on Banach spaces there is
a well-developed theory ([20] Chapter 3) which is closely paralle]l to the
theory of finite dimensional Lie groups. For groups modelled on more
general topological vector spaces there is no such theory, and most of the
standard theorems about Lie groups do not hold. We shall meet
interesting examples of Lie algebras which do not correspond to any Lie
group and of Lie groups whose exponemtial maps are not locally
bijective. We hope that it will emerge all the same that the concept of a
general infinite dimensional Lie group is a useful one.

Probably the sunplest and most immediate example of an infinite
dimensional Lie group is the group Map..(X; G) of all continuous maps
from a conipact sEace X to a finite dimensional Lie group G. (The group
Taw, of course, is pointwise composition in G.) The natural topology. on
Map.u(X; G).is the topology of uniform convergence. We see that it is a
smooth manifold as follows.

If Uis an open neighbourkood of the identity element in G which is
homeomorphic by the exponential map to an open set U of the Lie
algebra g of G, then ¥ = Mapm(X U) is an open neighbourhood of the
identity in~Map.(X; G)_ which is homeomorphic to the open..set
U = Mape.(X; U) of the Banach space Map,.(X; ). If f is any element
of Mape(X; G), then U = ou .f is a neighbourhood of f which is also
homéomorphic t to . The sets provide an atlas which_ makes
Mapm(__ @) into a smooth manifold, and in fact into a Lie group: there
is no difficulty at all in checking that the transition functions are smooth,
or that multiplication and inversion are smooth maps.

In this book, however, we shall be concerned not with groups of
continuous maps but with groups of smooth maps.

Suppose now that X is a finite dimensional compact smooth manifold,
and let Map(X; G) denote thé"fr'foiip" of smooth maps X— G. The case
W are Qnmanly Tnterested m 15 whén X is the circle S; then Map(X; G)
is the loop group of G, which is denoted by LG. We shalI think of the
‘Circle as comsisting mterchancrééSI}Mof real numbers & modulo 27 or of
complex numbers z = ¢'? of modulus one.

KL
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Defining the atlas {9} for Map(XX; G) just as in the continuous case,
we find that the set % is an open set in the vector space E =Map(X; q)
of all smooth maps X— g. The simplest way to define the topology of
Map(X; G) is to prescribe that the sets % are open and homeomorphic
to the open set % of E. The standard topology on E is the topology of
uniform convergence of the functions and all their partial derivatives. of
all orders [70]. It makes E into a completé separable metrizable
topological vector space, but not a Banach space. We shall not describe it
in detail here. But when X is the circle the convergence of a sequence
{f} in E to f means that (d"f,/d8") converges uniformly to d*f/d8" for
each n. Again there is no difficulty in seeing that Map(X; G) is an infinite
dirnensional Lie group.

For most of the purposes of this book it would make no difference if
we considered, instead of smooth maps, maps of a given finite degree r of
differentiability. Map(X; G) would then be a Banach Lie group. (We
should have to interpret C* maps in the Sobolev sense [144], otherwise
the manifold would not have enough smooth functions.) No practical
advantage would be gained by the change, however, and so we shall keep
to smooth maps, which seem aesthetically more appealing. Thus
Map(X; G) will always denote smooth maps, and LG will denote the
smooth loop group. In the case of diffeomorphism groups, as we shall
see, there is no choice but to work with smooth maps.

CXPonentlal..map eXR.: Map (X' g)'ﬁ Map(X‘ @

is defined, and is a local homeomorphism near the identity. One of our
themes is that the loop group of a compact group G behaves surprisingly
like a compact group itseif, but we shall begin by pomtmg out a slight
difference. In a_compact group & every element in the identity

component G° lies on a one-parameter subgroup, i.e. the exponential
map g— G° is.surjective. This property is not inherited by Map(X; G).

Example. Consider LG, where G = §U,. Then G is simply connected, so
LG is connected. The element ¥ of LG defined by

ZH(Z 0 )
0 z7!

does not lie on any one-parameter subgroup. For if y is exp(&) for some
geLg then § must commute with y and hence must be diagonal: but
there is no smooth function & on the circle such that ¢’ = z. Notice that
this example is precisely analogous to the non-surfectivity of exp for finite
dimensional non-compact groups: the element

G 2)
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of SL,(R) does not lie on a one-parameter subgroup. It is easy to see,

however, that when G is compact the image of the exponential map is
dense in the identity component of LG. That is not true in groups like -

SLy(R).

Another obvious but important remark about groups of maps is that
when G has a complexification G then Map(X; ) has the complexifica-
tion Map(X G). It is clear that the last group is a complex Lie group.

3.3 Diffeomorphism groups

The group of diffeomorphisms of the circle will play only a peripheral
role in this book, but it is a very interesting example of an infinite
dimensional Lie group.

First let us remark that for any finite dimensional compact smooth
manifold X the group Diff(X) of all smooth. diffeomorphisms X~ X is a
Lie group. (cf. [70], {115]). Its Lie algebra is the vector space Vect(X) of
all smooth vector fields on X, with the usual bracket operation, and the
exponenﬁaI inzip

exp: Vect(X) — Diff(X)

assigns to a vector field the unique | ﬂow that it generates. For a finite k,
however, the group of k-times continuously differentiable
diffeomorphisms obviously does rot form a Lie group, for left transiation
is not a differentiable map. (Still more obviously, the bracket of two
vector fields of class C* is only of class C*%)

Although the exponential map is defined for Diff(X), it is far from
being a local homeomorphism. Theére are diffeomorphisms arbitrarily
close to the identity which are not on any one-parameter subgroup, and
others which are on many.. The following discussion is based on Omori

[120] {C1. also Milnor [115].)

Proposition (3.3.1). The map exp: Vect(S")— Diff(S?) is neither locally
one-tg-one nor locally surjective.

Proof.

(i) Consider the rotation R,,. through the angle 2z/n. This belongs
to the subgroup T of all rigid rotations in Diff($'). The centralizer of
Ran is the subgroup H of all diffeomorphisms which are periodic with
period 27/n. So Rz, lies on all of the one-parameter subgroups $Tg™?
for ¢ e H. This shows that exp is not locally one-to-one.

(ii) In seeing that exp is not locally surjective, the essential point is
that a one-parameter subgroup of Diff(S') which has no stationary points
is conjugate to the subgroup T. Granting this, and observing that 2
diffeomorphism conjugate to a rotation has no fixed points unless it is the

3.3 DIFFEOMORPHISM GROUPS 29

identity, we see that a diffeomorphism cannot be on a one-parameter
subgroup if

{a) it has no fixed point,

(b) it has a point of finite order n, and

(c) itis not of order n.
Such diffeomorphisms ¢ are very plentiful, and can be chosen arbitrarily
close to the identity. For example one can define ¢{f)=8+x for
0= 6 <, and then extend ¢ to the remainder of the circle in any way at
ail which does not make ¢ = R,,. Alternatively, one can define

2
#(8)= 6+—;§+asinn6,

where ¢ is small. Then ¢"(0)=0, but ¢" is not the identity, as its
derivative there is (1 + re)"

To see that any one-parameter subgroup with no stationary points is
conjugate to a group of rigid rotations it is enough to observe that any
nowhere-vanishing vector field v(9) d/d# can be conjugated to a constant
vector field. The conjugating diffeomorphism 1 is given by

&8
w(O) =k [ vy as
0
where k is chosen so that y(2x) = 2.

Before leaving diffeomorphism groups we should point out another
way in which they differ from the loop groups. The complexification of
the Lie algebra Vect(X) does not correspond to any Lie group. This is
intuitively unsurprising, for complex vector fields on $* generate paths in

. the space of maps §'— C, and these do not form a group. A proof that

there is no Lie group corresponding to Vectc(S") can be given as follows.

Proposition (3.3.2). Any homomorphism from Diff*(S) 10 a complex
Lie group is trivial.

Proof. The group PSL,(R) is contained in Diff™(S"), for S can be
regarded as the real projective line. Consider the n-fold covering
map:S'—> 8 given by zw->z™ Let G, denote the group of
diffeomorphisms ¢ which are n-fold coverings of elements y € PSL.(R),
i.e. such that wo¢ = yem. It is easy to see that G, is isomorphic to the
n-fold covering group of PSL,(R): its centre consists of the rotations
Ronern for k=0,1,...,n— 1 But we have pointed out in Section 2.2
that any homomorphism from G, into a complex Lie group must factorize
through SL,(R) or PSL,(R). The kernel of any homomorphism from
Diff*($') into a complex group must therefore contain all rotations
through 2zk/n with n odd, and so must contain all rotations. Being a
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normal subgroup, the kernel is therefore the whole of Diff*(5'), in view
of the following result.

Proposition (3.3.3). Diff"(S") is a simple group.

The proof of this result, due to Herman [74], is surprisingly difficult,
and we shall not give it here.

3.4 Some group-theoretic properties of Map(X; G)

In this section G will be a compact connected Lie group, and X will be a
compact smooth manifold. For brevity we shall write MG for the group
of smooth maps Map(X; G).

If G is semusimple then it is perfect, i.e. equal to its commutator
subgroup [G, G|. We shall show that then the identity component M,G is
also perfect. (We cannot expect MG itself to be perfect: for example in
the case of LG the group of connected components is the fundamental
group 7,(G), which is abelian.)

Proposition (3.4.1). If G is semisimple then MyG is perfect, and in fact
(G, M,G]=M,G.

Proof. Let us first consider the case G =S§U,. If

82(01) e_(o z‘) __(i 0)
Tler of BT o) BT

is the usual basis for the Lie algebra of G and T,, T,, T, are the circle
subgroups they generate, then the multiplication T; X T, X T,= G is
surjective. The multiplication

MY, X MT, X MT,— MG

is therefore surjective in a neighbourhood of the identity; and so it is
enough (because the subgroups T,, T,, T; are conjugate) to prove that
every element of the identity component of MT; belongs to [G, MG].
This last statement is true because

(¢ 0 )_“[( ¢ 1 /97t 0
0 ¢t/ L\-1 0)’ ( 0 ¢+i)]'
('I'he bracket here denotes the croup—theoretzc commutator [x, y]=
xyx~'y™', not the Lie bracket; and ¢? is defined because ¢ has winding
number zero )

The result for a general semisimple group G follows at once from the

particular case of SUj. For, as has been explained in Section 2.4, one can
find a finite number of homomorphisms i, ..., :SU~ G,
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corresponding to the positive roots of G, such that the multiplication map
Hi,'c . (SUg)n hatse G,
and hence the induced map (MSU,)" > MG, is locally surjective.

We shall now discuss the group of automorphisms of MG.
The group of diffeomorphisms of X acts on MG as a group of
automorphisms. Apart from that, there are. obvious. pointwise.auto-

‘morphisms of MG anising from smooth maps X~ A, where A-is the

group of automorphlsms of G If G is simple there are essentially no
others

Proposxtlon (3.4.2). If G is simple then the group of automorphisms of

MG is the semidirect product DUf(X)XMA_

Proof. Suppose that a:MyG— M,G is an automorphism. Composing it
with &,: MG G, the evaluation map at x € X, gives a homomorphism
a.: M,G— G. The restriction of a, to the subgroup G of constant maps
in MG must be an antomorphism a, of G, for if it were trivial then «,
would be trivial because MG =[G, MG Clearly x ~»a, is an element a
of MA, and by replacing « with a™'e & we may as well assume that a, is
the identity for each x. Then the crucial step is to see that a, = g, e =,
for some y € X. For this it is enough to consider the derivative of a,,
which is a homomorphism of Lie algebras &,:Mg— g.

If Uis an open set of X, let M, g denote the ideal of Mg consisting of
elements with support in U, Because g is simple and &, is surjective,
&, | My, must be either trivial or surjective. It follows that when &, is
regarded as a distribution on X its support consists of a single point y: for
if y and y’ were distinct points of the support, and U and U’ are disjoint
neighbourhoods of y and y', then the commuting ideals Mg and Mg
would each map surjectively on to the non-abelian algebra g, which is
impossible. Thus the kernel of &, contains the ideal J, .. of all elements of
Mg which vanish to some order k at y. But

[ [[yl: Jy,l]r ]y,lr"-ij,l}:Jyk

(where J'y,l occurs k times on the left), so the kernel must contain J, ;. As
Mg/J, ; = g, this proves that &, is evalution at y.

If ¢:X->X is defined by @, =z, 00 =€, then a:M;G— MG is
given by a{f)(x)=f(¢(x))=(¢*f)x). The map ¢ must be smooth
because ¢* takes smooth functions to smooth functions, and it must be a
diffeomorphism because « is an automorphism.

Remarks.

(i) The preceding result obviously does not hold if G is not simple, but
the method enables one to describe all automorphisms of MG when G is
semisimple. If G has a torus factor then MG contains a large vector
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space as a factor, and the automorphism group contains its general linear
group. ’

(ii} The proof of (3.4.2), as has been pointed out to us by P. de la
Harpe, actually proves the following result.

Proposition (3.4.3). If G is simple then the maximal normal subgroups of
MyG are precisely the kernels of the eualuatzon - maps. MG~ G at the
points of X.

To conclude this section let us return briefly to loop groups. The
identity component A° of the group A of automorphisms of G consists of
inner automorphisms, and mo{A) = A/A° is the finite group of classes of
outer automorphisms. Now LA acts as a group of automorphisms of LG,
and again its identity component (LA)° consists of inner automorphisms,
for any null-homotopic loop in A can be lifted to G. In fact a loop can be
lifted precisely when its homotopy class belongs to the image of
m,(G)—> 7,(A). The cokernel of this homomorphism is the centre Z of
G, so we have

Proposition (3.4.4). The semidirect product mo(A)XZ is a subgroup of the
group of outer automorphism classes of LG.

The action of the centre Z is the important point. For any g € £ one
can choose 2 smooth map n:R— G such that y(@ +2x)=g. (), and
then conjugation by 7 is the associated outer automorphism of LG.

3.5 Subgroups of LG: polynomial loops

From time to time we shall want to mention a number of subgroups of
LG. The most obvious of these is the group LanG of real-analyuc loops
If G is embedded in a unitary group U,, 0 that a loop v in G is a
Tratrix-valued functl_og_and can be expanded in a Fourier series

v{z) = i viz", (3.5.1)

ko= —on

then the real-analytic 1oops are those such that the series converges in
some annulus 7 < |z| <777 with 7 <1, i.e. such that ||y, is bounded
for all k for some r < 1. The natural topology on. L., G is got by regarding
it as the direct limit of the Banach Lie groups L,, .G consisting of
functions holomorphic in » =5 |z| <r~'; the group L., .G has the topology
of uniform convergence. There is no difficulty in seeing that L., is a Lie
group with Lie algebra L.,g. (The choice of the embedding G « U, was
immaterial, and indeed was not really used: it was introduced above only
for ooncreteness.)
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loops which, when regarded as matrix-valued functions, have entries
which are rational functions of z with no poles on |z|=1. (A rational
function means the quotient of two polynomials.) We shall not pursue the
question of the appropriate topology to be put on L..G: let us notice
only that it is a dense subgroup of LG.

The smallest subgroup we shall consider is L, G: the group of Ioops
whose matrix entries are finite Laurent polynomials in z and 277, i.e.
1oops of the form (3.5.1) where only finitely.many.-of the matrices y,.are

non-zero. This group is the union of the subsets L, »G consisting of the

loops (3.5.1) for which y, = 0 when |k[>N. Each of these subsets is
naturaIly a compact space, and we give L., G the direct limit topology. It
is a assomated with the L1e algebra Lpolg of all finite series

2 E.z* (3.5.2)
k=—N
where &, belongs to the complexified L1e algebra gc and &_; = . This
vector space is the direct limit of its finite dimensional subspaces Log ~a,
and has the direct limit_topology. There is of course no exponential
map Loag— LpolG for the exponential of a finite series (3.5.2) is usually
not a finite series.

The group LpoiG has the comgemﬁcatmn Lpol_GC which consists of the
loops in G¢ which, together with their inverses, are given by finite Laurent
polynomials (3.5.1). (In the case of L,uG we did not ueed to say
_Sg‘e‘r‘ﬁéTmth their inverses’ because for y € LG we have y~!=y*, and
so the inverse of a polynomial loop is automatically polynomial.) If
G = U, then LG is just GL,(C[z, z7']). In general, if G is thought of
as an algebraic group, then L,,Ge¢ is the ‘points of G with values In
Clz, 27 in the sense of algebraic geometry.

It is not always true that L, G is dense in LG. For example, if G=T

thén the only elements of LMG are the loops uz*, with ueT; i.e. the
identity component of L,,G is simply the constant loops. (For the
inverse of a non-constant polynomial cannot be a polynomial.) The
foIIowing result is therefore 2 little surprising

Proposition (3.5.3). If G is semzszmple rken L oot G I8 dense in LG

Proof. Let H be the closure of LG in LG and let V be the subset of
Lg formed by the tangent vectors & such that the corresponding
one-parameter subgroup y; belongs to H. The essential observation is
that V' is a vector space. To see that it is closed under addition one uses
the formula

Teen (1) = U (ys(t/n)y, (t/n)),

which holds in LG because, for a suitable neighbourhood U of the
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identity in G, the sequence of maps f,: U ¥ U~ G defined by

ful, y) = (e y oy
converges in the C” topology.

It is clear that V' is a closed subspace of Lg. To prove (3.5.3) it is
enough to show (because the exponential map is locally surjective in LG)
that V=_Lg.

Consider first the case G = SIL,. Then the elements

0 =z 0 iz”)
g"_(—-z“" 0) and n"_(iz“" 0
belong to V, as the corresponding one-parameter subgroups lie in L, G.

(For E2=n2=-1.) By linearity then, and because it is closed, V
contains every element of the form

o+l oh

where f and g are smooth real-valued functions on the circle. But V is
invarant under conjugation by constant elements of SI,, so we must
have V' =Lg.

The general case follows in the usual way, because for any semisimple
G there are a finite number of homomorphisms S, — G for which the
images of 3u, in g span g. (The argument proves that the closure of
LG contains the identity component of LG ; the proof is completed by
observing that L, G contains at least one element from each connected
component of LG.)

3.6 Maximal abelian subgroups of LG

We shall show that there is a comjugacy class of maximal abelian
subgroups of LG associated naturally to each conjugacy class in the Weyl
group of G.

If A is any abelian subgroup of LG then for any point @ of the circle
the subgroup A(G) of G got by evaluating the loops in A at 8 is abelian,
afd s0 is contained in a maximal torus of G. Thus the most_obvious
‘maximal abelian subc,roup of LG is LT, where T'is a maximal torus of G.
More generally, if 1 is a a map which_assigns a maximal tomer(g) of G
smoothly t0 each pomt @ of the circle, then the subgroup

={yeLG:¥(0) e T,y for all 6}

is a maximal abelian subgroup. As all maximal tori are conjugate, the
space of maximal tori can be identified with G/N, where N is the
normalizer of a fixed torus 7. Thus 4 is a smooth map A:8'~> G/N.
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The conjugacy class of A4, depends only on the homotopy class of A.
This follows easily from the homotopy lifting property of the fibration
N> G- GIN: for example if A is contractible it can be lifted to
4:8'—> G, and then T =A(6). T. X(6)? and A, =4, LT. A" The
fundamental group of G/N is the Weyl group W = N/T, for W acts freely
on the simply connected space G/7, and G/N = (G/T)/W. The set of
homotopy classes of maps $*—» G/N, with no basepoints, is therefore the
set of conjugacy classes of W (see Spanier [143] p. 379), and we shall
think of A as representing such a class. An element w e W defines an
automorphism «,, of T by conjugation, and the corresponding A; can be
described as follows.

Proposition (3.6.1y. If A corresponds to w ¢ W then A, is isomorphic to
the group of smooth maps v:R — T such that

7(6 +2m) = a5} (v(6)) (3-6.2)
forall 8eR.

Proof. Suppose w is represented by # €N, and let @ be an element of
the Lie algebra of G such that exp (27rw) = n. Then we can take

Aoy =exp(fw). T. exp(~8w).
If 7 belongs to A; then y:R-> T, defined by

¥(6) = exp(—6w)#(6)exp(6w),
satisfies (3.6.2) and conversely.

By using the description (3.6.1) of A,, and considering the exact
sequence of groups

QT""*A;‘“'? T,

where A; —> T is evaluation at 8 =0, it is easy to prove

Proposition (3.6.3). The group of connected components mo(A,) of A;,
and its fundamental group m,(A,), are the cokernel and kernel of the
homomorphism

We—1:T—T
where T is the lattice 7,(T), and w, is the action of won T.

The maximal abelian subgroups A, we have described are not the only
ones, for éxample if T and 7 are two différent maximal tori in G then
the subgroup consisting of Joops ¥ such that y(8)e T, for 0= =um, and
y(8)e Ty for x <@ =<2m, is clearly maximal. It seems likely, however,
that the A, exhaust all the maximal abelian subgroups in the group of
real-analytic loops.
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We shall make considerable use in Part II of this book of the subgroup
A; of LU, corresponding to the Coxeter element w of the Weyl group.
The Weyl group of U, is the symmetric group S,, which permutes the
entries of the diagonal miatrices which form the maximal torus T of U,.
The Coxeter element is the cyclic permutation (12. . . n).

Propomtlon (3.6.4). The maximal abelian_subgroup of LU, corres-
ponding to the C'oxerer element is zsomor;phzc to LT.

Proof. This follows from (3.6.1). For if y:R—> T satisfies (3.6.2) when w
is the Coxeter clement then each diagonal element of v is a function
y::R—T which is periodic with period 2an, and the y; differ from each
other only by translation by multiples of 2.

‘We shall describe this embedding of LT in LU, in a somewhat different
way in Section 6.5. Its importance was first recognized by Lepowsky and
Wilson [102]. (Cf. also [87].) Its Lie algebra—or, strictly, a central
extension of it—is sometimes referred to as a ‘printipal Heisenberg
subalgebra’ of L.

Remark. The abelian subgroup corresponding to a general element w of

S, is easily seen to be a product of copies of LT, one for each cycle in the
permutation w.

3.7 Twisted loop groups

The abelian subgroups A, of LG which we have just described are
examples of what are called twisted loop groups. If « is any automorph-
ism of a group G then one can define

L(ayG = {y:R— G such that y(8 + 27) = a(v(8))}. (3.7.1)

The group LG depends (up to isomorphism) only on the class of «
modulo inner automorphisms. For if -

B(g)=ca(g)™

for some ¢ € G, then we can choose a smooth map A:R— G such that
MO +2x) =c. «(A(6)), and then the map y— ¥, where

7(6) = A(8)y(6)A(6)",

defines an isomorphism L,,G— LG, This means that if G is semi-
simple one may as well think of & as belonging to the finite group of
outer automorphism classes of G; in particular one can assume that o has
finite order.

An alternative description of L,yG is as the group of cross-sections of
a fibre bundle on S§! with fibre G. The bundle is the quotient space of

3.7 TWISTED LOOP GROUPS 37

G ®* R by the equivalence relation which identifies (g, 6) with («(g),
g+ 2m).

The theory of twisted loop groups is exactly analogous to that of loop
groups, but we shall not pursue it in this book (cf. Section 5.3). The
position would be different if we had anything significant to say about
groups of the form Map(X; &) for spaces X other than the circle: in that
case the analogue of the twisted groups would include the groups of
automorphisms of principal fibre bundles on X with structure group
G—s0 called gauge groups.
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For the remainder of this book G will always denote a compact connected
Lie e Zroup.

4.1 Jotroduction

A fundamental property of the loop group LG is the existence of
mterestmg central extensmns

T~ LG - LG

of LG by the circle T. (In other words LGisa group containing T in its
cetitre and such that the quotient group LG/T is LG.) The LG are
analogous to the finite-sheeted covering groups of a finite dimensional
Lie group, in that any projective unitary representation of LG comes
from a genuine representation of some LG: we recall that a projective
unitary representation of a group L on a Hilbert space..H is-the
assignment to each 1€ L of a umtary operator U,:H— H s0 that

UuUy = e(h, AV

holds for all A, A’ € L, where ¢(4, A") is a complex number of-modulus 1.
The function ¢: L X LT is called the ‘projective multiplier’ or ‘cocycle’
of the representation.

As _topological spaces the LG are fibre bundles over LG.with the

mre bundles: that is to say LG is not homeomorpmc to the
cartesian product LG X T, and there is no continuous cross-section LG-—->
LG. In fact the group extension LG is completely determined by its
topological type as a fibre bundle, and every circle burdle on LG can be
made into a group extension. It is interesting that the behaviour of
Map(X; G) when dim(X)>1 is completely different. There are often
non-trivial circle bundles on Map(X; G), but if X is simply connected
only the flat ones can be made into groups. (That follows from
Propositions (4.2.8) and (4.5.6) below.)

When G is a simple and simply connected group there is a universal
centrai_extension among the LG, i.e. one of which all the others are
qt_.loue;;t groups. This is analogous to the universal covering group-of-a
finite dimensional group. Any central extension E of LG by any abelian
group A arises from the universal extension LG by a homomorphlsm
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§:T— A, in the sense that E = LG Xy A. (The last notation denotes the
quotient group of LG X A by the subgroup consisting of all elements
{(z, ~8(z)):z e T}.) When G is simply connected but not simple there is
still a universal central extension, but, as we shall see, it is an extension
of LG by the homology group Hy(G; T), a torus whose dimension is the
number of simple factors in G.

The group LG bas a complexification LG¢. The extensions [ LG also
have complemﬁcatlons LGC, which are extensions of LG, by C*. We
shall postpone the constriction of the complexifications, however, until
Chapter 6.

It is worth noticing that the central extensions of LG are closely related
to its natural affine action om the space of commections in the trivial
principal G-bundle on the circle. (See (4.3.3).)

This chapter ends with an appendix discussing the cohomology of the
space LG and of the Lie algebra Lg.
4.2 The Lie algebra extensions

On the level of Lie algebras the extensions can be defined and classified
very smply they correspond pre lsely "to invariant symmetnc bilinear
forms on g. As a vector space Lg is Lo @& R, and the bracKet is givén by

L&, 2), (n, ] = (& n, @&, n)) (4.2.1)
for&, nelgand A, ueR, where @: Lg b Lg - R is the bilinear map

a&m=n [ (50, 7@ a0 (¢22)

and  , ) is a symmetric invariant form on the Lie algebra g. Let us
recall that if g is semisimple then every invariant bilinear form on g is
symmetric. (See (2.3.2).)

For the formula (4.2.1) to define a Lie algebra, « must be skew—
which is clear by integrating by parts in (4.2.2)—and must st satisfy the
‘cocycle condition’

@(& 7], D+ o((n, L], ) + o(§ EL. m=0.  (42.3)

This condition follows from the Jacobi identity in the Lie algebra Lg and
the fact that the inner product on g is invariant:

{[& ), &y = (& [, CD).

One of the first things to notice about the cocycle @ is that it is
invariant under the action of the group Diff*($") of orientation-
preserving diffeomorphisiis of the circle, i.e.

o(f*E, f*n) = w (&, n),

ved
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for feDiff*(s"). (Here f*E(6) denotes E(f(6)).) This means that
_D_i,ff:(_*sflﬁQtS, as_a group of automorphisms of the extended Lie algebra.
We shall see later that it also acts on the group extension. It is important
that the extension singles out a particular orientation of $*: orientation-
reversing diffeomorphisms can act on Lg only by reversing the kernel R.

There are essentially no other cocycles on Lg than the « given by
(4.2.2). To make this precise, notice that w is invariant under conjuga-
tion by constant loops, i.e. w(&, n)=w(g§, gn) for g e G, where g&, gn
are the adjoint action of g on &, 1. There is no point in considering
cocycles which are not invariant in this way. Indeed, for any cocycle &,
the cocycle g. a defines the same extension as «, where g. « is defined
by g. (&, n)=a(g™'E g7'n). So the extension defined by « is also
given by the invariant cocycle

fg.af dg
" -

obtained by averaging a over the compact group G. (Notice that the
cocycle identity (4.2.3) expresses precisely that the cohomology class of
the cocycle does not change under an infinitesimal conjugation. )

Then we have

Proposition (4.2.4). If g is semisimple then the only continuous G-

invariant cocycles on the Lie algebra Lg are those given by (4.2.2).
Remark. One cannot omit ‘semisimple’ here. For example, if G =T then
any skew bilinear form on the vector space Lg= LR is a cocycle. But if
we require the cocycles to be invariant under Diff*(S") then ‘semisimple’
is not needed, for LR/R is an irreducible representation of Diff*($"),
and so it is easy to see that the omly bilinear form on LR which is
invariant under Diff*(S?) is, up to a scalar multiple,

&= Eon

Proof of (4.2.4). Any cocycle w:Lgx Lg—>R can be extended to a
complex bilinear map @:Lgc X Lac—C. An element &€ Lgc can be
expanded in a Fourier series £ &,z%, with & € g¢c. By continuity « is
completely determined by its values on elements of the form E.z" Letus
write @, (&, 1) = a(§z”, nz7) for &, n € gc. Then «,, is a G-invariant
bilinear map ge X ge—> C, which is necessarily symmetric, and a, ,=
-y o
T‘iliz cocycle identity (4.2.3) translates into the statement

gt Xgrp+ Cripe=0 (4.2.5)

for all p,g,r. Putting g=r=0 we find a,o=0 for all p. Putting
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=—p —g we find
X, mp—q ™ Cpup + &g gy
whence
&p,—p =Pl 1.
Putting r=n —p — g in (4.2.5) we find
Fn—pgprg™ U ppt Oy
whence
a'n-k,k = ka’n-—l.l'
This imples that &, ,=0if p + g+ 0, for
Ry, == Uy, = 0.

Returning to =X &,2° and n = ¥ 7,29, we have

a(gr 7?) = 2 Pw1,—1(§p: 7?—;)

H
=5 L .-a(8(8), n'(6)) de,
which is of the form (4.2.2).

Proposition (4.2.4) determines the universal central extension of Lg.
W_’e can reformulate it in the following way. For any finite dimensional
Lie algebra g there is a universal invariant symmetric bilinear form

{, dxigxg—K (4.2.6)

from which every R-valued form arises by a unique lnear map K- R.

(Of course K is simply the dual of the space of all R-valued forms.) The
cocycle wy given by

1 2
wx(E, m=5- A (E(6), n'(8))x db (4.2.7)

defines an extension of Lg by K, which by Proposition (4.2.4) is the
universal central extension of Lg when g is semisimple. For semisimple

groups.K can be identified with H3(g; R), because a bilinear form ( , )
On g gives ris¢ to an invariant skew 3-form

(& n: &)= (& [n, LD,

?;u:l [%u elements of H°(g; R) are so obtained. When g is simple then
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Extensions of Map(X; g)

Before leaving the subject of Lie algebra extensions, it is worth pointing
out that very little extra work is needed to determine all central
extensions of Map(X; g) for any smooth manifold X. We shall indicate
briefly a proof of the following result, which is a very simple case of 2
general theory of Loday and Quillen [104] relating the cohomology of Lie
algebras to Connes’s cohomology [33]. We shall content ourselves with
the case of a simple algebra g. There is then an essentially unique inner
product { , ).

Proposition (4.2.8). If g is simple then the kernel of the universal central
extension of Map(X; q) is the space K = QY(X)/dQ%X) of 1-forms on X
modulo exact 1-forms. The extension is defined by the cocycle

(& my— (&, dn). (4.2.9)

Equivalently, the extensions of Map(X;g) by R correspond o the
one-dimensional closed currents C on X, the cocycle being given by
integrating (4.2.9) over C.

Before proving this let us remark that from one point of view it is a
disappointing result, as it tells us that there are no ‘interesting’ extensions
of Map(X;g) when dim(X)>1. More precisely, if f:§'— X is any
smooth loop in X one can always obtain an extension of Map(X; g) by
pulling back the universal extension of Lg by f. Proposition (4.2.8)
asserts that any extension is a weighted linear combination of extensions
of this form. The first ‘interesting’ cohomology class of Map(X; g), for a
compact (n - 1)-dimensional manifold X, is in dimension x, and is
defined by the cocycle

(&1) veey En)HP(gl: d§2: ERCEL I | d&n):
where P is an invariant polynomial of degree » on g.

Proof of (4.2.8). Let us write Map(X; g) as A & g, where A is the ring
of smooth functions on X. Any G-invariant real-valued bilinear form on
A ® g must be of the form

FBE g®@m) = alf ®g)E n),

where 0:ARA—>R is linear. Such an « can be identified with a
distribution with compact support on X x X. The cocycle condition
translates into the statement that & vanishes on functions of the form

fa®h+gh®F +hf Rg, - (4.2.10)

where f, g, k are smooth functions on X. This means that a(f@g)=0
when f and g have disjoint support, for then fg =0 and one can find & so
that fh=f and gh=0. Thus the distribution a has support along the
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diagonal. Proposition (4.2.8) is the assertion that a(f ® g) depends only
on the 1-form fdg. This in turn reduces to two facts:

(i) «f ®1)=0 for all f; and

(i) «|l*=0, where [ is the ideal of functions in A ® A which vanish
on the diagonal.

Both of these facts follow directly from (4.2.10), for [ is generated

additively by functions of the form f Q@ g - fg ® 1.
Extensions of Vect(S")
Another calculation that fits in very naturally at this point is that for the
Lie algebra Vect(S') of smooth vector fields on the circle, i.e. the Lie
algebra of the group Diff(S). A complex-linear 2-cocycle

a1 Vecte(Sh) X Vecto(SY)—C,
where Vecte(S') = Vect(S') @ C, is determined by the numbers ®p o=
a(L,, L,), where L, = ¢"%(d/d6). We have

[L’” Lm] = i(m - n’)er-f-m-

The cocycle identity for (L, L,, L,) shows that the cohomology class of
@ is not changed by rotation, and so we can (by averaging) assume that o
is itself invariant. Then &, , =0 unless p + g = (. If we write @y p = &,
and notice that a_, = —a,, then the cocycle identity gives

p +ZQ)CYP - (2p+ "I)afq =(p- Q)“p+4'
This determines all the a, in terms of &, and «,. The general solution is

@, =ip>+up. But o,=p is a coboundary, so the value of u is
unimportant. We have proved

Proposition (4.2.11). The most general central extension of Vect(S") by R
is described by the cocycle o, where

ad o d
a0 ¢S iin(ri=1) it ntm=o,

=0 if n+meo,
for some L R.

The representing cocycle given here is characterized by the fact that it

is invariant under rotation and vanishes on the subalgebra 3L,(R) of
Vect(Sh).

4.3 The coadjoint action of LG on Lg, and its orbits

In this section Lg denotes the extension of L.g by R associated to an
invariant bilinear form { , ) on g by the formula (4.2.2). We shall use
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the form { , ), to define a form on Lg, again denoted ( , }, by
1 2
N = , n{8)) dé.
&= [ (56) n(6))

Because we are dealing with a central extension, the adjoint action of

Lg on itself is really an action of Lg, given by
n. (& N =(n, &, @(n, §)- (4.3.1)
Proposition (4.3.2). The adjoint action of Lg on Lg comes from an
action of LG given by
v. (& D)=(rE A= {yy, &)

Here y. £ denotes the adjoint action of ¢ e_LG on&elg.

Proof. One has only to check that the desired formula does define a

group action, and that its derivative at y =1 is given by (4.3.1). Both
verifications are straightforward. =

Now let us consider the dual (Lg)* of Lg. This fits into the exact
sequence

(Lay*—(Lg)*—R,
on which the group LG acts. If we identify (La)* with (Lg)* ® R, and
use the form { , ) on Lg to map Lg into (Lg)*, then we have
Proposition (4.3.3). The coadjoint action of LG on (La)* is given by

7 (9 W) =(v. ¢+ Ay'y, A).

The reason for being interested in this coadjoint action is the heuristic
principle due to Kirillov [92] that the irreducible unitary representations
of a group T correspond roughly to the orbits of its coadjoint action. A
little more precisely, the correspondence is with those orbits which satisfy
an integrality condition (C) which is described below.,

Let us assurpe that the inner product on g is positive-definite. Then Lg
is identified with a dense subspace of (Lg)* which we shall call the
‘smooth part’ of the dual. We can describe the orbits of the action of LG
on this in the following way. _

For each smooth element (¢, A) e (Lg)* with A+0 we can find 2
unique smooth path f:R — G by solving the differential equation

ffi=—-A"% (4.3.4)
with the initial condition f{0) == 1. Because ¢ is periodic in § we have
F(6+27)=£(8). M,,

where M, = f(2x). If (¢, A) is transformed by y € LG then f is changed

4.3 THE COADJOINT ACTION OF LG ON Lg 45

to f, where

F(6) = v(8)F (8)r(O)™ (4.3.5)

Thus M, is changed to y(0)M,y(0)™". In fact (4.3.4) defines a bijection
between Lg X {1} and the space of maps f such that f(0)=1 and
f(6+27)=f(8). M for some M € G. From this we can read off
Proposition (4.3.6).

(@) If G is simply connected and )50 then the orbits of LG on the
smooth part of (Lg)* X {A} = (Lg)* correspond precisely to the conjugacy
classes of G under the map (¢, My~ M,

(i) The stabilizer of (¢, 1) in LG is isomorphic to the centralizer Z,
of M, in G by the map y+— y(0); and y stabilizes (¢, 1) if and only if
() =F(8)y(0)f(6)™".

According to Kirillov’s idea, the irreducible unitary representations of
a group I correspond to the coadjoint orbits  with the property

(C) if the stabilizer of ¢ € Q is the subgroup H of T then @ is the
derivative of a character of the identity component of H.

To apply the principle in our case we need to know that Lg is the Lie
algebra of an extension LG of LG by the circle T. The conditions under
which LG exists will be determined in the following sections. Granting its
existence for the present, we find at once that if an orbit belonging to
(Lg)* x {1} is allowable then A must be an integer. Then an orbit in the
smooth part of the dual corresponds to the conjugacy class of an element
§ € G, which we can assume to belong to a given maximal torus T. If we
choose

fetegaLga(Lg)

so that exp(A™*&) =g then (&, 1) belongs to the orbit. If g is sufficiently
generic then its centralizer in G is 7, and the condition {C) clearly
amounts to the requirement that & et ct* belongs to the lattice 7. In
fact it is not hard to check that this is true in any case. On the other hand
(& A) and (, A) belong to the same orbit if E=w.E+AnforsomeneT
and some w in the Weyl group W of G. Thus we have

Proposition (4.3.7). If 1 is a non-zero integer then the coadjoint orbits in
the smooth part of (Lg)* X {A} which satisfy the condition (C) correspond
to the orbiss of the affine Weyl groupt Woe=W X T on the lattice T, where
(w, n) € Wag acts on T by

E—sw. E+An.
We shall see later—in Chapters 9 and 11-—that if A>0 these orbits

T For a discussion of the affine Weyl group we refer 2o Section 5.1.
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correspond exactly to the representations of LG of positive energy.
Furthermore it is worth observing that an orbit belongs to the smootp
part of (Lg)* if it is stable under the rotation action of T on (£g)*: for if
(¢, A) belongs to such a stable orbit then one must have

d¢

—==[n, ]+ An’

T =™ ¢l +An
for some #n € Lg, which implies that ¢ is smooth. That fits well with
Kirillov’s viewpoint, because representations of positive energy are stable
under rotations.

4.4 The group extensions when G is simaply connected

The Lie algebra extensions that we have been describing d_o not aIl
correspond to Lie groups. For that to be true, a certain integrality
condition must be satisfied. The Lie algebra cocyele w i% a skew form on
the tangent space to LG at the idenmtity; it therefore defines a left-
invariant 2-form @ on LG, and the cocycle condition (4.2.3) translates
into the fact that this differential form is closed.

Theorem (4.4.1). '
() If G is simply connected then the Lie algebra extension

R—Lg—Lg
defined by a cocycle w corresponds to a group extension
T—LG—~LG

if and only if the differential form w /27 represents an integral cohomology
class on LG, i.e. its integral over every 2-cycle in LG is an integer.

(i) In that case the group exiension LG is completely determined by
w, and there is a unique action of Diff"(S*) on LG which covers its action
on LG. .

(i) If Aw is not integral for any non-zero real number 1, then Lg
does not correspond to any Lie group. _

(iv) The cocycle @ defined by the formula (4. 2.:2) satisfies the
integrality condition if and only if (hy, h,) is an even integer for each
coroot h, of G. (See Section 2.4.)

Remark. The part of the extension LG over the subgroup G of copstant
loops Is canonically isomorphic to G X7, as there are no non-trivial
homomorphisms G->T. We shall therefore often think of G as a
subgroup of LG.

Let us notice at once that (4.4.1) (iti) is an immediate consequence of
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(4.4.1) (i). For if there is any Lie group at all which corresponds to Lg it
will be an extension of LG by either R or T, and an extension by R gives
rise to an extension by T. The multiplier A corresponds to the different
ways of identifying the Lie algebra of T with R. This result, together with
Theorem (4.4.1) (iv), provides us with a class of Lie algebras which do
not correspond to any Lie group, for as soon as (G has more than one
simple factor a generic invariant inner product on g is not 2 multiple of
one which satisfies the integrality conditions.

The i’ part of Theorem (4.4.1) (i) is deduced from the following quite
general result, which will be proved in the next section. We shall return
to the ‘only if’ part in Proposition (4.5.6).

Proposition (4.4.2). Suppose that a Lie group T acts smoothly on a
connected and simply connected manifold X, leaving invariant an integral
closed 2-form w/2x on X. (Both I and X may be infinite dimensional.)
Then there is an extension T of T by T canonically associated to (X, @),
and for any point x &€ X the associated extension of Lie algebras can be
represented by the cocycle

(& m) = ., 1),

where E, denotes the tangent vector at x € X corresponding to the action
of the infinitesimal element & of T.

The group I in this proposition can be described quite explicitly. The
integral closed 2-form w allows us to associate to each piecewise smooth
loop € in X an element C(€) of T by

C(8)=expi£co,

where ¢ is a piece of surface in X bounded by ¢. (If ¢ and o' are two
such surfaces then [, w and [, w differ by a mutltiple of 2z because w/2x
is integral; so C(£) is well defined.) The assignment €~»C(€) has the
three properties:

(H1) independence of parametization, ie. C(£)= C(€s¢) when
¢:8'— S* is any piecewise smooth map of degree 1;

(H2) additvity, ie. Clp*r™)=C(pxq~)C(g*r™Y), when p, g, r
are three paths from x, to x,, and p *g~* denotes the loop obtained by
performing p followed by the reverse of ¢; and

(H3) TI-invariance, i.e. C(y. €)= C(£) for any yeT.

Any map {~>C(€) with these three properties defines a central
extension I’ of T by T, as follows. We choose a base-point x4 in X, Then
an element of I is represented by a triple (v, p, u), where yeT, ueT,

?

and p is a path in X from x, to y.x,. Two triples (v, p, u) and
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(y', p’, u') are regarded as equivalent if y=1v" and u= Cp'*p™h) . u'.
The composition in I is given by

(1> P1s #1) - (Y2, P2s 42) = (Y1¥2, P1* V1 - P2 Uyly).

It is easy to check that I is a well-defined group.

The description of I just given is very convenient and we shall often
make use of it in this chapter. It is not, however, the best way to see that
I is a Lie group, or to understand its global topology; for that reason we
shall give a different proof of (4.4.2) in the next section.

To obtain the desired central extensions of LG we can apply
Proposition (4.4.2) with T'=X = LG, for if G is simply connected then
LG is simply connected too. Indeed as a space LG is the product
G X QG, where G is the subgroup of constant loops and QG is the
subgroup of loops y such that y(1) = 1. Thus

m(LG) 2y (G) @ 7:(QG) = m,(G) B o G).

It is a classical theorem that @»(G) =0 for any compact Lie group: we
shall assume this for the present, but a proof will be given in Section 8.6.

The explicit construction of LG makes clear that Diff*(§") acts on it,
for Diff*(S") acts on X = LG preserving the 2-form w and leaving fixed
the identity element. That proves part of (4.4.1) (ii). We shall postpone
to the next section the proof that there is no other extension of LG with
the Lie algebra cocycle .

Now let us turn to (4.4.1) {(iv). There is a so-called ‘transgression’
homomorphism
T H3(G)— HY(QQG), (4.4.3)
where the cohomology has either real or integer coefficients, defined as
the composite
HYG)— H3(S' x QG)— HHQG),

where the first map is induced by the evaluation ' X QG- G, and the

second is integration over §'. (Cf. [18] p. 247.) When G is simply -

connected the transgression ¢ is an isomorphism: it reduces to the
transpose of the obvious isomorphism m,(QG)—> m5(G) when one uses
the Hurewicz isomorphisms m,(QG)=H,(QG) and 7:(G)=Hy(G).
Thus (4.4.1) (iv) is obtained by putting together the following two results.

Propesitien (4.4.4). Let ¢ denote the left-invariant 3-form on G whose
value at the identity element is given by

o(& n, Dy=([& 7], &)-

Then the transgression ©{(0) is cohomologous o the invariant form @/2n
on QG.
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Proposition (4.4.5). The skew form o of (4.4.4) defines an integral
cohomology class on the simply connected group G if and only if
(hys ho) € 2Z for each coroot b, of G. :

Proof of (4.4.5). For each root « there is a homomorphism i, :SU,— G
which on the diagonal matrices in SU, induces the coroot k,—see Section
2.4. When the form ¢ is pulled back to SU,=S* by i, one obtains
by, ho )0y, Where o, is the invariant 3-form on SU, with integral 1.
Thus (4.4.5) follows from the fact that the maps i, generate ms(G). It is
enough to prove this for simple groups G, and we can also replace G by
any locally isomorphic group. One has then to show that for suitable &
the homogeneous space G/i,(SU5) is 3-connected. That is obvious for the
classical groups. We refer to Bott [14] for a simple proof by Morse theory
which works in all cases. In fact « can always be taken to be the highest
root.

Proof of (4.4.4). When the form 2o is pulled back to $* X QG its value
at the point (8, y) on the triple of tangent vectors (88, 8,v, ,7) is

1
1= (r(0)7(6), [£:(6), £(0)]) 86,

where £(6)=y(6)7'8,7(6). This is to be integrated over §' and
compared with

1 2
@, (817, 827) =5 fo {E.(09), E)()) d6.

Consider the 1-form £ on QG given by

1 21z
BoN == [ (x(0)7(0), 7(0)"5(8)) a6
A simple calculation shows that d = t(2mo) — w.

If g is a simple algebra then all invariant inner products on it are
proportional, and so there is a smallest one satisfying the integrality
condition (4.4.5). We shall call this the basic inner product, and the
assoctated extension the basic central extension of LG. If G is simply
laced then the basic inner product is the one discussed in Section 2.5 for
which (A, h,) =2 for every coroot. In general it is characterized by the
property that {k,, i} =2 when « is the highest root. The Killing form
[1] on g satisfies the integrality condition, so it is an integer multiple of
the basic form. We shall obtain a formula for the integer in Section 14.5.
When G is simply laced it is the Coxeter number ([20] Chapter 6, Section
1.11) of G.

The basic central extension is universal.
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Proposition (4.4.6). If G is simply connected and simple then the
extension LG associated to the basic inner product is itself simply
connected. It is the unique simply connected extension of LG by T, and it
is the universal central extension in the category of Lie groups. Further-
more 7(LG) = 0.

Proof. We calculate m,(LG) and_ m(LG) from the homotopy exact
sequence of the circle bundle T— LG — LG. This gives us

0— 1 LG)—> T LG) > 0y(T) = o L.G) = 0.

The map #.,(LG)— = (T)=Z is defined by evaluating the first Chern
class of the bundle on 2-spheres in LG; and the basic extension is defined
5o that the first Chern class generates H* of the 2-sphere corresponding to
the highest root. Thus 7,(LG)=0; and because we know m(LG)=
7my(G) =7 it follows that wr,(LG) =0 too.

To prove the universality, let A~ E~—> LG be an arbitrary central
extension. The corresponding Lie algebra extension can be defined by 2
skew form

wa:LgX Lg—a,

where « is the Lie algebra of A. Because Lg is universal (see (4.2.4)) we
know that w, = ¢ ° @, where o is the basic cocycle and ¢ :R— a is some
map. It follows that if we pull E back to LG, ie. we form E=
LG X, E, the subgroup of LG X E consisting of pairs (x, y) such that x
and y have the same image in LG, then the resulting Lie algebra
extension of Lg by a is trivial. But we shall see in the next section that an
extension of a simply connected group such as LG is trivial if its Lie
algebra cocycle is trivial. So E is a trivial extension of LG, and its
splitting map gives us the desired homomorphism LG~ E.

Let us notice that the induced homomorphism T->A can be deter-
mined as the image of the generator of m,(LG) in 7y(A4), for my(4) =
Hom(T; A).

4.5 Cirde bundles, comnections, and curvature (=4 . wote Tald )

The main object of this section is to prove Proposition (4.4.2), but we
shall begin by summarizing the facts about circle bundles, connections,
and curvature that we shall make use of. This material is all well known
(cf. [27], [68]), at least in the finite dimensional case. At the end of the
summmary we shall give brief proofs of the essential points. :
Suppose that ir: Y — X is a smooth principal fibre bundle whose fibre is
a circle and whose base X is a possibly infinite dimensional manifold.

This means that the group T acts freely on ¥, the fibres are its orbits, and/

X is the orbit-space Y/T. A connection in the bundle is a prescription
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which decomposes the tangent space T,Yatapointye ¥ as
R © Thotizy,

where R is the tangent space along the fibre and T9°%Y.._the ‘horizontal’
tangent vectors—is a replica of T',.,,X. The decomposition is required to
be invariant under the action of T on Y.

A connection tells one how a path in X can be lifted to a horizontal
path in ¥ with a prescribed starting point. If one lifts a closed path in X
the lifted path in ¥ will in general fail to close. The gap between its ends
corresponds to an element of T called the holonomy around the path.
The curvature of the comnection measures the holonomy around in-
finitesimally small closed paths: it is the closed 2-form @ on X whose
value on a pair of tangent vectors £, 7 at a point of X is the infinitesimal
holonomy around the parallelogram spanned by & and #. The curvature
defines an element of the cohomology group H*(X;R) which depends
only on the topological type of the bundle. Moreover w/2x is an integral
class—i.e. its integral over any 2-cocycle in X is an integer—and it comes
from a well-defined element of H*(X; Z) called the (first) Chern class of
the bundle. The Chern class describes the topological type of the circle
bundle completely, and any element of H*(X; Z) arises from a bundle. If
X is simply connected then the natural map

LHYN X Z)— HY(X; R)

15 injective, and the topological type is completely determined by the
class of @/2s. In general the kernel of i corresponds to the flar bundles,
i.e. those which can be given a connection with curvature zero.

Amnalytically a connection can be described in three ways.

(i) One can give the map &> £ which to each vector field £ on X
assigns the corresponding horizontal T-invariant vector field £ on Y.
From this point of view the curvature is given by

o(&m)=(& 7]~ & nl". (4.5.1)

(The right hand side of this equation is a T-invariant vertical vector field
on Y; but we can identify it with a real-valued function on X 2}

(i) One can give the T-invariant 1-form & on Y which assigns to a
tangent vector to Y its vertical component, a real number. The restriction
of & to each fibre is the standard 1-form d@. The derivative de is
T-invariant and vanishes on vertical vectors, so der = zr*w for a unique
closed 2-form @ on X, which is the curvature.

(i) One can introduce local trivializations of Y. That is, X is covered
by open sets {U,}, and the part of Y over U, is identified with U, x T.
Then the connection is described in U, by the 1-form &, = s« which is
obtained by pulling back the form « described above by any section
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$,:U,— Y which is counstant in terms of the local trivialization U, X T. In
U, the curvature @ is described by de, = w. If the transition functions of
the bundle are

ﬁ,b:Uaﬂ Ub—‘:’-ﬁ’

(i.e. the point (x, p) € U, X T is the same point as (x, £,(x)0) ¢ U, X T),
then

@, = o, + if o) A (4.5.2)
That completes our summary. We shall now prove the essential result.

Proposttion (4.5.3). Let X be a connected and simply connected
marifold.

(1) If o is a closed 2-form on X such that o/2x represents an integral
cohomology class then there is a circle bundle on X with a connection
whose curvature is .

(iiy IfY and Y' are circle bundles on X with connections « and o'
which have the same curvature o then there is an isomorphism ¢ .Y — Y’
such that w*a' = o, Furthermore  is unique up to composition with the
action of an element of T.

Proof.

(1) One way of expressing the condition that /2 is integral is to say
that there is an integral Cech cocycle {v,,.} defined with respect to an
open covering {U,} of X such that w =df +2xv, for some 1-form S,
where v is the 2-form associated to {v,.} by means of a smooth
partition of unity {A,} subordinate to {U,}—see (3.1.1). (Thus v,,. is an
integer defined when U, N U, N U, is non-empty, and we can assume that
it is skew with respect to changing the order of 4, b, ¢.)

Let us construct a bundle ¥ on X by means of the transition functions

{fus}> where .
Fus () = €Xp 213, Vopche-

The coherence of the f,, follows from the cocycle condition
Vied ™ Vaed F Vapd — Vane = 0.

A connection in this bundle is defined by the 1-forms
&, = 2” z ‘Vabclb dlc:
b.c
its curvature is the 2-form 2mv:

2oV =27 2, Vpoh, dh, A dA..

abe

P
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To obtain a connection with curvature o we simply add the 1-form 8 to
each a,.

(11). Suppose that Y and ¥" are defined with respect to the same open
covering {Uf} of X by transition functions {f,,} and {far}. A map
y:¥—Y" will be given locally by functions 1, : ,~> T such that

s (Vs () = FanX)¥u(x) for xeU,N T, (4.5.4)
The condition y*a’ = a is expressed by
&= a, +iy; dy,. (4.5.5)

‘It is perjmissible to assume that each set U, is contractible, and each
mtersection U, N U, connected. Then we can find a function G U, R
such that d¢, = a;, — @,. From (4.5.2) we then find that

d(e™*f,0) = A(fape™%)
in U, M U,. In other words

—’¢ — —_— *
et bfab _f;be 1¢ae‘ﬂw,

»yhere Hay € R is constant. Because X is simpl connected i
Cech l-cocycle) we can find numbers m, sulz:}): that u,, 2152,113 ;Ezufb}Tlisexal
the functions y, = e™®*" satisfy both (4.5.4) and (4.5.5). ’

As to the uniqueness of , or equivalently of the functions v, it
follows from (4.5.4) that any two possible choices differ by multiplic;t)ion
Egr z;tglc:bal function g: X— T. The equations (4.5.5) then show that gis

nstant.

Proof of (4.4.2). We can now prove (4.4.2) very simply. We first
construct a ctrcle bundle ¥ on X with a connection & with curvature .
For cach y eI’ we can pull back ¥ by the map y:X~> X. The resulting
bundle y*Y has a connection e, whose curvature is Yo = We nov?f
fieﬁne T as the group of all pairs (v, 9} with y € I" and Y:Y - y*Y an
1somorPhlsm such that y*a, = . By Proposition (4.5 .3) there is a circle
of pqss:ble choices of v for each y. Ths isomorphism v can equally well
be _rega.rded as a map v :Y->Y which covers the action of y on X and
satisfies " =c. In other words I is simply the group of all fibre-
preserving maps 4 : Y — Y which preserve « and cover an element yofI.
Suc.h 2 map 1s completely determined by v and w(v,), where y, is an
arbitrary base-point in Y. Thus as a manifold T is the fibre product
I'Xx Y, the pull-back of ¥ by the map I'— X which takes ¥ to y(alyy)).

'To identify the description of I’ just given with the description by
triples (v, p, u) given after the statement of (4.4.2) we associate to
(v, p, u.) the unique automorphism of ¥ which preserves & and maps y, to
the point obtained by parallel transport of Yo along p. (We assume
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7 (yp) =xg.) We leave it to the reader to check that this defines a group
isomorphism.

Proposition (4.4.2) proves one half of (4.4.1) (i). The other half,
asserting that if a cocycle @ on Lg corresponds to a group extension then
w/2z is integral, 1s now fairly obvious, but we shall restate it in the form:

Proposition (4.5.6). If an extension of Lie groups
T—T-T

corresponds 1o the Lie algebra cocycle w on the Lie algebra of T, then
w[2x, regarded as a left-invariant 2-form on T, represents the Chern class
of the bundle T', and is therefore integral.

Proof. This follows at once from the first method of describing a
connection. To obtain the cocycle @ we must choose a vector space
decomposition of the Lie algebra Lie(I) of I':

Lie(F) =R & Lie(D).

This induces a decomposition of the tangent space at each point of [, ie.
a conmection in I'—T. The splitting map Lie(I)— Lie(') can be
identified with the horizontal lifting &£~ £ of left-invariant vector fields;
so by the formula (4.5.1) the curvature  is given by the same expression

oE m=[&7]-[& "
which defines the Lie algebra cocycle.

The argument we have just given suffices also to complete the two
remaining proofs——of (4.4.6) and (4.4.1} (ii}—which were postponed
from the preceding section. First, a central extension A->»E-+T of a
simply connected group I' is trivial if the induced extension of Lie
algebras is trivial. For then the principal bundle E has a flat connection,
and we can define a map I'-> E which takes v to the end-point of the
horizontal lift of any path in I' from the identity to y. The map is a
homomorphism because the connection is E-invariant. That completes
the proof of (4.4.6).

To complete (4.4.1) (ii) we must show that two extensions E and E’ of
LG by T are isomorphic if their Lie algebra cocycles coincide. To do that
we form the ‘difference’ extension T— E"— LG, i.e. we pull E' back to
E, and then pass to the quotient by the image of the homomorphism
T->EX,cE' which takes u to (u, z™"). The Lie algebra extension
corresponding to E” is trivial, and so E” itself is trivial, and E = E".
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4.6 The group extensions when G is semisimple but not simply
connected

If G is a semisimple group we can write G = G/Z, where G is the simply

connected covering group of G, and Z =,(G) is a finite subgroup of the
centre of . '

We have seen that an integral bilinear form {( , ) on g gives 1ise to a
umque central extension LG of LG. Because G can be identified
canonically with a subgroup of LG we can regard Z as a subgroup of LG,
In fact Z belongs to the centre of LG, because its adjoint action on Lgis
trivial. (That follows from (4.3.2).) Thus we have an extension

T (LG) Z— (LG, (4.6.1)

where (LG)°= (LG)/.?{ s the identity component of LG. But (4.6.1) is
usually not the restriction of an extension of the whole group LG. To
understand this we observe that the form { , ) on g induces a pairing

¢:ZXZT (4.6.2)

in the followix}g way. Let T be a maximal torus of G. Given z,, z, € Z,
choose &, £ in the Lie algebra of T so that exp(2n8;) = z;. Then define

C(Z1, ZZ) — 32-‘"5('::, C:)_

The pairing is independent of the choices made.

Lemma (4.6.3). The extension (4.6.1) is not the restriction of an extension
of LG unless the pairing c is trivial.

Proof. Consider the automorphism A, of Lg induced by conjugating by
an element A of LG which does not belong to the identity component.
We can lift A, uniguely to an automorphism A, of Lg: a simple
calculation (cf. (4.3.2)) shows that

Aﬂl(&: ﬂ!) = (Ai-gr a-— (l—lll: E)) (4.6-4)

Let us apply this when &et and exp(27&)eZ, and A is the loop
gn kz exp(6%) in G for some £ et such that exp(27l) € Z = m,(G). We

A 0)=(& ~(& {)).

Because the exponential map of (LG)° takes (27, 0) to 1 we see that A,
E::rgng; induce an automorphism of (LG)® unless (&, £) e Z. That proves

In the other direction, however, we can assert

Lemma (4.6.5). The conjugation action of LG on LG fifts uniquely to an
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action on LG, and then the action of Z=um,(G) on the centre ZXT of
LG is given by (4.6.2).

Proof. We first notice that the kift, if it exists, will be unique. In f_act
Aut(LG) can be identified with a subgroup of Aut(LG) because LG is 2
perfect group (see (3.4.1)} and there are no non-trivial homomorphisms
LG—T. _

The extension LG is defined by a 2-form « on LG. The. same
calculation that gave us (4.6.4) shows that if ¢, denotes conjugation by
Ae LG we have

ciw=w—dp, (4.6.6)
where g is the left-invariant 1-form given by
B(E)= (A7, &). (4.6.7)

Let us think of elements of L& as triples (v, p, u) as in Section 4.4. Then
¢:LG— LG is covered by the automorphism

(v, p, W)= (6,7, cap, €% Pu), (4.6.8)
where . p denotes the integral of 8 along p.

We can now describe a class of extensions of LG for semisimple groups
G.

Proposition (4.6.9). For any integral inner product { , ) on g there is a
group LG whose identity component is LG and whose group of
components is Z=m\(G). It is an extension of LG by '[FX.Z, fmd the
conjugation action of the group of components on TX Z is given by
4.6.2).

( Iﬁ”he)ex:ension LG is not determined uniquely by { , ), but is unigue up
to the addition of an arbitrary extension of m,(G) by T.

Remark. An extension of 7,(G) by T clearly gives an extension of LG by
T, and this can be added—in the usual sense of addition for group
extensions—to LG without changing the identity component.

Proof. Let us choose a maximal torus 7 in G, and let A=_ T =
Hom(T; T). Thus A is a subgroup of LG. The part Ao of.A wh1f:h is
contained in the identity component of LG can be 1§Ient1ﬁed with a
subgroup of LG. Let A, be the extension of Ag by T induced by LG.
Suppose that A, can be extended to an extension A of A. Then we can
form the semidirect product A X LG, where A acts on LG through A,
which acts on LG by (4.6.5). But the antidiagonal map Ay— A X LG
(ie. A->(A, A7")) embeds A, as a normal subgroup, and we can define
LG as the quotient group (A X LG)IA,. o
Returning to the existence of A, we observe that an extension A of a
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free abelian group A by T is completely determined by the commutator
map (x, y)~>xyx~'y~1, which is a skew biadditive map A x A~ T. This
can be lifted to a skew biadditive map A X A—R. Conversely any such
map b:A X A— R defines an extension of A by T with the cocycle

(1, !J') u—y ciib(;-- #)_

Thus A can be obtained by extending arbitrarily the skew map which

defines Ay; the ambiguity is precisely an arbitrary extension of AlA,
2331((;)-

Remark. The extension LG is most appealing when G is simply Jaced
and (, ) is the basic inner product. Then the pairing ¢ of (4.6.2) is
nondegenerate, and the centre of £,G is exactly T. We shall determine
the induced extension of Ap In this case in Section 4.8.

4.7 The basic central extension of LU,

We shall not bother to discuss the extensions of LG when G is not
semisimple except in the particular case G = U,. The extension of LU,
which we shall now deseribe plays a central role in the theory.

Proposition (4.7.1).

(1) There is a canonical extension LU, of LU, by T whose Lie algebra
cocycle is given by (4.2.2), where { , ) is the basic inner product on u,.

(iiy The subgroup U, of constant loops is identified canonically with a
subgroup of LU,

(i) The centre of the identity component of LU, is TXT, where the
first T is the kernel of the extension and the second is the centre of the

canonical copy of U.,. Conjugation by a loop of winding number k
transforms T x T by

(u, v) N (v, v),

(iv) The natural action of Dif* (5%) on Lu, comes from a unique

action of the double covering of Dift* (8*) on LU,. (But see Remark
(4.7.2) below.)

Remark. The extension LU, is determined completely by the Lie algebra
extension, but only up to non-canomnical isomorphism. (For any group I’
the group of automorphisms of I' which are the identity on I and I'/I° is
Hom(I'/T?; Z), where Z is the centre of F°.) Furthermore there is an
infinite dimensional space~—namely Hom(Lu,; R )—of automorphisms of
Lu,, which induce the identity on Lu,,. These facts make the study of LU,
quite confusing, especially where the action of Diff*($") is concerned.

Proof. We shall be brief, as the details are much the same as we have
encountered in the preceding sections.
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We construct the desired extension of the identity component (LU,)°
by applying Proposition (4.4.2) to the simply connected space X =
(LU )% T, where T is the standard maximal torus of U,. Then we observe
that LU, is 2 semidirect product Z X (LU,)°, where the copy of Z is
generated by any loop A of winding number 1. We can define LU, =
Z X (LU,)° providing we can lift the conjugation action of A on (LU,)° to
an automorphism of (£U,)°. The argument of (4.6.5) shows that the lift is
possible, and also proves assertion (iif). The essential point is that we can
choose A to be a loop in the abelian subgroup T, so that conjugation by A
does act on X. The construction depends on the choice of A, but there is
a canonical choice.

To investigate the action of Diff*($*) on LU, we introduce the simply
comnected covering group & of Diff*(S'). This can be realized as the
group of diffeomorphisms ¢:R—>R such that ¢(8 +2xn) = ¢(#) +2x.
To prove that the action of @ on LU, lifts to LU, it is enough to
construct an extension of the semidirect product & %LU, by T which
restricts to LU, over LU, and is trivial over €. That can be done by first
constructing the extension over the conmected component @ X (LU,)° by
applying our standard procedure to the homogeneous space ¥ =
[ (LU,)*/T, on which the usual 2-cocycle of Lu, defines an invariant
integral 2-form. Then one must lift the conjugation action of 1 on
% % (LU,)". The equation (4.6.6) is still valid on the larger space, where
now § is the invariant form defined by the linear map

(Fo5 &) (27, i~ 4 &)

on the Lie algebra of @ X (LU,)°. Thus the argument is as before.

Finally we must calculate the action on LU, of the central element 7t of
% defined by ©(@)= 6 +2x. It is enough to calculate the conjugation
action of A on the element (7, p, 1) of the extension of & X (LU,)",
where p is the obvious path in Y from the base-point to 7. If we assume
that 4 is a homomorphista T~+ T then the path p is left fixed by the
conjugation, and so the formula (4.6.8) shows that (7, p, 1) is multiplied
by the element € # of the centre. Because (A'A™%, AA~1) =1 we find
that €7 = —1. This means that 7 acts on the components of odd winding
number in LU, by multiplication by —1. That completes the proof of
(4.7.1).

Remark (4.7.2). The action of & on LU, is completely determined by its
action on the Lie algebra Lu, (for the kernel of Aut(£U, )~ Aut((£U,)%)
i§ abelian). But there are automorphisms of Lu,, which do not extend to
LU,, and so the action of & on LU, can be changed without affecting its
action on Lu, up fo isomorphism. Thus despite Proposition (4.7.1) (iv) it
is possible to lift the action of Diff*(S") from LU, to LU,. One way is to

. e .
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make ¢ € @ act on ap element 7 € LU, above y e LU, by

(@, Py A7) . £4@D (4.7.3)

where
e’® = det y(6),

a0.n=5 [ om0 -ron ao, (4.7.9

and A, is the action of ¢ € & described in Proposition (4.7.1). If ¢ is the
translation 8 — 8 + « then

a(c,b, f) = “%‘IAf’
where Ay is the winding number of dety. This means that the central
element = € & acts trivially.

. We shall leave it to the reader to check that this action of Diff™(5") is
unique up to automorphisms of LU,. In Section 6.8 we shall see that the
particular choice (4.7.3) arises naturally.

Thecasen =1

The basic central extension of LU, = LT can be described by an explicit
cocycle, which we give here for future reference. We first observe that
any element of LT can be written in the form e, where f is a smooth
function such that

f(6 +2m) = f(0) + 2= A,

for some integer A which is the winding number of ¢”. We shall write f
for the average of f on the interval [0, 2], i.e.

1 2
f=5= f £(6) e

Proposition (4.7.5). The basic central extension of LT is defined by the
cocycle ¢, where
e(e, £¥) = 508

and
1 2 p
S¢,6) =57 | F(O)5'(6)d8+3fa, + 4,08 - 5(O)).
The action on LT of a diffeomorphism ¢ e Diff*(S") can be taken to be
(eif, u)> (eif“d’", peildr~a(e, M,

where a(®, f) is as in (4.7.4), and LT is identified with LT X T as a set. In
particular, the rotation R, through the angle a acts by

(&, u)r> (R,e¥, ue=Hodrier=ny
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Proof. We leave it to the reader to check that c—which is a cocycle
because S is bilinear— does define an extension of LT with the properties
described in (4.7.1).

4.8 The restriction of the extension to LT

If 7" is a maximal torus of G then the lattice A =Hom(T; T)—which we
usually denote by T—is a subgroup of LG, and we can consider the
restriction to it of an extension LG. We know how to describe the
resulting extension A of A by T only when G is a simply laced group, but
the result in that case is quite striking, and is the basis for the
construction of the basic representation of LG by ‘vertex operators’ (see
Chapter 13). Let us choose representatives g in A for the elements
AeA, so that a general element of A can be written us;, with z e T.

Proposition (4.8.1). If G is a simply laced and simply connected group
then the representatives &, can be chosen so that the multiplication in A is
given by
& . Ef-l = (-l)b(k,p)gl-kpa
where b : A X A~>Z[2 is any bilinear form such that
b(A, A)=3(A, ) (mod2),
and { , ) is the form on g which defines LG.

Remark. If { , ) is the basic form on g then this multiplication formula
is very reminiscent of the bracket relations (2.5.1) for the generators of

Q¢-
ler, €] = (—1)"®#ey .

Proof. Because any extension of A by T which is abelian is trivial an
exiension is completely determined by its commutator map (A, u)w>
£,.6,£5 €, ", which is a skew biadditive map

y 2
AXA—-T.

Thus what we have to show is that gg,5 e7" = (—1)%*). If we choose
paths p; and p, in LG from the identity to A and g, and use the
description of LG given in Section 4.4 then the task is to show that

f wz=a{A, uy (modulo?2r), ) (4.8.2)

where o is any piece of surface bounded by the two paths p; * A.p, and
Pu* u.p; from 1 to A+ u. It is enough to prove the formula when A and
g are positive coroots, for the coroots span A. We also may as well
assume that { , ) is the basic inner product on g.
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If A is a coroot there is a canonical homomorphism i, : SU,~> G whose
restriction to the diagonal matrices is A. Let us define the path p; from 1

to A as iy °p, where p:[0, x]—> LS}, is given by
cost sint T

e sl —

40 (—sin t cos t) for O=i= 2

and
—z cos? sin ¢ 7T
=( . -1 ) for —=t=mn
—sint —z7 cost 2
Now consider the piece of surface in LG given by
P:{(s, ) 0=s=sr=x}— LG,

where P(s, 1) = p.(2)p,(s). Observing that

s @=(_2 1) when 0=<Z,
and
2(0 _z_l) when E<r<
z 0 5 SEST,
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we find that P*w =0. As P is bounded by the paths p; * A.p, and p; . p,
we conclude that it is enough to integrate  over a piece of surface

bounded by p; . p, and p,, . p5. If {4, u) =0 then p; . p, =p, . p,, and s0
the formula (4.8.2) holds in that case.
‘We next consider the surface

Q={(s1):0ss=r<n}- LG

given by Q(s, £} = p,(5)p.()pa(t —s). Once again a rather tedious check
shows that O*w = 0. The surface Q is bounded by p; . p,, Dy - Pa, and
the path

$+ PP ()pa(ee — 5)-

fu 0
E"(O u"l)

normalizes ,(ST%), and corresponds to the map

(a b)»( a bu“'”)
¢ d cu~ ) d

Pa()pu (m)pa(or ~ 5) = p,(7)is(g(5)),

where ¢ is some loop in SU,. The only interesting case is when
(A, u) =—1. Then we find
z cos s sin 2s

q(s)z(—sinZS z" cos 25
_(zcosZs —z sin2s
zlsin2s z7'cos2s

But conjugation by

on SU,. So

if 0<s<m
) O=s=3

z
if —=ss=am
) f s<s=sx
Because i{w is the standard 2-form @ on LS}, we are finally reduced to

proving that the integral of « over a piece of surface in LSU, bounded by
the loop ¢ is £x. A suitable surface is given by

§:H{GE 1, §): 8+ 0"+ =1, n =0} LSU,,
where
_ (z(E+1in) ¢ -
sEn 0= o) fr 220
_ (Z(E +in) -z§
278 g —in)

The calculation of the integral presents no problems,

) for Z=0.
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We can now write down an explicit cocycle which describes the
restriction of the extension LG to LT. An ¢lement of LT is of the form
exp f, where f:R—>1 is 2 map such that

8y =52 (F(0 +27) ~1(6))

is constant and belongs to the lattice A. We shall write fet for the
average value of f on the interval [0, 2x].

Proposition (4.8.3). If G is a simply laced and simply connected group
then the extension of LT induced by LG is given by the cocycle ¢, where

c(f, g) = (ml)b(ﬁpﬂg)ew()‘?g}’
and

1 ™= .
S8 =37 | g0 d0+307 a,) + (8, ~50)).
The bilinear form b on A is as in (4.8.1).

Proof. We first observe that ¢ is well-defined as a map LT x LT —T. It
is a cocycle because it is bimultiplicative, and so it does define some
extension of LT.

Over the identity component of LT the desired extension is completely
described by its Lie algebra cocycle—see the discussion of £U, in Section
4.7. The cocycle ¢ clearly induces the correct cocycle on the Lie algebra.
Furthermore ¢ describes the correct extension of the lattice A = L7, in
view of Proposition (4.8.1), although the coset representative &, of
(4.8.1) has now been replaced by ¢¥™* ¢, To complete the proof it is
enough to check that ¢ gives the correct adjoint action of A on the Lie
algebra Lt. The adjoint action was calculated in Proposition {4.3.2), and
is easily seen to agree with that given by ¢.

Remark. The cocycle of (4.8.3) is not invariant under the action of
Diff*(5*) on LT, and one cannot choose the coset representatives to
make it so. If £(f) e LT is a representative of f:R-»>1 chosen so that
(4.8.3) holds then we have

P e(f) = eii“(""ﬂ"“f)s(cp*f), (4.8.4)
where ¢ € Diff*($Y), and

a6, f)=5= [ G(o(0) - sy ae.

In particular if ¢ is rotation through the angle « then
¢*€(f) - eéid(&f.&f)g(gb *f“)‘ (4-85)
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Among all the cocycles describing the same extension LT of LT the
complicated-looking expression of (4.8.3) was chosen so as to make the
formula (4.8.5) as simple as possible.

4.9 The inner product on R & Lqg

A nondegenerate invariant bilinear form { , ) on g induces one on Lg
by the formula

&m)=5z [ <&@, (@) ce. #9.1)

There cannot, however, be a nondegenerate invariant form on the
extended algebra Lg—at least if g is semisimple—because the centre of a
Lie algebra is orthogonal to its commutator subalgebra with respect to
any invariant form, and [Lg, Lg]= Lg. In view of this it is often useful
to notice that the Lie algebra of the semidirect product T X LG—where T is
the group of rigid rotations of S, which acts naturally on LG—does
possess a canonical nondegenerate invariant bilinear form whenever the
form { , ) on g which defines the extension LG is nondegenerate.

If we identify the Lie algebra Lg with Lg® R as in Section 4.2, and
identify the Lie algebra of T with R by a <»ag}, then the Lie algebra of
Tx LG is R P Lg® R with the bracket given by

((x1, &1, 31)s (25 82, ¥2)] = (0, (&1, Ea] + 3182 — X80, (&1, £3)). (4.9.2)
Here (&, &) is as in (4.9.1), i.c. it is the cocycle w(§;, £,). We define a
bilinear form on the algebra by

{01, &1s 715 (X2, &y y2)) = (&1, B2) = X2~ ViXa- (4.9.3)

It is immediate that this form is invariant under the adjoint action of the
Lie algebra on itself, and hence under the adjeint action of the identity
component of the group LG. This has a very useful computational
corollary, which cannot be obtained so simply by other means.

Proposition (4.9.4). If y belongs to the identity component of LG then the
adjoint action of ¥ on R & Lg is given by

v E )=y E~xy'y Ly = (v, EY + 3 {7y, v Y.

Proof. We know from (4.3.2) that the formula is true when x = 0. We
also know a priori that the right-hand side must be of the form
(x,...,...). The formula above is then easily seen to be the only
possible one which preserves the bilinear form (4.9.3).

In practice we are more often interested in the coadjoint action of y on
the dual space

R®(La)*=R ®(Lg)* OR.
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The most important case is when y is the homomorphism 6 exp(6n)
defined by n ¢ T <, which represents an element of the translation part
of the affine Weyl group.

Proposition (4.9.5). The element n € T < Wy acts on R D t* @ R by
(n: l} k)’—> (n’ + (l) T:') + %h“n“z’ ;" + h’?: h)’
where we have identified t and t* by using the inner product.

Note. When y does not belong to the identity component of LG its
action on R & Lg involves choices, as we saw in Section 4.7. In that case
the action does not necessarily preserve the inner product. Thus for LU,
if we identify T with 7" in the obvious way, the formula corresponding to
(4.9.5) is

(n, A, B) = (n+ (A, 1) + 3hZn(n; — 1), A+ hn, h), (4.9.6)

which is not orthogonal. The proof of (4.9.6) will be given later as
Proposition (6.8.7).

4.10 Extensions of Map(X; G)

For a general compact manifold X the group Map(X; G) is neither
connected nor simply connected. (If G=U, and »>3dim X then the
group of components of Map(X; G) is the group K™*(X) of Atiyah and
Hirzebruch [3], and its fundamental group is K°(X).) Let m(X;G)
denote the simply connected covering group of Map(X; G), which one
should think of as formed from Map(X; G) by killing successively 7, and
JT]_.

Proposition (4.10.1).

() If G is simply connected then there is a canonical central extension
(X G) of m(X; G) such that #.{(m(X; G))=0.

(i) The group m(X; G) is the universal central extension of m(X; G),
and its Lie algebra is the universal central extension of Mep(X'; q) which
was described in Section 4.2.

(i) If G is simple then the kernel of the extension is QUX)/Qy(X),
the space of l-forms on X modulo the l-forms which have integral
periods.

Proof. We may as well suppose that G is simple. Let A denote the
desired kernel Q'(X)/Q3(X). We observe that the Lie algebra of A is the
vector space Q'(X)/dQ°(X) of (4.2.8). Using (4.4.2) it is enough for us to
give a closed 2-form @ on /(X; G) with values in Q'(X)/dQ%X) such
that the integral of @ over every 2-cycle in #1{X; G) belongs to Q3(X).
The 2-cocycle @ of Map(X; g) defined (see (4.2.9)) by w(&, n) = (&, dn)
provides such a form on #(X;G). The integrality condition holds
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because for any smooth map y:5*— X the real-valued 2-form J, @ on
7(X; G) is the pull-back of an integral form on LG.

The universality of #(X; G), and the vanishing of x,, are proved
exactly as for loop groups.

The Mickelsson~Faddeev extension

Apart from its central extensions there is another—in principle more
elementary-—extension of Map(X; G) which has recently aroused interest
in quantum field theory. It was introduced by Mickelsson [112], Faddeev
[41], and others. (Cf. also Singer [138] and Zumino [1571.)

Let us first observe that if I' is any Lie group and ¢ € HX(I'; Z) is any
cohomology class which is invariant under left-translation by elements of
I'—this is automatically the case if T is connected-—then one can find a
unique smooth circle bundle ¥ on I" whose Chern class is ¢. Associated to
Y there is an extension I of I by the abelian group of smooth maps
I'—T. An element of I is a smooth T-equivariant map.¥:Y-+Y which
covers the left-translation y:I'—T by some y €I I w is a closed 2-form
on I representing the class ¢ then the Lie algebra extension correspond-
ing to I is defined by the cocycle

E m—w(En)

with values in the vector space of smooth real-valued functions on I
(Here elements &, n of the Lie algebra of T are regarded as left-invariant
vector fields on I.) The extension of I' so defined is not a central
extension: I” acts in the natural way on the kernel Map(T'; T).

When T' is Map(X; G) for some n-dimensional manifold X we can
obtain an extension of this form by choosing any element of H**¥(G; Z),
pulling it back to X X Map(X; G), and then integrating over X,

Now suppose that P is any principal Ibundle. For any left-invariant
¢ € HX(T; Z) we can find a 2-form ® on P whose restriction to each fibre

of P is closed and represents the class ¢. The preceding discussion can be
generalized to give

Proposition (4.10.2). Suppose that U is connected and simply connected.
Then there is an extension of T' by Map(P; T) naturally associated to c.
The extension of Lie algebras is defined by (&, n)}r> w(&p, np), where &,
and np are the vector fields on P associated to &, 0 in the Lie algebra of T.

Proof. Following the method of Section 4.4, it is enough for us to define
a map

C:{loops in I')~> Map(P; T)

which has the properties (H1) and (H2) of Section 4.4 and js equivariant
with respect to I'. Given a loop € in T and a point p & P we define
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C,(€) e T as exp(i [, @), where o is any piece of surface in the fibre T'. p
whose boundary is the loop €. p.

Remarks . '

(i) The hypothesis that I is simply connected in (4.10.2) is unneces-
sary if ¢ is the transgression of an element of H*(BT; Z), where BT is the
classifying space of I'.

(ii) If P is connected and simply connected then th_e kernel
Map(P; T) has the homotopy type of a circle, and homotopically the
extension is simply the circle bundle corresponding to ¢ € H¥(I'; Z).

The case of interest in quantum field theory is when P is_ the
contractible space of connections in a principal G-bundle on an orient-
able 3-manifold X, and I'=Map(X; G). One constructs ¢ € HZ(F;.Z‘) by
starting from the element of H>(G;Z) defined by an invariant trilinear
form F on g. If the G-bundle on X is trivial, so that P = QY(X ; g), then
the Lie algebra cocycle associates to &, € Map(X; g) the function

A f F(A, dE, dn)
on P. x

4.11 Appendix: The cohomology of L(; and its Lie algebra

For a compact group G the cohomelogy H*(G; R) with real coefficients
can be calculated by de Rham’s theorem. If g. @ denotes the left-
translate of a closed form w on G by ge G then the averaged form
[cg . @ dg represents the same cohomology class as w, for a cohomology
class is unchanged by translation. It follows that the cohomology can be
calculated from the cochain complex of left-invariant forms on G, i.e.
from the cochain complex of the Lie algebra g. In other words we have

H*(G;R)y=H*(a; R).

It is well known that this cohomology is an exterior algebra on £
odd-dimensional generators, where € is the rank of G. The generators
correspond to the generators of the algebra of invarant polynomial
functions on ¢ (which themselves form a polynomial algebra om ¢
generators ([20] Chapter 5, Section 5.3)) in the following way. If P is a
polynomial of degree k, regarded as a symmetric multilinear function

gx...Xg—=R,
then one can define a skew multilinear function S of 2k — 1 variables by
S8y, Eper) =
2 (1 P& Bl [ Bl -+ [y Bracals $a)y (110)

where the sum is over all permutations 7 of {1,2,...,2k ~ 1}
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If G = U, then the generators of the ring of invariant polynomials can
be taken to be Py, B, ..., B, where P.(A) = trace(A%).

It is a fairly easy result of algebraic topology [16] that the cohomology
H*(QG; R) of the space of based loops on a simply connected group G is
a polynomnial algebra on the even dimensional classes obtained by
transgressing the gemerators of H*(G; R), i.e. by pulling them back to
S! X QG by the evaluation map, and then integrating over S. The class
so obtained from (4.11.1) is the (2k ~2)-form on QG whose value at
v € 2G on tangent vectors represented by &, ..., £y € Qg is

1 e ~
2k S(81(6); 52(8), - - ., Exeen(8), ¥(8)71y'(6)) d6. (4.11.2)
This form is naturally defined on LG. The cohomology H*(LG) is simply
the tensor product H*(G) @ H*(QG), because LG=G X QG as a
space.

The differential form (4.11.2) is evidently not left-invariant, and we
have no reason to expect that the cohomology of LG can be represented
by left-invariant forms. Nevertheless we have

Proposition (4.11.3). The (2k ~ 2)-form (4.11.2) on LG is cohomologous
to a rational multiple of the left-invariant form obtained by making skew
the map

G =g [ P ED - o B, sy S2n) 20,

Corollary (4.11.4). The natural map
H*{Lg; Ry— H*(LG; R)
Is surjective.

Remarks. Actually the map of (4.11.4) is an isomorphism. We shall
prove that in Section 14.6. (Cf. also Kumar [97].) The result should be
contrasted with our discovery in Section 4.2 that H*(Map(X; g)) is vastly
larger that H*(Map(X; G)) when dim(X) > 1. Quillen has pointed out to
us that the class in H**~4"(Map(X; G)) which is obtained by pulling
back the class (4.11.1) by the evaluation map X X Map(X; G)— G and
integrating it over a cycle of dimension 4 in X can be represented by a
left-invariant form if £ > 4, but usually not otherwise.

Proof of (4.11.3). Let us introduce some more convenient notation, as
follows. When we pull back the Maurer-Cartan 1-form g™! dg on G (with
values in g) by the evaluation map S'X LG->G we shall write the
resulting form as £+ u, where & vanishes on tangent vectors in the
S'-direction and 7 vanishes along LG. (Thus 7 is 7(8)~'y'(6)d@ at
(8, ) € 8" X LG.) In this notation the forms of (4.11.2) and (4.11.3) are
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obtained (up to rational multiples) by integrating over S* the forms
O=P(§8),....[5 8L
and

o= P([E: gl...., (& 5]: g, d'8),

respectively on S* x LG. (We write d’ and 4" for differentiation of forms
in the $* and LG directions respectively.)
Because d(g*dg) = —3[g~"dg, g~ dg] on G we find

d'n =—3[n, 7],
d"E=—3[§, &,

" and

d'E +dn=~[& n]-
Now consider the form W= P([&, &],...,[& § & n) on S'XLG. We
have d”[&, §]=0, so
dW = ~1P(§ E, ..., [& &), m)+ P(E, & ..., [§ &), & d'E)
+P([& &), ..., & &L & [& 7D

Using the invariance of the polynomial P, and the fact that (& &, &]1=0
because of the Jacobi identity, the third term on the right-hand-side is
equal to ©, so that we have

d¥ =16 + @,

Integrating this relation over §* gives the desired result.



